WorldWideScience

Sample records for preparation nineteen atomic

  1. Raman Scattering in Coherently Prepared Atomic System

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-Cheng(林福成); Yongjoo Rhee; Jonghoon Yi; Hyunmin Park

    2001-01-01

    Atoms in the coherent superposition state prepared by a pulse pair are used as a novel optical memory material where a single interrogation pulse will produce a new pulse pair preserving the relative amplitudes and phases of the preparing pulse pair. Such a coherent superposition state can also be specially tailored along the propagation path to generate Raman scattering in a relatively short distance with very high efficiency.

  2. Atomic Fock State Preparation Using Rydberg Blockade

    CERN Document Server

    Ebert, Matthew; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G

    2013-01-01

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $\\sqrt{N}$ Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with essentially perfect blockade. We then use collective Rabi $\\pi$ pulses to produce ${\\cal N}=1,2$ atom number Fock states with fidelities of 62% and 48% respectively. The ${\\cal N}=2$ Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.

  3. Preparation of two and four-atom entangled states

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A scheme for preparing two and four-atom entangled states is presented. It is based on atom-cavity-field interactions. Firatly, the cav ity is prepared in the superposition of the number states through the atom under going a two-photon transition, the secondly, the two or four identical two-lev el atoms, which are all initially in their ground states, are sent through the c avity sequentially and can make resonant single-photon transition in the cavity . Then atomic entangled states are created and the cavity is left in the vacuum state.

  4. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Matias Ammitzbøll

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  5. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Matias Ammitzbøll

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  6. Preparation of Ultracold Atom Clouds at the Shot Noise Level.

    Science.gov (United States)

    Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F

    2016-08-12

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔNatom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.

  7. Preparation of ultracold atom clouds at the shot noise level

    CERN Document Server

    Gajdacz, Miroslav; Kristensen, Mick A; Pedersen, Poul L; Klempt, Carsten; Arlt, Jan J; Sherson, Jacob F

    2016-01-01

    We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${N\\sim10^6}$ is determined by high precision Faraday imaging with uncertainty $\\Delta N$ below the shot noise level, i.e., $\\Delta N <\\sqrt{N}$. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.

  8. Electron collisions with coherently prepared atomic targets

    Energy Technology Data Exchange (ETDEWEB)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.S. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Bray, I.; Fursa, D. [Flinders Univ. of South Australia, Adelaide (Australia). Electronics Structure of Materials Centre; Csanak, G. [Los Alamos National Lab., NM (United States)

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can be expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.

  9. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  10. Preparation of ultracold atom clouds at the shot noise level

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Hilliard, Andrew J.; Kristensen, Mick A.;

    2016-01-01

    We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${N\\sim10^6}$ is determined by high precision Faraday imaging with uncertainty $\\Delta N$ below the shot noise level, i...

  11. Quantum state preparation using multi-level-atom optics

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Th [Physics Department, University College Cork, Cork (Ireland); Deasy, K [Photonics Centre, Tyndall National Institute, Prospect Row, Cork (Ireland); Chormaic, S Nic [Physics Department, University College Cork, Cork (Ireland)

    2007-10-15

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation.

  12. Quantum state preparation using multi-level-atom optics

    Science.gov (United States)

    Busch, Th; Deasy, K.; Chormaic, S. Nic

    2007-10-01

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation.

  13. Sample preparation for atomic spectroscopy: evolution and future trends

    Directory of Open Access Journals (Sweden)

    Oliveira Elisabeth de

    2003-01-01

    Full Text Available Sample preparation is the critical step of any analytical protocol, and involves steps from simple dilution to partial or total dissolution. The methods include dry or wet decomposition of the samples in open or closed systems, using thermal, ultrasonic or radiant (infrared, ultraviolet and microwaves energy. This review emphasizes sample preparation for atomic spectroscopy. The present and future tendencies for sample preparation also involve on-line dissolution, extraction of the analytes, speciation, solid sample and slurry analysis, in situ and in vivo procedures, etc. Nowadays the goals are the best result, in the shortest time, with minimum contamination, using the smallest quantities of reagents and samples, and having low residue and waste generation, as well as maintaining the integrity of the sample and the traceability of the results, to have quality and confidence in the measurements as the primordial attributes required by the community and by the users.

