WorldWideScience

Sample records for prepare cesium atoms

  1. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  2. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  3. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku; Sato, Seichi; Ohashi, Hiroshi.

    1997-03-01

    Two kinds of cesium uranates, Cs 2 UO 4 and Cs 2 U 2 O 7 , which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U 3 O 8 and Cs 2 CO 3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs 2 UO 4 and Cs 2 U 2 O 7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs 2 UO 4 and Cs 2 U 2 O 7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  4. Thermochemical evaluation and preparation of cesium uranates

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Seichi; Ohashi, Hiroshi

    1997-03-01

    Two kinds of cesium uranates, Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U{sub 3}O{sub 8} and Cs{sub 2}CO{sub 3} for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  5. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  6. Electron-stimulated desorption of cesium atoms from cesium layers adsorbed on gold-covered tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, V N; Kuznetsov, Yu A; Potekhina, N D, E-mail: kuznets@ms.ioffe.r [A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021, St Petersburg (Russian Federation)

    2010-03-03

    The electron-stimulated desorption (ESD) yields and energy distributions (ED) for neutral cesium atoms have been measured from cesium layers adsorbed on a gold-covered tungsten surface as a function of electron energy, gold film thickness, cesium coverage and substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector in the temperature range 160-300 K. A measurable ESD yield for Cs atoms is observed only after deposition of more than one monolayer of gold and cesium on a tungsten surface at a temperature T = 300 K, which is accompanied by the formation of a CsAu semiconductor film covered with a cesium atom monolayer. The Cs atom ESD yield as a function of incident electron energy has a resonant character and consists of two peaks, the appearance of which depends on both electron energy and substrate temperature. The first peak has an appearance threshold at an electron energy of 57 eV and a substrate temperature of 300 K that is due to Au 5p{sub 3/2} core level excitation in the substrate. The second peak appears at an electron energy of 24 eV and a substrate temperature of 160 K. It is associated with a Cs 5s core level excitation in the Cs adsorbed layer. The Au 5p{sub 3/2} level excitation corresponds to a single broad peak in the ED with a maximum at a kinetic energy of 0.45 eV at a substrate temperature T = 300 K, which is split into two peaks with maxima at kinetic energies of 0.36 and 0.45 eV at a substrate temperature of 160 K, associated with different Cs atom ESD channels. The Cs 5s level excitation leads to an ED for Cs atoms with a maximum at a kinetic energy of approx 0.57 eV which exists only at T < 240 K and low Cs concentrations. The mechanisms for all the Cs atom ESD channels are proposed and compared with the Na atom ESD channels in the Na-Au-W system.

  7. Computer simulation of liquid cesium using embedded atom model

    International Nuclear Information System (INIS)

    Belashchenko, D K; Nikitin, N Yu

    2008-01-01

    The new method is presented for the inventing an embedded atom potential (EAM potential) for liquid metals. This method uses directly the pair correlation function (PCF) of the liquid metal near the melting temperature. Because of the specific analytic form of this EAM potential, the pair term of potential can be calculated using the pair correlation function and, for example, Schommers algorithm. Other parameters of EAM potential may be found using the potential energy, module of compression and pressure at some conditions, mainly near the melting temperature, at very high temperature or in strongly compressed state. We used the simple exponential formula for effective EAM electronic density and a polynomial series for embedding energy. Molecular dynamics method was applied with L. Verlet algorithm. A series of models with 1968 atoms in the basic cube was constructed in temperature interval 323-1923 K. The thermodynamic properties of liquid cesium, structure data and self-diffusion coefficients are calculated. In general, agreement between the model data and known experimental ones is reasonable. The evaluation is given for the critical temperature of cesium models with EAM potential

  8. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  9. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  10. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    Science.gov (United States)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  11. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  12. Atomic parity violation in heavy alkalis: detection by stimulated emission for cesium and traps for cold francium

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinetti, St

    2004-07-01

    The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)

  13. Dual cesium and rubidium atomic fountain with a 10-16 level accuracy and applications

    International Nuclear Information System (INIS)

    Chapelet, F.

    2008-05-01

    Atomic fountains are the most accomplished development of the atomic clocks based on the cesium atom whose hyperfine resonance defines the SI second since 1967. Today these systems are among those which realize the second with the best accuracy. We present the last developments of the cold cesium and rubidium atom dual fountain experiment at LNE-SYRTE. This unique dual setup would allow to obtain an outstanding resolution in fundamental physics tests based on atomic transition frequency comparisons. In order to enable operation with both atomic species simultaneously, we designed, tested and implemented on the fountain new collimators which combine the laser lights corresponding to each atom. By comparing our rubidium fountain to another cesium fountain over a decade, we performed a test of the stability of the fine structure constant at the level of 5 * 10 -16 per year. We carried on the work on the clock accuracy and we focused on the phase gradients effects in the interrogation cavity and on the microwave leakage. The fountain accuracy has been evaluated to 4 * 10 -16 for the cesium clock and to 5 * 10 -16 for the refurbished rubidium clock. As a powerful instrument of metrology, our fountain was implicated in many clock comparisons and contributed many times to calibrate the International Atomic Time. Furthermore, we used the fountain to perform a new test of Lorentz local invariance. (author)

  14. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  15. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  16. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  17. Effects of uniform dc electric fields on multiphoton ionization of cesium atoms

    International Nuclear Information System (INIS)

    Klots, C.E.; Compton, R.N.

    1985-01-01

    Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique

  18. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  19. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  20. Formation, decomposition and cesium adsorption mechanisms of highly alkali-tolerant nickel ferrocyanide prepared by interfacial synthesis

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Yamada, Kazuo; Osako, Masahiro; Haga, Kazuko

    2017-01-01

    Highly alkali-tolerant nickel ferrocyanide was prepared as an adsorbent for preventing the leaching of radioactive cesium from municipal solid waste incinerator fly ash containing large amounts of calcium hydroxide and potassium chloride, which act as an alkaline source and the suppressor for cesium adsorption, respectively. Nickel ferrocyanide prepared by contacting concentrated nickel and ferrocyanide solutions without mixing adsorbed cesium ions in alkaline conditions even the concentration of coexisting potassium ions was more than ten thousand times higher than that of the cesium ions. Large particles of nickel ferrocyanide slowly grew at the interface between the two solutions, which reduced the surface energy of the particles and therefore increased the alkali tolerance. The interfacially-synthesized nickel ferrocyanide was possible to prevent the leaching of radioactive cesium from cement-solidified fly ash for a long period. The mechanisms of the formation, selective cesium adsorption, and alkali-induced decomposition of the nickel ferrocyanide were elucidated. Comparison of the cesium adsorption mechanism with that of the other adsorbents revealed that an adsorbent can selectively adsorb cesium ions without much interference from potassium ions, if the following conditions are fulfilled. 1) The adsorption site is small enough for supplying sufficient electrostatic energy for the dehydration of ions adsorbed. 2) Both the cesium and potassium ions are adsorbed as dehydrated ions. 3) The adsorption site is flexible enough for permitting the penetration of dehydrated ions with the size comparable to that of the site. (author)

  1. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes

    International Nuclear Information System (INIS)

    Coc, A.

    1986-04-01

    This work is based on the study of cesium ( 118,146 Cs) and francium ( 207-213 Fr, 220-228 Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  2. Study of thermoelectron emission of oxidized tungsten sponge in cesium atom flow

    International Nuclear Information System (INIS)

    Tursunmetov, K.A.; Sabirov, A.K.

    1993-01-01

    Thermoelectron emission of a tungsten sponge with 30-40% porosity is studied. The tungsten sponge is produced of fine-grain tungsten powder (diameter - 1-2 μm) according to standard technology. It is shown that tungsten sponge oxidation at T=1000 K with subsequent heating in vacuum at T=1100 K allows one to obtain the minimal stable and reproducible work function at the level of 1.03-1.05 eV in a flux of cesium atoms. Estimations show that effective emitting surface is 15-20 times as much as the polycrystal surface

  3. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Singh, I.J.; Sathi Sasidharan, N.; Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    Separation of 137 cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137 Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137 Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137 Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137 Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137 Cs leach rate was 0.001 gm/cm 2 /d. (author)

  4. Radioactive cesium removal from seawater using adsorptive fibers prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Goto, Shota; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu; Kikuchi, Takahiro; Morimoto, Yasutomi

    2015-01-01

    The meltdown of three reactors of the TEPCO Fukushima Daiichi nuclear power station (NPS) caused by the Great East Japan Earthquake on March 11th 2011 resulted in the emission of radionuclides such as cesium-137 and strontium-90 to the environment. For example, radioactive cesium exceeding the legal discharge limit (90 Bq/L, 2×10 -13 M) was detected in the seawater of the seawater-intake area of the NPS at the end of September 2014. Adsorbents with a high selectivity for cesium ions over other alkali metal ions such as sodium and potassium ions are required for cesium removal from seawater because sodium and potassium ions dissolve respectively at much higher concentrations of 5×10 -1 and 1×10 -2 M than cesium ions (2×10 -9 M). In addition, the simple operations of the immersion in seawater and the recovery of the adsorbents from seawater are desirable at decontamination sites. We prepared a cobalt-ferrocyanide-impregnated fiber capable of specifically capturing cesium ions in seawater by radiation-induced graft polymerization and chemical modifications. First, a commercially available 6-nylon fiber was irradiated with γ-rays. Second, an epoxy-group-containing vinyl monomer, glycidyl methacrylate, was graft-polymerized onto the γ-ray-irradiated nylon fiber. Third, the epoxy ring of the grafted polymer chain was reacted with triethylenediamine to obtain an anion-exchange fiber. Fourth, ferrocyanide ions, [Fe(CN) 6 ] 4 - , were bound to the anion-exchange group of the polymer chains. Finally, the ferrocyanide-ion-bound-fiber was placed in contact with cobalt chloride to precipitate insoluble cobalt ferrocyanide onto the polymer chains. Insoluble cobalt ferrocyanide was immobilized at the periphery of the fiber. However, the impregnation structure remains unclear. Here, we clarified the structure of insoluble cobalt ferrocyanide impregnated onto the polymer chain grafted onto the fiber to ensure the chemical and physical stability of the adsorptive fiber in

  5. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    International Nuclear Information System (INIS)

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-01-01

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate

  6. Levitated atoms in a CO2 laser trap: towards BEC with cesium

    International Nuclear Information System (INIS)

    Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.

    2001-01-01

    Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)

  7. ''First evaluation of the accuracy of a cesium cold atom fountain, perspectives''

    International Nuclear Information System (INIS)

    Ghezali, S.

    1997-01-01

    The present PHD thesis is, at first, a detailed description of the atomic cesium fountain 'FO1' working as a frequency standard since more than three years at the Laboratoire Primaire du Temps et des Frequences. The 'FO1' has been included in the calculation of the TA1 in the CCDS 1996. Then, this manuscript holds on the different effects such as cold collisions, inhomogeneities of the static magnetic field... affecting the fountain's accuracy, limited at 2.10 -15 because of the hydrogen maser (few hours of integration). The traverse velocity selection via stimulated Raman transitions at two dimensions constitute an important part of the present work. The possible improvements are discussed at the end of the manuscript. (author)

  8. Remote Preparation of an Atomic Quantum Memory

    International Nuclear Information System (INIS)

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Juergen; Weber, Markus; Weinfurter, Harald

    2007-01-01

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87 Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%

  9. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  10. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  11. Behavior of strontium-90 and cesium-137 released into the pond of Office of Atomic Energy for Peace

    International Nuclear Information System (INIS)

    Milintawisamai, Mesak; Panyathipsakul, Yureeporn

    1989-01-01

    Strontium-90 and cesium-137 in liquid waste released from the waste disposal plant of Office of Atomic Energy for Peace(OAEP) have been followed since 1984. The concentration of both nuclides in surface water outside OAEP boundary is 2 to 30 times less than in the OAEP pond, the reservoir of liquid waste. This indicates that most of the nuclides are effectively absorbed by clay in the bottom of the pond. The nuclide concentration in fresh-water organisms in the pond such as fish, prawn and snail is also investigated to elucidate the behavior of strontium-90 and cesium-137 in a static fresh-water ecological system

  12. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  13. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    Science.gov (United States)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  14. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  15. Dual cesium and rubidium atomic fountain with a 10{sup -16} level accuracy and applications; Fontaine atomique double de cesium et de rubidium avec une exactitude de quelques 10{sup -16} et applications

    Energy Technology Data Exchange (ETDEWEB)

    Chapelet, F

    2008-05-15

    Atomic fountains are the most accomplished development of the atomic clocks based on the cesium atom whose hyperfine resonance defines the SI second since 1967. Today these systems are among those which realize the second with the best accuracy. We present the last developments of the cold cesium and rubidium atom dual fountain experiment at LNE-SYRTE. This unique dual setup would allow to obtain an outstanding resolution in fundamental physics tests based on atomic transition frequency comparisons. In order to enable operation with both atomic species simultaneously, we designed, tested and implemented on the fountain new collimators which combine the laser lights corresponding to each atom. By comparing our rubidium fountain to another cesium fountain over a decade, we performed a test of the stability of the fine structure constant at the level of 5 * 10{sup -16} per year. We carried on the work on the clock accuracy and we focused on the phase gradients effects in the interrogation cavity and on the microwave leakage. The fountain accuracy has been evaluated to 4 * 10{sup -16} for the cesium clock and to 5 * 10{sup -16} for the refurbished rubidium clock. As a powerful instrument of metrology, our fountain was implicated in many clock comparisons and contributed many times to calibrate the International Atomic Time. Furthermore, we used the fountain to perform a new test of Lorentz local invariance. (author)

  16. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    International Nuclear Information System (INIS)

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A ampersand M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K d ) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had λ values of ∼2,200 (λ = Cs K d x ρ b ; where λ represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40 degrees to 10 degrees C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed

  17. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  18. Control of the 133 cesium cold collisions, search for a variation of the fine structure constant using a dual rubidium-cesium atomic fountain

    International Nuclear Information System (INIS)

    Marion, H.

    2005-03-01

    We developed a method of measurement of the frequency shift due to the collisions between cold atoms. This is the main systematic limitation for the accuracy of the Cs 133 based fountains (∼ 10 -15 in relative frequency). Consequently, we can measure this effect near 0.5% This opens prospects for improvements of the fountains performances in term of accuracy until 10 -16 . The fountain has also obtained a stability about 10 -14 at 1 s. We discovered for the first time, at very low magnetic field (5 ± 1 mG), Feshbach resonances. We also took a new absolute measurement of the hyperfine transition of the Rb 87 , which is the most precise ever carried out and is used now as definition for the secondary standard. By comparing this value with those measured the previous years, we could carry out a test of the stability of the fine structure constant on the level of 10 -15 /yr. We led local comparisons between atomic fountains and the other fountains of the laboratory. Most stable it is unrolled with a combined stability of 5.10 -14 at 1 s. The behavior of the difference of the two clocks goes like white frequency noise up to 3.10 -16 . The assessment of the dual fountain accuracy budget has been evaluated at 7.10 -16 for the cesium part and 8.10 -16 for the rubidium part. We contributed to the realization of the scale of International Atomic Time, by series of calibrations of hydrogen masers. An atomic comparison of fountain by satellite links was tested between our laboratory and our German counterpart. This measurement has determined the good agreement between the two clocks. (author)

  19. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium

    International Nuclear Information System (INIS)

    Comparat, D.

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O g - (6s+6p 3/2 ) or 1 u (6s+6p 3/2 ) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs 2 + ions, afterwards selectively detected. Temperatures around 20-200 μK have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O g - (6s+6p 3/2 ) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  20. Evaluation Of ARG-1 Samples Prepared By Cesium Carbonate Dissolution During The Isolok SME Acceptability Testing

    International Nuclear Information System (INIS)

    Edwards, T.; Hera, K.; Coleman, C.

    2011-01-01

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems and Custom Equipment Development (MS and CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs 2 CO 3 ) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs 2 CO 3 method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this

  1. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  2. Remote state preparation through hyperentangled atomic states

    Science.gov (United States)

    Nawaz, Mehwish; ul-Islam, Rameez-; Ikram, Manzoor

    2018-04-01

    Hyperentangled states have enhanced channel capacity in quantum processing and have yielded` evident increased communication speed in quantum informatics as a consequence of excessively high information content coded over each quantum entity. In the present article, we intend to demonstrate this fact by utilizing atomic states simultaneously entangled both in internal as well as external degrees of freedom, i.e. the de Broglie motion for remote state preparation (RSP). The results clearly demonstrate that we can efficiently communicate two bit information while manipulating only a single quantum subsystem. The states are prepared and manipulated using atomic Bragg diffraction as well as Ramsey interferometry, both of which are now considered as standard, state of the art tools based on cavity quantum electrodynamics. Since atomic Bragg diffraction is a large interaction time regime and produces spatially well separated, decoherence resistant outputs, the schematics presented here for the RSP offer important perspectives on efficient detection as well as unambiguous information coding and readout. The article summarizes the experimental feasibility of the proposal, culminating with a brief discussion.

  3. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  4. An ab initio study on four low-lying electronic potential energy curves for atomic cesium and rare gas pairs

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Yuki, Kenta; Matsuoka, Leo

    2016-01-01

    Using multireference configuration interaction (MRCI) calculations with single and double excitation levels, Davidson correction, and a spin-orbit (SO) effective core potential, we have developed a series of four low-lying electronic potential energy curves (PECs) for the pairs formed between a cesium atom (Cs) and a rare gas (Rg = He, Ne, Ar, Kr, and Xe). The results obtained at the MRCI level were compared with those generated at the SOCI level, which were recently reported by Blank et al. The shapes of the PECs were essentially the same when the same basis set was used. Based on this agreement, more precise PECs for Cs-Rg pairs were calculated using a larger basis set for Rg. (author)

  5. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  6. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  7. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  8. Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing

    International Nuclear Information System (INIS)

    Huang Jia-Qiang; Wu Chen-Fei; Wang Li-Jun; Yan Xue-Shu; Zhang Jian-Wei

    2016-01-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional (2D) magneto–optical trap (MOT) with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam. With the independent pushing beam, the atomic flux can be substantially optimized. The total atomic flux maximum obtained in the 2D-HP MOT is 4.02 × 10 10 atoms/s, increased by 60 percent compared to the traditional 2D + MOT in our experiment. Moreover, with the pushing power 10 μW and detuning 0 Γ , the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied in detail. The experimental results are in good agreement with the theoretical model. (paper)

  9. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium; Formation de molecules froides par photoassociation d'atomes froids de cesium. Mise en evidence de forces a longue portee entre atomes froids excites de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Comparat, D

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O{sub g}{sup -}(6s+6p{sub 3/2}) or 1{sub u} (6s+6p{sub 3/2}) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs{sub 2}{sup +} ions, afterwards selectively detected. Temperatures around 20-200 {mu}K have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O{sub g}{sup -}(6s+6p{sub 3/2}) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  10. Localization of cesium on montmorillonite surface investigated by frequency modulation atomic force microscopy

    Science.gov (United States)

    Araki, Yuki; Satoh, Hisao; Okumura, Masahiko; Onishi, Hiroshi

    2017-11-01

    Cation exchange of clay mineral is typically analyzed without microscopic study of the clay surfaces. In order to reveal the distribution of exchangeable cations at the clay surface, we performed in situ atomic-scale observations of the surface changes in Na-rich montmorillonite due to exchange with Cs cations using frequency modulation atomic force microscopy (FM-AFM). Lines of protrusion were observed on the surface in aqueous CsCl solution. The amount of Cs of the montmorillonite particles analyzed by energy dispersive X-ray spectrometry was consistent with the ratio of the number of linear protrusions to all protrusions in the FM-AFM images. The results showed that the protrusions represent adsorbed Cs cations. The images indicated that Cs cations at the surface were immobile, and their occupancy remained constant at 10% of the cation sites at the surface with different immersion times in the CsCl solution. This suggests that the mobility and the number of Cs cations at the surface are controlled by the permanent charge of montmorillonite; however, the Cs distribution at the surface is independent of the charge distribution of the inner silicate layer. Our atomic-scale observations demonstrate that surface cations are distributed in different ways in montmorillonite and mica.

  11. Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell

    International Nuclear Information System (INIS)

    Yang Bao-Dong; Gao Jing; Liang Qiang-Bing; Wang Jie; Zhang Tian-Cai; Wang Jun-Min

    2011-01-01

    In a Doppler-broadened ladder-type cesium atomic system (6S 1/2 -6P 3/2 -8S 1/2 ), this paper characterizes electromagnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P 3/2 F' = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S 1/2 F = 4−6P 3/2 F' = 5−8S 1/2 F″ = 4 transitions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  13. Single Atoms Preparation Using Light-Assisted Collisions

    Directory of Open Access Journals (Sweden)

    Yin Hsien Fung

    2016-01-01

    Full Text Available The detailed control achieved over single optically trapped neutral atoms makes them candidates for applications in quantum metrology and quantum information processing. The last few decades have seen different methods developed to optimize the preparation efficiency of single atoms in optical traps. Here we review the near-deterministic preparation of single atoms based on light-assisted collisions and describe how this method can be implemented in different trap regimes. The simplicity and versatility of the method makes it feasible to be employed in future quantum technologies such as a quantum logic device.

  14. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  15. Migration of strontium, cesium, and europium from poly(butyl acrylate)/phosphate/composites prepared using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alhassanieh, O., E-mail: cscientific@aec.org.s [Nuclear and Radiochemistry Division, Chemistry Department, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Ajji, Z. [Polymer Technology Division, Radiation Technology Department, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Alkourdi, H.; Haloum, D. [Nuclear and Radiochemistry Division, Chemistry Department, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic)

    2011-02-15

    Composites based on natural phosphate powder and the monomer N-butyl acrylate have been prepared by means of gamma irradiation. The conversion of polymerization was followed up with respect to the irradiation dose using thermogravimetric analyzer (TGA). A total polymerization conversion was achieved by exposure of the samples to a dose of 10 kGy. A thermomechanical analyzer (TMA) was used to locate the region of the glass transition temperatures (T{sub g}) using the mode with alternative variable force; the mode with constant force was used to determine the T{sub g} of the pure polymer and the composite prepared at the same irradiation dose. The T{sub g} of the pure poly(butyl acrylate) is -51.41 {sup o}C, and the T{sub g} of poly(butyl acrylate)/phosphate/composites is -46.54 {sup o}C. The distribution of {sup 137}Cs, {sup 152}Eu, and {sup 85}Sr in a solid-aqueous system, a composite of phosphate-polybutyl acrylate in contact with groundwater, was investigated using {gamma}-spectrometry. The effect of contact time, pH, and the concentration of concurrent elements (Na, Ca, and La) were studied. The results were compared with earlier results with phosphate alone in the solid phase. The ability of the produced composites to keep the studied radioisotopes in the solid phase is much higher than mineral phosphate. This improvement is more remarkable by strontium and cesium than europium, due to its high element ratio in the solid phase in phosphate experiments.

  16. Cesium uptake capacity of simulated ferrocyanide tank waste. Interim report FY 1994, Ferrocyanide Safety Project

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.; Burger, L.E.

    1994-09-01

    The objective of this project is to determine the capacity for 137 CS uptake by mixed metal ferrocyanides present in Hanford waste tanks, and to assess the potential for aggregation of these 137 CS exchanged materials to form tank ''hot-spots.'' This research, performed at the Pacific Northwest Laboratory (PNL) for the Westinghouse Hanford Company (WHC), stems from concerns of possible localized radiolytic heating within the tanks. If radioactive cesium is exchanged and concentrated by the remaining nickel ferrocyanide present in the tanks, this heating could cause temperatures to rise above the safety limits specified for the ferrocyanide tanks. For the purposes of this study, two simulants, In-Farm-2 and U-Plant-2, were chosen to represent the wastes generated by the scavenging processes. These simulants were formulated using protocols from the original cesium scavenging campaign. Later additions of cesium-rich wastes from various processes also were considered. The simulants were prepared and centrifuged to obtain a moist ferrocyanide sludge. The centrifuged sludges were treated with the original supernate spiked with a known amount of cesium nitrate. After analysis by flame atomic absorption spectrometry, distribution coefficients (K d ) were calculated. The capacity of solid waste simulants to exchange radioactive cesium from solution was examined. Initial results showed that the greater the molar ratio of cesium to cesium nickel ferrocyanide, the less effective the exchange of cesium from solution. The theoretical capacity of 2 mol cesium per mol of nickel ferrocyanide was not observed. The maximum capacity under experimental conditions was 0.35 mol cesium per mol nickel ferrocyanide. Future work on this project will examine the layering tendency of the cesium nickel ferrocyanide species

  17. Laser spectroscopy of collisionally prepared target species: atomic caesium

    International Nuclear Information System (INIS)

    Moreau, J.-P.; Tremblay, Julien; Knystautas, E.J.; Laperriere, S.C.; Larzilliere, Michel

    1989-01-01

    Fast ion beam bombardment was used to collisionally prepare a target gas in excited states, to which conventional laser spectroscopy was then applied. The versatility of this method is demonstrated with atomic targets of caesium, for a state of Cs + that is 16 eV above the ground state, as well as for a short-lived state (38 ns) of the neutral atom. The local temperature in the caesium oven is also obtained. (Author)

  18. Modeling approach to various time and spatial scale environmental issues in Fukushima. Related to radioactive cesium migration in aquatic systems

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kitamura, Akihiro; Yamada, Susumu; Machida, Masahiko

    2015-01-01

    Several numerical models have been prepared to deal with various time- and spatial-scale issues related to radioactive cesium migration in environment in Fukushima area. The SACT (Soil and Cesium Transport) model developed by the Japan Atomic Energy Agency (JAEA) predicts middle- to long-term evolution of radioactive cesium distribution due to soil erosion, subsequent sediment transport and deposition, and radioactive cesium migration based on the Universal Soil Loss Equation (USLE). The TODAM (Time-dependent One-dimensional Degradation and Migration) model, iRIC/Nays2D and the FLESCOT (Flow, Energy, Salinity, Sediment, Contaminant Transport) model are one-, two- and three-dimensional river/reservoir/coastal models, respectively. Based on conservation equations of sediment and radioactive cesium, they treat advection and diffusion of suspended sediment and cesium, deposition of sediment to bed, re-suspension from bed and adsorption/desorption of radioactive cesium. These models are suitable for small and short time scale issues such as high discharges of sediment and radioactive cesium from rivers due to heavy rainfall events. This paper describes fragments of the JAEA’s approaches of modeling to deal with the issues corresponding to radioactive cesium migration in environment with some case studies. (author)

  19. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  20. Quantum state preparation using multi-level-atom optics

    International Nuclear Information System (INIS)

    Busch, Th; Deasy, K; Chormaic, S Nic

    2007-01-01

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation

  1. Preparation of a single atom in an optical microtrap

    International Nuclear Information System (INIS)

    Carpentier, Alicia V; Fung, Yin H; Sompet, Pimonpan; Hilliard, Andrew J; Andersen, Mikkel F; Walker, Thad G

    2013-01-01

    We investigate the use of light assisted collisions for the deterministic preparation of individual atoms in a microtrap. Blue detuned light is used in order to ensure that only one of the collision partners is lost from the trap. We obtain a 91% loading efficiency of single 85 Rb atoms. This can be achieved within a total preparation time of 542 ms. A numerical model of the process quantitatively agrees with the experiment giving an in-depth understanding of the dynamics of the process and allowing us to identify the factors that still limit the loading efficiency. The fast loading time in combination with the high efficiency may be sufficient for loading quantum registers at the size required for competitive quantum computing. (letter)

  2. η Condensate of Fermionic Atom Pairs via Adiabatic State Preparation

    International Nuclear Information System (INIS)

    Kantian, A.; Daley, A. J.; Zoller, P.

    2010-01-01

    We discuss how an η condensate, corresponding to an exact excited eigenstate of the Fermi-Hubbard model, can be produced with cold atoms in an optical lattice. Using time-dependent density matrix renormalization group methods, we analyze a state preparation scheme beginning from a band insulator state in an optical superlattice. This state can act as an important test case, both for adiabatic preparation methods and the implementation of the many-body Hamiltonian, and measurements on the final state can be used to help detect associated errors.

  3. Preparation methods of copper-ferrocyanide functionalized magnetic nanoparticles for selective removal of cesium in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hee-Man Yang; Kune Woo Lee; Bum-Kyoung Seo; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    Copper ferrocyanide functionalized magnetite nanoparticles (Cu-FC-MNPs) were successfully synthesized by the immobilization of copper and ferrocyanide on the surface of [1-(2 amino-ethyl)-3-aminopropyl] trimethoxysilane modified magnetite nanoparticles. A radioactive cesium (Cs) adsorption test was carried out to investigate the effectiveness of Cu-FC-MNPS for the removal of radioactive Cs. Furthermore, the Cu-FC-MNPs showed excellent separation ability by an external magnet in an aqueous solution. (authors)

  4. Efficient atomization of cesium metal in solid helium by low energy (10 μJ) femtosecond pulses

    Science.gov (United States)

    Melich, M.; Dupont-Roc, J.; Jacquier, Ph.

    2009-10-01

    Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 μJ. As an unexpected benefit, the atomic density produced is much higher.