  14. Preparation of Genuinely Entangled Six-Atom State via Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; LIU Yi-Min; YIN Xiao-Feng; ZHANG Zhan-Jun

    2011-01-01

    A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.

  15. Deltoid contracture: A study of nineteen cases

    Directory of Open Access Journals (Sweden)

    Banerji Debabrata

    2008-01-01

    Full Text Available Objective: Deltoid contracture is not uncommon in India. Contractures of deltoid often do not have definite etiology. We have critically analyzed the condition as regards the etiopathogenesis and its surgical results. Materials and Methods: Nineteen patients with deltoid contracture operated between June 1990 and September 2001 were enrolled for a unicentric retrospective study. The surgery was indicated in patients with abduction deformity of more than 30° at the shoulder. The etiology of deltoid contracture was idiopathic ( n = 13 intramuscular injection in deltoid muscle ( n = 5 and blunt trauma ( n = 1. All were operated by distal release (incision near the insertion of the deltoid muscle. The average follow-up was of 9.5 years (range 6-17 years. They were evaluated based on parameters like pain, persistence of deformity, range of shoulder movements and strength of deltoid. Results: All patients recovered painless full range of shoulder motion except one. The correction of deformity was achieved in all patients and there was no loss of strength of deltoid compared to the opposite side. Histology of excised tissue showed features of chronic inflammation. The complications observed were hypertrophic scar ( n = 1, painful terminal restriction of shoulder movements ( n = 1 and prominent vertebral border of scapula ( n = 1. Conclusion: Deltoid contracture has features of chronic inflammation, and the intramuscular deltoid injection is the most incriminating factor in its etiopathogenesis. The condition can be effectively managed surgically by distal release of the deltoid muscle combined with excision of the muscular fibrotic contracture band.

  16. Semantic dementia: Brazilian study of nineteen cases

    Directory of Open Access Journals (Sweden)

    Mirna Lie Hosogi Senaha

    Full Text Available Abstract The term semantic dementia was devised by Snowden et al. in 1989 and nowadays, the semantic dementia syndrome is recognized as one of the clinical forms of frontotemporal lobar degeneration (FTLD and is characterized by a language semantic disturbance associated to non-verbal semantic memory impairment. Objectives: The aim of this study was to describe a Brazilian sample of 19 semantic dementia cases, emphasizing the clinical characteristics important for differential diagnosis of this syndrome. Methods: Nineteen cases with semantic dementia were evaluated between 1999 and 2007. All patients were submitted to neurological evaluation, neuroimaging exams and cognitive, language and semantic memory evaluation. Results: All patients presented fluent spontaneous speech, preservation of syntactic and phonological aspects of the language, word-finding difficulty, semantic paraphasias, word comprehension impairment, low performance in visual confrontation naming tasks, impairment on tests of non-verbal semantic memory and preservation of autobiographical memory and visuospatial skills. Regarding radiological investigations, temporal lobe atrophy and/or hypoperfusion were found in all patients. Conclusions: The cognitive, linguistic and of neuroimaging data in our case series corroborate other studies showing that semantic dementia constitutes a syndrome with well defined clinical characteristics associated to temporal lobe atrophy.

  17. Atomic GHZ States Prepared in Two Directly Coupled Cavities with Virtual Excitations in One Step

    Institute of Scientific and Technical Information of China (English)

    杨榕灿; 黄志平; 郭强; 张鹏飞; 钟纯勇; 张天才

    2011-01-01

    A scheme for one-step preparation of atomic GHZ states in two directly coupled cavities via virtual excitations is proposed. In the whole procedure, the information is carried only in two ground states of A-type atoms, while the excited states of atoms and cavity modes are virtually excited, leading the system to be insensitive to atomic spontaneous emission and photon loss.