  5. Legal Time of the Republic of Colombia and its international traceability using the Cesium Atomic Clock - Time and Frequency National Standard

    Science.gov (United States)

    Hernández Forero, Liz Catherine; Bahamón Cortés, Nelson

    2017-06-01

    Around the world, there are different providers of timestamp (mobile, radio or television operators, satellites of the GPS network, astronomical measurements, etc.), however, the source of the legal time for a country is either the national metrology institute or another designated laboratory. This activity requires a time standard based on an atomic time scale. The International Bureau of Weights and Measures (BIPM) calculates a weighted average of the time kept in more than 60 nations and produces a single international time scale, called Coordinated Universal Time (UTC). This article presents the current time scale that generates Legal Time for the Republic of Colombia produced by the Instituto Nacional de Metrología (INM) using the time and frequency national standard, a cesium atomic oscillator. It also illustrates how important it is for the academic, scientific and industrial communities, as well as the general public, to be synchronized with this time scale, which is traceable to the International System (SI) of units, through international comparisons that are made in real time.

  6. Ionization of nS, nP, and nD lithium, potassium, and cesium Rydberg atoms by blackbody radiation

    Science.gov (United States)

    Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B.; Bezuglov, N. N.; Ékers, A.

    2008-07-01

    The results of theoretical calculations of the blackbody ionization rates of lithium, potassium, and cesium atoms residing in Rydberg states are presented. The calculations are performed for nS, nP, and nD states in a wide range of principal quantum numbers, n = 8-65, for blackbody radiation temperatures T = 77, 300, and 600 K. The calculations are performed using the known quasi-classical formulas for the photoionization cross sections and for the radial matrix elements of transitions in the discrete spectrum. The effect of the blackbody-radiation-induced population redistribution between Rydberg states on the blackbody ionization rates measured under laboratory conditions is quantitatively analyzed. Simple analytical formulas that approximate the numerical results and that can be used to estimate the blackbody ionization rates of Rydberg atoms are presented. For the S series of lithium, the rate of population of high-lying Rydberg levels by blackbody radiation is found to anomalously behave as a function of n. This anomaly is similar to the occurrence of the Cooper minimum in the discrete spectrum.

  7. Efficient atomization of cesium metal in solid helium by low energy (10 $\\mu$J) femtosecond pulses

    OpenAIRE

    Melich, Mathieu; Dupont-Roc, Jacques; Jacquier, Philippe

    2009-01-01

    International audience; Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 µJ. As an...

  8. Experimental determination of the energy levels of the antimony atom (Sb II), ions of the antimony (Sb II, Sb III), mercury (Hg IV) and cesium (Cs X)

    International Nuclear Information System (INIS)

    Arcimowicz, B.

    1993-01-01

    The thesis concerns establishing the energy scheme of the electronic levels, obtained from the analysis of the investigated spectra of antimony atom and ions (Sb I, Sb II, Sb III) and higher ionized mercury (Hg IV) and cesium (Cs X) atoms. The experimental studies were performed with optical spectroscopy methods. The spectra of the elements under study obtained in the spectral range from visible (680 nm) to vacuum UV (40 nm) were analysed. The classification and spectroscopic designation of the experimentally established 169 energy levels were obtained on the basis of the performed calculations and the fine structure analysis. The following configurations were considered: 5s 2 5p 2 ns, 5s 2 5p 2 n'd, 5s5p 4 of the antimony atom, 5s 2 5pns, 5s 2 5pn'd, 5s5p 3 of the ion Sb II, 5s 2 ns, 5s 2 n'd, 5s5p 2 of the on Sb III, 5d 8 6p of the ion Hg IV 4d 9 5s and 4d 9 5p Cs X. A reclassification was performed and some changes were introduced to the existing energy level scheme of the antimony atom, with the use of the information obtained from the absorption spectrum taken in the VUV region by the ''flash pyrolysis'' technique. The measurements of the hyperfine splittings in 19 spectral lines belonging to the antimony atom and ions additionally confirmed the assumed classification of the levels involved in these lines. The energy level scheme, obtained for Sb III, was compared to the other ones in the isoelectronic sequence starting with In I. On the basis of the analysis of the Hg IV spectrum it was proved that ground configuration of the three times ionized mercury atom is 5d 9 not 5d 8 6s as assumed until now. The fine structure, established from the analysis of the spectra of the elements under study was examined in multiconfiguration approximation. As a result of the performed calculations the fine structure parameters and wavefunctions were determined for the levels whose energy values were experimentally established in the thesis. (author). 140 refs, 22 figs, 17

  9. Atomic geometry and electronic structure of Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surfaces covered with different coverages of cesium: A first-principle research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mingzhu [Institute of Electronic Engineering and Optical Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Chang, Benkang, E-mail: bkchang@mail.njust.edu.cn [Institute of Electronic Engineering and Optical Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Wang, Meishan [Institute of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025 (China)

    2015-01-30

    Highlights: • Adsorption energy of Cs adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface increases as the increasing of Cs coverage. • Electrons transfer from Cs adatoms to substrate during Cs adsorption process, meanwhile the transfer efficiency decreases as Cs coverage increases. • The length of Ga-N bond in the first and second bilayers increases after Cs adsorption. • There appear new energy bands at −25 to −23 eV and −14 to −10 eV, which were induced by Cs 5s and Cs 5p state electrons respectively. - Abstract: We investigate cesium adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface at different coverages using first principle method based on density functional theory. Adsorption energies, atomic structure, Mulliken charge distribution, electron transfer, band structures, and density of states of the adsorption systems corresponding to different Cs coverages were obtained. Total-energy calculations show that cesium adsorption on Al{sub 0.25}Ga{sub 0.75}N(0 0 0 1) surface is more and more difficult as the increase of cesium coverage. A single cesium adatom is preferred to locate at the top of Ga atom (T{sub Ga}). Meanwhile, it is not the most stable configuration when two cesium atoms were located on the top of two Ga neighbors at the same time. This is mainly because the distance of Cs adatoms is so small that repulsive force between adatoms rises. At low coverage, electrons transfer from Cs adatom to Ga atoms on the topmost and second topmost bilayers. Meanwhile, the efficiency of electron transfer decreases as the increasing of Cs coverage. There appear new bands at −25 to −23 eV and −14 to −10 eV, which were caused by Cs 5s and Cs 5p state electrons. Under the joint effect of Cs 5s and 5p state electrons, density of states at Fermi level increases, and the adsorption surfaces show more metal properties. Electrons transferring from Cs adatoms to Al{sub 0.25}Ga{sub 0.75}N substrate induces dipole moment, which is useful to

  10. Atomic geometry and electronic structure of Al0.25Ga0.75N(0 0 0 1) surfaces covered with different coverages of cesium: A first-principle research

    International Nuclear Information System (INIS)

    Yang, Mingzhu; Chang, Benkang; Wang, Meishan

    2015-01-01

    Highlights: • Adsorption energy of Cs adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface increases as the increasing of Cs coverage. • Electrons transfer from Cs adatoms to substrate during Cs adsorption process, meanwhile the transfer efficiency decreases as Cs coverage increases. • The length of Ga-N bond in the first and second bilayers increases after Cs adsorption. • There appear new energy bands at −25 to −23 eV and −14 to −10 eV, which were induced by Cs 5s and Cs 5p state electrons respectively. - Abstract: We investigate cesium adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface at different coverages using first principle method based on density functional theory. Adsorption energies, atomic structure, Mulliken charge distribution, electron transfer, band structures, and density of states of the adsorption systems corresponding to different Cs coverages were obtained. Total-energy calculations show that cesium adsorption on Al 0.25 Ga 0.75 N(0 0 0 1) surface is more and more difficult as the increase of cesium coverage. A single cesium adatom is preferred to locate at the top of Ga atom (T Ga ). Meanwhile, it is not the most stable configuration when two cesium atoms were located on the top of two Ga neighbors at the same time. This is mainly because the distance of Cs adatoms is so small that repulsive force between adatoms rises. At low coverage, electrons transfer from Cs adatom to Ga atoms on the topmost and second topmost bilayers. Meanwhile, the efficiency of electron transfer decreases as the increasing of Cs coverage. There appear new bands at −25 to −23 eV and −14 to −10 eV, which were caused by Cs 5s and Cs 5p state electrons. Under the joint effect of Cs 5s and 5p state electrons, density of states at Fermi level increases, and the adsorption surfaces show more metal properties. Electrons transferring from Cs adatoms to Al 0.25 Ga 0.75 N substrate induces dipole moment, which is useful to lower work function. What is more

  11. Ionization of a cesium atom by an absorption process involving two photons from a laser beam; Ionisation d'un atome de cesium par un processus d'absorption a deux photons issus d'un faisceau laser

    Energy Technology Data Exchange (ETDEWEB)

    Gontier, Y; Trahin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-01-01

    The expression giving the ionisation cross-section of an atom, by an absorption process involving two photons produced from a laser beam, is derived. The non-relativistic case is considered and the dipolar approximation used. The summation over the intermediate states is carried out rigorously by means of a special technique which is described in detail. A method is presented which makes it possible to obtain the numerical solution. (authors) [French] La formule donnant la section efficace d'ionisation d'un atome, par un processus d'absorption mettant en jeu deux photons issus d'un faiseau Laser, est etablie. On se place dans le cas non relativiste et Pon utilise l'approximation dipolaire. La sommation sur les etats intermediaires est effectuee rigoureusement au moyen d'une technique particuliere qui est decrite en detail. On expose une methode permettant d'obtenir la solution numerique. (auteurs)

  12. Development of asymptotic methods for the study of interactions between cold atoms: determination of scattering lengths of sodium and cesium; Developpement de methodes asymptotiques pour l'etude des interactions entre atomes froids: determination de longueurs de diffusion du sodium et du cesium

    Energy Technology Data Exchange (ETDEWEB)

    T' Jampens, B

    2002-12-15

    Precise knowledge of cold-atom collision properties is essential for the studies of Bose-Einstein condensation or cold molecule formation. In such experiments, the interaction mainly occurs at rather large interatomic distance, in the so-called asymptotic region. We have developed a purely asymptotic method which allows us to fully describe the collision properties of cold alkali atoms without using the inner part of the molecular potentials, which is often known with a poor precision. The key point of the method is the setting of nodal lines, which are the lines connecting the nodes of successive radial wavefunctions near the ground state threshold. Within the framework of Born-Oppenheimer approximation, computing such nodal lines, by numerical integration of the radial Schroedinger equation in the asymptotic region only, provides a very simple way to derive scattering lengths from observed bound level positions. The method has been extended to the multichannel case and appears now as a genuine parametric method, in which a few parameters (some chosen nodal lines) replace the inner part of the potentials. These nodal lines are used as fitting parameters, which are adjusted on experimental results. Once these parameters have been determined, any collision property such as scattering lengths, clock shifts or magnetic field induced Feshbach resonances can be deduced in principle. This method has been applied to obtain the collision properties of ultracold sodium and cesium atoms. (author)

  13. Frequency shift due to blackbody radiation in a cesium atomic fountain and improvement of the clock performances

    International Nuclear Information System (INIS)

    Zhang, S.

    2004-07-01

    FO1 was the first caesium fountain primary frequency standard in the world. The most recent evaluation in 2002 before improvement reached an accuracy of 1*10 -15 when operated with optical molasses. Working as an extremely precise and stable instrument, FO1 has contributed to fundamental physics and technical measurements: - Frequency comparison between Cs and Rb fountains over an interval of 5 years sets an upper limit for a possible variation of the fine structure constant as |alpha/alpha| -15 /y. The resolution is about 5 times better than the previous test in our laboratory. The projected accuracy of the space clock PHARAO is 1*10 -16 . We confirmed its Ramsey cavity performance by testing the phase difference between the two interaction zones in FO1. The measured temperature T dependent frequency shift of the Cs clock induced by the blackbody radiation field is given as nu(T)=154(6)*10 -6 *(T/300) 4 [1+ε(T/300) 2 ] Hz with the theoretical value ε = 0,014. The obtained accuracy represents a 3 times improvement over the previous measurement by the PTB group. Some improvements have been carried out on FO1. The new FO1 version works directly with optical molasses loaded by a laser slowed atomic beam. The application of the adiabatic passage method to perform the state selection allows us to determine the atom number dependent frequency shifts due to the cold collision and cavity pulling effects at a level of of 10 -16 . Recently, the obtained frequency stability is 2,8*10 -14 *τ -1/2 for about 4*10 6 detected atoms. The accuracy is currently under evaluation, the expected value is a few times 10 -16 . (author)

  14. Surface Preparation of InAs (110 Using Atomic Hydrogen

    Directory of Open Access Journals (Sweden)

    T.D. Veal

    2002-06-01

    Full Text Available Atomic hydrogen cleaning has been used to produce structurally and electronically damage-free InAs(110 surfaces.  X-ray photoelectron spectroscopy (XPS was used to obtain chemical composition and chemical state information about the surface, before and after the removal of the atmospheric contamination. Low energy electron diffraction (LEED and high-resolution electron-energy-loss spectroscopy (HREELS were also used, respectively, to determine the surface reconstruction and degree of surface ordering, and to probe the adsorbed contaminant vibrational modes and the collective excitations of the clean surface. Clean, ordered and stoichiometric  InAs(110-(1×1 surfaces were obtained by exposure to thermally generated atomic hydrogen at a substrate temperature as low as 400ºC.  Semi-classical dielectric theory analysis of HREEL spectra of the phonon and plasmon excitations of the clean surface indicate that no electronic damage or dopant passivation were induced by the surface preparation method.

  15. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by a two-reaction sequence in which the cesium alum is first dissolved in an aqueous hydroxide solution to form cesium alum hydroxide, CsAl(OH) 3 , and potassium sulfate, K 2 SO 4 . Part of the K 2 SO 4 precipitates and is separated from the supernatant solution. In the second reaction, a water-soluble permanganate, such as potassium permanganate, KMnO 4 , is added to the supernatant. This reaction forms a precipitate of cesium permanganate, CsMnO 4 . This precipitate may be separated from the residual solution to obtain cesium permanganate of high purity, which can be sold as a product or converted into other cesium compounds

  16. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium

    International Nuclear Information System (INIS)

    Chauvat, D.

    1997-10-01

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation ε 1 excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation ε 2 tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry (∼ 10 -6 ) in the gain that depends on the handedness of the tri-hedron (E, ε 1 , ε 2 ) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  17. Cesium-137

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain

    2014-06-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Cesium-137

  18. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  19. Radiochemical determination of cesium-137 in seawater

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Munita, C.S.; Paiva, R.P.

    1990-01-01

    Seawater samples were collected from the Atlantic Ocean, in the vicinity of Ubatuba (Sao Paulo State - Brazil), acidified to pH 1 and stored in polyethylene containers. Cesium was precipitated with ammonium phospho molybdate (AMP), synthesized in our laboratory. The elements potassium and rubidium present in the seawater are also coprecipitated by AMP and adequate decontamination of the cesium is made by preparing a column by mixing Cs-137 AMP precipitate and asbestos. The interfering elements were eluted with 1.0 M ammonium nitrate solution whereas cesium was eluted with 1.0 M sodium hydroxide solution. Cesium was reprecipitated by acidifying the solution with concentrated hydrochloric acid. The overall chemical yield of cesium was of 75%. (author)

  20. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by an aqueous conversion and precipitation reaction using a critical stoichiometric excess of a water-soluble permanganate to form solid cesium permanganate (CsMnO 4 ) free from cesium alum. The other metal salts remain in solution, providing the final pH does not cause hydroxides of aluminium or iron to form. The precipitate is separated from the residual solution to obtain CsMnO 4 of high purity

  1. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  2. Distribution of radioactive cesium ((134)Cs Plus(137)Cs) in a contaminated Japanese soybean cultivar during the preparation of tofu, natto, and nimame (Boiled Soybean).

    Science.gov (United States)

    Hachinohe, Mayumi; Kimura, Keitarou; Kubo, Yuji; Tanji, Katsuo; Hamamatsu, Shioka; Hagiwara, Shoji; Nei, Daisuke; Kameya, Hiromi; Nakagawa, Rikio; Matsukura, Ushio; Todoriki, Setsuko; Kawamoto, Shinichi

    2013-06-01

    We investigated the fate of radioactive cesium ((134)Cs plus (137)Cs) during the production of tofu, natto, and nimame (boiled soybean) from a contaminated Japanese soybean cultivar harvested in FY2011. Tofu, natto, and nimame were made from soybean grains containing radioactive cesium (240 to 340 Bq/kg [dry weight]), and the radioactive cesium in the processed soybean foods and in by-product fractions such as okara, broth, and waste water was measured with a germanium semiconductor detector. The processing factor is the ratio of radioactive cesium concentration of a product before and after processing. For tofu, natto, nimame, and for the by-product okara, processing factors were 0.12, 0.40, 0.20, and 0.18, respectively; this suggested that these three soybean foods and okara, used mainly as an animal feed, can be considered safe for human and animal consumption according to the standard limit for radioactive cesium of soybean grains. Furthermore, the ratio of radioactive cesium concentrations in the cotyledon, hypocotyl, and seed coat portions of the soybean grain was found to be approximately 1:1:0.4.

  3. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    Wittchow, F.

    1979-01-01

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li + + K, Na + + K, K + + K, and Rb + + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG) [de

  4. Method of grass samples preparation for strontium-90 and cesium-137 analysis with the exception of ashing

    International Nuclear Information System (INIS)

    Antonova, V.A.; Prokof'ev, O.N.; Khazina, M.A.; Bajkovskaya, L.V.

    1978-01-01

    A method is proposed for the preparation of grass samples in the analysis for 90 Sr and 137 Cs, in which radionuclides are removed into solution as a result of the thermal treatment of samples in 0.01N solution of hydrochloric acid. A grass sample 0.8 kg in weight is covered with 8-10 l of 0.01 N solution of hydrochloric acid and boiled for 30 min, while being constantly stirred. The solution is filtered through cheese cloth, carriers for 90 Y and 137 Cs are introduced, and then oxalates are precipitated at pH=4. After the oxalates have been separated from the filtrate the 137 Cs content is determined using the antimonium-iodide technique. The oxalate precipitate is calcined, dissolved in 2N hydrochloric acid, while boiling, and precipitated by ammonia. The precipitate of hydrooxides is filtered. The solution is acidified by 2N hydrochloric acid up to pH 2-3, and the carrier for 90 Y is introduced. The 90 Sr content is determined by a conventional technique. The percentage of the transition of radionuclides from the grass samples into solution ammounts to: 88+-6% for 90 Sr, and 81+-7% for 137 Cs

  5. Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems

    Science.gov (United States)

    Xu, Nan

    2018-02-01

    We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.

  6. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  7. Photon interactions in a cesium beam

    International Nuclear Information System (INIS)

    Nygaard, K.J.; Jones, J.D.; Hebner, R.E. Jr

    1974-01-01

    Photoionization of excited cesium atoms in the 6 2 P3/2 - state has been studied in a triple crossed-beam experiment. A thermal beam of cesium atoms was intersected by one photon beam of wavelength 8521A that served to excite the atoms and another photon beam with wavelengths below 5060A that served to ionize the excited atoms. The resulting ions were detected with a channel electron multiplier. All background effects were discriminated against by chopping the beam of exciting radiation and by analyzing the net count rate with digital synchronous techniques. The relative cross section for photoionization fo Cs(6 2 P3/2) has been measured from threshold (5060A) to 2500A. The results fall off faster than the theoretical calculations of Weisheit and Norcross

  8. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  9. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  10. Progress toward Brazilian cesium fountain second generation

    Science.gov (United States)

    Bueno, Caio; Rodriguez Salas, Andrés; Torres Müller, Stella; Bagnato, Vanderlei Salvador; Varela Magalhães, Daniel

    2018-03-01

    The operation of a Cesium fountain primary frequency standard is strongly influenced by the characteristics of two important subsystems. The first is a stable frequency reference and the second is the frequency-transfer system. A stable standard frequency reference is key factor for experiments that require high accuracy and precision. The frequency stability of this reference has a significant impact on the procedures for evaluating certain systematic biases in frequency standards. This paper presents the second generation of the Brazilian Cesium Fountain (Br-CsF) through the opto-mechanical assembly and vacuum chamber to trap atoms. We used a squared section glass profile to build the region where the atoms are trapped and colled by magneto-optical technique. The opto-mechanical system was reduced to increase stability and robustness. This newest Atomic Fountain is essential to contribute with time and frequency development in metrology systems.

  11. Iotech cesium capsule recovery abstract

    International Nuclear Information System (INIS)

    Stevens, J.; Higgins, D.

    1996-01-01

    This report has been prepared to detail the project operations performed by OHM Remediation Services Corp. (OHM) under contract to the Westinghouse Hanford Company (WHC) for the removal and transfer of 309 cesium sources from the lotech Inc. Facility in Northglenn, Colorado, to the Department of Energy Site in Hanford, Washington. The activities covered by this report were performed between October of 1993 and August of 1995. The report includes the following major sections: (1) Project Description, (2) Project Organization, (3) Major Project Tasks, (4) Industrial and Radiological Safety, (5) Personnel Exposures, (6) Quality Assurance, (7) Scheduling/Costs, and (8) Lessons Learned

  12. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  13. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  14. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  15. Atomic absorption determination of metals in soils using ultrasonic sample preparation

    International Nuclear Information System (INIS)

    Chmilenko, F.A.; Smityuk, N.M.; Baklanov, A.N.

    2002-01-01

    It was shown that ultrasonic treatment accelerates sample preparation of soil extracts from chernozem into different solvents by a factor of 6 to 60. These extracts are used for the atomic absorption determination of soluble species of Cd, Co, Cr, Cu, Ni, Pb, and Zn. The optimum ultrasound parameters (frequency, intensity, and treatment time) were found for preparing soil extracts containing analytes in concentrations required in agrochemical procedures. Different extractants used to extract soluble heavy metals from soils of an ordinary chernozem type in agrochemical procedures using ultrasonic treatment were classified in accordance with the element nature [ru

  16. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C.

    1997-01-01

    Cesium radio-isotopes, especially cesium-137 ( 137 Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137 Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137 Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137 Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  17. Methods of producing cesium-131

    Science.gov (United States)

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  18. A model for radial cesium transport in a fuel pellet

    International Nuclear Information System (INIS)

    Imoto, Shosuke

    1989-01-01

    In order to explain the radial redistribution of cesium in an irradiated pellet, a two-step release model is proposed. The first step involves the migration of cesium by atomic diffusion to some channels, such as grain boundaries and cracks, and the second step assumes a thermomigration down along the temperature gradient. Distribution profiles of cesium are obtained by numerical calculation with the present model assuming a constant and spatially uniform birth rate of cesium in the pellet. The result agrees well with the profile observed by micro-gamma scanning for the LWR fuel in the outer region of the pellet but diverges from it at the inner region. Discussion is made on the steady-state model hitherto generally utilized. (orig.)

  19. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  20. The determination of cesium and rubidium in highly radioactive waste liquid

    International Nuclear Information System (INIS)

    Wei Songsheng

    1991-01-01

    Cesium and rubidium in high-level waste liquid were determined by atomic absorption spectrometry with the instrument modified for analyzing radioactive samples. The results show that the method is effective and safe. The error of the method is less than +- 3%, and it has been used in the production of cesium

  1. Two-Step Method for Preparation of NaA-X Zeolite Blend from Fly Ash for Removal of Cesium ions

    International Nuclear Information System (INIS)

    El-Naggar, M.R.; El-Kamash, A.M.; El-Dessouky, M.I.; Ghonaim, A.K.

    2008-01-01

    Pure zeolites can be synthesized from silica extracts obtained from fly ash by alkaline leaching. The extraction potential of industrial by-product fly ash was investigated under repeated fusion process conditions. The amount of extracted silica was 131.43 g/kg ash while the amount extracted alumina was limited to 41.72 g/kg ash. The results of zeolite synthesis from the Si-bearing extracts demonstrated that pure zeolites with high cation exchange capacity (4.624 m eq/g) can be produced. The sorption potential of synthesized A-X zeolite blend for the removal of cesium ions has been investigated. The influences of ph, contact time and temperature have been reported. Thermodynamic parameters such as changes in Gibbs free energy (δG degree), enthalpy (δH degree) and entropy (δS degree) were calculated. A comparison of kinetic models applied to the sorption data was evaluated for pseudo-first order, pseudo-second order and homogeneous particle diffusion models. The results showed that both the pseudo-second order and the homogeneous particle diffusion models were found to best correlate the experimental rate data

  2. Preparation, Characterization, and In Vivo Pharmacoscintigraphy Evaluation of an Intestinal Release Delivery System of Prussian Blue for Decorporation of Cesium and Thallium

    Directory of Open Access Journals (Sweden)

    Nidhi Sandal

    2017-01-01

    Full Text Available Background. Prussian blue (PB, ferric hexacyanoferrate is approved by US-FDA for internal decorporation of Cesium-137 (137Cs and Thallium-201 (201Tl. Aim. Since PB is a costly drug, pH-dependent oral delivery system of PB was developed using calcium alginate matrix system. Methods. Alginate (Alg beads containing PB were optimized by gelation of sodium alginate with calcium ions and effect of varying polymer concentration on encapsulation efficiency and release profile was investigated. Scanning electron microscopy (SEM was carried out to study surface morphology. Adsorption efficacy of Alg-PB beads for 201Tl was evaluated and compared with native PB. In vivo pH-dependent release of the formulation was studied in humans using gamma scintigraphy. Results. Encapsulation efficiencies of Alg-PB beads with 0.5, 1.0, 1.5, and 2.0% polymer solution were 99.9, 91, 92, and 93%, respectively. SEM and particle size analysis revealed differences between formulations in their appearance and size distribution. No drug release was seen in acidic media (pH of 1-2 while complete release was observed at pH of 6.8. Dissolution data was fitted to various mathematical models and beads were found to follow Hixson-Crowell mechanism of release. The pH-dependent release of beads was confirmed in vivo by pharmacoscintigraphy in humans.

  3. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  4. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  5. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  6. Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics

    Science.gov (United States)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu

    2017-12-01

    Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.

  7. A quasi-electrostatic trap for neutral atoms

    International Nuclear Information System (INIS)

    Engler, H.

    2000-01-01

    This thesis reports on the realization of a ''quasi-electrostatic trap'' (QUEST) for neutral atoms. Cesium ( 133 Cs) and Lithium ( 7 Li) atoms are stored, which represents for the first time a mixture of different species in an optical dipole trap. The trap is formed by the focused Gaussian beam of a 30 W cw CO 2 -laser. For a beam waist of 108 μm the resulting trap depth is κ B x 118 μK for Cesium and κ B x 48 μK for Lithium. We transfer up to 2 x 10 6 Cesium and 10 5 Lithium atoms from a magneto-optical trap into the QUEST. When simultaneously transferred, the atom number currently is reduced by roughly a factor of 10. Since photon scattering from the trapping light can be neglected, the QUEST represents an almost perfect conservative trapping potential. Atoms in the QUEST populate the electronic ground state sublevels. Arbitrary sublevels can be addressed via optical pumping. Due to the very low background gas pressure of 2 x 10 -11 mbar storage times of several minutes are realized. Evaporative cooling of Cesium is observed. In addition, laser cooling is applied to the trapped Cesium sample, which reduces the temperature from 25 μK to a value below 7 μK. If prepared in the upper hyper-fine ground state sublevel, spin changing collisions are observed not only within one single species, but also between the two different species. The corresponding relaxation rates are quantitatively analyzed. (orig.)

  8. Studies on preparation of the database system for clinical records of atomic bomb survivors

    International Nuclear Information System (INIS)

    Nakamura, Tsuyoshi

    1981-01-01

    Construction of the database system aimed at multipurpose application of data on clinical medicine was studied through the preparation of database system for clinical records of atomic bomb survivors. The present database includes the data about 110,000 atomic bomb survivors in Nagasaki City. This study detailed: (1) Analysis of errors occurring in a period from generation of data in the clinical field to input into the database, and discovery of a highly precise, effective method of input. (2) Development of a multipurpose program for uniform processing of data on physical examinations from many organizations. (3) Development of a record linkage method for voluminous files which are essential in the construction of a large-scale medical information system. (4) A database model suitable for clinical research and a method for designing a segment suitable for physical examination data. (Chiba, N.)

  9. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium; Innovation et optimisation d'une methode de polarimetrie pompe-sonde avec des faisceaux laser impulsionnels en vue d'une mesure precise de violation de la parite dans l'atome de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Chauvat, D

    1997-10-15

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation {epsilon}{sub 1} excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation {epsilon}{sub 2} tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry ({approx} 10{sup -6}) in the gain that depends on the handedness of the tri-hedron (E, {epsilon}{sub 1}, {epsilon}{sub 2}) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  10. Magnetic circular Dichroism and Faraday rotation of cesium-argon excimers and cesium dimers

    International Nuclear Information System (INIS)

    Islam, M.A.

    1981-01-01

    Magnetic Circular Dichroism (MCD) and Faraday Rotation (FR) of excimer absorption bands in gases are measured to obtain the first direct information about the angular momentum quantum numbers and the angular momentum coupling schemes of excimer molecules. So far, there has been no experimental method to obtain information about the axial angular momentum and the angular momentum coupling schemes of excimer molecules. In this experiment, the MCD and the FR of cesium-argon excimer and cesium dimer absorption bands between 5000 A and 10,000 A are measured for the range of temperature from 116 0 to 355 0 C. Of particular interest is the blue wing of D 2 line in cesium which has been the subject of vigorous investigation. The measured MCD data at the blue wing of D 2 line clearly shows that the assignment of 2 μ/sub 1/2/ to this excited state assuming Hund's case (b) is a poor approximation. By a simple inspection of the MCD data, it is found that the coupling scheme is more nearly Hund's case (c) than Hynd's case (b). Several other new and interesting results are obtained. The blue wing associated with 5D transition in atomic cesium is devoid of MCD and exhibits strong MCD in the red wings. Thus, the assignment of 2 μ/sub 1/2/ and 2 π to the blue and red wings, respectively, assuming Hund's case (a) and (b), is a very good approximation. Again the yellow-green band associated with 7s-6s transition in atomic cesium shows no MCD. It is therefore also a good approximation to assign 2 μ/sub 1/2/ to the upper state assuming Hund's case (b). Much more information can be obtained by a detailed analysis of the MCD data

  11. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed

  12. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  13. Cesium glass irradiation sources

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1982-01-01

    The precipitation process for the decontamination of soluble SRP wastes produces a material whose radioactivity is dominated by 137 Cs. Potentially, this material could be vitrified to produce irradiation sources similar to the Hanford CsCl sources. In this report, process steps necessary for the production of cesium glass irradiation sources (CGS), and the nature of the sources produced, are examined. Three options are considered in detail: direct vitrification of precipitation process waste; direct vitrification of this waste after organic destruction; and vitrification of cesium separated from the precipitation process waste. Direct vitrification is compatible with DWPF equipment, but process rates may be limited by high levels of combustible materials in the off-gas. Organic destruction would allow more rapid processing. In both cases, the source produced has a dose rate of 2 x 10 4 rads/hr at the surface. Cesium separation produces a source with a dose rate of 4 x 10 5 at the surface, which is nearer that of the Hanford sources (2 x 10 6 rads/hr). Additional processing steps would be required, as well as R and D to demonstrate that DWPF equipment is compatible with this intensely radioactive material

  14. Recovery of cesium

    Science.gov (United States)

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  15. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  16. Cesium-137. Environment. Man

    International Nuclear Information System (INIS)

    Moiseev, A.A.

    1985-01-01

    Analysis of all main sourses of cerium-137 formation and intake into the external medium is given. Special attention is paid to the estimation of possible influence of rapidly developing nuclear power industry on contamination of the external medium by the radionuclide. Levels of contamination of the external medium by cerium-137, main regularities of its migration through food chains, levels of its intake and accumulation in population's organisms in USSR and its separate regions, are considered. Great attention is paid to the control methods of external environmental contamination by cesium-137 and to its measurements in human body

  17. Ionization of a cesium atom by an absorption process involving two photons from a laser beam; Ionisation d'un atome de cesium par un processus d'absorption a deux photons issus d'un faisceau laser

    Energy Technology Data Exchange (ETDEWEB)

    Gontier, Y.; Trahin, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-01-01

    The expression giving the ionisation cross-section of an atom, by an absorption process involving two photons produced from a laser beam, is derived. The non-relativistic case is considered and the dipolar approximation used. The summation over the intermediate states is carried out rigorously by means of a special technique which is described in detail. A method is presented which makes it possible to obtain the numerical solution. (authors) [French] La formule donnant la section efficace d'ionisation d'un atome, par un processus d'absorption mettant en jeu deux photons issus d'un faiseau Laser, est etablie. On se place dans le cas non relativiste et Pon utilise l'approximation dipolaire. La sommation sur les etats intermediaires est effectuee rigoureusement au moyen d'une technique particuliere qui est decrite en detail. On expose une methode permettant d'obtenir la solution numerique. (auteurs)

  18. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Gao Yuan; Zhou Yongfeng; Yan Deyue; Gao Xueping

    2008-01-01

    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance ( 1 H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper.

  19. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    International Nuclear Information System (INIS)

    Ananikov, V P; Khemchyan, L L; Ivanova, Yu V; Dilman, A D; Levin, V V; Bukhtiyarov, V I; Sorokin, A M; Prosvirin, I P; Romanenko, A V; Simonov, P A; Vatsadze, S Z; Medved'ko, A V; Nuriev, V N; Nenajdenko, V G; Shmatova, O I; Muzalevskiy, V M; Koptyug, I V; Kovtunov, K V; Zhivonitko, V V; Likholobov, V A

    2014-01-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references

  20. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  1. Mineral resource of the month: cesium

    Science.gov (United States)

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  2. Study on preparing the absorbent of potassium nickel hexacyanoferrate (II) loaded zeolite for removal of cesium from radioactive waste solutions and followed method for stable solidification of spent composites

    International Nuclear Information System (INIS)

    Pham Quynh Luong; Nguyen Hoang Lan; Nguyen Van Chinh; Nguyen Thu Trang; Vuong Huu Anh; Le Xuan Huu; Nguyen Thi Xuan; Le Van Duong

    2017-01-01

    The selective adsorption and stable immobilization of radioactive cesium, K-Ni-hexacyanoferrate (II) loaded zeolite (FC-zeolite) prepared by impregnation / precipitation method were studied. The uptake equilibrium of Cs + for composites FC-zeolite was attained within 8 h and estimated to be above 97% in Cs + 100 mg/l solution at pH 4-10. Maximum ion exchange capacity of Cs + ions (Q max ) for FC-zeoliteX was 112.5 and 69.7 mg/g in pure water and sea water, respectively. Those values for FC-zeolite A was 85.7 and 42.7 mg/g. Decontamination factor (DF) of FC-zeolite X for 134 Cs was 149.7 and 107.5 in pure water and sea water respectively. Study on synthesized zeolites (A and X) made of HUST was also conducted in similar manner. The values of Q max were 98.6 and 39.9 mg/g for zeolite A, and 69.5 and 20.8 mg/g for zeolite X in pure water and sea water, respectively. Decontamination factor (DF) of zeolite A and X for 134 Cs showed lower values. The spent CsFC-zeolite was solidificated in optimal experimental conditions: 5% Na 2 B 4 O 7 additives; calcination temperature at 900 o C for 2 h in air. Solid form was determined some of parameters: immobilization of Cs, compressive strength, volume reduction after calcination (%) and leaching rate of Cs + ions in deionization water. (author)

  3. ''Crown molecules'' for separating cesium

    International Nuclear Information System (INIS)

    Dozol, J.F.; Lamare, V.

    2002-01-01

    After the minor actinides, the second category of radionuclides that must be isolated to optimize nuclear waste management concerns fission products, especially two cesium isotopes. If the cesium-135 isotope could be extracted, it could subsequently be transmuted or conditioned using a tailor-made process. Eliminating the 137 isotope from reprocessing and nuclear facility-dismantling waste would allow to dispose of most of this waste in near-surface facilities, and simply process the small remaining quantity containing long-lived elements. CEA research teams and their international partners have thought up crown molecules that could be used to pick out the cesium and meet these objectives. (authors)

  4. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    OpenAIRE

    Fiala, Petra; G?hler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dime...

  5. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  6. Strontium-90 and cesium-137 in freshwater from May 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Strontium-90 and cesium-137 in freshwater measured in May 1984 are given in pCi/l. The sampling point is 1, Kasumigaura-Lake (Ibaraki). Collection and pretreatment of samples, preparation of samples for analysis, separation of strontium-90 and cesium-137, determination of stable strontium, calcium and potassium, and counting are described. The sample was passed through a cation exchange column. After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 minutes. (Mori, K.)

  7. High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    NARCIS (Netherlands)

    Macco, B.; Wu, Y.; Vanhemel, D.; Kessels, W.M.M.

    2014-01-01

    The preparation of high-quality In2O3:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In2O3:H films were deposited by atomic layer deposition at 100 °C, after which they underwent solid phase crystallization by a short anneal at 200 °C. TEM analysis has shown

  8. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    Novel triblock copolymers based on central poly( ethylene glycol) ( PEG) or poly( ethylene glycol-co-propylene glycol) (PEGPG) blocks with poly( pentafluorostyrene) (PFS) outer blocks were prepared by Atom Transfer Radical Polymerization (ATRP) with polydispersities on the order of 1.2 - 1...

  9. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Louardi, A.; Rmili, A.; Ouachtari, F.; Bouaoud, A. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco)

    2011-09-15

    Highlights: > Co{sub 3}O{sub 4} thin films show a micro porous structure. > Co{sub 3}O{sub 4} thin films are formed with spherical grains less than 50 nm in diameter. > The porous structure of Co{sub 3}O{sub 4} films is expected to have promising application in electrochromism. - Abstract: Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of hydrated cobalt chloride salt (CoCl{sub 2}.6H{sub 2}O) as source of cobalt. The films were deposited onto the amorphous glass substrates kept at different temperatures (300-500 deg. C). The influences of molar concentration of the starting solution and substrate temperature on the structural, morphological and optical properties of (Co{sub 3}O{sub 4}) thin films were studied. It was found from X-ray diffraction (XRD) analysis that the films prepared with molar concentration greater than 0.025 M/L were polycrystalline spinel type cubic structure. The preferred orientation of the crystallites of these films changes gradually from (6 2 2) to (1 1 1) when the substrate temperature increases. By Raman spectroscopy, five Raman active modes characteristic of Co{sub 3}O{sub 4} spinel type cubic structure were found and identified at 194, 484, 522, 620 and 691 cm{sup -1}. The scanning electron microscopy (SEM) images showed micro porous structure with very fine grains less than 50 nm in diameter. These films exhibited also a transmittance value of about 70% in the visible and infra red range.

  11. Process for recovering cesium from pollucite

    International Nuclear Information System (INIS)

    Mein, P.G.

    1985-01-01

    Cesium is recovered from a cesium-bearing mineral such as pollucite by extraction with hydrochloric acid to obtain an extract of cesium chloride and other alkali metal and polyvalent metal chlorides. The iron and aluminum chlorides can be precipitated as the hydroxides and separated from the solution of the alkali metal chlorides to which is added potassium permanganate or other water-soluble permanganate to selectively precipitate cesium permanganate. The cesium precipitate is then separated from the residual solution containing the metal chlorides. The cesium permanganate, which is in a very pure form, can be converted to other cesium compounds by reaction with a reducing agent to obtain cesium carbonate and cesium delta manganese dioxide

  12. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.

  13. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  14. Primary standardization of cesium-137 for international intercomparison

    International Nuclear Information System (INIS)

    Srivastava, P.K.

    1977-01-01

    Primary standards of cesium-137 are of great importance for precise radiation measurements because, due to its simple decay-scheme and long half-life, it is widely used for the calibration of radiation detectors. Also 137 Cs is used for the measurement of fission-yield and uranium burn-up in reactor engineering studies. In view of these, an international intercomparison was organised on a limited scale to correlate the standards established at the Bhabha Atomic Research Centre (BARC), Bombay(India) and Physikalisch-Technische Bundesanstalt (PTB), West Germany. The ''efficiency tracing technique'' was developed at BARC for the primary standardization of 137 Cs for this intercomparison. Two tracers, namely 82 Br and 60 Co, were employed to trace the beta efficiency of the 4 πβ-γ coincidence counting system. It is shown that this technique offers high accuracy and inherent reliability. The ''tracing-technique'' for 137 Cs standardization is briefly described. The gravimetric method of dilution and preparation of mixed sources of 137 Cs - 82 Br and 137 Cs - 60 Co are given. The various counting parameters and settings are included. Data reduction and the estimation of systematic and statistical errors are discussed. The results of the intercomparison, which are also included, show that the agreement between the measurments of BARC and PTB is within 0.5%. (author)

  15. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  16. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    Science.gov (United States)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  17. Strontium-90 and cesium-137 in soil (from May 1985 to Jul. 1985)

    International Nuclear Information System (INIS)

    1985-01-01

    This report is aimed at listing measurements of strontium-90 and cesium-137 in soil made at eight places across Japan during the period from May to July in 1985. Collection and pretreatment methods are described for samples of rain and dry fallout, airborne dust, service water and freshwater, soil, sea water, sea sediments, total diet, rice, milk, vegetables, tea, as well as fish, shellfish and seaweeds. The methods for the preparation of these samples for analysis are also outlined. Sample solutions were neutralized with sodium hydroxide, and the precipitate of strontium and calcium carbonates was separated after sodium carbonate was added. The supernatant solution was retained for cesium-137 determination. After being precipitated as oxalates, strontium and calcium were separated by successive fuming nitric acid separations. For the determination of stable strontium, calcium and potassium, soil and sediment were treated with sodium hydroxide and hydrochloric acid for extraction while other samples were ashed and digested. Calcium, separated as oxalate, was determined by titration while stable strontium and potassium were determined by atomic absorption and flame emission spectroscopy, respectively. Couting for activity was carried out using low background beta counters normally for 60 min. (Nogami, K.)

  18. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    Walker, D

    2006-01-01

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  19. Tunable Optical Delay in Doppler-Broadened Cesium Vapor

    Science.gov (United States)

    2010-12-01

    REFERENCE: 36 % [1] J. M. Amini and H. Gould 37 % High Precision Measurement of the Static Dipole Polarizability of Cs 38 % Phys. Rev. Lett., American... polarizability of cesium. Phys. Rev. Lett. 91 (15), 153001. Andalkar, A. and R. B. Warrington (2002, Feb). High-resolution measurement of the pressure...Physics Publishing. Morgus, L., T. Morgus, T. Drake, and J. Huennekens (2008). Hyperfine state- changing collisions of Cs (6p1/2) atoms with argon

  20. Cesium return program lessons learned FY 1994

    International Nuclear Information System (INIS)

    Clements, E.P.

    1994-08-01

    The U.S. Department of Energy (DOE) is returning leased cesium capsules from IOTECH, Incorporated (IOTECH), Northglenn, Colorado, and the Applied Radiant Energy Company (ARECO), Lynchburg, Virginia, to the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site, to ensure safe management and storage, pending final capsule disposition. Preparations included testing and modifying the Beneficial Uses Shipping System (BUSS) cask, preparing an Environmental Assessment (EA), development of a comprehensive Transportation Plan, coordination with the Western Governors' Association (WGA) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR), and interface with the public and media. Additional activities include contracting for a General Electric (GE) 2000 cask to expedite IOTECH capsule returns, and coordination with Eastern and Midwestern States to revise the transportation plan in support of ARECO capsule returns

  1. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  2. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, Sridhar; Roy, Rustum

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  3. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  4. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  5. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  6. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  7. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  8. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    Science.gov (United States)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was

  9. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  10. Cesium in the nutrient cycle. Cesium metsaen ravinnekierrossa marjojen ja sienten cesium ei vaehene

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland.

  11. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Petra Fiala

    2017-08-01

    Full Text Available Dimensional measurements on nano-objects by atomic force microscopy (AFM require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique.

  12. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy.

    Science.gov (United States)

    Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.

  13. Preparation of PtRu/Carbon hybrid materials by hydrothermal carbonization: A study of the Pt:Ru atomic ratio

    International Nuclear Information System (INIS)

    Tusi, Marcelo Marques; Brandalise, Michele; Correa, Olandir Vercino; Oliveira Neto, Almir; Linardi, Marcelo; Spinace, Estevam Vitorio; Villalba, Juan Carlo

    2009-01-01

    PtRu/Carbon materials with different Pt:Ru atomic ratios (30:70, 50:50, 60:40, 80:20 and 90:10) and 5 wt% of nominal metal load were prepared by hydrothermal carbonization using H 2 PtCl 6.6 H 2 O and RuCl 3. xH 2 O as metals sources and catalysts of the carbonization process and starch as carbon source and reducing agent. The obtained materials were treated at 900 deg C under argon and characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry and chronoamperometry using thin porous coating technique. The PtRu/Carbon materials showed Pt:Ru atomic ratios obtained by EDX similar to the nominal ones. XRD analysis showed that Pt face-cubic centered (FCC) and Ru hexagonal close-packed (HCP) phases coexist in the obtained materials. The average crystallite sizes of the Pt (FCC) phase were in the range of 8-12 nm. The material prepared with Pt:Ru atomic ratio of 50:50 showed the best performance for methanol electro-oxidation. (author)

  14. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal molecule bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.

  15. Preparation of Octadecyltrichlorosilane Nanopatterns Using Particle Lithography: An Atomic Force Microscopy Laboratory

    Science.gov (United States)

    Highland, Zachary L.; Saner, ChaMarra K.; Garno, Jayne C.

    2018-01-01

    Experiments are described that involve undergraduates learning concepts of nanoscience and chemistry. Students prepare nanopatterns of organosilane films using protocols of particle lithography. A few basic techniques are needed to prepare samples, such as centrifuging, mixing, heating, and drying. Students obtain hands-on skills with nanoscale…

  16. Metal-Insulator-Metal Single Electron Transistors with Tunnel Barriers Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Golnaz Karbasian

    2017-03-01

    Full Text Available Single electron transistors are nanoscale electron devices that require thin, high-quality tunnel barriers to operate and have potential applications in sensing, metrology and beyond-CMOS computing schemes. Given that atomic layer deposition is used to form CMOS gate stacks with low trap densities and excellent thickness control, it is well-suited as a technique to form a variety of tunnel barriers. This work is a review of our recent research on atomic layer deposition and post-fabrication treatments to fabricate metallic single electron transistors with a variety of metals and dielectrics.

  17. Quantum state detection and state preparation based on cavity-enhanced nonlinear interaction of atoms with single photon

    Science.gov (United States)

    Hosseini, Mahdi

    Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.

  18. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph; Destombe, C; Grasseau, A; Mathieu, J; Chancerelle, Y; Mestries, J C [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1998-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  19. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  20. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  1. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NMethod for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  2. New separation techniques of cesium by redox type ion exchange materials

    International Nuclear Information System (INIS)

    Tanihara, Koichi

    1998-01-01

    RIECS method, new cesium separation method, was developed in which a porous strong base anionic exchanger with copper ferrocyanide (CuFC) and inhibitor were used. Cesium could be separated from the high concentration nitric solution. By developing new impregnation method, large amount of CuFC was impregnated into the micropolar porous resin and silica gel pores. KFC adhered to outside of pores was recovered. Good complex with CuFC was prepared by use of copper chloride in ethyl alcohol solution. The adsorption ratio of cesium increased radically to 80% level in the very small range of hydrazine concentration 1.7 to 2.4x10 -4 M. The adsorption-desorption ratio of cesium did not decrease by repeating it seven times. The glassificated materials decreased large amount of γ-ray unless increase of volume could be produced by built RIECS method in the high level waste processing system. (S.Y.)

  3. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  4. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  5. Method for primary containment of cesium wastes

    International Nuclear Information System (INIS)

    Angelini, P.; Arnold, W.D.; Blanco, R.E.; Bond, W.D.; Lackey, W.J.; Stinton, D.P.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600 0 C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000* C. For a suitable duration

  6. Cesium-137, a drama recounted

    International Nuclear Information System (INIS)

    Vieira, Suzane de Alencar

    2013-01-01

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  7. Myocardial imaging with cesium-130

    International Nuclear Information System (INIS)

    Harper, P.V.; Resnekov, L.; Stark, V.; Odeh, N.

    1984-01-01

    Recently comparative studies using nitrogen-13 ammonia and cesium-130 have shown strikingly different myocardial localization patterns in the same subjects with ischemic heart disease. Initial localization of ammonia, an avidly extracted agent, reflects the perfusion pattern in viable myocardial tissue. The myocardial localization of cesium ion, taking place more slowly over 15 to 20 minutes, is apparently much less flow dependent, causing uptake defects shown with ammonia to be largely filled in. Cesium thus appears to provide information on the extent of the viable myocardial mass, apart from perfusion. Cesium-130 (t1/2 30 m) decays by positron emission and electron capture. The whole body radiation absorbed dose, assuming uniform distribution, is 24 mrad/mCi. While abundant production of Cs-130 results from proton bombardment of natural xenon [Xe-130(rho,n)Cs-130] at 15 MeV, small amounts of Cs-129, -131, and -132 are also produced, and enriched Xe-130 is not available. Alternatively almost completely uncontaminated Cs-130 is available by alpha bombardment of natural I-127. Anhydrous sodium iodide is dissolved in acetone and a thin layer (≅20 mg per centimeter squared) is evaporated onto the gold plated tip of the internal target backing which is oscillated vertically to spread out the area upon which the beam is incident. The target surface is inclined 2.5 degrees to the beam giving a power density of about 400 watts per centimeter squared at 100μA which is adequately handled by water cooling. A 30-minute bombardment yields 4 to 5 mCi of Cs-130 which is dissolved directly from the target. This approach appears to offer a new and helpful method for evaluating ischemic heart disease by permitting evaluation of viable myocardial mass

  8. Cesium migration in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Jost, J.W.; Stone, I.Z.

    1978-10-01

    The factors affecting the axial migration of cesium in mixed oxide fuel pins and the effects of cesium migration on fuel pin performance are examined. The development and application of a correlated model which will predict the occurrence of cesium migration in a mixed oxide (75 w/o UO 2 + 25 w/o PuO 2 ) fuel pins over a wide range of fabrication and irradiation conditions are described

  9. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  10. Cesium heat-pipe thermostat

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.; Song, D.; Sheng, K.; Wu, J. [Changcheng Institute of Metrology and Measurement, 100095, Beijing (China); Yi, X. [China National South Aviation industry CO., LTD., 412002, Hunan (China); Yu, Z. [Dalian Jinzhou Institute of Measurement and Testing, 116100, Liaoning (China)

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 °C to 800 °C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 °C to 0.20 °C. A precise temperature controller is used to ensure the temperature fluctuation within ±0.03 °C. The size of Cs HPT is 380mm×320mm×280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  11. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-01-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  12. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Yano, Yukiko; Kubo, M. Kenya; Higaki, Shogo; Hirota, Masahiro; Nomura, Kiyoshi

    2011-01-01

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  13. Preparing and probing atomic Majorana fermions and topological order in optical lattices

    International Nuclear Information System (INIS)

    Kraus, C V; Diehl, S; Zoller, P; Baranov, M A

    2012-01-01

    We introduce a one-dimensional system of fermionic atoms in an optical lattice whose phase diagram includes topological states of different symmetry classes with a simple possibility to switch between them. The states and topological phase transitions between them can be identified by looking at their zero-energy edge modes which are Majorana fermions. We propose several universal methods of detecting the Majorana edge states, based on their genuine features: the zero-energy, localized character of the wave functions and the induced non-local fermionic correlations. (paper)

  14. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction from Actual Wastes and Actual Waste Simulants

    International Nuclear Information System (INIS)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V. Jr.; Moyer, B.A.

    2003-01-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios

  15. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  16. PREPARATION AND PROPERTIES OF MMA/1-PROPYLMETHACRYLATE-POSS COPOLYMER WITH ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    He-xin Zhang; Ho-young Lee; Young-jun Shin; Dong-ho Lee; Seok Kyun Noh

    2008-01-01

    The methyl methacrylate(MMA)/1-propylmethacrylate-polyhedral oligomeric silsesquioxane(PM-POSS) copolymers were synthesized via atom transfer radical polymerization with CuBr as catalyst.The unreacted PM-POSS monomer could be removed completely by washing the copolymerization product with n-hexane.The copolymers were characterized with 1H-NMR,X-ray diffraction,difierential scanning calorimetry,thermogravimetric analysis and gel permeatlon chromatography.With increasing PM-POSS feed ratio.the total conversion increased while the glass transition temperatures of copolymer decreased.The thermogravimetric analysis demonstrated that the thermal stability of copolymer improved slightly with PM-POSS addition.The molecular weight of copolymers increased with incorporation of PM-POSS.

  17. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  18. Frequency shift due to blackbody radiation in a cesium atomic fountain and improvement of the clock performances; Deplacement de frequence du au rayonnement du corps noir dans une fontaine atomique a cesium et amelioration des performances de l'horloge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S

    2004-07-01

    FO1 was the first caesium fountain primary frequency standard in the world. The most recent evaluation in 2002 before improvement reached an accuracy of 1*10{sup -15} when operated with optical molasses. Working as an extremely precise and stable instrument, FO1 has contributed to fundamental physics and technical measurements: - Frequency comparison between Cs and Rb fountains over an interval of 5 years sets an upper limit for a possible variation of the fine structure constant as |alpha/alpha| < 2*10{sup -15}/y. The resolution is about 5 times better than the previous test in our laboratory. The projected accuracy of the space clock PHARAO is 1*10{sup -16}. We confirmed its Ramsey cavity performance by testing the phase difference between the two interaction zones in FO1. The measured temperature T dependent frequency shift of the Cs clock induced by the blackbody radiation field is given as nu(T)=154(6)*10{sup -6}*(T/300){sup 4}[1+{epsilon}(T/300){sup 2}] Hz with the theoretical value {epsilon} = 0,014. The obtained accuracy represents a 3 times improvement over the previous measurement by the PTB group. Some improvements have been carried out on FO1. The new FO1 version works directly with optical molasses loaded by a laser slowed atomic beam. The application of the adiabatic passage method to perform the state selection allows us to determine the atom number dependent frequency shifts due to the cold collision and cavity pulling effects at a level of of 10{sup -16}. Recently, the obtained frequency stability is 2,8*10{sup -14}*{tau}{sup -1/2} for about 4*10{sup 6} detected atoms. The accuracy is currently under evaluation, the expected value is a few times 10{sup -16}. (author)

  19. Separation of cesium and strontium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Hashimoto, H [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-06-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it.

  1. Separation of cesium and strontium with zeolites

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki

    1976-01-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it. (auth.)

  2. Recent advances of numerical simulation studies for radioactive cesium adsorption on soil materials

    International Nuclear Information System (INIS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2013-01-01

    Radiocesium (Cesium 134 and 137) emitted from destroyed Fukushima Daiichi Nuclear Power Production Station is known mostly to remain for a long time on earth's surfaces and to become sources of radiation exposure to habitants. Large scale decontamination work carried out by national and local governments inevitably produces tremendous amount of radioactive wastes of soils whose volume must be effectively and economically reduced based on a scientifically reliable technique. This paper employs the atomic and molecular simulation method applied to adsorption mechanism of soils and cesium ions and presents the examples of proposals with the results of this field. (S. Ohno)

  3. TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: drm@ansto.gov.au; Attard, D.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Finnie, K.S. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Triani, G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Barbe, C.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Depagne, C. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Bartlett, J.R. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2005-04-30

    Nanolaminate oxide layers consisting of TiO{sub 2} and Al{sub 2}O{sub 3} have been deposited on silicon using atomic layer deposition (ALD). Characterisation of these films has been achieved by use of a range of modern transmission electron microscopy (TEM)-based techniques, including plasmon loss imaging, energy filtered imaging and scanning TEM (STEM) X-ray line profiling. These have shown that the target thickness of the individual layers in the nanolaminate structures (20 nm) has been met with a high degree of accuracy, that the layers are extremely flat and parallel and that the interfaces between the layers are compositionally abrupt. Localised crystallisation within the stacks, and responses to electron beam irradiation point to the presence of a stress gradient within the layers. The performance of ellipsometry in characterising multilayer stacks has been benchmarked against the TEM measurements. Errors in determination of individual layer thicknesses were found to increase with growing stack size, as expected given the increasing number of interfaces incorporated in each model. The most sophisticated model gave maximum deviations of {+-}4 nm from the TEM determined values for the 5- and 10-layer stacks.

  4. Entrapment of 137Cs vapour generated during vitrification and casting of cesium borosilicate glass by inorganic materials

    International Nuclear Information System (INIS)

    Ram, Ramu; Gandhi, Shyamala; Dash, A.; Varma, R.N.

    2003-01-01

    Efficiency of different inorganic materials like zirconium antimonate (ZrA), ammonium molybdophosphate (AMP), synthetic zeolites, activated charcoal, glass wool etc, towards the entrapment of 137 Cs vapour escaping during vitrification and casting of cesium borosilicate glass required for the preparation of 137 Cs sources for medical and industrial applications have been determined. The recovery of entrapped cesium using dilute acids for subsequent recycling has also been explored. (author)

  5. Thermal properties of cesium molybdate

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Takano, Masahide; Sato, Seichi; Ohashi, Hiroshi

    1996-01-01

    Cesium is one of the most important fission products to aid in the understanding and prediction of the behavior of oxide nuclear fuels because of its high mobility, chemical reactivity, and large yield. In postirradiation examinations of the Phoenix reactor fuel pins, the accumulation of cesium and molybdenum between the fuel pellet and cladding was observed, though the chemical form was not determined. In the thermodynamic analyses of chemical states of fission products, Cs 2 MoO 4 was often predicted to exist as a stable compound in oxide fuels. The Cs 2 MoO 4 compound is thermodynamically stable under the conditions of light water reactors, fast breeder reactors, and high-temperature gas-cooled reactors. In the Cs-Mo-O system several phases have been found, and the structural and thermodynamic properties were studied. At room temperature, Cs 2 MoO 4 has an orthorhombic structure and a phase transition occurs at 841 K to a hexagonal structure. Both structures are expected to exist in the fuel, depending on the fuel temperature. However, no data has been available on the thermal properties of CS 2 MoO 4 . In the current work, the thermal expansion and thermal conductivity of Cs 2 MoO 4 were determined, which are the basic data needed to understand and predict the fuel/clad mechanical interaction and fuel temperature

  6. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    International Nuclear Information System (INIS)

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  7. Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Bereczki, Robert; Csokai, Viktor; Gruen, Alajos; Bitter, Istvan; Toth, Klara

    2006-01-01

    Novel 1,3-alternate thiacalix[4]mono- and biscrown-6 ethers were studied as ionophores in poly(vinyl chloride) membrane electrodes. Their selectivity behavior was characterized with respect to large number of cations, including potential interferents in environmental samples, and the membrane composition was optimized for cesium ion response. Among the ionophores, 1,3-alternate thiacalix[4]mono(crown-6) ether showed, especially high selectivity for cesium over other alkali-metal ions. Transition and heavy metal ions did not interfere seriously with the electrode response, which indicates that the bridging sulfur atoms do not take part in the ion recognition process. The potentiometric cesium responses of all electrodes involved in this study were found close to Nernstian and the detection limits were lower than 10 -7 M. The Cs + /Na + selectivity of the different ionophore-based sensors and the solvent extraction ability of the ligands were interpreted based on the respective constants of complex formation

  8. Ab Initio investigation of cesium monoxide of CsO and CsO+

    International Nuclear Information System (INIS)

    Zialenina, M.; Kelloe, V.; Cernusak, I.