  18. A Study on Alnico Permanent Magnet Powders Prepared by Atomization

    Institute of Scientific and Technical Information of China (English)

    Changbin SONG; Bocksoo HAN; Ying LI

    2004-01-01

    Alnico powders were prepared by gas atomization process. Composition of the Alnico powders was Fe37.1 Al8.2 Ni17.6-Co26.6 Cu3.3 Ti7.2 (wt pct) which was the same as that of commercially available Alnico magnets. Average particle size of the powders was 119μm. Effects of heat treatment in magnetic field on magnetic properties of the powders were investigated. The optimum process of heat treatment was found as follows, heated at 870℃ for 1 min first, then cooled down to 700℃ at cooling rate 0.3℃/s in magnetic field, and finally aged isothermally for 4 h.Magnetic properties of the Alnico powders were measured and the results were that intrinsic coercivity iHc was 1.0kOe and remanence Mr was 36.5 emu/g.

  19. Dynamic lossless polarization gate using a coherently prepared atomic medium.

    Science.gov (United States)

    Wu, J X; Zhu, Chengjie; Yang, Y P

    2015-11-01

    We propose a dynamic lossless all-optical polarization gate using coherently prepared atomic media. We show that the loss/gain of two circularly polarized components of a linearly polarized probe field can be simultaneously eliminated by locking the power of the pump field and the external magnetic field intensity simultaneously. Using the polarization selective Kerr phase shift method, we can write π/2 (-π/2) phase shift to the right (left) circularly polarized component of the linearly polarized probe field with a choice of "magic" wavelength for the probe field. Consequently, the linear polarization state for the probe field acquires a 90° rotation at the exit of the medium. The scheme proposed in this Letter is helpful for applications in optical and quantum information processing and computation.

  20. Observation of CARS signal via maximal atomic coherence prepared by F-STIRAP in a three-level atomic system

    National Research Council Canada - National Science Library

    Xiao-Li Song; Lei Wang; Rui-Zhu Lin; Zhi-Hui Kang; Xin Li; Yun Jiang; Jin-Yue Gao

    2007-01-01

    ...) in a L-type configuration, and verify the theoretical predictions. Applying this technique, we are able to prepare the atoms with maximal coherence to enhance coherent anti-Stokes Raman scattering (CARS) signal...

  1. Analysis of Imagery Description in To Room Nineteen

    Institute of Scientific and Technical Information of China (English)

    高凤花

    2009-01-01

    Doris Lessing is the well-known contemporary British writer and novelist. Her famous short story To Room Nineteen tells Susan, a intelligent woman, is lost in the chaos housework and tries to search for an authentic self which leads to her madness and ultimately suicide.This paper focuses on imagery in Lessing's To Room Nineteen from which foreshadows Susan's suicide.

  2. Preparation of Cluster States for Many Atoms in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhi-Ming

    2007-01-01

    We propose a scheme for the generation of the cluster states for many atoms in cavity QED. In our scheme,the atoms are sent through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited and no quantum information will be transferred from the atoms to the cavity fields. The advantage is that the cavities are suppressed during the procedure. The scheme can also be generalized to the ion trap system.

  3. Preparation of Multi—Atom Entangled States with a Single Cavity in a Thermal State

    Institute of Scientific and Technical Information of China (English)

    ZHENGShi-Biao

    2002-01-01

    A scheme is suggested for the generation of multi-atom maximally entangled states with a cavity in a thermal state,In this scheme several appropriately prepared two-level atoms are simultaneously sent through the nonresonant cavity.We divide the whole atom-cavity interaction time into two equal parts.At the end of the first part a π pulse is applied to the atome using a classical field.Then the photon-number-dependent shifts on the atomic states are cancelled and the atomic system finally evoloves to a maximally entangled state.

  4. Preparation of Multi-Atom Entangled States with a Single Cavity in a Thermal State

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2002-01-01

    A scheme is suggested for the generation of multi-atom maximally entangled states with a cavity in a thermalstate. In this scheme several appropriately prepared two-level atoms are simultaneously sent through the nonresonantcavity. We divide the whole atom-cavity interaction time into two equal parts. At the end of the first part a π pulse isapplied to the atoms using a classical field. Then the photon-number-dependent shifts on the atomic states are cancelledand the atomic system finally evolves to a maximally entangled state.

  5. Preparation of Entangled Atomic States Through Resonant Atom-Field Interaction

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.