    2015-01-01

    Cesium is material with a low work function and, accordingly, atomic Cs has a low value of ionization energy. Therefore cesium is regarded as a good source material for electrons in plasma heating module. One of plasma heating technologies using Cs grid is foreseen as a candidate for the tokamak within the framework of project ITER. Among the possible impurities that can coexist in this module are CsO or CsO + , due to presence of oxygen traces in the heating chamber. We conducted CCSD(T) energy calculations of the cesium oxide (X 2 Σ + ) and its cation (X 3 Σ - ). Here are presented the bond lengths and spectroscopic parameters of both species and ionization energy (IE). Our IE (6.88 eV) is in good agreement with previous theoretical results, experiment indicates substantially lower value (6.22 eV). (authors)

  9. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Application of Cesium isotopes in daily life

    International Nuclear Information System (INIS)

    Jordao, B.O.; Quaresma, D.S.; Carvalho, R.J.; Peixoto, J.G.P.

    2014-01-01

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically 133 Cesium isotope and radioisotope 137 Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  11. Cesium Eluate Analytical Data Evaluation

    International Nuclear Information System (INIS)

    Pierce, R.A.

    2003-01-01

    Bechtel National Inc. (BNI) is using IBC Company's SuperLigand ion exchange resins to separate Cs and Tc from low-activity waste (LAW) solutions (IBC-1996). Cesium is removed using the SuperLig(R) 644 resin. The resin is then eluted after each use cycle with 0.5M nitric acid solution. BNI is planning to evaporate the Cs eluate solution to reduce the storage volume and recover eluate for re-use. The primary issue associated with evaporation is end point, or salt matrix solubility. To preclude formation of solids during the storage of evaporator products, an additional criteria has been set that limits the concentration of the evaporator bottoms to 80 percent of saturation at 25 degrees C. As a result, an understanding of the effects of constituent species on the bulk solubility must be developed prior to effective evaporator operations

  12. Cesium-137: A physiological disruptor?

    International Nuclear Information System (INIS)

    Souidi, Maamar; Grison, Stephane; Dublineau, Isabelle; Aigueperse, Jocelyne; Lestaevel, Philippe

    2013-01-01

    Today, radiation protection is a major issue for the nuclear industry throughout the world, particularly in France. The 2011 disaster of Fukushima Dai-ichi has brought back to public attention questions about the risks associated with nuclear power for civilian purposes. The risk of accidental release of radioactive molecules, including cesium-137 ( 137 Cs), from these facilities cannot be completely eliminated. The non-cancer-related health consequences of chronic exposure to this radionuclide remain poorly understood. After absorption, cesium is distributed throughout the body. The toxicity of 137 Cs is due mainly to its radiological properties. Studies in humans report that 137 Cs impairs the immune system and induces neurological disorders. Children appear more susceptible than adults to its toxic effects. In animals, and most particularly in rodents, low-dose internal contamination disrupts the sleep-wake cycle, but without behavioural disorders. Impairment of the cardiovascular system has also been observed. Physiologic systems such as the metabolism of vitamin D, cholesterol and steroid hormones are altered, although without leading to the emergence of diseases with clinical symptoms. Recently, a metabolomics study based on contamination levels comparable to those around Chernobyl after the accident showed that it is possible to identify individual rats chronically exposed to low doses of 137 Cs, even though the exposure was too low to affect the standard clinical markers. In conclusion, the scientific evidence currently available, particularly that from experimental animal models exposed to chronic contamination, suggests that 137 Cs is likely to affect many physiologic and metabolic functions. Thus, it could contribute, with other artificial substances in the environment, to increasing the risk of developing non-cancer diseases in some regions. (authors)

  13. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    International Nuclear Information System (INIS)

    Jalali-Rad, R.; Ghafourian, H.; Asef, Y.; Dalir, S.T.; Sahafipour, M.H.; Gharanjik, B.M.

    2004-01-01

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q max values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles

  14. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Jalali-Rad, R. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)]. E-mail: rjalali@aeoi.org.ir; Ghafourian, H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Asef, Y. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Dalir, S.T. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Sahafipour, M.H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Gharanjik, B.M. [Offshore Fisheries Research Center, Chabahar (Iran, Islamic Republic of)

    2004-12-10

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q{sub max} values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles.

  15. Separation of cesium from simulated active waste using zinc hexacyanoferrate supported composite

    International Nuclear Information System (INIS)

    Somida, H.H.; El Zahhar, A.A.; Shehata, M.K.; El Naggar, H.A.

    2003-01-01

    Potassium zinc hexacyanoferrate (KZnHCF) was prepared and supported on polyacrylonitrile (PAN) binding polymer. This composite was characterized and used to study the elimination of cesium from acidic radioactive waste containing Sr(II), Eu(II), Am(II), Zr(IV), Hf(IV) and Nb(V) using batch and column techniques. The sorption capacity of this composite for cesium was found to be 1.14 meq/g for column technique. The effect of presence of NH 4 SCN, NaNo 3 and other complexing agents in the aqueous solutions was studied

  16. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  17. Cesium levels in foodstuffs fall slowly

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1994-01-01

    Since spring 1986, radioactive decay has reduced the total amount of radioactive cesium 137 in the Finnish environment, originating in Chernobyl, by 17 per cent. The cesium content in fish keeps falling at a diminishing rate, depending on the species of fish and environmental factors. The use of fish from lakes need not be restricted anymore. The cesium contents of game, mushrooms and wild berries have remained steady for some years now. The same is true for agricultural produce. The contents in milk and meat still keep falling slowly. Most of the cesium ingested by finns comes from fish, then from game, reindeer and gathered foods; the lowest amounts are received from agricultural products. (orig.)

  18. Method of processing radioactive cesium liquid wastes

    International Nuclear Information System (INIS)

    Nishijima, Hiroaki; Asaoka, Sachio; Kondo, Tadami; Suzuki, Isao.

    1985-01-01

    Purpose: To convert and settle cesium, mainly, Cs-137 in liquid wastes in the form of pollucites, that is, cesium-containing ores. Constitution: Water, silica, alumina and alkali metal source are mixed with radioactive liquid wastes containing cesium as the main metal element ingredient, to which an onium compound is further added and they are brought into reaction till pollucite ores (Cs 16 (Al 16 Si 32 O 96 )) are formed. Since most portion of cesium is thus settled in the form of pollucites, storage safety can be attained. Further, the addition of the onium compound can moderate the condition and shorten the time till the pollucite ores are formed. The onium compound usable herein includes tetramethyl ammonium. (Kamimura, M.)

  19. Extraction of cesium from acid solutions

    International Nuclear Information System (INIS)

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  20. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  1. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  2. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope

    International Nuclear Information System (INIS)

    Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter

    2011-01-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10 -10 mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  3. Studies on synthesis of some composites and their uses for cesium separation

    International Nuclear Information System (INIS)

    Someda, H.H.; El-Zahhar, A.A.; Shehata, M.K.K.; El-Naggar, H.A.

    2002-01-01

    In this study some composite sorbents were prepared by supporting hexacyanoferrate complexes of some transition metals like Co, Ni, Fe and Zn on some different solid supports e.g. cellulose and other natural materials as wood powder. These composites were used for cesium sorption and showed that the highest sorption capacity is for zinc composite and the lowest is for cobalt composite. Also the factors affecting the sorption capacity like acid concentration, competing ions and cesium ion concentration were studied. The release of the sorbed cesium from the composite materials was also studied under different concentrations of different solutions like sodium nitrate, silver nitrate, ammonium nitrate and a mixture of ammonium nitrate and silver nitrate solutions

  4. Ion-atom collisions with laser-prepared target: High resolution study of single charge exchange process

    International Nuclear Information System (INIS)

    Leredde, Arnaud

    2012-01-01

    Single charge transfer in low-energy Na"++"8"7Rb(5s,5p) collisions is investigated using magneto-optically trapped Rb atoms and high-resolution recoil-ion momentum spectroscopy. The three-dimensional reconstruction of the recoil-ion momentum provides accurate relative cross-sections for the active channels and the projectile scattering angle distributions. Thanks to the high experimental resolution, scattering structures such as diffraction-like oscillations in angular distributions are clearly observed. The measurements are compared with molecular close-coupling calculations and an excellent agreement is found. To go further in the test of the theory, the target is prepared in an oriented state. It is the first time that such collision experiments with oriented target is performed with such a high resolution. The right-left asymmetry expected for the scattering angle distribution is evidenced. The agreement between MOCC calculations and experiments is very good. Simple models developed for collisions with oriented target are also discussed. (author) [fr

  5. Butanol Dehydration over V₂O₅-TiO₂/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition.

    Science.gov (United States)

    Choi, Hyeonhee; Bae, Jung-Hyun; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong-Ki

    2013-04-29

    MCM-41 was used as a support and, by using atomic layer deposition (ALD) in the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and vanadium oxide to the support. This research analyzes the effect of the loading amount of vanadium oxide on the acidic characteristics and catalytic performance in the dehydration of butanol. The physical and chemical characteristics of the TiO₂-V₂O₅/MCM-41 catalysts were analyzed using XRF, BET, NH₃-TPD, XRD, Py-IR, and XPS. The dehydration reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium oxide loaded to TiO₂/MCM-41 sample using the liquid phase ALD method, it was possible to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were retained well after titanium oxide and vanadium loading. The NH₃-TPD and Py-IR results indicated that weak acid sites were produced over the TiO₂/MCM-41 samples, which is attributed to the generation of Lewis acid sites. The highest activity of the V₂O₅(12.1)-TiO₂/MCM-41 catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid sites, as well as the highest vanadium dispersion.

  6. Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after

    Science.gov (United States)

    Boukhvalov, D. W.; Bazylewski, P. F.; Kukharenko, A. I.; Zhidkov, I. S.; Ponosov, Yu. S.; Kurmaev, E. Z.; Cholakh, S. O.; Lee, Y. H.; Chang, G. S.

    2017-12-01

    We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed

  7. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  8. Tungstate-based glass-ceramics for the immobilization of radio cesium

    Science.gov (United States)

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  9. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  10. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  11. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    Science.gov (United States)

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  13. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  14. Separation of cesium from aqueous solutions using alkylated tetraaryl borates

    International Nuclear Information System (INIS)

    Feldmaier, F.

    1991-01-01

    The water solubility of cesium tetraaryl borates was lowered by introducing hydrophobic aliphatic side chains into corresponding acid-resistant fluorosubstituted tetraaryl borates. This improved cesium spearability both in precipitation and in extraction from aqueous solutions. (orig.) [de

  15. Cesium vapor cycle for an advanced LMFBR

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250 0 F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesium can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development

  16. Strontium-90 and cesium-137 in freshwater (from September, 1982, to December, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in fresh water measured at 4 locations across Japan from September to December, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. The sample was passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The sample solution prepared was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.08 to 0.22 pCi/l for Sr-90 and 0.003 to 0.020 pCi/l for Cs-137 in the freshwater. (J.P.N.)

  17. Strontium-90 and cesium-137 in service water (from June, 1982, to December, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in service water measured at 19 locations across Japan from June to December, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. Service water was collected at an intake of the water-treatment plant and at the tap. The sample was then passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The sample solution prepared was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.01 to 0.10 pCi/l for Sr-90 and 0.001 to 0.010 pCi/l for Cs-137 in the service water. (J.P.N.)

  18. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  19. Radioactive cesium in Finnish mushrooms

    International Nuclear Information System (INIS)

    Kostiainen, E.; Ylipieti, J.

    2010-02-01

    Surveillance of radioactive cesium in Finnish mushrooms was started in 1986 at STUK. Results of the surveillance programs carried out in Lapland and other parts of Finland are given in this report. More than 2000 samples of edible mushrooms have been analysed during 1986-2008. The 137 Cs detected in the mushrooms mainly originates from the 137 Cs deposition due to the accident at the Chernobyl nuclear power plant in 1986. The 137 Cs concentrations of mushrooms in the end of 1970s and in the beginning of 1980s varied from some ten to two hundred becquerels per kilogram originating from the nuclear weapon test period. The uneven division of the Chernobyl fallout is seen in the areal variation of 137 Cs concentrations of mushrooms, the 137 Cs concentrations being about tenfold in the areas with the highest deposition compared to those where the deposition was lowest. After the Chernobyl accident the maximum values in the 137 Cs concentrations were reached during 1987-88 among most species of mushrooms. The 137 Cs concentrations have decreased slowly, being in 2008 about 40 per cent of the maximum values. The 137 Cs concentrations may be tenfold in the mushroom species with high uptake of cesium (Rozites caperatus, Hygrophorus camarophyllus, Lactarius trivialis) compared to the species with low uptake (Albatrellus ovinus, Leccinum sp.) picked in the same area. The 137 Cs contents in certain species of commercial mushrooms in Finland still exceed the maximum permitted level, 600 Bq/kg, recommended to be respected when placing wild game, wild berries, wild mushrooms and lake fish on the market (Commission recommendation 2003/274/Euratom). Therefore, the 137 Cs concentrations of mushrooms should be measured before placing them on the market in the areas of the highest 137 Cs deposition, except for Albatrellus ovinus, Boletus sp. and Cantharellus cibarius. The 137 Cs concentrations of common commercial mushroom species, Cantharellus tubaeformis and Craterellus

  20. Cesium Salts of Phosphotungstic Acid: Comparison of Surface ...

    African Journals Online (AJOL)

    NICO

    acidity and lowest solubility in reaction media in comparison with the other cesium content salts. KEYWORDS. Polyoxometalates, cesium ... insoluble salt of HPA is cesium salt of tungstophosphoric acid,. CsxH3-xPW12O40 (CsxPW), a ... of Cs2CO3, very fine particles (precipitates) were formed to make the solution milky.

  1. Cesium removal flow studies using ion exchange

    International Nuclear Information System (INIS)

    Lee, D.D.; Walker, J.F. Jr.; Taylor, P.A.

    1997-01-01

    Cesium and strontium radionuclides are a small fraction of the mainly sodium and potassium salts in underground storage tank supernatant at US Department of Energy (DOE) sites at Hanford, Oak Ridge, Savannah River, and Idaho that DOE must remediate. Cesium-137 ( 137 Cs) is the primary gamma radiation source in the dissolved tank waste at these sites, and its removal from the supernatant can reduce the hazard and waste classification of the treated waste reducing the further treatment and disposal costs. Several cesium removal sorbents have been developed by private industry and the US DOE's Office of Science and Technology. Several of these removal technologies have been previously tested in small batch and column tests using simulated and a few actual supernatant under DOE's Environmental Management (EM) programs including the Tanks Focus Area (TFA) and the Efficient Separations and Processing (ESP) Cross-Cutting Program

  2. Hanford waste encapsulation: strontium and cesium

    International Nuclear Information System (INIS)

    Jackson, R.R.

    1976-06-01

    The strontium and cesium fractions separated from high radiation level wastes at Hanford are converted to the solid strontium fluoride and cesium chloride salts, doubly encapsulated, and stored underwater in the Waste Encapsulation and Storage Facility (WESF). A capsule contains approximately 70,000 Ci of 137 Cs or 70,000 to 140,000 Ci of 90 Sr. Materials for fabrication of process equipment and capsules must withstand a combination of corrosive chemicals, high radiation dosages and frequently, elevated temperatures. The two metals selected for capsules, Hastelloy C-276 for strontium fluoride and 316-L stainless steel for cesium chloride, are adequate for prolonged containment. Additional materials studies are being done both for licensing strontium fluoride as source material and for second generation process equipment

  3. METHOD FOR THE RECOVERY OF CESIUM VALUES

    Science.gov (United States)

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  4. Transfer of radioactive cesium from soil to rape plants, rape blossoms and rape honey

    International Nuclear Information System (INIS)

    Molzahn, D.; Klepsch, A.; Assmann-Wertmueller, U.

    1989-01-01

    Due to the test of atomic weapons and the accident in the nuclear power plant at Chernobyl, the vegetation in Germany has been exposed to cesium contamination in the soil. It was to be expected that activity would migrate from soil to plants and to food products. In this work, the transfer of radioactive cesium from soil to rape plants (Brassica napus var. oleifera), rape blossoms and further to rape honey was investigated. By measuring the gamma activity of cesium using germanium detectors with measuring capacity up to 30 h per sample (limit of detection about 0.14 Bq/kg to 0.19 Bq/kg), we determined a mean transfer factor f cs = 0,116 ± 0,080 for the system soil-rape plant, f cs = 0.065 + 0.075 for the system soil-rape blossom and F!S = 0.098 + 0.044 for the system soil-rape honey (plants and honey wet mass, soil dry mass) (Table IV). Additionally, for the transfer of cesium from rape plants to rape honey, a factor of f cs = 2.04 ± 7.23 (both wet mass) was determined. Due to some environmental circumstances, which can hardly ever be taken into account, the results obtained sometimes differ considerably. Nevertheless, the mean transfer factors are within the range of values found in literature (Table V) [de

  5. Mass spectrometric study of vaporization of cesium tellurate and tellurite

    International Nuclear Information System (INIS)

    Semenov, G.A.; Fokina, L.A.; Mouldagalieva, R.A.

    1994-01-01

    The process of vaporization of cesium tellurate and tellurite was studied by the Knudsen effusion method with a mass spectrometric analysis of the vapor composition. The thermal dissociation of Cs 2 TeO 4 to Cs 2 TeO 3 and the congruent vaporization of Cs 2 TeO 3 were established. Thermodynamic functions for gaseous Cs 2 TeO 3 have been calculated. The standard enthalpy of sublimation Δ s H (298.15)=268.1±13.0 kJ mol -1 was determined by the 2nd and 3rd laws of thermodynamics. The enthalpy of formation Δ f H (298.15)=-725.1±13.0 kJ mol -1 for gaseous Cs 2 TeO 3 and the enthalpy of atomization Δ at H (298.15)=1841.3±15.0 kJ mol -1 have been computed. ((orig.))

  6. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  7. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  8. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  9. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  10. Cesium injection system for negative ion duoplasmatrons

    International Nuclear Information System (INIS)

    Kobayashi, M.; Prelec, K.; Sluyters, T.J.

    1978-01-01

    A design for admitting cesium vapor into a hollow hydrogen plasma discharge in a duoplasmatron ion source for the purpose of increasing the negative hydrogen ion output current is described. 60 mA beam currents for negative hydrogen ions are reported

  11. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  12. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  13. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    Science.gov (United States)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  14. Decreasing radioactive cesium in lodged buckwheat grain after harvest

    Directory of Open Access Journals (Sweden)

    Katashi Kubo

    2016-01-01

    Full Text Available This study assessed soil contamination with high radioactive cesium (R–Cs concentration in buckwheat grains by lodging, and assessed the possibility of R–Cs reduction in grain through post-harvest preparation. Analysis of buckwheat grain produced in farmers’ fields and reports from farmers indicated that grain from fields that had lodging showed higher R–Cs than grain from fields with no lodging. A field experiment demonstrated that R–Cs in grain after threshing and winnowing (TW was about six times higher in lodged plants than in nonlodged plants. In lodged plants, R–Cs in grain was decreased to about one-fourth by polishing, and was decreased to about one-seventh by ultrasonic cleaning, compared with R–Cs in grain after TW. These results demonstrate that R–Cs of buckwheat grain of lodged plants can be decreased by removing soil from the grain surface by polishing and winnowing.

  15. Polymer-inorganic composite resins for recovery of radioactive cesium from acidic media

    International Nuclear Information System (INIS)

    Park, J.I.; Kim, J.S.; Jo, A.; Jang, E.; Park, Y.J.

    2014-01-01

    In this work, our objectives are as follow: i) the development of a method to produce polymer-ammonium molybdophosphate composite resins with the size range ideal for column operations, ii) the preparation of a different type of polymer-AMP granules, other than polyacrylonitrile, with good physical and chemical stability, and iii) the investigation of sorption and recovery properties of the composite potentially useful for radioactive cesium. (author)

  16. Profiles determination of Cesium-137 concentration in the main areas of Goiania radiological accident

    International Nuclear Information System (INIS)

    Rocca, H.C.C.; Aoki, P.E.; Enokihara, C.T.; Rostelato, M.; Lepki, V.; Bambalas, E.

    1988-07-01

    This paper describes the profiles determination of cesium-137 concentration measured in function of depth and applied in seven areas considered as the main contamination focus. Since november 14th to december 17th 1987, 125 soil drillings were made and a total of 740 soil samples were prepared. Obtained data allowed to calculate the soil volume to be removed from contaminate areas. It was verified that after remotions the remaining activity was approximately 0,89Ci. (author) [pt

  17. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  18. TiO{sub 2} nanofiber solid-state dye sensitized solar cells with thin TiO{sub 2} hole blocking layer prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinwei; Chen, Xi; Xu, Weihe [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Nam, Chang-Yong, E-mail: cynam@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Shi, Yong, E-mail: Yong.Shi@stevens.edu [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2013-06-01

    We incorporated a thin but structurally dense TiO{sub 2} layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO{sub 2} nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO{sub 2} layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO{sub 2} precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO{sub 2} layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO{sub 2} blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO{sub 2} layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime.

  19. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    Science.gov (United States)

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  20. Determination and preconcentration of natural and radio-cesium from aqueous solution

    International Nuclear Information System (INIS)

    Gueclue, K.; Apak, R.; Tuetem, E.; Atun, G.

    2004-01-01

    A modified atomic emission spectrometric (AES) method to determine cesium(I), based on the measurement of emission intensity at 455.5 nm with a limit of quantitation (LOQ) of 5.5 mg/l and a linear range up to 100 mg/l is reported. In order to increase the sensitivity and lower the detection limits, potential sorbents were investigated for preconcentrating Cs from natural waters. Among the various ion-exchange materials synthesized, potassium hexanitrocobaltate (PHNCo) yielded the highest capacity for 137 Cs tagged Cs + solutions as measured by gamma-spectrometry with a HPGe detector, showing the potential of a cesium preconcentration sorbent. As an alternative to AES determination, the PHNCo sorbent may be used for Cs + collection from radiocesium tagged solutions and the retained activity in the dry solid exchanger be determined by gamma-spectrometry. (author)

  1. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406 -412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  2. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  3. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2014-11-01

    Full Text Available In this work supercritical assisted atomization (SAA) process was used for the co-precipitation of poly(d,l-lactide) (PDLLA) and rifampicin (RIF) as nanoparticles for sustained release applications. The effect of the variation of PDLLA/RIF ratio...

  4. Preparation of atomically clean and flat Si(1 0 0) surfaces by low-energy ion sputtering and low-temperature annealing

    International Nuclear Information System (INIS)

    Kim, J.C.; Ji, J.-Y.; Kline, J.S.; Tucker, J.R.; Shen, T.-C.

    2003-01-01

    Si(1 0 0) surfaces were prepared by wet-chemical etching followed by 0.3-1.5 keV Ar ion sputtering, either at elevated or room temperature (RT). After a brief anneal under ultrahigh vacuum (UHV) conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(1 0 0) surface. However, subsequent 300 eV Ar ion sputtering at room temperature followed by a 700 deg. C anneal yields atomically clean and flat Si(1 0 0) surfaces suitable for nanoscale device fabrication

  5. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    International Nuclear Information System (INIS)

    Yang Chuiping; Han Siyuan

    2004-01-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation

  6. Atom optics in the time domain

    Science.gov (United States)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  7. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    Energy Technology Data Exchange (ETDEWEB)

    Siekhaus, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Teslich, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  8. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  9. Protection of cesium-antimony photocathodes

    International Nuclear Information System (INIS)

    Buzulutskov, A.; Breskin, A.; Chechik, R.; Prager, M.; Shefer, E.

    1996-06-01

    In order to operate gaseous photomultipliers in the visible range it was suggested to protect sensitive photocathodes against contact to air and counting gases by their coating with a thin solid dielectric film. We present data on coating of cesium- antimony photocathodes with alkali-halide (NaI, CsI, CsF, NaF), oxide (SiO) and organic (hexatriacontane, calcium stearate) films. The photoelectron transmission through these films and their protection capability have been studied in detail. Cesium-antimony photocathodes are shown to withstand exposure to considerable doses of oxygen and dry air when coated with Nal films. This opens ways to their operation in gas media. (authors), 11 refs., 6 figs

  10. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  11. Pilot unit for cesium-137 separation

    International Nuclear Information System (INIS)

    Raggenbass, A.; Quesney, M.; Fradin, J.; Dufrene, J.

    1958-01-01

    Users of radiation are becoming increasingly interested in cesium-137. At the same time the starting up of the industrial plant at Marcoule will make available in the near future large stocks of fission products which should be made use of as quickly as possible. The installation described is a pilot plant for cesium-137 production which should make it possible: - to verify the chemical method on actual solutions of fission products, by treating about 100 curies of 137 Cs by operation, - to obtain technical information on the chemical equipment (tele-commands, corrosion, maintenance, etc...), - to obtain 137 Cs in sufficient quantity to perfect the technique of the manufacture of sealed sources. (author) [fr

  12. Generation and storage of quantum states using cold atoms

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean

    2006-01-01

    Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing, polar...

  13. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  14. Cesium migration experiments in different media

    International Nuclear Information System (INIS)

    Tello, C.C.O. de

    1992-01-01

    The environmental impact caused by the radioactive waste disposal depends on many factors, mainly on the release pathways of the radionuclides from the waste product to the environment. The migration of the radioelements through the different barriers, which compose the disposal system, is considered the main via for this release. This paper describes the experiments carried out to improve the cemented waste quality, as well to assess the cesium migration in different media. (author)

  15. Investigations on cesium uranates. Pt. 7

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.

    1979-01-01

    The thermochemical properties of Cs 2 U 4 O 12 have been evaluated using new experimental data, including the low-temperature heat capacities, the enthalpy of formation at room temperature, and the high-temperature enthaply increments by drop calorimetry. From the results a section of the Cs-U-O phase diagram at 1000 K has been constructed showing the stability of the compound as a function of cesium and oxygen pressure. (orig.) [de

  16. Axial migratin of cesium in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Bridges, A.E.; Jost, J.W.

    1981-11-01

    A correlated model for quantitatively predicting the behavior of cesium in LMFBR fuel pins has been developed. This correlation was shown to be in good agreement with experimental data. It has been used to predict the behavior of cesium in the FFTF driver fuel and as the result of this analysis it has been shown that the accumulation of cesium in the insulator pellets at the ends of the fuel column will not be life limiting

  17. Cesium-137 retention in irops obtained from various soils

    International Nuclear Information System (INIS)

    Gulyakin, I.V.; Yudintseva, E.V.; Gorina, L.I.

    1974-01-01

    A non-station experiment has shown that the accumulation of cesium-137 in a plant yield depends on the type of soil. The highest contents of cesium-137 were found in the yield of plants from soddy-podzolic sandy loam soils, and the lowest- in those from leached chernozem. The accumulation of radiocesium in the yield of the basic produce strongly depended on the plant species. The amount of cesium-137 differed 5- to 7-fold in different crops

  18. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  19. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    Jandl, J.; Novosad, J.; Francova, J.; Prochazka, H.

    1989-01-01

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134 Cs+ 137 Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134 Cs+ 137 Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  20. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    McMullen, W.H.; Sloan, D.P.

    1985-01-01

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  1. Cesium immobilization into potassium magnesium phosphate matrix

    International Nuclear Information System (INIS)

    Sayenko, S.Y.; Shkuropatenko, V.A.; Bereznyak, O.P.; Hodyreva, Y.S.; Tarasov, R.V.; Virych, V.D.; Ulybkina, E.A.; Pylypenko, O.V.; Kholomeev, G.O.; Zykova, A.V.; Wagh, Arun S.

    2017-01-01

    The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO 4 centred dot 6H 2 O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 deg C, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm -1 , which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K 0.96 Cs 0.04 MgPO 4 centred dot 6H 2 O.

  2. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  3. Behavior of ion-implanted cesium in silicon dioxide films

    International Nuclear Information System (INIS)

    Fishbein, B.J.

    1988-01-01

    Charged impurities in silicon dioxide can be used to controllably shift the flatband voltage of metal-oxide-semiconductor devices independently of the substrate doping, the gate oxide thickness and the gate-electrode work function. Cesium is particularly well suited for this purpose because it is immobile in SiO 2 at normal device operating temperatures, and because it can be controllably introduced into oxide films by ion implantation. Cesium is positively charged in silicon dioxide, resulting in a negative flatband voltage shift. Possible applications for cesium technology include solar cells, devices operated at liquid nitrogen temperature, and power devices. The goal of this work has been to characterize as many aspects of cesium behavior in silicon dioxide as are required for practical applications. Accordingly, cesium-ion implantation, cesium diffusion, and cesium electrical activation in SiO 2 were studied over a broad range of processing conditions. The electrical properties of cesium-containing oxides, including current-voltage characteristics, interface trap density, and inversion-layer carrier mobility were examined, and several potential applications for cesium technology have been experimentally demonstrated

  4. Removal of cesium radioisotopes from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1991-01-01

    The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed. (author) 35 refs.; 9 figs.; 1 tab

  5. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  7. Dye-sensitized solar cell based on optically transparent TiO{sub 2} nanocrystalline electrode prepared by atomized spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, H.M.N., E-mail: hmnb@pdn.ac.l [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Rajapakse, R.M.G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Murakami, K. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Kumara, G.R.R.A.; Anuradha Sepalage, G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka)

    2011-10-30

    Highlights: > Transparent TiO{sub 2} films were prepared by the atomized spray pyrolysis method. > These films contain 3-5 nm discrete particles, interconnected to give a crack-free thin film structure. > Dye-absorption of the TiO{sub 2} film is 2.16 times higher than those used in conventional DSCs. > Conversion efficiency of 8.2% can be achieved with 1000 W m{sup -2} irradiation. - Abstract: Preparation of crack-free thin films of interconnected and non-agglomerated TiO{sub 2} nanoparticles on electronically conducting fluorine doped tin oxide surfaces is instrumental in designing and developing transparent dye-sensitized solar cells (DSCs). A novel technique called 'Atomized Spray Pyrolysis' (ASP) has been designed and developed to achieve such perfectly transparent thin films. Optical transmittance of TiO{sub 2} films produced on FTO surface by this ASP method has been compared with those obtained by doctor-blading and by hand spray methods and found that the atomized spray pyrolysis technique give films with high transparency. Dye adsorption per gram of TiO{sub 2} is 2.16 times higher in the sample produced by the ASP method when compared to the film produced by the hand spray method and is 1.60 times higher than that produced by the doctor-blading method using a commercially available TiO{sub 2} nanocrystalline paste. SEM studies show the presence of interconnected discrete particles in the film produced by the ASP method. The fill factor (ff) remains almost constant for the cells with thickness from 6 {mu}m to 13 {mu}m but the highest photovoltage and photocurrent were found in {approx}10 {mu}m film based DSC which gave 8.2% conversion efficiency at AM 1.5 irradiation for cells of 0.25 cm{sup 2} active area.

  8. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nomura, Cassiana S.; Silva, Cintia S.; Nogueira, Ana R.A.; Oliveira, Pedro V.

    2005-01-01

    This work describes a systematic study for the bovine liver sample preparation for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. The main parameters investigated were sample drying, grinding process, particle size, sample size, microsample homogeneity, and their relationship with the precision and accuracy of the method. A bovine liver sample was prepared using different drying procedures: (1) freeze drying, and (2) drying in a household microwave oven followed by drying in a stove at 60 deg. C until constant mass. Ball and cryogenic mills were used for grinding. Less sensitive wavelengths for Cu (216.5 nm) and Zn (307.6 nm), and Zeeman-based three-field background correction for Cu were used to diminish the sensitivities. The pyrolysis and atomization temperatures adopted were 1000 deg. C and 2300 deg. C for Cu, and 700 deg. C and 1700 deg. C for Zn, respectively. For both elements, it was possible to calibrate the spectrometer with aqueous solutions. The use of 250 μg of W + 200 μg of Rh as permanent chemical modifier was imperative for Zn. Under these conditions, the characteristic mass and detection limit were 1.4 ng and 1.6 ng for Cu, and 2.8 ng and 1.3 ng for Zn, respectively. The results showed good agreement (95% confidence level) for homogeneity of the entire material (> 200 mg) when the sample was dried in microwave/stove and ground in a cryogenic mill. The microsample homogeneity study showed that Zn is more dependent on the sample pretreatment than Cu. The bovine liver sample prepared in microwave/stove and ground in a cryogenic mill presented results with the lowest relative standard deviation for Cu than Zn. Good accuracy and precision were observed for bovine liver masses higher than 40 μg for Cu and 30 μg for Zn. The concentrations of Cu and Zn in the prepared bovine liver sample were 223 mg kg - 1 and 128 mg kg - 1 , respectively. The relative standard deviations were lower than 6% (n = 5). The

  9. Strontium-90 and cesium-137 in soil (from May, 1982, to September, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in soil measured at 29 locations across Japan from May to September, 1982, are given in pCi/kg and mCi/km 2 , respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, the determination of stable strontium, calcium and potassium, and the counting are also described. Soil was collected in the spacious and flat area without past disturbance on the surface. Soil was taken from two layers of different depths, 0 to 5 cm and 5 to 20 cm. The sample solution was prepared and was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 6 to 1300 pCi/Kg for Sr-90 and 1 to 5000 pCi/Kg for Cs-137 in the sampling depth of 0 to 5 cm. (J.P.N.)

  10. Strontium-90 and cesium-137 in sea water (from July, 1982, to September, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in sea water collected at 11 locations across Japan from July to September, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. Sea water was collected at the fixed station where the effect of the terrestrial fresh water from rivers was negligibly small. The sampling was carried out when there was no rainfall for the last few days. The sample solution was prepared and was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.09 to 0.13 pCi/l for Sr-90 and 0.05 to 0.13 pCi/l for Cs-137 in the sea water. (Mori, K.)

  11. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  12. Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Aronniemi, Mikko; Saino, J.; Lahtinen, J.

    2008-01-01

    In this work we investigate an iron oxide thin film grown with atomic layer deposition for a gas sensor application. The objective is to characterize the structural, chemical, and electrical properties of the film, and to demonstrate its gas-sensitivity. The obtained scanning electron microscopy and atomic force microscopy results indicate that the film has a granular structure and that it has grown mainly on the glass substrate leaving the platinum electrodes uncovered. X-ray diffraction results show that iron oxide is in the α-Fe 2 O 3 (hematite) phase. X-ray photoelectron spectra recorded at elevated temperature imply that the surface iron is mainly in the Fe 3+ state and that oxygen has two chemical states: one corresponding to the lattice oxygen and the other to adsorbed oxygen species. Electric conductivity has an activation energy of 0.3-0.5 eV and almost Ohmic current-voltage dependency. When exposed to O 2 and CO, a typical n-type response is observed

  13. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

    Directory of Open Access Journals (Sweden)

    Tzia Ming Onn

    2018-03-01

    Full Text Available Atomic layer deposition (ALD offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

  14. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  15. Diffusion of cesium and iodine in compressed IG-110 graphite compacts

    International Nuclear Information System (INIS)

    Carter, L.M.; Brockman, J.D.; Robertson, J.D.; Loyalka, S.K.

    2016-01-01

    Nuclear graphite grade IG-110 is currently used in the High Temperature Engineering Test Reactor (HTTR) in Japan for certain permanent and replaceable core components, and is a material of interest in general. Therefore, transport parameters for fission products in this material are needed. Measurement of diffusion through pressed compacts of IG-110 graphite is experimentally attractive because they are easy to prepare with homogeneous distributions of fission product surrogates. In this work, we measured diffusion coefficients for Cs and I in pressed compacts made from IG-110 powder in the 1079–1290 K temperature range, and compared them to those obtained in as-received IG-110. - Highlights: • A method for analysis of fission product diffusion in graphite by ICP-MS was applied to pressed IG-110 graphite compacts containing cesium and iodine. • Diffusion coefficients for cesium and iodine were obtained. • The measurement design simulates HTGR conditions of high temperature and flowing helium.

  16. Phenolic cation exchange resin material for recovery of cesium and strontium

    Science.gov (United States)

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  17. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  18. Strontium-90 and cesium-137 in soil from May 1984 to July 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Strontium-90 and cesium-137 in soil measured throughout Japan from May to July 1984 are given in pCi/kg and mCi/km 2 . Sampling points are total of 8 from Kawabe-gun (Akita) to Ibasuki-gun (Kagoshima). Collection and pretreatment of samples, preparation of samples for analysis, separation of strontium-90 and cesium-137, determination of stable strontium, calcium and potassium, and counting are described. Soil was collected from the location in the spacious and flat area without past disturbance on the surface. Soil was taken from two layers of different depths, 0 aproximately 5 cm and 5 approximately 20 cm. After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 minutes. (Mori, K.)

  19. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    International Nuclear Information System (INIS)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu; Zhou, Zhiping; Zhang, Rongxian; Yan, Yongsheng

    2012-01-01

    Highlights: ► Atom transfer radical emulsion polymerization is a “living” and green technique. ► Nanoparticles can overcome mass transfer limitations and improve accessibility. ► Molecular imprinted nanoparticles with magnetic property for fast separation. ► The performance of imprinted nanoparticles was investigated in detail. ► Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe 3 O 4 particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g −1 at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully applied to the extraction of TC from the spiked pork sample.

  20. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng, E-mail: djdxxx123@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Atom transfer radical emulsion polymerization is a 'living' and green technique. Black-Right-Pointing-Pointer Nanoparticles can overcome mass transfer limitations and improve accessibility. Black-Right-Pointing-Pointer Molecular imprinted nanoparticles with magnetic property for fast separation. Black-Right-Pointing-Pointer The performance of imprinted nanoparticles was investigated in detail. Black-Right-Pointing-Pointer Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe{sub 3}O{sub 4} particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g{sup -1} at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully

  1. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  2. Synthesis and crystal structure of the cesium silver permanganate Cs_3Ag[MnO_4]_4

    International Nuclear Information System (INIS)

    Bauchert, Joerg M.; Henning, Harald; Schleid, Thomas

    2012-01-01

    After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO_4]) and silver (Ag[MnO_4]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs_3Ag[MnO_4]_4) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs_3Ag[MnO_4]_4 consists of two crystallographically distinguishable cesium cations. (Cs1)"+ is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge-sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag"+ cations (d(Ag-O) = 238-246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two-dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO_4]"- (d(Mn-O) = 161-162 pm) the other kind of cesium cations ((Cs2)"+ with CN = 13) finally connect these layers three-dimensionally. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  4. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  5. Strontium-90 and cesium-137 in powdered milk

    International Nuclear Information System (INIS)

    1977-01-01

    Japan Chemical Analysis Center has analysed the strontium-90 and cesium-137 content in powdered milk. The samples were purchased on the open market in Tokyo from the powdered milk producers. The analysis of Strontium-90 and Cesium-137 content was carried out using the method recommended by Science and Technology Agency. (author)

  6. Uptake behavior of titanium molybdophosphate for cesium and strontium

    International Nuclear Information System (INIS)

    Yavari, R.; Ahmadi, S.J.; Huang, Y.D.

    2010-01-01

    This study investigates uptake of cesium and strontium from aqueous solution similar to nuclear waste on three samples of titanium molybdophosphate (TMP) synthesized under various conditions. Effects of concentration of sodium nitrate, pH and contact time on the uptake of cesium and strontium have been studied by bath method. The results showed that TMP has high affinity toward cesium and strontium at pH > 2 and relatively low concentration of sodium nitrate. Kinetic data indicated that cesium uptake process to achieve equilibrium was faster than strontium. Cesium and strontium breakthrough curves were examined at 25 deg C using column packed with H 3 O + form of TMP and breakthrough curves showed symmetrical S-shaped profiles. At the same time, the calculated breakthrough capacity for cesium was higher than strontium. The results of desorption studies showed that over 99% of cesium and strontium was washed out of column by using 4 M NH 4 Cl solution. This study suggests that TMP can have great potential applications for the removal of strontium and specially cesium from nuclear waste solution. (author)

  7. Hydrological Methods can Separate Cesium from Nuclear Waste Saltcake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Peters, J.F.; Staheli, K.

    1999-01-01

    Interstitial Fluid Displacement (IFD) is a new and novel method for separating cesium from saltcake waste. Hydrologic modeling of liquid flow through porous saltcake suggests that the cesium, potassium and sodium hydroxide can be separated at high recovery and low volume using IFD.'

  8. Mixtures of ultracold atoms and the quest for ultracold molecules

    International Nuclear Information System (INIS)

    Weidemueller, M.

    2000-08-01

    A cold atomic gas formed by two different species represents an intriguing system for a deeper understanding of atom-atom interactions at ultralow temperatures. We present experiments on a mixture of atomic lithium and cesium which are of particular interest regarding the formation of heteronuclear molecules on the one hand, and the prospects for sympathetic cooling of atomic gases through mutual thermalization on the other hand. A first series of experiments on interaction in presence of a near-resonant light field is performed in a two-species magneto-optical trap. The collisional properties of the lithium-cesium mixture are investigated through detailed analysis of trap-loss processes induced by the trap light. Photoassociation in an additional near-resonant laser field yields high-resolution spectra of the excited Cs 2 dimers, but shows no unambiguous indication of LiCs molecule formation. A second series of experiments on pure ground-state collisional properties utilizes an optical dipole trap formed by light that is detuned extremely far below atomic resonance (quasi-electrostatic trap). Storage times of many minutes are achieved in a particularly simple and versatile setup for both atomic species. Cooling of cesium through evaporation and thermalization by elastic collisions is observed. The evolution of temperature and particle number is compared with model simulations of evaporative cooling. Direct laser cooling of trapped cesium in the absolute energetic ground state is demonstrated. Homonuclear spin-changing collisions of ground-state cesium and lithium atoms are analyzed, and first evidence for pure ground-state collisions between atoms of different species is found. Based on the current achievements, prospects for future experiments are discussed. (orig.)

  9. Atomic-Scale Structure of Al2O3-ZrO2 Mixed Oxides Prepared by Laser Ablation

    International Nuclear Information System (INIS)

    Yang Xiuchun; Dubiel, M.; Hofmeister, H.; Riehemann, W.

    2007-01-01

    By means of x-ray diffractometry (XRD) and X-ray absorption fine structure spectroscopy, the phase composition and atomic structure of laser evaporated ZrO2 and ZrO2-Al2O3 nanopowders have been studied. The results indicate that pure ZrO2 exists in the form of tetragonal structure, Al2O3 doped ZrO2 nanoparticles, however, have cubic structure. Compared to bulk tetragonal ZrO2, pure tetragonal ZrO2 nanoparticles have a shorter Zr-O- and Zr-Zr shell, indicating that the lattice contracts with decreasing particle size. For Al2O3 doped ZrO2 solid solution, the distances of first Zr-O and Zr-Zr (Al) coordination decrease with increasing solid solubility. The disorder degree of the ZrO2 lattice increases with increasing solid solubility. The coevaporated ZrO2-Al2O3 is quickly solidified into amorphous phase when it is ablated in a higher pressure. The amorphous phase contains Zr-O-Zr (Al) clusters and has shorter Zr-O distance and tower Zr-O coordination number

  10. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  11. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-13 C.

    Science.gov (United States)

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate- 13 C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T 1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T 1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T 1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. 13 C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T 1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T 1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate- 13 C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate- 13 C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T 1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  12. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  13. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Dietz, M.L.; Jensen, M.P.

    1996-01-01

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  14. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  15. Method for synthesizing pollucite from chabazite and cesium chloride

    International Nuclear Information System (INIS)

    Pereira, C.

    1999-01-01

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs

  16. Biochemical changes in rats under the influence of cesium chloride

    Directory of Open Access Journals (Sweden)

    N. M. Melnikova

    2013-04-01

    Full Text Available Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

  17. Influence of the Dirac-Hartree-Fock starting potential on the parity-nonconserving electric-dipole-transition amplitudes in cesium and thallium

    Science.gov (United States)

    Perger, W. F.; Das, B. P.

    1987-01-01

    The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.

  18. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  19. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  20. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  1. WESF cesium capsule behavior at high temperature or during thermal cycling

    International Nuclear Information System (INIS)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive 137 Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800 0 C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs

  2. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  3. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    International Nuclear Information System (INIS)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-01-01

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  4. Strontium-90 and cesium-137 in soil from May to July 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The measured values in soil of strontium-90 and cesium-137 at a total of 4 locations throughout Japan from May to July, 1983 are given in pCi/kg and mCi/km 2 in the tables. The method of measurement is also described: collection and pretreatment of samples, preparation of the samples for analysis, separation of strontium-90 and cesium-137, determination of stable strontium, calcium and potassium, and counting. Soil was collected from the location in the spacious and flat area without any past disturbance. Soil was taken from two layers having different depths: 0--5 cm and 5--20 cm. The sample solution was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitates were counted for activity using a low background beta counter normally for 60 min. The maximum values were 690 pCi/kg for Sr-90 and 1300 pCi/kg for Cs-137, which were obtained from the samples in the 5-to-20 cm depth, in June 1983, at Akita-ken,Japan. (Mori, K.)

  5. Research on the Method of Noise Error Estimation of Atomic Clocks

    Science.gov (United States)

    Song, H. J.; Dong, S. W.; Li, W.; Zhang, J. H.; Jing, Y. J.

    2017-05-01

    The simulation methods of different noises of atomic clocks are given. The frequency flicker noise of atomic clock is studied by using the Markov process theory. The method for estimating the maximum interval error of the frequency white noise is studied by using the Wiener process theory. Based on the operation of 9 cesium atomic clocks in the time frequency reference laboratory of NTSC (National Time Service Center), the noise coefficients of the power-law spectrum model are estimated, and the simulations are carried out according to the noise models. Finally, the maximum interval error estimates of the frequency white noises generated by the 9 cesium atomic clocks have been acquired.

  6. Studies on release and deposition behaviour of cesium from contaminated sodium pools and cesium trap development for FBTR

    International Nuclear Information System (INIS)

    Sahoo, P.; Kannan, S.E.; Muralidharan, P.; Chandran, K.

    1996-01-01

    Investigations were carried out on the release and deposition behaviour of cesium from sodium pools in air-filled chamber in the temperature range of 673 to 873 K, using Cs-134 to simulate Cs-137. About 0.12 kg of sodium was loaded in a burn-pot together with 92.5 kBq of cesium. Experiments were carried out with 21% oxygen. Natural burning period of sodium and specific activity ratio between cesium and sodium showed a tendency to decrease and release fractions of both the species tended to increase with temperature. From the surface deposited aerosols it was observed that cesium has propensity to settle down closer to the point of release. A cesium trap has been developed for FBTR with RVC as getter material. Absorption kinetics and particle release behaviour studies pointed to its intended satisfactory performance in the plant. (author)

  7. Feasibility Assessment of Cesium Removal using Microaglae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ilgook; Ryu, Byung-Gon; Seo, Bum-Kyoung; Moon, Jei Kwon; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this work is to assess the feasibility of selected one of microalgae in the uptake of Cs+. The obtained results showed the maximum Cs+ removal by D. armatus SCK was 280μM indicating 70% removal efficiency. Also, D. armatus SCK could uptake Cs+ in the presence of K+, is particularly known to be transported into cells as an analog of Cs+ in freshwater condition. Recently, increased attention has been directed on the use of biological technologies for the removal of radionuclides as the cheap and eco-friendly alternative to the non-biological methods. Metal including radioactive compounds uptake by microorganisms can be occurred by metabolism –independent and/or -dependent processes. One involves biosorption based on the ability of microbial cells to bind dissolved metals; on the other involves bioaccumulation, which depends on the metabolic ability of cells to transport metals into the cytoplasm. The purpose of this work is to investigate the feasibility of microalgae in bioaccumulation system to remove cesium from solution. The effect of different environmental parameters on cesium removal was also examined.

  8. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  9. Microbial uptake of uranium, cesium, and radium

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; McWhirter, D.A.

    1980-01-01

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed.

  10. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    Science.gov (United States)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  11. Innovation and reliability of atomic standards for PTTI applications

    Science.gov (United States)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  12. Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In-Ga-Zn-O Active Channels Prepared by Atomic-Layer Deposition.

    Science.gov (United States)

    Yoon, Sung-Min; Seong, Nak-Jin; Choi, Kyujeong; Seo, Gi-Ho; Shin, Woong-Chul

    2017-07-12

    We demonstrated the physical and electrical properties of the In-Ga-Zn-O (IGZO) thin films prepared by atomic-layer deposition (ALD) method and investigated the effects of the ALD temperature. The film composition (atomic ratio of In:Ga:Zn) and film density were examined to be 1:1:3 and 5.9 g/cm 3 , respectively, for all the temperature conditions. The optical band gaps decreased from 3.81 to 3.21 eV when the ALD temperature increased from 130 to 170 °C. The amounts of oxygen-related defects such as oxygen vacancies increased with increasing the ALD temperature. It was found from the in situ temperature-dependent electrical conductivity measurements that the electronic natures including the defect structures and conduction mechanism of the IGZO thin films prepared at different temperatures showed marked variations. The carrier mobilities in the saturation regions (μ sat 's) for the fabricated thin film transistors (TFTs) using the IGZO channel layers were estimated to be 6.1 to 14.8 cm 2 V -1 s -1 with increasing the ALD temperature from 130 to 170 °C. Among the devices, when the ALD temperature was controlled to be 150 °C, the IGZO TFTs showed the best performance, which resulted from the fact that the amounts of oxygen vacancies and interstitial defects could be appropriately modulated at this condition. Consequently, the μ sat , subthreshold swing, and on/off ratio for the TFT using the IGZO channel prepared at 150 °C showed 10.4 cm 2 V -1 s -1 , 90 mV/dec, and 2 × 10 9 , respectively. The threshold voltage shifts of this device could also be effectively reduced to be 0.6 and -3.2 V under the positive-bias and negative-bias-illumination stress conditions. These obtained characteristics can be comparable to those for the sputter-deposited IGZO TFTs.

  13. The International Atomic Energy Agency circulation of laboratory air standards for stable isotope comparisons: Aims, preparation and preliminary results

    International Nuclear Information System (INIS)

    Allison, C.E.; Francey, R.J.; Steele, L.P.

    2002-01-01

    Ten air standards in high-pressure aluminium cylinders were prepared, covering a specified range of CO 2 concentration and δ 13 C and δ 18O isotopic composition, to be used for laboratory intercomparisons with the primary aim of merging global atmospheric CO 2 δ 13 C data sets. After establishing the stability of the standards, five were circulated between four laboratories with established high precision global monitoring networks to quantify differences between the measurement scales used in the laboratories. Measurements of CO 2 concentration in three of the four laboratories showed agreement to better than 0.2 ppm for the five standards. Measurements of N 2 O concentration reported by three of the laboratories agreed to better than 3 ppb after correction for known scaling factor differences, but a fourth laboratory reported results for two cylinders lower by about 20 ppb, contributing a δ 13 C uncertainty of about 0.012 per mille for these two cylinders. The reported measurements of the δ 13 C and δ 18O of CO 2 extracted from the air in the five standards showed large offsets between the laboratories of up to 0.1 per mille in δ 13 C and up to 1 per mille in δ 18O . Analysis of the results shows that about 40% of the offsets arises from differences in the procedures used in each laboratory to calculate the δ 13 C and δ 18 O values from the raw measurements and that the remainder arises from the pre-concentration step. Using one of the circulated standards to 'normalise' the others removes most of the inter-laboratory differences but there remains a non-linear response in one or more laboratories. The differences in δ 13 C that remain after normalisation are larger than the target precision of 0.01 per mille. (author)

  14. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  15. Spatial variability and Cesium-137 inventories in native forest

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.

    2004-01-01

    With the nuclear fission discovery and development of nuclear weapons in 1940s, artificial radioisotopes were introduced in the environment. This contamination is due to worldwide fallout by superficial nuclear tests realized from early 1950s to late 1970s by USA, former URSS, UK, France and China. One of theses radioisotopes that have been very studied is cesium-137. Cesium-137 has a half-life of 30.2 years and its biological behavior is similar to the potassium. The behavior in soil matrix, depth distribution, spatial variability and inventories values of cesium-137 has been determinate for several regions of the world. In Brazil, some research groups have worked on this subject, but there are few works published about theses properties of cesium-137. The aim of this paper was study the depth distribution, spatial variability, and inventory of cesium-137 in native forest. Two native forests (Mata 1 and Mata UEL) were sampling in region of Londrina, PR. The results shows that there is a spatial variability of 40% for Mata 1 and 42% for Mata UEL. The depth distribution of cesium-137 for two forests presented a exponential form, characteristic to undisturbed soil. Cesium-137 inventory determinate for Mata 1 was 358 Bq m -2 and for Mata UEL was 320 Bq m -2 . (author)

  16. The burden of cesium 137 in forest clerks

    International Nuclear Information System (INIS)

    Piechotowski, I.; Jaroni, J.; Link, B.; Groezinger, O.

    2000-01-01

    In 47 forest clerks from the regions Ortenau and Oberschwaben in south-west Germany the incorporation of cesium 137 and potassium 40 was measured in autumn 1994. Soil burden as well as burden of nutrition with cesium 137 are different in these regions for geological reasons and as a result of the nuclear accident of Chernobyl. Caused by low content of clay in Oberschwaben, the transfer of cesium to plants is assisted. Heavy rainfall after the nuclear accident led to an additional increase of burden. The median of the concentration of cesium 137 was 1.4 Bq/kg body weight. The median for potassium 40 was 58 Bq/kg body weight. For cesium 137 regional differences were observed. For persons from Oberschwaben the median for cesium 137 was with 2.8 Bq/kg body weight clearly higher than for persons from Ortenau with 0,6 Bq/kg body weight. Concerning nutrition habits, the clearest difference was found comparing persons who had ate a minimum of four portions of deer from the surroundings within the last four weeks with persons who had ate less than four portions of deer from the surroundings within the last four weeks. The difference was greater in Oberschwaben than in Ortenau. The effective dose of cesium 137 calculated on the basis of the incorporation is very low compared to natural radiation. This is also valid for persons from Oberschwaben. (orig.) [de

  17. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  18. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  19. Cesium immobilization in (Ba,Cr)-hollandites: Effects on structure

    Science.gov (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.

    2018-02-01

    Hollandites with compositions Ba1.15-xCs2xCr2.3Ti5.7O16 (0 ≤ x ≤ 1.15) intended for the immobilization of cesium (Cs) from nuclear waste have been prepared, characterized, and analyzed for Cs retention properties. Sol-gel synthesized powders were used for structural characterization using a combination of X-ray, neutron, and electron diffraction techniques. Phase-pure hollandites adopting tetragonal (I4/m) or monoclinic symmetry (I2/m) were observed to form in the compositional range 0 ≤ x ≤ 0.4. Structural models for the compositions, x = 0, 0.15, and 0.25 were developed from Rietveld analysis of powder diffraction data. Refined anisotropic displacement parameters (βij) for the Ba and Cs ions in the hollandite tunnels indicate local disorder of Ba/Cs along the tunnel direction. In addition, weak superlattice reflections were observed in X-ray and electron diffraction patterns that were due to the compositional modulation i.e., ordering of ions and vacancies along tunnel direction. Our overall observations suggest the phase-pure hollandites studied assumed supercell structures with ordered tunnel cations, which in turn have positional disorder in individual supercells.

  20. An atom trap relying on optical pumping

    International Nuclear Information System (INIS)

    Bouyer, P.; Lemonde, P.; Ben Dahan, M.; Michaud, A.; Salomon, C.; Dalibard, J.

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a J g →J e = J g + 1 atomic transition with J g ≥1/2. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm J g = 4→J e = 5 resonance transition. The trap contained up to 3.10 7 atoms in a cloud of 1/√e radius of 330 μm. (orig.)

  1. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  2. Investigations on cesium uranates and related compounds

    International Nuclear Information System (INIS)

    Egmond, A.B. van

    1976-01-01

    Crystal structures of cesium uranate are determined mainly by X-ray diffraction techniques. From phase studies it is concluded that of the Cs-U-O system, Cs 2 U 4 O 12 will play a prominent role in fuel elements of fast reactors due to fission product-fuel reactions causing swelling of the fuel and fuel-element failure. Crystal structures and lattice parameters are determined from Cs 2 U 4 O 12 , Cs 2 U 4 O 13 , Cs 2 U 5 O 16 , Cs 4 U 5 O 17 , Cs 2 U 7 O 22 , Cs 2 U 15 O 46 , Cs 2 UO 4 and Cs 2 U 2 O 7 . Finally some crystal structures of potassium and rubidium uranates are measured and a comparison of all available data on alkali uranates is made

  3. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Strandberg, G.W.