  6. Efficient scheme for preparation of the multi-atom W state via cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin; Ye Liu

    2004-01-01

    We present an efficient scheme for preparation of the multi-atom W state via cavity quantum electrodynamics.Involved in this scheme are n identical two-level atoms and a single-mode cavity field. Discussion indicates that this scheme can be realized easily by current technologies.

  7. Feasible schemes for preparation of all five-atom graph states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin

    2008-01-01

    We propose feasible schemes for preparation of all five-atom graph states by cavity quantum electrodynamics (QED). Our schemes require only the atom-cavity interaction with a large dettming which is available in current experiment so that these schemes axe within the reach of the current technology.

  8. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  9. Unconditional preparation of entanglement between atoms in cascaded optical cavities.

    Science.gov (United States)

    Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-10-24

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high-finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity-QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity-QED parameters and with nonideal coupling.

  10. To Room Nineteen:Double-voiced Discourse in Female Bildungsroman

    Institute of Scientific and Technical Information of China (English)

    蒯望舒

    2010-01-01

    @@ Doris Lessing's To Room Nineteen can be safely regarded as a female Bildungsroman about the female protagonist's hard quest for a psychological balance sense and journey to identity-seeking.Bildungsroman is a general genre that describes the mental and psychological growth of the protagonist.The female Bildungsroman is the sub-genre of the traditional Bildungsroman.In Doris Lessing's To Room Nineteen,the author adopts double-voiced discourse so that the protagonist,Susan,successfully challenged the series of standards in the traditional men's right society through the discourse with her husband and herself,and the female writer's potential discourse with the social system.

  11. Preparation of multi-atom specially entangled W-class state and splitting quantum information

    Institute of Scientific and Technical Information of China (English)

    WANG YaHong; SONG HeShan

    2009-01-01

    We give a protocol to prepare specially entangled W-class state of multi-atom which can be used to exactly teleport an arbitrarily unknown two-level two-atom state.During the process,the quantum information is split into n parts and the original quantum information can be sent to anyone of the n recipients with the other n-1 recipients' collaboration.In addition,we will give a suggestion to realize this scheme via QED cavity.

  12. Development of atom probe specimen preparation techniques for specific regions in steel materials.

    Science.gov (United States)

    Takahashi, Jun; Kawakami, Kazuto; Yamaguchi, Yukiko; Sugiyama, Masaaki

    2007-09-01

    More elaborated specimen preparation techniques for atom probe analysis were developed using a focused ion beam with a sample lift-out system so as to expand the application field in steel materials. The techniques enable atom probe analysis of sample steel at site-specific regions of interest. The preferable form of the needle specimen was provided by electrostatic field calculation using a finite element method. The new techniques were applied to the observation of a bainite-ferrite interface in a low carbon steel, and atomic-scale partitioning and segregation of alloying elements at the phase interface were directly observed in three dimensions.

  13. Sample preparation for atomic-resolution STEM at low voltages by FIB

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Miroslava, E-mail: mschaffer@SuperSTEM.org [SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Department of Engineering, George Holt Building, Ashton Street, Liverpool L69 3BX (United Kingdom); Schaffer, Bernhard [SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Kelvin Nanocharacterisation Centre, SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Ramasse, Quentin [SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Department of Engineering, George Holt Building, Ashton Street, Liverpool L69 3BX (United Kingdom)

    2012-03-15

    While FIB sample preparation for transmission electron microscopy is a well established technique, few examples exist of samples of sufficient quality for atomic resolution imaging by aberration corrected (scanning) transmission electron microscopy (STEM). In this work we demonstrate the successful preparation of such samples from five different materials and present the refined lift-out preparation technique, which was applied here. Samples with parallel surfaces and a general thickness between 20 and 40 nm over a range of several {mu}m were repeatedly prepared and analyzed by Cs-corrected STEM at 60 and 100 kV. Here, a novel 'wedge pre-milling' step helps to keep the protective surface layers intact during the whole milling process, allowing features close to or at the sample surface to be analyzed without preparation damage. Another example shows the cross-sectional preparation of a working thin film solar cell device to a final thickness of 10 to 20 nm over {mu}m sized areas in the region of interest, enabling atomic resolution imaging and elemental mapping across general grain boundaries without projection artefacts. All sample preparation has been carried out in modern Dual-Beam FIB microscopes capable of low-kV Ga{sup +} ion milling, but without additional preparation steps after the FIB lift-out procedure. -- Highlights: Black-Right-Pointing-Pointer Suitability of stand-alone FIB preparation for atomic resolution STEM is shown. Black-Right-Pointing-Pointer Reproducible preparation of 10-40 nm thick samples from 5 different materials. Black-Right-Pointing-Pointer Low-kV milling and adjusted procedure for crystalline, homogeneously thin specimen. Black-Right-Pointing-Pointer Wedge pre-milling to protect surface-near features.