    1982-01-01

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137 cesium and 226 radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  4. Social aspects concerning the cesium-137 accident

    International Nuclear Information System (INIS)

    Chaves, Elza Guedes

    1997-01-01

    The present work aims to understand how social representations constructed upon nuclear energy have influenced on molding and orienting public's behavior in the presence of the accident that occurred in Goiania with the capsule of Cesium-137. As a starting point, it is accepted here that panic caused by that accident could be properly understood only if dimension of subjectivity is taken into consideration. This perspective is required whenever events that put human life and environment in risk happen. Facing the accident, people internalized radioactivity, an unknown element, as certainty of cancer and death despite the fact that cancer and death could only outcome in case there had been excessive exposure to radioactivity. (author)

  5. Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate

    Energy Technology Data Exchange (ETDEWEB)

    Sterri, Kjersti B.; Deringer, Volker L.; Houben, Andreas; Jacobs, Philipp [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; Kumar, Chogondahalli M.N. [Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science (JCNS), Outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Oak Ridge National Laboratory, TN (United States). Chemical and Engineering Materials Div.; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance (JARA-HPC)

    2016-08-01

    Urea (CN{sub 2}H{sub 4}O) is a fundamental biomolecule whose derivatives are abundant throughout chemistry. Among the latter, rubidium ureate (RbCN{sub 2}H{sub 3}O) and its cesium analog (CsCN{sub 2}H{sub 3}O) have been described only very recently and form the first structurally characterized salts of deprotonated urea. Here, we report on a neutron diffraction study on the aforementioned alkaline-metal ureates, which affords the positions for all hydrogen atoms (including full anisotropic displacement tensors) and thus allows us to gain fundamental insights into the hydrogen-bonding networks in the title compounds. The structure refinements of the experimental neutron data proceeded successfully using starting parameters from ab initio simulations of atomic positions and anisotropic displacement parameters. Such joint experimental-theoretical refinement procedures promise significant practical potential in cases where complex solids (organic, organometallic, framework materials) are studied by powder diffraction.

  6. The Boulder measurement of parity violation and an anapole moment in cesium

    International Nuclear Information System (INIS)

    Cho, D.; Wood, C.S.; Bennett, S.C.; Roberts, J.L.; Masterson, B.P.; Tanner, C.E.; Wieman, C.E.

    1999-01-01

    The amplitude of the parity-nonconserving transition between the 6S and 7S states of cesium was precisely measured with the use of a spin-polarized atomic beam. This measurement gives Im(E1 pnc )/β = - 1.5935(56) milli-volts per centimeter and provides an improved test of the standard model at low energy, including a value for the S parameter of -1.3(3) exp (11) theory . The nuclear spin-dependent contributions was 0.077(11) milli-volts per centimeter, this contribution is a manifestation of parity violation in atomic nuclei and is a measurement of the long-sought anapole moment. (authors)

  7. On mobility of cesium-137, sodium, potassium in various types of soils and prediction of cesium-137 cumulation in agricultural plants

    International Nuclear Information System (INIS)

    Ashkinazi, Eh.I.

    1990-01-01

    Mobility of cesium-137, sodium and potassium in the natural environment in podzolic gray and chernozem medium-loamy, sward podzolic sandy soils and chernozem has been studied. Durability of fixation of cesium-137 increases in a number of soils and increase of the level of metabolic potassium. Coefficient of transition of level of metabolic cesium-137 by potassium and sodium, and of sodium by potassium. The mentioned above coefficients can be used for the prediction of cesium-137 cumulation in plants

  8. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    Science.gov (United States)

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  9. Preparation of polymer brushes grafted graphene oxide by atom transfer radical polymerization as a new support for trypsin immobilization and efficient proteome digestion.

    Science.gov (United States)

    Guo, Cong; Zhao, Xinyuan; Zhang, Wanjun; Bai, Haihong; Qin, Weijie; Song, Haifeng; Qian, Xiaohong

    2017-08-01

    Highly efficient protein digestion is one of the key issues in the "bottom-up" strategy-based proteomic studies. Compared with the time-consuming solution-based free protease digestion, immobilized protease digestion offers a promising alternative with obviously improved sample processing throughput. In this study, we proposed a new immobilized protease digestion strategy using two kinds of polymer-grafted graphene oxide (GO) conjugated trypsin. The polymer brush grafted GO was prepared using in situ polymer growth on initiator-functionalized GO using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized by AFM, TEM, TGA, and XPS. The polymer brush grafted GO supports three-dimensional trypsin immobilization, which not only increases the loading amount but also improves accessibility towards protein substrates. Both of the two types of immobilized trypsin provide 700 times shorter digestion time, while maintaining comparable protein/peptide identification scale compared with that of free trypsin digestion. More interestingly, combined application of the two types of immobilized trypsin with different surface-grafted polymers leads to at least 18.3/31.3% enhancement in protein/peptide identification compared with that obtained by digestion using a single type, indicating the potential of this digestion strategy for deeper proteome coverage using limited mass spectrometer machine hour. We expect these advantages may find valuable application in high throughput clinical proteomic studies, which often involve processing of a large number of samples. Graphical abstract Preparation of polymer brushes grafted and trypsin immobilized graphene oxide and its application in proteome digestion and mass spectrometry identification.

  10. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation

    International Nuclear Information System (INIS)

    Hocevar, Samo B.; Daniele, Salvatore; Bragato, Carlo; Ogorevc, Bozidar

    2007-01-01

    Bismuth film electrodes (BiFEs) prepared ex situ with and without complexing bromide ions in the modification solution were investigated using scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). A feedback mode of the SECM was employed to examine the conductivity and reactivity of a series of thin bismuth films deposited onto disk glassy carbon substrate electrodes (GCEs) of 3 mm in diameter. A platinum micro-electrode (φ = 25 μm) was used as the SECM tip, and current against tip/substrate distance was recorded in solutions containing either Ru(NH 3 ) 6 3+ or Fe(CN) 6 4- species as redox mediators. With both redox mediators positive feedback approach curves were recorded, which indicated that the bismuth film deposition protocol associated with the addition of bromide ions in the modification solution did not compromise the conductivity of the bismuth film in comparison with that prepared without bromide. However, at the former Bi film a slight kinetic hindering was observed in recycling Ru(NH 3 ) 6 3+ , suggesting a different surface potential. On the other hand, the approach curves recorded by using Fe(CN) 6 4- showed that both types of the aforementioned bismuth films exhibited local reactivity with the oxidised form of the redox mediator, and that bismuth film obtained with bromide ions exhibited slightly lower reactivity. The use of SECM in the scanning operation mode allowed us to ascertain that the bismuth deposits were uniformly distributed across the whole surface of the glassy carbon substrate electrode. Comparative AFM measurements corroborated the above findings and additionally revealed a denser growth of smaller bismuth crystals over the surface of the substrate electrode in the presence of bromide ions, while the crystals were bigger but sparser in the absence of bromide ions in the modification solution

  11. On the solid phase crystallization of In{sub 2}O{sub 3}:H transparent conductive oxide films prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Melskens, J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Barcones, Beatriz [NanoLab@TU/e, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Solliance Solar Research, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2016-08-28

    Hydrogen-doped indium oxide (In{sub 2}O{sub 3}:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In{sub 2}O{sub 3}:H. This process consists of ALD of In{sub 2}O{sub 3}:H films at 100 °C, followed by a solid phase crystallization step at 150–200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  12. Strontium-90 and cesium-137 in tea (Japanese tea)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in tea (Japanese tea) were determined. Five hundred grams of manufactured green tea was collected from six sampling locations in Japan. The results are shown in a table. (Namekawa, K.)

  13. CETESB's actions in Goiania in what concerns cesium-137 accident

    International Nuclear Information System (INIS)

    Penteado Filho, Azor Camargo; Derisio, Jose Carlos; Albuquerque, Antonio Martins de

    1991-01-01

    This work presents several actions performed by CETESB, the sanitary engineering agency of Sao Paulo State - Southeast Brazil, in what concerns the accident involving cesium-137 in Goiania, Goias State - Center Brazil. The adopted procedures are described in details

  14. Functions and requirements for a cesium demonstration unit

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-04-01

    Westinghouse Hanford Company is investigating alternative means to pretreat the wastes in the Hanford radioactive waste storage tanks. Alternatives include (but are not limited to) in-tank pretreatment, use of above ground transportable compact processing units (CPU) located adjacent to a tank farm, and fixed processing facilities. This document provides the functions and requirements for a CPU to remove cesium from tank waste as a demonstration of the CPU concept. It is therefore identified as the Cesium Demonstration Unit CDU

  15. Cesium powder and pellets inner container decontamination method determination

    International Nuclear Information System (INIS)

    Ferrell, P.C.

    1998-01-01

    The cesium powder and pellets inner container is to be performance tested per the criteria specified in Section 4.0 of HNF-2399, ''Design, Fabrication, and Assembly Criteria for Cesium Powder and Pellet Inner Container.'' The test criteria specifies that the inner container be water tight during decontamination of the exterior surface. Three prototypes will be immersed into a pool of water to simulate a water decontamination process

  16. [Effects of annealing temperature on the structure and optical properties of ZnMgO films prepared by atom layer deposition].

    Science.gov (United States)

    Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua

    2014-07-01

    In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

  17. High mobility In{sub 2}O{sub 3}:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Wu, Y.; Vanhemel, D. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2014-12-01

    The preparation of high-quality In{sub 2}O{sub 3}:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In{sub 2}O{sub 3}:H films were deposited by atomic layer deposition at 100 C, after which they underwent solid phase crystallization by a short anneal at 200 C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm{sup 2}/V s at a device-relevant carrier density of 1.8 x 10{sup 20} cm{sup -3}. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. 3-(Dicyanomethylidene)indan-1-one-Functionalized Calix[4]arene-Calix[4]pyrrole Hybrid: An Ion-Pair Sensor for Cesium Salts.

    Science.gov (United States)

    Yeon, Yerim; Leem, Soojung; Wagen, Corin; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-09-02

    A chromogenic calix[4]arene-calix[4]pyrrole hybrid ion pair receptor bearing an indane substituent at a β-pyrrolic position has been prepared. On the basis of solution-phase UV-vis spectroscopic analysis and (1)H NMR spectroscopic studies carried out in 10% methanol in chloroform, receptor 1 is able to bind only cesium ion pairs (e.g., CsF, CsCl, and CsNO3) but not the constituent cesium cation (as its perchlorate salt) or the F(-), Cl(-), or NO3(-) anions (as the tetrabutylammonium salts). It thus displays rudimentary AND logic gate behavior. Receptor 1 shows a colorimetric response to cesium ion pairs under conditions of solid-liquid (nitrobenzene) and liquid-liquid (D2O-nitrobenzene-d5) extraction.

  19. Caustic-Side Solvent Extraction: Anti-Caking Surfactants Found to be Cause of Apparent Effect of High Nitrite Concentration on Cesium Stripping

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-06-13

    Experiments conducted in FY01 previously indicated a potential cesium stripping problem in the CSSX process due to the presence of nitrite in the waste simulant. The stripping issue seemed all the more important as the nitrite concentration increased. Experiments presented in this work have demonstrated that the true reason for the cesium stripping problem was in fact the presence of an anti-caking agent in the,sodium nitrite. used for the preparation of the simulants. The anti-caking agent is actually a mixture of well-known surfactants, sodium mono- and di-methyl naphthalene sulfonate that can partition into the organic-phase on extraction, then retain cesium upon stripping. The effect was demonstrated by adding known amounts of the anti-caking agent to clean systems. Data suggest that rejuvenation of the solvent can be obtained by a caustic wash following the stripping stage.

  20. Study of strontium and cesium migration in fractured crystalline rock

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.E.

    1984-01-01

    The purpose of this investigation has been to study the retardation and dilution of non-active strontium and cesium relative to a non-absorbing substance (iodide) in a well-defined fracture zone in the Finnsjoen field research area. The investigation was carried out in a previously tracer-tested fracture zone. The study has encompassed two separate test runs with prolonged injection of strontium and iodide and of cesium and iodide. The test have shown that: - Strontium is not retarded, but rather absorbed to about 40% at equilibrium. - At injection stop, 36.3% of the injected mass of strontium has been absorbed and there is no deabsorption. -Cesium is retarded a factor of 2-3 and absorbed to about 30% at equilibrium. - At injection stop, 39.4% of the injected mass of cesium has been absorbed. Cesium is deabsorbed after injection stop (400h) and after 1300 hours, only 22% of the injected mass of cesium is absorbed. (author)

  1. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    Science.gov (United States)

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  2. Cesium-134 and cesium-137 in honey bees and cheese samples collected in the U. S. after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Ford, B C; Jester, W A; Griffith, S M; Morse, R A; Zall, R R; Lisk, D J; Burgett, D M; Bodyfelt, F W

    1988-01-01

    As a result of the Chernobyl accident on April 25, 1986, possible radioactive contamination of honey bees and cheese sampled in several areas of the United States were measured. Of bees collected in May and June of 1986 in both Oregon and New York, only those from Oregon showed detectable levels of cesium-134 (T1/2 = 2.05 years), a radionuclide which would have originated from the Chernobyl incident. Cheese produced in Oregon and New York before the accident showed only cesium-137 (T1/2 = 30.23 years) but cheese produced afterwards (May and September, 1986) in Oregon contained cesium-134. Cheese produced in Ohio and California at the time of the accident and thereafter contained only cesium-137. In general, the levels of radioactivity were higher in the West coast samples as compared to those taken in the East. The levels of radioactivity detected were considered to be toxicologically of no consequence.

  3. Seasonal variation of cesium 134 and cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.; Bye, K.; Sletten, H.D.

    1990-01-01

    The Chernobyl accident had a great impact on the semidomestic reindeer husbandry in central Norway. Seasonal differences in habitat and diet resulted in large variations in observed radiocesium concentrations in reindeer after the Chernobyl accident. In three areas with high values of cesium-134 and cesium-137 in lichens, the main feed for reindeer in winter, reindeer were sampled every second month to monitor the seasonal variation and the decrease rate of the radioactivity. The results are based on measurements of cesium-134 and cesium-137 content in meat and blood and by whole-body monitoring of live animals. In 1987 the increase of radiocesium content in reindeer in Vågå were 4x from August to January. The mean reductions in radiocesium content from the winter 1986/87 to the winter 1987/88 were 32%, 50% and 43% in the areas of Vågå, Østre-Namdal and Lom respectively

  4. Could Atomic clocks be affected by neutrinos?

    CERN Document Server

    Hanafi, Hanaa

    2016-01-01

    An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not affecting these clocks? The answer to this question requir...

  5. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    Science.gov (United States)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  6. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  7. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  8. Time-resolved production and detection of reactive atoms

    International Nuclear Information System (INIS)

    Grossman, L.W.; Hurst, G.S.

    1977-09-01

    Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intense fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken

  9. Cesium adsorption on In0.53Ga0.47As (1 0 0) β2 (2 × 4) surface: A first-principles research

    International Nuclear Information System (INIS)

    Guo, Jing; Chang, Benkang; Jin, Muchun; Wang, Honggang; Wang, MeiShan

    2015-01-01

    Highlights: • Eight different cesium adsorption In 0.53 Ga 0.47 As (1 0 0) β 2 (2 × 4) surface models have been built. • Surface characteristics of the cesium adsorption In 0.53 Ga 0.47 As (1 0 0) β 2 (2 × 4) surfaces are investigated based on the first principle. • New energy bands appear and band gap is narrowed after adsorption. • The cesium adsorption enhances the surface ionization. • T 2 and T 3 are the reasonable adsorption sites relatively. - Abstract: In 0.53 Ga 0.47 As is a perfect III–V compound semiconductor for the photoemissive layer of the infrared-extension negative electron affinity photocathode. It is the key step for the formation of negative electron affinity that the cesium atoms and oxygen atoms activate the photocathode surface alternately. Geometry optimizations based on the first principles have been carried out for the In 0.53 Ga 0.47 As (1 0 0) β 2 (2 × 4) surfaces with a cesium atom adsorbed on 8 different possible sites named as D, D′, T 2 , T 2 ′, T 3 , T 3 ′, T 4 and T 4 ′. The surfaces characteristics have been investigated before and after adsorption from the point of negative electron affinity formation. Meanwhile, the surface atom structure, the adsorption energy, work function, surface energy bands, charge transfer and the dipole generation of the 8 different adsorption surfaces have been compared to each other. The work function and the surface energy bands have been analyzed in detail, which are closely related with the photoelectrons escaping from the surface. The surface work functions are all decreased in varying degrees and energy band bends all appear at the 8 different adsorption sites due to the surface charge transfer and the dipole formation. In conclusion, T 2 and T 3 are the favorable adsorption sites relatively. The surfaces with a cesium atom adsorbed on these two sites are most stable and have much lower work functions, which generates reasonable energy band bend and is benefit for the

  10. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    Science.gov (United States)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  11. Improvement of cesium retention in uranium dioxide by additional phases

    International Nuclear Information System (INIS)

    Gamaury Dubois, S.

    1995-01-01

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs 2 O-Al 2 O 3 -SiO 2 et Cs 2 O-ZrO 2 -SO 2 . The compounds CsAISi 2 O 6 and Cs 2 ZrSi 6 O 15 were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al 2 O 3 + SiO 2 ) or (ZrO 2 + SiO 2 ) and the intergranular phase was characterized. In the presence of (Al 2 O 3 + SiO 2 ), the sintering is realized at 1610 deg C in H 2 . It is a liquid phase sintering. On the other end, with (ZrO 2 + SiO 2 ), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO 2+x . We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs

  12. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  13. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  14. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-01-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe 3 O 4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L −1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml −1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL −1 level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time

  15. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  16. Selective cesium and strontium removal for TRU-liquid waste including fission products and concentrated nitric acids

    International Nuclear Information System (INIS)

    Mimori, T.; Miyajima, K.; Kozeki, M.; Kubota, T.; Tusa, E.; Keskinen, A.

    1996-01-01

    A nuclide removal system was designed for treatment of liquid radioactive waste at the Japan Atomic Energy Research Institute (JAERI) Tokai site. Total system will include removal of plutonium, cesium and strontium. Removal of plutonium will be carried out by a method developed by JAERI. Removal of cesium and strontium will be carried out by the methods developed in Finland. The whole project will be implemented for JAERI in cooperation between Mitsui Engineering and Shipbuilding and IVO International. This project has been carried out under the Science and Technology Agency (STA) of Japan. The liquid to be treated includes 7.4x10 9 Bq/L of cesium and 7.4x10 9 Bq/L of strontium. The amount of alpha nuclides is 3.7x10 6 Bq/L. Nitric acid concentration is 1.74 mol/L. The volume of 11,000 liters had to be treated in 200 batches of operation. Removal of cesium and strontium is based on the use of new ion exchange materials developed in Finland. These inorganic ion exchange materials have extremely good properties to separate cesium and strontium from even very difficult liquids. Ion exchange material will be used in columns, where there are materials both for cesium and strontium. According to column tests with simulated waste, one 2 liter column will effectively reach the required DF during 10 batches of operation. Purified liquid can be led to further liquid treatment at the site. After treatment of liquids, both used particle filters and used ion exchange columns will be drained and stored to wait for final treatment and disposal. The designed treatment system has a special beneficial feature as it does not produce secondary waste. Final waste is in the form of particle filters or ion exchange columns with material. Used ion exchange columns and filters will be replaced with new ones by means of remote handling. Construction of the treatment system will be scheduled to commence in FY1995 and assemblying at the site in FY1996. (J.P.N.)

  17. Dosimetry of a Cesium 137 source

    International Nuclear Information System (INIS)

    Torres R, J.G.; Manzanares A, E.; Vega C, H.R.

    2005-01-01

    It was carried out a dosimetric study of a source of Cesium 137 used in investigations of Radiobiology. This radionuclide has a half life of 30.07 years and it emits photons of 661.657 keV with a probability of 85.2%. The source has been used in a series of experiments trending to observe the cellular response before the gamma rays, as well as for the calibration of equipment of radiological protection. For such reason it is important to determine the dosimetric properties. In this work it was determined the absorbed dose that this source takes when being placed in the center from a methylmethacrylate badge to three distances, 5, 10 and 15 cm. The dose was measured with thermoluminescent dosemeters and it was calculated by means of Monte Carlo method, also was derived an expression that allows to determine the dose starting from the information of the activity of the source and of the distance regarding the same one. (Author)

  18. Crystalline silicotitanates -- novel commercial cesium ion exchangers

    International Nuclear Information System (INIS)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J.

    1996-01-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na + . The materials also showed excellent chemical and radiation stability. These CST properties made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia and UOP, under a Cooperative Research and Development Agreement (CRADA), developed CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by Sandia and Texas A ampersand M consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications such as batch waste processing. Data are also presented confirming the excellent stability of the commercial CSTs over a broad pH range and the high radiation stability of the exchangers. In addition, data are provided that demonstrate the high physical strength and attrition resistance of IONSIV reg-sign IE-911, critical properties for column ion exchange applications

  19. Radionuclide ratios of cesium and strontium in Tarapur marine environment, west coast of India

    International Nuclear Information System (INIS)

    Baburajan, A.; Rao, D.D.; Chandramouli, S.; Iyer, R.S.; Hegde, A.G.

    1999-01-01

    Marine environment of Tarapur located 100 km north of Mumbai on the west coast, receives low level liquid waste from Tarapur Atomic Power Station (TAPS) and Fuel Reprocessing Plant (FRP). Radionuclide ratios of cesium and strontium were obtained in source term (the quantum of radioactive liquid waste available for discharge) and different marine samples viz, seawater, sediment, seaweed and marine organisms. A constant ratio of 137 Cs: 134 Cs was observed in seawater and source term. But the ratio of 137 Cs: 90 Sr had wide variation due to selective scavenging of 137 Cs by sedimentary particles at the discharge location. Among the other matrices, sediment showed a higher value of 137 Cs: 134 Cs and 137 Cs: 90 Sr reflecting the cumulative effects of releases from TAPS and FRP and higher distribution coefficient of radiocesium from seawater to sediment. Marine algae indicate a discrimination against sorption of 90 Sr due to the isotopic dilution by stable strontium present in seawater (8mg/l). The marine organisms preying on sediment containing microflora and fauna exhibited radionuclide ratios similar to seawater as the sediment sorbed cesium is not available for assimilation due to the mineral nature of the sediment. The matrices other than sediment indicated the equilibrated activity ratio of radionuclides in seawater which is the recipient medium and reflected the influence of continuous discharge. The sedimentary radionuclide ratio is largely dependent on sorption characteristics of radionuclides and their retention. (author)

  20. Pilot unit for cesium-137 separation; Unite pilote de separation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Raggenbass, A; Quesney, M; Fradin, J; Dufrene, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Users of radiation are becoming increasingly interested in cesium-137. At the same time the starting up of the industrial plant at Marcoule will make available in the near future large stocks of fission products which should be made use of as quickly as possible. The installation described is a pilot plant for cesium-137 production which should make it possible: - to verify the chemical method on actual solutions of fission products, by treating about 100 curies of {sup 137}Cs by operation, - to obtain technical information on the chemical equipment (tele-commands, corrosion, maintenance, etc...), - to obtain {sup 137}Cs in sufficient quantity to perfect the technique of the manufacture of sealed sources. (author)Fren. [French] L'interet des utilisateurs de rayonnement se porte de plus en plus vers le caesium-137. Parallelement, la mise en oeuvre de l'ensemble industriel de Marcoule nous permettra de disposer dans un avenir proche de stocks importants de produits de fission qu'il sera interessant de valoriser au plus vite. L'installation que nous decrivons est un pilote de production de caesium-137 qui doit nous permettre: - de verifier la methode chimique sur des solutions de produits de fission reelles en traitant environ 100 curies de {sup 137}Cs par operation; - d'obtenir des renseignements techniques sur l'appareillage chimique (telecommandes, corrosion, entretien, etc...); - d'obtenir du {sup 137}Cs en quantite suffisante pour mettre au point la technique de fabrication des sources scellees. (auteur)

  1. Synthesis and crystal structure of the cesium silver permanganate Cs{sub 3}Ag[MnO{sub 4}]{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bauchert, Joerg M.; Henning, Harald; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2012-09-15

    After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO{sub 4}]) and silver (Ag[MnO{sub 4}]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs{sub 3}Ag[MnO{sub 4}]{sub 4}) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs{sub 3}Ag[MnO{sub 4}]{sub 4} consists of two crystallographically distinguishable cesium cations. (Cs1){sup +} is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge-sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag{sup +} cations (d(Ag-O) = 238-246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two-dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO{sub 4}]{sup -} (d(Mn-O) = 161-162 pm) the other kind of cesium cations ((Cs2){sup +} with CN = 13) finally connect these layers three-dimensionally. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    International Nuclear Information System (INIS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Highlights: • There are radioactively contaminated soils having a radioactive cesium transfer of 0.01. • Micro-PIXE analysis has revealed an existence of phosphorus in a contaminated soil. • Radioactive cesium captured by phosphorus compound would be due to radioactive transfer. -- Abstract: Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ∼0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds

  3. Measurements of cesium and strontium diffusion in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1988-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interactions between the nuclides in the ground water and the rock material, such as sorption. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result shows that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurement of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel

  4. Accumulation of strontium 90 and cesium 137 in some hydrobionts

    International Nuclear Information System (INIS)

    Boyadzhiev, A.; Keslev, D.; Kerteva, A.; Novakova, E.

    1974-01-01

    Factors responsible for the accumulation of strontium 90 and cesium 137 in some plant organisms, characteristic for fishes in Bulgarian fresh-water reservoirs and in Black Seawater, were examined. The investigated samples were taken during spring, summer and autumn-winter seasons 1967/1968. Each sample burnt to ashes at 450 0 C was examined for strontium 90 and cesium 137 content as well as stable isotopes of calcuim and potassium. Accumulation factors for strontium 90 and cesium 137 were significantly higher in freshwater hydrobionts than in seawater hydrobionts. This could be explained by variations in the concentration of stable isotopes of calcium and potassium from freshwater reservoirs and from seawater. Potassium and calcium concentrations were relatively constant in seawater while in freshwater they were significantly variable. Accumulation factors for these radionuclides increased according to the amount of rain and the altitude above sea level. Strontium 90 was deposited mostly in fins, less in scales and least in the meat of fishes; cesium 137 was mainly deposited in the meat and less in the other parts of fishes. The highest accumulation factors for strontium 90 were determined in fishes and for cesium 137 in plant organisms. The most convenient plant and fish species for tracing radioactive contamination of freshwater reservoirs and in the Black Sea were indicated. (A.B.)

  5. Diffusion measurements of cesium and strontium in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1985-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interaction between the nuclides in the groundwater and the rock material, such as sorption. To calculate the retardation it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result show that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurements of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel. (author)

  6. Adsorption of Radioactive Cesium to Illite-Sericite Mixed Clays

    Science.gov (United States)

    Hwang, J. H.; Choung, S.; Park, C. S.; Jeon, S.; Han, J. H.; Han, W. S.

    2016-12-01

    Once radioactive cesium is released into aquatic environments through nuclear accidents such as Chernobyl and Fukushima, it is harmful to human and ecological system for a long time (t1/2 = 30.2 years) because of its chemical toxicity and γ-radiation. Sorption mechanism is mainly applied to remove the cesium from aquatic environments. Illite is one of effective sorbent, considering economical cost for remediation. Although natural illite is typically produced as a mixture with sericite formed by phyllic alteration in hydrothermal ore deposits, the effects of illite-sericite mixed clays on cesium sorption was rarely studied. This study evaluated the sorption properties of cesium to natural illite collected at Yeongdong in Korea as the world-largest illite producing areas (termed "Yeongdong illite"). The illite samples were analyzed by XRF, XRD, FT-IR and SEM-EDX to determine mineralogy, chemical composition, and morphological characteristics, and used for batch sorption experiments. Most of "Yeongdong illite" samples predominantly consist of sericite, quartz, albite, plagioclase feldspar and with minor illite. Cesium sorption distribution coefficients (Kd,Cs) of various "Yeongdong illite" samples ranged from 500 to 4000 L/kg at low aqueous concentration (Cw 10-7 M). Considering Kd,Cs values were 400 and 6000 using reference sericite and illite materials, respectively, in this study, these results suggested that high contents of sericite significantly affect the decrease of sorption capabilities for radiocesium by natural illite (i.e., illite-sericite mixed clay).

  7. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137 Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned

  8. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  9. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    Science.gov (United States)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  10. Cesium diffusion in Bure mud-rock: effect of cesium sorption and of the surface structure of the clay

    International Nuclear Information System (INIS)

    Melkior, T.; Motellier, S.; Yahiaoui, S.

    2005-01-01

    Full text of publication follows: This work is devoted to cesium diffusion through mud-rock samples from Bure (Meuse/Haute- Marne, France). This rock is mainly composed of interstratified illite/smectite, quartz and calcite. According to published data, positively charged solutes exhibit high diffusion coefficients in argillaceous media compared to neutral species. This effect was actually observed for cesium in Bure mud-rock samples: the effective diffusion coefficients (De) of tritiated water and cesium were found to be ca. 2 x 10 -11 m 2 s -1 and 2.5 x 10 -10 m 2 s -1 , respectively. Some authors assign this 'enhanced diffusion' of cations to the particular migration of ions within the electrical double layer, next to mineral surfaces (surface diffusion mechanism). To assess the role of sorbed ions in the diffusive transfer, cesium diffusion coefficients in Bure mud-rock were measured at different cesium concentrations. The distribution coefficient of cesium onto Bure mud-rock was measured in batch: it significantly varies over the concentration range investigated in the diffusion tests (between 2 x 10 -6 M and 2 x 10 -2 M). If sorbed ions contribute to the transfer, the effective diffusion coefficients deduced from these different tests should depend on cesium concentration. Nevertheless, the measured effective diffusion coefficients are found to be relatively unaffected by cesium concentration. It is thus concluded that ions at the sorbed state play a minor role in the diffusion. Following the assumption of an 'accelerated' transfer due to ions located in the diffuse double layer, the charge of the clay particles should affect the 'enhanced diffusion' of cesium. Therefore, a mud-rock sample was first crushed and contacted with a cationic surfactant at different solid/liquid ratios. The conditions were adjusted to obtain suspensions having positive, neutral and negative zeta potentials respectively. Three compact samples were then made with these different

  11. Radiological protection and calibration of an activity meter with cesium and barium sources in a nuclear medicine center

    International Nuclear Information System (INIS)

    Morales L, M.E.

    2005-01-01

    Presently work is shown the results when gauging a team Deluxe Isotope (Caliper 11) with some sources of Cesium 137 and Barium 133, in a Center of Medicine Nuclear that operates from the anus 1983 in a modern building inside the one Institute of Illnesses Neoplasia (Inn). This Center was equipped initially with teams donated by the International Organism of Atomic Energy (Oa) with those that it develops assistance, educational works and of investigation, giving services to patient of the Inn and other public and private medical centers. (Author)

  12. Numerical study of cesium effects on negative ion production in volume H-and D- ion sources

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Niitani, Eiji; Yoshino, Kyougo

    1997-01-01

    We present the results of model calculation on H - /D - isotope effects in the tandem volume source. The model includes the surface production due to cesium injection. On the electron density n e dependence of H - /D - production, we have observed an interesting phenomena. Namely D - production, i.e D - density, is higher than H - production in low n e , but in high n e H - production is higher than D - production. The atomic density plays an important role in the density inversion between H - and D - ions. (author)

  13. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  14. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission

    International Nuclear Information System (INIS)

    Jacquier, Ph.

    1991-04-01

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 μm. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible

  15. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium we...

  16. Cesium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of 137 Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of 137 Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope 137 Cs releases have resulted in a negligible risk to the environment and the population it supports

  17. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Wijland, G.C.; Pennders, R.M.J.

    1990-07-01

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  18. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  19. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  20. Cesium 137 in oils and plants from Guatemala

    International Nuclear Information System (INIS)

    Ayala, R.E.; Perez, J.F.

    1993-01-01

    Since 1990 the project of radioactive and environmental contamination started in Guatemala. Studies about the radioactive contamination levels are made within the framework of this project. Cesium-137 has been an interest radionuclide, because it is a fission product released to the environment by the use of nuclear weapons and nuclear power plants accidents. The sampling consisted in collection of soil and grass in 20 provinces of Guatemala, one point by province, and it was made in 1990. The cesium-137 concentration in the samples, was determined by gamma spectrometry, using an hyper pure germanium detector. The results show the presence of radioactive contamination in soil and grass due to cesium-137, at levels that might be considered as normal. The levels found are not harmful for human health, and its importance is the fact that can be used as reference levels for the environmental radioactivity monitoring in Guatemala

  1. Environmental application of cesium-137 irradiation technology: sludges and foods

    International Nuclear Information System (INIS)

    Sivinski, J.S.

    1983-01-01

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation. (author)

  2. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  3. Environmental application of cesium-137 irradiation technology: Sludges and foods

    Science.gov (United States)

    Sivinski, Jacek S.

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation.

  4. Measurement of low levels of cesium-137 in water

    International Nuclear Information System (INIS)

    Milham, R.C.; Kantelo, M.V.

    1984-10-01

    Large volume water sampling systems were developed to measure very low levels of cesium-137 in river water and in finished water from water treatment plants. Three hundred to six hundred liters of filtered water are passed through the inorganic ion exchanger potassium cobalti-ferrocyanide to remove greater than 90% of the cesium. Measurement of cesium-137 by gamma ray spectrometry results in a sensitivity of 0.001 pCi/L. Portable as well as stationary samplers were developed to encompass a variety of applications. Results of a one year study of water from the Savannah River and from water treatment plants processing Savannah River water are presented. 3 references, 7 figures

  5. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  6. Numerical study of cesium effects on negative ion production in volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Niitani, Eiji [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    Effects of cesium vapor injection of H{sup -} production in a tandem negative ion source are studied numerically as a function of plasma parameters. Model calculation is done by solving a set of particle balance equations in a steady-state hydrogen discharge plasmas. Here, the results which focus on gas pressure and electron temperature dependences of H{sup -} volume production are presented and discussed. With including H{sup -} surface production processes caused by both H atoms and positive hydrogen ions, enhancement of H{sup -} production and pressure dependence of H{sup -} production observed experimentally are well reproduced in the model. To enhance H{sup -} production, however, so-called electron cooling is not so effective if plasma parameters are initially optimized with the use of magnetic filter. (author)

  7. Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors.

    Science.gov (United States)

    Nandi, Dip K; Sahoo, Sumanta; Sinha, Soumyadeep; Yeo, Seungmin; Kim, Hyungjun; Bulakhe, Ravindra N; Heo, Jaeyeong; Shim, Jae-Jin; Kim, Soo-Hyun

    2017-11-22

    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS 2 ) as its electrode. While molybdenum hexacarbonyl [Mo(CO) 6 ] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS 2 , H 2 S plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS 2 film on a Si/SiO 2 substrate. While stoichiometric MoS 2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS 2 phase of the as-grown film. A comparative study of ALD-grown MoS 2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS 2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS 2 @3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm 2 was achieved for MoS 2 @3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm 2 . Moreover, the ALD-grown MoS 2 @3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm 2 . Finally, this directly grown MoS 2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.

  8. Cesium-137: psychological and social consequences of the Goiania's accident

    International Nuclear Information System (INIS)

    Helou, Suzana; Costa Neto, Sebastiao Benicio da

    1995-01-01

    The book care for radioactive accident occurred in 1987 in Goiania - brazilian city. The accident had origin by the hospitable equipment incorrect handling which contained a stainless steel capsule, in which interior there was cesium-137 chloride. The main boarded aspects are: psychological and social aspects verified after the accident; psychological and social analysis of population of Goiania three years after the accident; essay on the pertinence of Luscher's abbreviate test in psychological evaluation of the radioactive accident victims of Goiania; and psychological and mobile evaluation of intra-uterus children exposed to the radiation with cesium-137

  9. Thallous and cesium halide materials for use in cryogenic applications

    International Nuclear Information System (INIS)

    Lawless, W.N.

    1983-01-01

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  10. Using Cesium for 3D Thematic Visualisations on the Web

    Science.gov (United States)

    Gede, Mátyás

    2018-05-01

    Cesium (http://cesiumjs.org) is an open source, WebGL-based JavaScript library for virtual globes and 3D maps. It is an excellent tool for 3D thematic visualisations, but to use its full functionality it has to be feed with its own file format, CZML. Unfortunately, this format is not yet supported by any major GIS software. This paper intro- duces a plugin for QGIS, developed by the author, which facilitates the creation of CZML file for various types of visualisations. The usability of Cesium is also examined in various hardware/software environments.

  11. Adsorption of iodine and cesium onto some cement materials

    Energy Technology Data Exchange (ETDEWEB)

    Mine, Tatsuya [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Mihara, Morihiro; Ito, Masaru [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kato, Hiroshige [IDC, Tokai, Ibaraki (Japan)

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO{sub 2}, partition coefficient being 100 ml/g for initial tracer concentration of 10{sup -5} mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  12. Adsorption of iodine and cesium onto some cement materials

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ito, Masaru

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO 2 , partition coefficient being 100 ml/g for initial tracer concentration of 10 -5 mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  13. Cesium accumulation in native trees from the Brazilian Cerrado

    International Nuclear Information System (INIS)

    Franca, E.J.D.; Miranda, M.V.F.E.S.; Santos, T.O.; Cantinha, R.S.; Fernandes, E.A.D.N.

    2016-01-01

    Even considered not essential for plants, cesium may cycle within forest ecosystems. Taking into account the lack of knowledge on the distribution of this chemical element in Brazilian ecosystems, this work encompasses the unexpected cesium accumulation in native plant leaves from Cerradao, a Brazilian hotspot of world biodiversity. Some trees were Cs accumulators, achieving mass fractions in leaves 700 times higher (up to 12.7 mg kg -1 ) when compared to other Brazilian native tree leaves from the Atlantic Forest. In fact, such trace element accumulation in leaves was not previously noticed for Brazilian ecosystems despite the intra- and inter-species variability observed in Cerrado tree leaves. (author)

  14. Measurement of parity violation in the 6S-7S transition of cesium using stimulated emission

    International Nuclear Information System (INIS)

    Lintz, M.

    2005-11-01

    This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z 0 boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially 135 Cs (nuclear spin 7/2 like 133 Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the θ pv measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E 1 pv is 2 x 10 -13 ea 0 , 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with 135 Cs provided one takes reasonable radioprotection measures. (author)

  15. Strontium-90 and cesium-137 in service water from December, 1981, to July, 1982

    International Nuclear Information System (INIS)

    1982-01-01

    Service water, 100 liters each, was collected at an intake of a water-treatment plant and at a tap after water was left running for five minutes. Water, to which the carriers of strontium and cesium were added immediately after sampling, was vigorously stirred and filtered. The sample was then passed through a cation exchange column. After radiochemical separation, the precipitates were counted for the activity using a low-background beta counter, normally for 60 min. The measuring techniques are first described; i.e. the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting. The measured results are given in a table for the following locations: source water - Tokyo, Osaka, Hokkaido, Kyoto, Kanagawa, Aichi, Fukuoka; tap water - Hokkaido, Akita, Fukushima, Tokyo, Fukui, Shizuoka, Shimane, Okayama, Fukuoka, Saga, Nagasaki, Kyoto, Wakayama, Okinawa, Hiroshima, Aomori, Yamagata, Ibaraki, Kanagawa, Niigata, Ishikawa, Nagano, Aichi, Osaka, Hyogo, Tottori, Yamaguchi, Ehime, Kochi, Kagoshima. (Mori, K.)

  16. Copper hexacyanoferrate functionalized single-walled carbon nano-tubes for selective cesium extraction

    International Nuclear Information System (INIS)

    Draouil, H.; Alvarez, L.; Bantignies, J.L.; Causse, J.; Cambedouzou, J.; Flaud, V.; Zaibi, M.A.; Oueslati, M.

    2017-01-01

    Single-walled carbon nano-tubes (SWCNTs) are functionalized with copper hexacyanoferrate (CuHCF) nanoparticles to prepare solid substrates for sorption of cesium ions (Cs + ) from liquid outflows. The high mechanical resistance and large electrical conductivity of SWCNTs are associated with the ability of CuHCF nanoparticles to selectively complex Cs + ions in order to achieve membrane-like buckypapers presenting high loading capacity of cesium. The materials are thoroughly characterized using electron microscopy, Raman scattering, X-ray photoelectron spectroscopy and thermogravimetric analyses. Cs sorption isotherms are plotted after having measured the Cs + concentration by liquid phase ionic chromatography in the solution before and after exposure to the materials. It is found that the total sorption capacity of the material reaches 230 mg.g -1 , and that about one third of the sorbed Cs (80 mg.g -1 ) is selectively complexed in the CuHCF nanoparticles grafted on SWCNTs. The quantification of Cs + ions on different sorption sites is made for the first time, and the high sorption rates open interesting outlooks in the integration of such materials in devices for the controlled sorption and desorption of these ions. (authors)

  17. Copper ferrocyanide - polyurethane foam as a composite ion exchanger for removal of radioactive cesium

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Ahmed, J.; Narasimhan, S.V.

    1999-01-01

    A method has been developed for the removal of cesium from the aqueous radioactive waste using a composite ion-exchanger consisting of Copper-Ferrocyanide Powder (CFC) and Polyurethane (PU) Foam. Polyvinyl acetate has been used as a binder in the preparation of CFC-PU foam. The physical properties of CFC such as density, surface area, IR stretching frequency and lattice parameters have been evaluated and also its potassium and copper(II) content have been estimated. Optimization of loading of CFC on PU foam has been studied. The CFC-PU was viewed under microscope to find out the homogeneity of distribution. Exchange capacities of the CFC-PU foam in different media have been determined and column studies have been carried out. Studies have been undertaken on extraction of cesium from CFC foam and also on digestion of spent CFC-PU foam and immobilization of digested solution in cement matrix. The cement matrices have been characterized with respect to density, bio-resistance and leaching resistance. (author)

  18. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.

    Science.gov (United States)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-05

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  19. Survey of environmental radiation in Kawamata-machi, Fukushima-ken (2). Radioactive cesium in wild mushroom

    International Nuclear Information System (INIS)

    Inagaki, Masayo; Yamanishi, Hirokuni; Wakabayashi, Genichiro; Hohara, Sin-ya; Itoh, Tetsuo; Shirasaka, Norifumi; Tanesaka, Eiji; Okumura, Hiroshi; Furukawa, Michio

    2013-01-01

    Large amount of radioactive cesium was emitted from the TEPCO Fukushima Dai-ichi nuclear power plant by the accident into atmospheric air, and a part of the radioactivity was brought to the ground by rain and snowfall. The Yamakiya district in Kawamata-machi, Fukushima is specified as the prepared evacuation zone. The authors collected wild mushrooms in this district as samples with gentle guide of local mushroom lovers in October, 2012. The kinds of mushroom were specified by the mushroom specialist. 16 kinds of mushrooms have been extracted. The extracted mushroom was brought back to the university. The concentration of radioactive cesium was measured by means of the hyperpure germanium semiconductor detector. The concentrations were ranged from 0.5 to 2600 Bq/g, and were different with points of sampling and kinds. The concentrations were compared with before washing and after washing by means of ultrasonic cleaning. The amount of radioactive cesium reduced to the range from 30% to 60% of the before washing. (author)

  20. Absolute measurement of alkaline atoms in low density jet

    International Nuclear Information System (INIS)

    Labbe, J.; Guernigou, J.

    1974-01-01

    In order to determine the neutral fraction of cesium vapor which is not ionized in the beam issuing from an ion thruster, a particular sensor was developed at ONERA. This probe, the sensibility of which is 6 10 7 atoms sec -1 was used in order to measure the variation of cesium atom flux ejected from a spherical isothermal cavity. Experiments were performed in three flow conditions caracterized by the ratio of the mean free path to the dimension of the orifice or to the diameter of the cavity. Results demonstrate that it is possible in this configuration to obtain an efflux of 5 10 13 atoms sec -1 in accordance to cosine law when the mean free path is about the diameter of the spherical cavity [fr

  1. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  2. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  3. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste

    International Nuclear Information System (INIS)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J.

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix(4)arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative(1-(2,2,3,3-tetrafluoropropoxy)-3- (4-sec-butylphenoxy)-2-propanol) (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy's (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE's Hanford Site.

  4. Sorption of cesium in young till soils

    Energy Technology Data Exchange (ETDEWEB)

    Lusa, Merja; Lempinen, Janne; Ahola, Hanna; Soederlund, Mervi; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry; Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Consulting Engineers, Helsinki (Finland); Ikonen, Ari T.K. [Posiva Oy, Eurajoki (Finland)

    2014-10-01

    Soil samples from three forest soil pits were examined down to a depth of approximately three metres using 1 M ammonium acetate extraction and microwave-assisted extraction with concentrated nitric acid (HNO{sub 3}), to study the binding of cesium (Cs) at Olkiluoto Island, southern Finland. Ammonium acetate was used to extract the readily exchangeable Cs fractions roughly representing the Cs fraction in soil which is available for plants. Microwave-assisted HNO{sub 3} extraction dissolves various minerals, e.g. carbonates, most sulphides, arsenides, selenides, phosphates, molybdates, sulphates, iron (Fe) and manganese (Mn) oxides and some silicates (olivine, biotite, zeolite), and reflects the total Cs concentrations. Cs was mostly found in the strongly bound fraction obtained through HNO{sub 3} extraction. The average Cs concentrations found in this fraction were 3.53 ± 0.30 mg/kg (d.w.), 3.06 ± 1.86 mg/kg (d.w.) and 1.83 ± 0.42 mg/kg (d.w.) in the three soil pits, respectively. The average exchangeable Cs found in the ammonium acetate extraction in all three sampling pits was 0.015 ± 0.008 mg/kg (d.w.). In addition, Cs concentrations in the soil solution were determined and in situ distribution coefficients (K{sub d}) for Cs were calculated. Furthermore, the in situ K{sub d} data was compared with the Cs K{sub d} data obtained using the model batch experiments. The in situ K{sub d} values were observed to fairly well follow the trend of batch sorption data with respect to soil depth, but on average the batch distribution coefficients were almost an order of magnitude higher than the in situ K{sub d} data. In situ Cs sorption data could be satisfactory fitted with the Langmuir sorption isotherm, but the Freundlich isotherm failed to fit the data. Finally, distribution coefficients were calculated by an ion exchange approach using soil solution data, the cation exchange capacity (CEC) as well as Cs to sodium (Na) and Cs to potassium (K) ion exchange selectivity

  5. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  6. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  7. Precision spectroscopy on atomic hydrogen

    International Nuclear Information System (INIS)

    Parthey, Christian Godehard

    2011-01-01

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as Δ∫ exp =670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, Δ∫ th =670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r 2 right angle d - left angle r 2 right angle p =3.82007(65) fm 2 and the deuteron structure radius r str =1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be ∫ 1S-2S =2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10 -15 . The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of ∫ 1S-2S =2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c (TX) -0.29c (TY) -0.08 c (TZ) =(2.2±1.8) x 10 -11 within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level (∂)/(∂t)ln (μ Cs )/(μ B )=-(3.0±1.2) x 10 -15 yr -1 .

  8. Cesium-137 accumulation in higher plants before and after Chernobyl

    International Nuclear Information System (INIS)

    Sawidis, T.; Drossos, E.; Papastefanou, C.; Heinrick, G.

    1990-01-01

    Cesium-137 concentrations in plant species of three biotypes of northern Greece, differing in location as well as in vegetation, are reported following the Chernobyl reactor accident. The cesium uptake by plants was due to the foliar deposition rather than the root uptake. The highest level of cesium in plants was found in Ranunculus sardous, a pubescent plant. The 137 Cs concentration was about 22kBq kg -1 d.w. A high level of cesium was also found in Salix alba ( 137 Cs: 19.6 kBq kg -1 d.w.), a deciduous tree showing that hairy leaves or leaves having rough and large surfaces can absorb greater amounts of radioactivity (surface effect). A comparison is also made between the results of measurements of the present study and the results of measurements of some herbarium plants collected one year before the accident as well as the results of measurements of some new plants grown and collected one year after the accident resulting in a natural removal rate of 137 Cs in plants varying from 14 to 130 days

  9. Monocrystallomimicry in the aerosols of ammonium and cesium halides

    International Nuclear Information System (INIS)

    Melikhov, I.V.; Kitova, E.N.; Kozlovskaya, EhD.; Kamenskaya, A.N.; Mikheev, N.B.; Kulyukhin, S.A.

    1997-01-01

    It is experimentally shown that initial CsI and NH 4 Hal nanocrystals combining into mixed aggregates of polyhedral form (pseudo monocrystals) are formed in the process of cocrystallization of ammonium halide and cesium iodide. The origination and growth of the pseudo monocrystals on the account of successive addition of initial crystals is described by the Fokker-Plank equation [ru

  10. Behaviour of cesium 134 and 137 in lake ecosystems

    International Nuclear Information System (INIS)

    Huebel, K.; Saenger, W.; Luensmann, W.

    1989-01-01

    The time dependent cesium activity concentration observed in surface water samples from South Bavarian lakes after the Chernobyl accident is analysed by use of a two-compartment model simulating the accidental transport of radiocesium from surface water to suspended particles. (orig.)

  11. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  12. Kinetics of 137cesium in cerebral structures and blood

    International Nuclear Information System (INIS)

    Ribas, B.; Gonzalez, M.D.; Rio, J. del; Reus, M.I.S.; Gonzalez-Baron, M.

    1987-01-01

    The old clinical use of cesium in epilepsy expresses a relation of this metal with the central nervous system. Two groups of male Wistar rats of 200 g were administered single doses of 50μCi intravenously for blood kinetics and 2μCi 137 CsCl in each lateral ventricle of the brain for the kinetics in the cerebral structures, respectively. In both cases under ether anesthesia. Blood samples of IV gouts were weighed, and cerebral structure hypothalamus, hypocampus, striatum, cortex, cerebellum, mesencephalon and medulla oblongata dissected, cleaned, washed, dried, weighed, and in both cases cpm of the samples evaluated submitting it to the gamma radiations detector. In both experimental values of the 137 CsCl kinetics are expressed and applying the retroprojection method; parameters and constants are obtained. tsub(1/2) alpha = 0.0358 h and tsub(1/2) beta = 6.7159 h. In tables the equations of the alpha and beta phases are expressed. In blood after the rapid diminution of the radioactivity in the first 5 min the equilibrium phase is reached in 30 min afterwards, and the values remain almost the same 4 h after the injection and cesium is slowly eliminated by the rat. Cerebral structures after its intracerebroventricular application show that cesium has a great uptake velocity, it is rapidly incorporated by hypothalamus and after by cortex, hypocampus, striatum, mesencephalon and medulla oblongata, the two last showing the slower incorporation. After 24 h the cesium radioactivity declines slowly and progressively. (author)

  13. Strontium-90 and cesium-137 in fresh water

    International Nuclear Information System (INIS)

    1978-01-01

    Japan Chemical Analysis Center has analysed the strontium-90 and Cesium-137 contents in fresh water from 7 prefectures in Japan by the commission of Science and Technology Agency of Japanese Government. The method described in ''Radioactivity Survey Data in Japan No. 43 (NIRS-RSD-43, 1977) was applied to the analysis of these two radionuclides in samples. (author)

  14. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  15. Membrane-based separation technologies for cesium, strontium, and technetium

    International Nuclear Information System (INIS)

    Kafka, T.

    1996-01-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah

  16. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    International Nuclear Information System (INIS)

    Choi, A.S.

    2004-01-01

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present

  17. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Simon, N.; Eymard, S.; Tournois, B.; Dozol, J.F.

    2000-01-01

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  18. Cesium separation using integrated electro-membrane technique

    International Nuclear Information System (INIS)

    Fors, Patrik; Lillfors-Pintér, Christina; Widestrand, Henrik; Velin, Anna; Bengtsson, Bernt

    2014-01-01

    Conventional separation technologies such as ion exchange, electro-deionisation and cross flow filtration are not always effective to eliminate nuclides, which are weekly ionised, complexed or hydrated in effluents. Specific nuclide selective absorbers perform well for the treatment of active and contaminated wastewaters but most absorbers generate additional waste while treating high volumes of contaminated water and often show limitations in operating at high flow rates. Electrochemical Ion Exchange (EIX) and EIX in combination with absorbers may offer an alternative solution that overcomes those limitations. This paper reports on the optimization and performance of the integrated technique EIX, for the treatment of low activity effluents that contain cesium and other nuclides. The three-compartment EIX system, which operates with authentic reactor coolant with enhanced nuclide content, indicates high, over 90%, elimination of cesium in a single pass operation mode. With the in-situ and instant ion exchange regeneration, the system successfully reduces the activity from an initial range of 400-2600 Bq/kg to close to detection limit at a velocity of 10-15 cm/min. The applied current density varies between 50-200 mA/cm 2 and the mass balance is close to 100%. During the process, the eliminated cesium and other nuclides are concentrated up to the limits where reverse migration from the concentrated chamber occurs. The concentrate could then be treated with specific absorbents at low flow rates. EIX in combination with cesium-selective ion exchanger CsTreat ® separates the cesium-137 efficiently, but up to now the process does not perform according to EIX principles for the treatment of low grade radioactive wastewaters it rather performs as an irreversible adsorber. The aim with the outcome of the presently ongoing long-term tests is to further support the Best Available Technique Minimizing All Nuclide (BATMAN) projects of Vattenfall NPPs. (author)

  19. Experimental study on cesium immobilization in struvite structures

    International Nuclear Information System (INIS)

    Wagh, Arun S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A.

    2016-01-01

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  20. Experimental study on cesium immobilization in struvite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439 (United States); Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2016-01-25

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  1. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission; Vers des mesures precises de violation de la parite dans le cesium: construction d'une experience nouvelle utilisant une detection active par emission induite

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Ph

    1991-04-15

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 {mu}m. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible.

  2. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission; Vers des mesures precises de violation de la parite dans le cesium: construction d'une experience nouvelle utilisant une detection active par emission induite

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Ph

    1991-04-15

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 {mu}m. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible.

  3. Rapid determination method of radiocesium in sea water by cesium-selective resin

    International Nuclear Information System (INIS)

    Nakaoka, A.; Yokoyama, H.; Fukushima, M.; Takagi, S.

    1980-01-01

    A rapid and precise method of determining radiocesium corresponding to 5 mrem/y (the Japan AEC's guideline) was proposed. The development and practical performance of cesium-selective resin and the determination method are described in this paper. The resin was prepared by the formation of ammonium molybdophosphate in the structure of Amberlite XAD-7 resin. It took only 3 hours to carry out all the procedures the authors proposed. This value represents 1/10 to 1/2 of the time of the conventional method. The concentration of 137 Cs and 134 Cs in sea water was determined to be 0.13 to 0.16 pCi/l and less than 7.1x10 -2 pCi/l, respectively. (author)

  4. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  5. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  6. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  7. Sample preparation for accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    Grootes, P.M.; Stuiver, M.; Farwell, G.W.; Schmidt, F.H.

    1981-01-01

    The adaptation of the University of Washington FN tandem Van de Graaff to accelerator mass spectrometry (AMS), as well as some of the results obtained, are described in another paper in this volume (Farwell et al., 1981). Here we discuss our experiences in preparing carbon and beryllium samples that give large and stable ion beams when used in our Extrion cesium sputter source with an inverted cesium beam geometry

  8. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Birdwell, Joseph F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  9. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birdwell, Jr, Joseph F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ensor, Dale [Tennessee Technological Univ., Cookeville, TN (United States); Hill, Talon G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rajbanshi, Arbin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szczygiel, Patricia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoner, Erica L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Neil J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  10. The potential of Cu(I)Cl/2,2'-bipyridine catalysis in a triblock copolymer preparation by atom transfer radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Masař, Bohumil; Vlček, Petr; Kříž, Jaroslav

    2001-01-01

    Roč. 81, č. 14 (2001), s. 3514-3522 ISSN 0021-8995 R&D Projects: GA MŠk OC P1.10; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : atom transfer radical polymerization * triblock copolymers * sequential synthesis Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.992, year: 2001

  11. Muonic atoms with vacant electron shells

    International Nuclear Information System (INIS)

    Bacher, R.; Gotta, D.; Simons, L.M.; Missimer, J.; Mukhopadhyay, N.C.

    1985-01-01

    We show that the cascade in muonic atoms with Z<20 ejects sufficient atomic electrons to ionize an isolated muonic atom completely. In gases, the rates with which electrons refill the atomic shell can be accurately deduced from measured and calculated electron transfer cross sections. Thus, we can conclude that completely ionized muonic atoms can be prepared in gases, and that they remain isolated for long enough times at attainable pressures to facilitate studies of fundamental interactions in muonic atoms

  12. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  13. Three novel triazine-based materials with different O/S/N set of donor atoms: One-step preparation and comparison of their capability in selective separation of uranium

    International Nuclear Information System (INIS)

    Bai, Chiyao; Zhang, Meicheng; Li, Bo; Tian, Yin; Zhang, Shuang; Zhao, Xiaosheng; Li, Yang; Wang, Lei; Ma, Lijian; Li, Shoujian

    2015-01-01

    Highlights: • Three novel functional covalent triazine-based frameworks are prepared. • Synthesis and functionalization of the products are accomplished in one step. • Various adsorbents can be prepared using cyanuric chloride as a core skeleton. • The products have high N concentration, regular structures, and high stabilities. • The products exhibit high sorption capacities and distinct selectivity for U (VI). - Abstract: Cyanuric chloride was chosen as a core skeleton which reacted with desired linker molecules, urea, thiourea and thiosemicarbazide, to prepare three novel functional covalent triazine-based frameworks, CCU (O-donor set), CCTU (S-donor set) and CCTS (S, N-donor set) respectively, designed for selective adsorption of U(VI). The products have high nitrogen concentration (>30 wt%), regular structure, relatively high chemical and thermal stability. Adsorption behaviors of the products on U(VI) were examined by batch experiments. CCU and CCTU can extract U(VI) from simulated nuclear industrial effluent containing 12 co-existing cations with relatively high selectivity (54.4% and 54.2%, respectively). Especially, effects of donor atoms O/S on adsorption were investigated, and the outcomes indicate that the difference in coordinating ability between the donor atoms is weakened in large conjugated systems, and the related functional groups with originally very strong coordination abilities may not be the best choice for the application in selective adsorption of uranium and also other metals. The as-proposed approach can easily be expanded into design and preparation of new highly efficient adsorbents for selective separation and recovery of uranium through adjusting the structures, types and amounts of functional groups of adsorbents by choosing suitable linkers.

  14. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    International Nuclear Information System (INIS)

    Reynier, N.; Riveros, P.; Lastra, R.; Laviolette, C.; Bouzoubaa, N.; Chapman, M.