  14. Evaluation of ultrasonic atomization as a new approach to prepare ionically cross-linked chitosan microparticles.

    Science.gov (United States)

    Albertini, Beatrice; Passerini, Nadia; Rodriguez, Lorenzo

    2005-07-01

    Ultrasonic atomization was evaluated as a new approach for the preparation of ionically cross-linked controlled-release chitosan microparticles loaded with theophylline as the model drug, using tripolyphosphate (TPP) as counter-ion. It was possible to nebulize both 2% and 3% (w/v) chitosan solutions as a function of their viscosity, usually not processed by employing the conventional nebulizer. The results of the chitosan molecular characterization using the SEC-MALS analysis revealed that ultrasonic atomization caused a certain depolymerization, probably due to the main chain scission of the 1,4-glycosidic bond; however, Fourier transform-infrared spectroscopy revealed the absence of other chemical modifications. The ultrasonic atomization allowed preparation of TPP cross-linked chitosan microparticles mostly ranging between 50 and 200 mum. As regards manufacturing parameters, the linking time and washing medium were found to affect the properties of the microparticles, while the stirring rate of the TPP solution did not show any influence. The evaluation of the formulation variables revealed that chitosan concentration strongly affected both the feasibility of the ultrasonic atomization and the drug release. All the microparticles showed an encapsulation efficiency of > 50 % and, after an initial burst effect, a controlled release of drug for 48 h. In conclusion, the ultrasonic atomization could be proposed as a robust and innovative single-step procedure with scale-up potential to successfully prepare ionically cross-linked chitosan microparticles.

  15. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  16. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  17. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  18. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.

    Science.gov (United States)

    Bittner, B; Kissel, T

    1999-01-01

    Bovine serum albumin (BDA) loaded microspheres with a spherical shape and smooth surface structure were successfully prepared from poly(lactide-co-glycolide) using an ultrasonic nozzle installed in a Niro laboratory spray dryer. Process and formulation parameters were investigated with respect to their influence on microsphere characteristics, such as particle size, loading capacity, and release properties. Preparation of microspheres in yields of more than 50% was achieved using an ultrasonic atomizer connected to a stream of carrier air. Microsphere characteristics could be modified by changing several technological parameters. An increased polymer concentration of the feed generated larger particles with a significantly reduced initial release of the protein. Moreover, microspheres with a smooth surface structure were obtained from the organic polymer solution with the highest viscosity. Microparticles with a low BSA loading showed a large central cavity surrounded by a thin polymer layer in scanning electron microspheres. A high protein loading led to an enlargement of the shell layer, or even to dense particles without any cavities. A continuous in vitro release pattern of BSA was obtained from the particles with low protein loading. Glass transition temperatures (Tg) of the microspheres before and after lyophilization did not differ from those of the BSA loaded particles prepared by spray drying with a rotary atomizer. Analysis of the polymer by gel permeation chromatography indicated that ultrasonication had no effect on polymer molecular weight. Molecular weight and polydispersity of the pure polymer, placebo microspheres prepared by spray drying, and placebo microspheres prepared using the ultrasonic nozzle were in the same range. In conclusion, ultrasonic atomization represents a versatile and reliable technique for the production of protein loaded biodegradable microspheres without inducing a degradation of the polymer matrix. Particle characteristics

  19. Dipolar Rydberg-atom gas prepared by adiabatic passage through an avoided crossing

    CERN Document Server

    Wang, Limei; Zhang, Linjie; Li, Changyong; Yang, Yonggang; Zhao, Jianming; Raithel, Georg; Jia, Suotang