    2015-01-01

    Atomic Energy of Canada Limited (AECL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. Consequently, there are safety and economic and environmental incentives for the extraction of uranium, mercury and cesium before subjecting the cemented waste to a stabilization process. The mineralogical analysis of the surrogate cemented waste (SCW) indicated that uranium forms calcium uranate, CaUO 4 , occurring as layers of several millimeters or as grains of 20 μm. Hg is found mostly as large (∼50 μm) and small grains (5-8 μm) of HgO. The chemical leachability of three key elements (U, Hg, and Cs) from a SCW was studied with several leaching materials. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H 2 SO 4 in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/rinsing step, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements recovery of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs respectively. This solubilization process was then applied in triplicate to seven other SCW prepared with different cement, liquid ratio and at different aging time and temperature. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO 4 . At this pH, the acid consumption is moderate and the formation of amorphous silica gel is avoided. Sulfuric acid is particularly useful because it produces a leachate that

  15. A high intensity Stern-Gerlach polarized hydrogen source for the Munich MP-Tandem laboratory using ECR ionization and charge exchange in cesium vapor

    International Nuclear Information System (INIS)

    Hertenberger, R.; Eisermann, Y.; Metz, A.; Schiemenz, P.; Graw, G.

    2001-01-01

    The 14 year old Lamb-Shift hydrogen source of the Munich Tandem laboratory is presently replaced by a newly developed Stern-Gerlach type atomic beam source (ABS) with electron-cyclotron-resonance (ECR) ionization and subsequent double charge exchange in a supersonic cesium vapor jet target. The atomic beam source provides an intensity of 6.4*10 16 atoms/sec of polarized hydrogen and of about 5*10 16 atoms/sec of polarized deuterium. Beam intensities larger than 100 μA were observed for positive H-vector + and D-vector + ion beams after ECR ionization and intensities larger than 10 μA for negative D-vector - ion beams in three magnetic substates

  16. Method and article for primary containment of cesium wastes. [DOE patent application

    Science.gov (United States)

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  17. Theoretical study of the chemical properties of cesium hydride; Teoreticke studium chemickych vlastnosti hydridu cezia

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    A theoretical study of radiofrequency source of hydrogen ions in the International Thermonuclear Experimental Reactor (ITER) used a cesium grid as a source of electrons for ionization of hydrogen. In the process of ionization of hydrogen, however, there is a weathering of cesium grid, resulting into a group of undesired products - cesium hydrides and materials derived from cesium hydride. We calculated the potential curves of cesium hydride and of its anion and cation, their spectroscopic properties and partly their electrical properties. To make electrical properties comparable with the experiment, we calculated for all also the vibration corrections. Lack of convergence in RASSCF step caused, that the electrical properties of excited states are still an open question of chemical properties of cesium hydride. (authors)

  18. Strontium-90 and cesium-137 in service water

    International Nuclear Information System (INIS)

    1979-01-01

    Prefectural public health laboratories and institutes and Japan Chemical Analysis Center have analysed the contents of strontium-90 and cesium-137 in service water under the commission of Science and Technology Agency. At each prefectural public health laboratories and institutes, 100 literes of service water (8 prefectures, water from the intake of each station of water works) and tap water (32 prefectures) were collected as sample twice a year. The samples were filtrated with large filter papers after addition and mixture of both some carries. The filtration was then applied on a column filled the sodium cation exchange resin, and all the cations were absorbed on it. These resin and filter papers were collected at Japan Chemical Analysis Center. At Japan Chemical Analysis Center, these collected samples were radiochemically analysed for strontium-90 and cesium-137 using the method applied for the analysis of rain and dry fallout materials. (author)

  19. Strontium-90 and cesium-137 in total diet

    International Nuclear Information System (INIS)

    1977-01-01

    Under the commission of Science and Technology Agency, Japan Chemical Analysis Center has analysed total diet samples collected from 30 prefectures (2 times per year), and determined to content of strontium-90 and cesium-137 in these samples. Each Prefectural public health laboratories and institutes have collected all the daily regular diet consumed for five persons, namely three meals and other eating between meals, for radiochemical analysis in polyethylene containers. These samples were collected to Japan Chemical Analysis Center after carbonization without smoke rising in the large stainless dish. At Japan Chemical Analysis Center, these samples were asked in an electric muffle furnance. And the ask to which both some carriers and hydrochloric acid were added, was destroyed under heating. The nuclides were dissolved into hydrochloric acid and filtrated, after it was added with nitric acid and heated to dryness. The filtrates was analysed for strontium-90 and cesium-137 using the method recommended by Science and Technology Agency. (author)

  20. Cesium-137 in Norwegian milk 1960-1976

    International Nuclear Information System (INIS)

    Hvinden, T.

    1977-03-01

    Cesium-137 in milk has been measured at 11 sampling sites in Norway since 1960. The results show seasonal variations, normally with a peak during summer, and variations from district to district, depending upon farming and precipitation conditions. The concentration of cesium-137, averaged over the 11 sampling sites, reached a maximum of 0.44 nanocurie/litre in 1964, decreasing to 0.05 in 1975 and 1976. The range of variations within the 11 sites is of the order of 10. At other sites, with high precipitation and low grazing field qualities, the concentration has been found to be higher than at the 11 sites, giving a range of variations of more than 100. (Auth.)

  1. Modelling the release behaviour of cesium during severe fuel degradation

    International Nuclear Information System (INIS)

    Lewis, B.J.; Andre, B.; Morel, B.

    1995-01-01

    An analytical model has been applied to describe the diffusional release of fission product cesium from Zircaloy-clad fuel under high-temperature reactor accident conditions. The present treatment accounts for the influence of the atmosphere (i.e., changing oxygen potential) on the state of fuel oxidation and the release kinetics. The effects of fuel dissolution on the volatile release behaviour (under reducing conditions) is considered in terms of earlier crucible experiments and a simple model based on bubble coalescence and transport in metal pools. The model has been used to interpret the cesium release kinetics observed in steam and hydrogen experiments at the Vertical Irradiation (VI) Facility in the Oak Ridge National Laboratory and at the HEVA/VERCORS Facility in the Commissariat a l'Energie Atomique. (author)

  2. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  3. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  4. Cesium contamination of mosses in county Vas, Hungary

    International Nuclear Information System (INIS)

    Golya, I.; Sebestyen, R.

    1993-01-01

    Two species of mosses were examined to assess radiocesium contamination of Vas county, and to analyse some aspects of mosses for use as indicator of radioactive contamination. Experimental results demonstrated that the distribution of contamination in a given region could be characterized by the cesium contamination of mosses. Sampling sites should be selected with special attention paid to spots with high contamination. Regression analysis proved that the contamination of mosses originated from Chernobyl fallout. (author) 4 refs.; 2 figs

  5. Detection of the actinides and cesium from environmental samples

    Science.gov (United States)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  6. Extraction of cesium and strontium from nuclear waste

    Science.gov (United States)

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  7. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.

    1997-09-01

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 10 4 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  8. Effect of Suez Canal Marine Sediment on Sorption of Cesium

    International Nuclear Information System (INIS)

    Hassan, H.B.

    2016-01-01

    Suez Canal is surrounded by navigation, industrial, agricultural activities and suffers from high rate of population growth that discharging waste into Suez Canal. The Suez Canal coastal waters are influenced by a complex variety of physical, geochemical and biological processes, which influence the behavior, transport and fate of containments released into the marine environment. Sorption of releasing containment such as cesium in Suez Canal water is investigated because of its toxic effect on the marine environment. The object of present study is to determine the effects some of physical and chemical characteristics of collected sediment samples from the three important locations on Suez Canal (Suez Bay, Bitter Lakes and El- Temsah Lake beaches) on sorption behavior of cesium by using batch experiment. Batch experiment was used to study the sorption of the cesium ion. The sorption process is dependent on mineral constituents of Suez Canal sediment and their characteristics. Analytical methods which included particle size and X-ray diffraction (XRD) analyses found that particle size of Suez Canal sediment samples is characterized by sand to fine sand and quartz is the main mineralogical species. Distribution coefficient (K d ) which represent geochemical processes and particle size of these sediment samples effect on the degree of cesium sorption to the sediment. Also (K d ) increase with increase cation exchangeable capacity (CEC). The Suez Canal sediment samples have low (K d ) values which effected by their physical and chemical properties. Sample (2) has highest distribution coefficient (K d ) between measured samples due to containing ratio 30% of fine sand and high ratio of organic matter.

  9. Cesium dihydrophosphate monocrystal growth and certain of their properties

    International Nuclear Information System (INIS)

    Rashkovich, L.N.; Meteva, K.B.; Shevchik, Ya.Eh.; Goffman, V.G.; Mishchenko, A.V.

    1977-01-01

    Crystals of cesium dihydrophosphate (centrisymmetrical, monoclinic, point symmetric group 2/m) are obtained by methods involving solvent evaporation and temperature reduction. At -122 deg C, a ferroelectric phase transition occurs, and at 230 and 265 deg C first-kind transitions, which are not accompanied by composition changes. CsH 2 PO 4 solubility substantially increases with higher medium acidity, and remains approximately constant in alkali medium

  10. Juridical-penal aspects of the cesium-137 accident

    International Nuclear Information System (INIS)

    Soares, Carolina Chaves

    1997-01-01

    The study of the juridical-penal aspects of the Cesium-137 accident, has, as a base, the police inquiry and the penal lawsuit concerning to the episode. Due to the lack of a law which typified activities related with radioisotope material as crime, the responsible were sentenced according to the penalties of body injury crime and homicide. Among the 10 investigated people, only 5 were condemned by the Judiciary and only 4 serve the sentence. (author)

  11. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  12. Separation of radio cesium from PUREX feed solution by sorption on composite ammonium molybdo phosphate (AMP)

    International Nuclear Information System (INIS)

    Singh, I.J.; Achuthan, P.V.; Jain, S.; Janardanan, C.; Gopalakrishnan, V.; Wattal, P.K.; Ramanujam, A.

    2001-01-01

    Composite AMP exchanger was developed and evaluated for separation of radio cesium from dissolver solutions of PUREX process using a column experiment. The composite shows excellent sorption of radio cesium from dissolver solutions without any loss of plutonium and uranium. The removal of radio cesium from dissolver solutions will help in lowering the degradation of tri-n-butyl phosphate (TBP) in the solvent extraction process and will also help in reducing the radiation related problems. (author)

  13. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  14. Transition of cesium in food chains [after Chernobyl catastrophe

    International Nuclear Information System (INIS)

    Procházka, H.; Brunclík, T.; Jandl, J.; Jirásek, V.; Novosad, J.; Hampl, J.

    1990-01-01

    An investigation of 25,000 samples of foodstuffs and feedstuffs in Czechoslovakia, contaminated by fall-out cesium after the accident in the Chernobyl nuclear power plant, performed from May 5, 1986 to March 31, 1988, revealed that both the values of cesium transfer-factors in food--animal tissues--milk transitions and the values of biological half-life of cesium are functions of internal and external conditions of contamination. Organism individuality as the main internal condition causes the variance of about +/- 50% of the mean value of the respective transfer-factor. Through the external conditions, mainly the environmental contamination level, type of ingested food and time of ingestion, the mean values of transfer-factors are influenced up to 500%, e.g. to the value of 0.5. But this value converges with growing up contamination of food and environment to the limit of 0.3. The first two to three biological half-lives after the last ingestion of contaminated food are up to ten-times shorter than those at stabilized state

  15. Cesium transfer to agricultural crops for three years after Chernobyl

    International Nuclear Information System (INIS)

    Eriksson, A.; Rosen, K.

    1989-01-01

    In 1986 about 50 farms in the fallout region were selected for sampling at fixed sites of the soil surface layer and of the grassland and grain crops to come. The aim was to cover the different soil types and the farming practices of the region during studies on the transfer levels and on the change with time in transfer of cesium to the crops. It was found that the transfer level, as expected, was much higher for the grassland than for the grain crops. However, within both groups of considerable variation in the transfer level for the same year as measured by the transfer factors has occurred. For the former crops it can be concluded that the transfer factor during year 1 depends on the interception capacity of the plant cover and on the dilution by growth i.e on soil fertility and on fertilization level. In the following years the cesium TF-value for the grass cover was reduced by a factor from 2 to about 10. The reduction rate differed above all between the organic soils and the mineral soils and should largely depend on the type of the grass cover, on the different cesium fixing capacities of the two soil groups and on the potassium fertilization level. On ploughed land the transfer by root uptake to grain crops was about one magnitude lower than the transfer to the hey crops. (orig.)

  16. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  17. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  18. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.

    2016-12-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

  19. Preparation of α-alanine-3H by the interaction of atomic tritium heated up to 2000 K with a solid alanine target at 77 K

    International Nuclear Information System (INIS)

    Filatov, Eh.S.; Simonov, E.F.; Shishkov, A.V.; Mogil'nikov, V.P.

    1979-01-01

    Absorption of hydrogen by alanine targets, the target behaviour and the yield of α-alanine- 3 H were studied in experiments involving straight passage of H and T atoms from the sourse (2000 K) to the target (77 K) as a function of the exposure time. In the studies with 3 H 2 the radioactivity of the gas phase was decreasing more rapidly than the overall pressure of hydrogen: H 3 H accumulates more rapidly in the gas phase. Alanine decomposition products were identified. The conditions for the studies of α-alanine- 3 H are suggested

  20. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  1. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  2. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  3. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    Richter, M.; Eckert, B.; Riemenschneider, J.; Mallon, C.; Mann, D.

    1983-01-01

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH 4 NO 3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  4. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-04-01

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  5. Removal of radioactive cesium from soil by ammonium citrate solution and ionic liquid

    International Nuclear Information System (INIS)

    Ishiwata, Shunji; Kitakouji, Manabu; Taga, Atsushi; Ogata, Fumihiko; Ouchi, Hidekazu; Yamanishi, Hirokuni; Inagaki, Masayo

    2015-01-01

    Radioactive cesium has strongly bound soil as time proceeded, which could not be cleaved in mild condition. We have found that serial treatment of ammonium citrate solution and ionic liquid removed radioactive cesium from soil effectively. The sequence of the treatment is crucial, since inverse serial treatment or mixture of two kinds of solution did not show such an effect, which suggested that ammonium citrate unlocked trapped cesium in soil and ionic liquid solved it. We also found that repeating serial treatment and prolonged treatment time additively removed cesium from soil. (author)

  6. Ion exchange flowsheet for recovery of cesium from purex sludge supernatant at B Plant

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1977-01-01

    Purex Sludge Supernatant (PSS) contains significant amounts of 137 Cs left after removal of strontium from fission product bearing Purex wastes. To remove cesium from PSS, an Ion Exchange Recovery system has been set up in Cells 17-21 at B Plant. The cesium that is recovered is stored within B Plant for eventual purification through the Cesium Purification process in Cell 38 and eventual encapsulation and storage in a powdered form at the Waste Encapsulation Storage Facility. Cesium depleted waste streams from the Ion Exchange processes are transferred to underground storage

  7. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  8. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  9. Microstructure and electrical-optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing

    International Nuclear Information System (INIS)

    Liu Jingxiao; Ando, Yoshihiko; Dong Xiaoli; Shi Fei; Yin Shu; Adachi, Kenji; Chonan, Takeshi; Tanaka, Akikazu; Sato, Tsugio

    2010-01-01

    Cesium tungsten oxides (Cs x WO 3 ) were synthesized by solvothermal reactions using ethanol and 57.1 vol% ethanol aqueous solution at 200 o C for 12 h, and the effects of post annealing in ammonia atmosphere on the microstructure and electrical-optical properties were investigated. Agglomerated particles consisting of disk-like nanoparticles and nanorods of Cs x WO 3 were formed in the pure ethanol and ethanol aqueous solutions, respectively. The samples retained the original morphology and crystallinity after annealing in ammonia atmosphere up to 500 o C, while a small amount of nitrogen ion were incorporated in the lattice. The as-prepared Cs x WO 3 sample showed excellent near infrared (NIR) light shielding ability as well as high transparency in the visible light region. The electrical resistivity of the pressed pellets of the powders prepared in pure ethanol and 57.1 vol% ethanol aqueous solution greatly decreased after ammonia annealing at 500 o C, i.e., from 734 to 31.5 and 231 to 3.58 Ω cm, respectively. - Graphical abstract: Cesium tungsten oxides (Cs x WO 3 ) with different morphology were synthesized by solvothermal reaction, and the effects of post-ammonia annealing on the microstructure and electrical-optical properties were investigated.

  10. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    International Nuclear Information System (INIS)

    Krantz, Claude

    2009-01-01

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  11. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  12. Solid state cesium ion guns for surface studies

    International Nuclear Information System (INIS)

    Souzis, A.E.; Carr, W.E.; Kim, S.I.; Seidl, M.

    1990-01-01

    Three cesium ion guns covering the energy range of 5--5000 V are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate emitters. Cesium ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface. Cesium supply to the emitting surface is controlled by applying a bias across the pellet. A total charge of 10.0 C can be extracted, corresponding to greater than 2000 h of lifetime with an extraction current of 1.0 μA. This source is compact, stable, and easy to use, and produces a beam with >99.5% purity. It requires none of the differential pumping or associated hardware necessary in designs using cesium vapor and porous tungsten ionizers. It has been used in ultrahigh-vacuum (UHV) experiments at pressures of -10 Torr with no significant gas load. Three different types of extraction optics are used depending on the energy range desired. For low-energy deposition, a simple space-charge-limited planar diode with a perveance of 1x10 -7 A/V 3/2 is used. Current densities of 10.0 μA/cm 2 at the exit aperture for energies ≤20 V are typical. This type of source provides an alternative to vapor deposition with the advantage of precise flux calibration by integration of the ion current. For energies from 50 to 500 V and typical beam radii of 0.5 to 0.2 mm, a high perveance Pierce-type ion gun is used. This gun was designed with a perveance of 1x10 -9 A/V 3/2 and produces a beam with an effective temperature of 0.35 eV. For the energy range of 0.5 to 5 keV, the Pierce gun is used in conjunction with two Einzel lenses, enabling a large range of imaging ratios to be obtained. Beam radii of 60 to 300 μm are typical for beam currents of 50 nA to 1.0 μA

  13. Effect for Recovery of the Containment Spray System to the Release of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In the perspective of the amount of Cs-137, the mass of Cs-137 correspondent with the 100TBq is calculated as 32g. However, during the severe accident, if the containment has been failed, it is generally expected that the mass of Cs-137 released to the environment is more than 1kg for most accident sequences So, the review and improvement of the PSA model in order to reduce containment failure frequency should be needed. Actually, the current PSA model is known to be constructed by the conservative assumptions, especially in the view point of Level 2 PSA model. Therefore, it is necessary to find this conservatism and to improve the Model using the reasonable assumptions. All of the domestic operating nuclear power plants are required to prepare the Accident Management Plan within 3 years and this Accident Management Plan should have to meet the New Safety Goal including the requirement that the sum of the accident frequency that the release of the radioactive nuclide Cs-137 to the environment exceeds the 100TBq should be less than 1.0E-6/RY. The containment spray system is the only facility that mitigates the containment over-pressurization in the operating nuclear power plants, such as Westinghouse type or OPR1000 type. In this study, the effects of the containment spray system recovery on the amount of Cesium released to the environment were analyzed. If the recovery of the containment spray system can be applied to the PSA model, it is expected that the containment failure frequency and also the amount of cesium released to the environment can be greatly reduced.

  14. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  15. Preparation of a pure molecular quantum gas.

    Science.gov (United States)

    Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-09-12

    An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.

  16. Radioactive cesium content in selected food products. Pt. 2. Radioactive cesium in daily food rations of selected population groups

    International Nuclear Information System (INIS)

    Skibniewska, K.; Smoczynski, S.S.; Wisniewska, I.

    1993-01-01

    The content of radioactive cesium isotopes emitting beta radiation was studied in daily food rations analysed in diets of working-class and non-working-class families from food products from the regions of Olsztyn, Poznan, Lublin, Warsaw and Wroclaw in 1987 and 1988. In 1987 the highest level of radioactive cesium was found in the food rations in Olsztyn, and lowest in the rations in Poznan (3.32 and 0.65 Bq/kg respectively). In 1988 higher radiocesium content was found in rations composed according to the data on the diet consumed daily in non-working-class families. In that case the highest content was in the daily food rations composed in Warsaw - 2.35 Bq/kg and lowest in Poznan - 1.19 Bq/kg in the daily food rations of working-class families about one half of that value was found. The calculated means values of both analysed rations were: 1.35 for Olsztyn, 0.89 for Poznan, and 1.86 Bq/kg for Warsaw. The calculated mean value of the contamination with radioactive cesium was in 1988 0.93 Bq/kg for the rations in working-class families (in 1987 it was 1.80 Bq/kg). (author). 15 refs, 1 tab

  17. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    Science.gov (United States)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  18. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    International Nuclear Information System (INIS)

    Tanner, Carol E.

    2005-01-01

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  19. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Carol E.

    2005-03-04

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  20. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  1. Recent development on the synthesis of calixcrowns and their application for cesium removal from high-level liquid waste

    International Nuclear Information System (INIS)

    Zhu Xiaowen; Gao Jianxun; Wang Jianchen; Yu Bo; Song Chongli

    2002-01-01

    The synthesis, extraction properties and molecular modeling of calixcrowns in concern of cesium removal is reviewed briefly. In particular, calix [4] crown-6 and some of its derivatives have been shown to be highly selective extractants for cesium ions

  2. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell

    International Nuclear Information System (INIS)

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2014-01-01

    Highlights: • Novel biosorbent for cesium removal was derived from agricultural residue. • It could remove cesium effectively from aqueous solution. • Large size of granules makes it easy to be separated from solutions. • The volume of used biosorbent could be significantly reduced after incineration. • Incinerated biosorbent has a low volume and a low cost final disposal. - Abstract: A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni II HCF III -WS) was developed to selectively remove cesium ion (Cs + ) from aqueous solutions. This paper showed the first integral study on Cs + removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2 h. As a special characteristic of Ni II HCF III -WS, acidic condition was preferred for Cs + removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni II HCF III -WS could selectively remove Cs + though the coexisting ions (Na + and K + in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni II HCF III -WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni II HCF III -WS) was reduced after incineration (at 500 °C for 2 h). Due to its relatively high distribution coefficient and significant volume reduction, Ni II HCF III -WS is expected to be a promising material for Cs + removal in practice

  3. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dahu, E-mail: dingdahu@gmail.com [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Lei, Zhongfang; Yang, Yingnan [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Feng, Chuanping [School of Water Resources and Environment, China University of Geosciences (Beijing), Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083 (China); Zhang, Zhenya, E-mail: zhang.zhenya.fu@u.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan)

    2014-04-01

    Highlights: • Novel biosorbent for cesium removal was derived from agricultural residue. • It could remove cesium effectively from aqueous solution. • Large size of granules makes it easy to be separated from solutions. • The volume of used biosorbent could be significantly reduced after incineration. • Incinerated biosorbent has a low volume and a low cost final disposal. - Abstract: A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni{sup II}HCF{sup III}-WS) was developed to selectively remove cesium ion (Cs{sup +}) from aqueous solutions. This paper showed the first integral study on Cs{sup +} removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2 h. As a special characteristic of Ni{sup II}HCF{sup III}-WS, acidic condition was preferred for Cs{sup +} removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni{sup II}HCF{sup III}-WS could selectively remove Cs{sup +} though the coexisting ions (Na{sup +} and K{sup +} in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni{sup II}HCF{sup III}-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni{sup II}HCF{sup III}-WS) was reduced after incineration (at 500 °C for 2 h). Due to its relatively high distribution coefficient and significant volume reduction, Ni{sup II}HCF{sup III}-WS is expected to be a promising material for Cs{sup +} removal in practice.

  4. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  5. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  6. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  7. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  8. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  9. Decorporation of mixture of strontium and cesium isotopes with domestic mineral waters

    International Nuclear Information System (INIS)

    Slavov, S.; Filev, G.; Kiradzhiev, G.

    1990-01-01

    The possibilities of Bulgarian mineral waters to decorporate mixtures of strontium and cesium radioisotopes, simultaneous entering the body, were studied. A modified effect in respect to radioactive strontium was found. Modification of the effect of mixing two diferent types of mineral waters was not proven. No effect was found of potassium-containing mineral water on radioactive cesium kinetics. 1 tab., 7 refs

  10. The effect of fertilizer application on 137 cesium accumulation in lucerne grown on a leached chernozem

    International Nuclear Information System (INIS)

    Konstantinov, G.; Kovachev, K.; Penchev, D.; Ermolaev, I.; Mirchev, M.

    1974-01-01

    On the basis of pot experiments, carried out in a glass-house the following conclusions on the effect of fertilizer application are made: nitrogen fertilizer application increases the amount of radioactive cesium in lucerne plants. Phosphorus fertilizer introduction, similarly to potassium fertilizer application decreases cesium uptake, resulting in an increase in available phosphorus in the soil. (M.Ts.)

  11. SIMS diagnostics of nanometer semiconductor structures with the use of cesium ions

    International Nuclear Information System (INIS)

    Pustovit, A.N.; Vyatkin, A.F.

    2006-01-01

    The modernization of cesium ion source was carried out to increase the lifetime, the power range of primary ions and temporary stability of primary ion beam. The elements depth profiles obtained with the help of primary cesium ions and primary iodine ions are in good agreement with transmission electron microscopy data [ru

  12. Redistribution of strontium and cesium during alteration of smectite to illite

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Murakami, Takashi; Sato, Tsutomu; Isobe, Hiroshi

    1994-01-01

    The redistribution of strontium and cesium during the alteration of smectite to illite has been studied under hydrothermal conditions at 200 C using solutions of 1x10 -4 M Sr and Cs. Two different sorption conditions were applied for the hydrothermal experiments. One was the condition in which strontium and cesium were sorbed by smectite before the hydrothermal experiments (dynamic condition). The other was the condition in which strontium and cesium were sorbed by the alteration products, illite/smectite (I/S) interstratified minerals after the hydrothermal experiments (static condition). The sorption characteristics of strontium and cesium by smectite, I/S interstratified minerals were examined by a sequential extraction method. Most of the strontium was desorbed from smectite and the I/S interstratified minerals with a 1 M KCl solution under both the dynamic and static conditions. Less than 1% of cesium was desorbed from the I/S interstratified minerals with any solution of a 1 M KCl, a 1 M HCl and a 6 M HCl under the dynamic condition, while most of cesium was desorbed with either solution of a 1 M KCl and 1 M HCl from smectite and from the I/S interstratified minerals under the static condition. These suggest that cesium sorbed by smectite changes its sorption characteristic during the alteration process, but strontium does not. Possible sites for more strongly bounded cesium to the I/S interstratified minerals may be at the 'ditrigonal cavity' of adjacent tetrahedral layers. (orig.)

  13. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir C.; Appoloni, Carlos R., E-mail: acandrello@uel.b [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica; Araujo, Ednaldo S. [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil); Thomaz, Edivaldo L. [Universidade Estadual do Centro-Oeste - UNICENTRO, Guarapuava, PR (Brazil). Dept. de Geografia; Medeiros, Pedro Henrique Augusto [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Agricola; Macedo, Iris L. [Universidade de Brasilia (UnB), DF (Brazil). Faculdade de Tecnologia. Dept. de Engenharia Civil e Ambiental

    2009-07-01

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 +- 15 Bq.m{sup -2} for South region to 15 +- 2 Bq.m{sup -2} for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  14. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  15. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    International Nuclear Information System (INIS)

    Andrello, Avacir C.; Appoloni, Carlos R.; Thomaz, Edivaldo L.; Medeiros, Pedro Henrique Augusto; Macedo, Iris L.

    2009-01-01

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 ± 15 Bq.m -2 for South region to 15 ± 2 Bq.m -2 for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  16. Cesium-137 uptake studies on ammonium phospho molybdate irradiated with electrons

    International Nuclear Information System (INIS)

    Rao, K.L.N.; Balasubramanian, K.R.; Shukla, J.P.

    1992-01-01

    Ammonium phospho molybdate is an important inorganic ion exchanger having high selectivity for cesium. This paper discusses the effects of electron irradiation to a dose of 1 mGy on this exchanger with special reference to its ion exchange performance using cesium-137 as a tracer. An explanation is attempted for the slight increase in the distribution coefficients. (author). 5 refs., 1 tab

  17. Utilization of cesium-137 environmental contamination from fallout in erosion and sedimentation studies

    International Nuclear Information System (INIS)

    Guimaraes, M.F. da; Pessenda, L.C.R.; Fernandes, E.A.N.; Freire, O.; Nascimento Filho, V.F. do; Ferraz, E.S.B.

    1988-01-01

    The radioactivity of cesium-137 from fallout in different soils profiles for erosion and sedimentation studies are described. The potential of this technique for hydrographic basin in Piracicaba/Sao Paulo is evaluated. Due to the existence of natural radionuclides in soil, with energy near to cesium-137, the soil samples are determined by a high-purity Ge detectors. (author)

  18. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  19. Preparation of Mg(OH)_2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing

    2016-01-01

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH)_2 crystal for Mg(OH)_2 pigments. • Uniform coverage of nanosized Mg(OH)_2 pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH)_2 pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH)_2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)_2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)_2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)_2 crystals and affect the formation of lamella-like Mg(OH)_2 crystals. The cellulose fiber grafted with modified Mg(OH)_2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  20. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wegler, Barbara, E-mail: barbara.wegler@siemens.com [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen, Germany and Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany); Schmidt, Oliver [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Hensel, Bernhard [Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany)

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.