    2015-01-01

    The passage of cold cesium 49S$_{1/2}$ Rydberg atoms through an electric-field-induced multi-level avoided crossing with nearby hydrogen-like Rydberg levels is employed to prepare a cold, dipolar Rydberg atom gas. When the electric field is ramped through the avoided crossing on time scales on the order of 100~ns or slower, the 49S$_{1/2}$ population adiabatically transitions into high-\\emph{l} Rydberg Stark states. The adiabatic state transformation results in a cold gas of Rydberg atoms with large electric dipole moments. After a waiting time of about $1~\\mu$s and at sufficient atom density, the adiabatically transformed highly dipolar atoms become undetectable, enabling us to discern adiabatic from diabatic passage behavior through the avoided crossing. We attribute the state-selectivity to $m$-mixing collisions between the dipolar atoms. The data interpretation is supported by numerical simulations of the passage dynamics and of binary $m$-mixing collisions.

  20. Teleportation of Atomic States via Cavity QED for a Cavity Prepared in a Superposition of Zero and One Fock States

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of atomic states. In the first scheme we consider atoms in a three-level cascade configuration and in the second scheme we consider atoms in a three-level lambda configuration. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a state $|\\psi >_{C}=(|0> +|1>)/\\sqrt{2}$

  1. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  2. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  3. Selective preparation of the maximum coherent superposition state in four-level atoms

    Institute of Scientific and Technical Information of China (English)

    Li Deng; Yueping Niu; Shangqing Gong

    2011-01-01

    We demonstrate that the maximum coherent superposition state can be selectively prepared using a sequence of pulse pairs in lambda-type atomic systems, with the final level as a doublet. In each pair, the Stocks pulse comes before the pump pulse, with their back edges overlapping. Numerical results indicate that by tuning the interval of the adjacent pulse pairs, the selective maximum coherent superposition state preparation between the initial and one of the final levels can be achieved. The phenomenon is caused by the accumulative property of the pulse sequence.%The coherent superposition state in atoms or molecules plays a crucial role in quantum physics.It has applications in many areas such as electromagnetically induced transparency[1-5],quantum information[6-8] and control of chemical reaction[9-11].Many schemes can prepare the coherent superposition state.For instance,the fractional stimulated Raman adiabatic passage(F-STIRAP) [12] and the coherent population trapping[13] can obtain the maximum coherent superposition state of the two lower levels in lambda-type atoms.Our group also proposed several schemes to achieve this goal,such as the methods based on the STIRAP[14,15] and the pulse train method[16].

  4. An integrable nineteen vertex model lying on a hypersurface

    Directory of Open Access Journals (Sweden)

    M.J. Martins

    2015-03-01

    Full Text Available We have found a family of solvable nineteen vertex model with statistical configurations invariant by the time reversal symmetry within a systematic study of the respective Yang–Baxter relation. The Boltzmann weights sit on a degree seven algebraic threefold which is shown birationally equivalent to the three-dimensional projective space. This permits to write parameterized expressions for both the transition operator and the R-matrix depending on three independent affine spectral parameters. The Hamiltonian limit tells us that the azimuthal magnetic field term is connected with the asymmetry among two types of spectral variables. The absence of magnetic field defines a physical submanifold whose geometrical properties are remarkably shown to be governed by a quartic K3 surface. This expands considerably the class of irrational manifolds that could emerge in the theory of quantum integrable models.

  5. Specimen preparation and atom probe field ion microscopy of BSCCO-2212 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.J. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Camus, P.P. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Vargas, J.L. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Kelly, T.F. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Miller, M.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1996-09-01

    Field ion specimens of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (BSCCO) high temperature superconductor (HTS) materials have been prepared using a combination of three different preparation techniques: the method of sharp shards, electropolishing and ion milling. Field ion microscopy (FIM) has demonstrated that samples which exhibit the ``striped``-image contrast characteristic of HTS materials can be successfully fabricated using this combination. FIM images have been obtained which show the striped-image contrast much clearer than any previously published images of Pb-free BSCCO. Preliminary atom probe (AP) chemical analysis of the material was also performed. Analytical electron microscopy was used to confirm the existence of both the correct crystallographic structure and nominal composition in the near-apex region of the specimen after preparation and FIM. (orig.).

  6. Manipulation and Joule heat welding of Ag nanowires prepared by atomic migration

    Energy Technology Data Exchange (ETDEWEB)

    Tohmyoh, Hironori, E-mail: tohmyoh@ism.mech.tohoku.ac.jp; Fukui, Satoru [Tohoku University, Department of Nanomechanics (Japan)

    2012-09-15

    Ag nanowires (NWs) with diameters of about 200 nm and length of 2-7 {mu}m are prepared on a substrate by an atomic migration called stress-induced migration and are picked up from the substrate with electrostatic forces. The Ag NWs are then offered for the welding experiment in a scanning electron microscope and successfully welded together using Joule heating introduced into the NWs by supplying the constant direct current. It is discovered that the welding of Ag NWs is achieved under the current supply in a self-completed manner. The conditions for successful Joule heat welding are analyzed by the parameter that governs the melting phenomenon at the nanocontacts of two NWs. From the experiment and the analysis, electromigration, i.e., another type of atomic migration due to higher electron flow, is found to be occurred during the welding and this is considered to enhance the welding performance of two NWs with Joule heat.

  7. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  8. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  9. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  10. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    Science.gov (United States)

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  11. Preparation of an Exponentially Rising Optical Pulse for Efficient Excitation of Single Atoms in Free Space

    CERN Document Server

    Dao, Hoang Lan; Maslennikov, Gleb; Kurtsiefer, Christian

    2012-01-01

    We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator (EOM). The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single Rb-87 atom.

  12. Preparation of polystyrene-grafted titanate nanotubes by in situ atom transfer radical polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) dis-played that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS content was well controlled and increased with increasing of the monomer/initiator ratio. Further copolymerization of tert-butyl acrylate (tBA) from the surface of PS-g-TNTs was studied, illus-trating the "living" characteristics of the surface-induced ATRP method used in this work.

  13. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    Science.gov (United States)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  14. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  15. Influence of surface preparation on atomic layer deposition of Pt films

    Institute of Scientific and Technical Information of China (English)

    Ge Liang; Hu Cheng; Zhu Zhiwei; Zhang Wei; Wu Dongping; Zhang Shili

    2012-01-01

    We report Pt deposition on a Si substrate by means of atomic layer deposition (ALD) using (methylcyclopentadienyl) trimethylplatinum (CH3CsH4Pt(CH3)3) and O2.Silicon substrates with both HF-last and oxidelast surface treatments are employed to investigate the influence of surface preparation on Pt-ALD.A significantlylonger incubation time and less homogeneity are observed for Pt growth on the HF-last substrate compared to the oxide-last substrate.An interfacial oxide layer at the Pt-Si interface is found inevitable even with HF treatment of the Si substrate immediately prior to ALD processing.A plausible explanation to the observed difference of Pt-ALD is discussed.

  16. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    Science.gov (United States)

    Ananikov, V. P.; Khemchyan, L. L.; Ivanova, Yu V.; Bukhtiyarov, V. I.; Sorokin, A. M.; Prosvirin, I. P.; Vatsadze, S. Z.; Medved'ko, A. V.; Nuriev, V. N.; Dilman, A. D.; Levin, V. V.; Koptyug, I. V.; Kovtunov, K. V.; Zhivonitko, V. V.; Likholobov, V. A.; Romanenko, A. V.; Simonov, P. A.; Nenajdenko, V. G.; Shmatova, O. I.; Muzalevskiy, V. M.; Nechaev, M. S.; Asachenko, A. F.; Morozov, O. S.; Dzhevakov, P. B.; Osipov, S. N.; Vorobyeva, D. V.; Topchiy, M. A.; Zotova, M. A.; Ponomarenko, S. A.; Borshchev, O. V.; Luponosov, Yu N.; Rempel, A. A.; Valeeva, A. A.; Stakheev, A. Yu; Turova, O. V.; Mashkovsky, I. S.; Sysolyatin, S. V.; Malykhin, V. V.; Bukhtiyarova, G. A.; Terent'ev, A. O.; Krylov, I. B.

    2014-10-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references.

  17. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    Science.gov (United States)

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.

  18. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  19. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    Science.gov (United States)

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn.

  20. Toward a Fieldable Atomic Mass Spectrometer for Safeguards Applications: Sample Preparation and Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth; Jones, Sarah MH; Manard, Benjamin T.

    2014-10-31

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for the development of new methods to detect misuse at nuclear fuel cycle facilities such as reprocessing and enrichment plants. At enrichment plants, for example, the IAEA’s contemporary safeguards approaches are based on a combination of routine and random inspections that include collection of UF6 samples from in-process material and selected cylinders for subsequent analyses. These analyses include destructive analysis (DA) in a laboratory (typically by mass spectrometry [MS]) for isotopic characterization, and environmental sampling (ES) for subsequent laboratory elemental and isotopic analysis (also both typically by MS). One area of new method development includes moving this kind of isotope ratio analytical capability for DA and ES activities into the field. Some of the reasons for these developments include timeliness of results, avoidance of hazardous material shipments, and guidance for additional sample collecting. However, this capability does not already exist for several reasons, such as that most lab-based chemical and instrumental methods rely on laboratory infrastructure (highly trained staff, power, space, hazardous material handling, etc.) and require significant amounts of consumables (power, compressed gases, etc.). In addition, there are no currently available, fieldable instruments for atomic or isotope ratio analysis. To address these issues, Pacific Northwest National Laboratory (PNNL) and collaborator, Clemson University, are studying key areas that limit the fieldability of isotope ratio mass spectrometry for atomic ions: sample preparation and ionization, and reducing the physical size of a fieldable mass spectrometer. PNNL is seeking simple and robust techniques that could be effectively used by inspectors who may have no expertise in analytical MS. In this report, we present and describe the preliminary findings for three candidate

  1. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    Novel triblock copolymers based on central poly( ethylene glycol) ( PEG) or poly( ethylene glycol-co-propylene glycol) (PEGPG) blocks with poly( pentafluorostyrene) (PFS) outer blocks were prepared by Atom Transfer Radical Polymerization (ATRP) with polydispersities on the order of 1.2 - 1...

  2. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.

  3. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Louardi, A.; Rmili, A.; Ouachtari, F.; Bouaoud, A. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco)

    2011-09-15

    Highlights: > Co{sub 3}O{sub 4} thin films show a micro porous structure. > Co{sub 3}O{sub 4} thin films are formed with spherical grains less than 50 nm in diameter. > The porous structure of Co{sub 3}O{sub 4} films is expected to have promising application in electrochromism. - Abstract: Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of hydrated cobalt chloride salt (CoCl{sub 2}.6H{sub 2}O) as source of cobalt. The films were deposited onto the amorphous glass substrates kept at different temperatures (300-500 deg. C). The influences of molar concentration of the starting solution and substrate temperature on the structural, morphological and optical properties of (Co{sub 3}O{sub 4}) thin films were studied. It was found from X-ray diffraction (XRD) analysis that the films prepared with molar concentration greater than 0.025 M/L were polycrystalline spinel type cubic structure. The preferred orientation of the crystallites of these films changes gradually from (6 2 2) to (1 1 1) when the substrate temperature increases. By Raman spectroscopy, five Raman active modes characteristic of Co{sub 3}O{sub 4} spinel type cubic structure were found and identified at 194, 484, 522, 620 and 691 cm{sup -1}. The scanning electron microscopy (SEM) images showed micro porous structure with very fine grains less than 50 nm in diameter. These films exhibited also a transmittance value of about 70% in the visible and infra red range.

  4. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-08-31

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and Decoherence of Two-Atom Entangled States in a Dissipative Cavity

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-Hua; SONG Ke-Hui

    2006-01-01

    @@ We present a scheme for generating four pairs of two-atom Einstein-Podolsky-Rosen (EPR) states using the simultaneous interaction of the two atoms with a single-mode cavity field under a large detuning condition.

  6. Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Li, Xiuxiu; Pan, Jianming; Dai, Jiangdong; Dai, Xiaohui; Ou, Hongxiang; Xu, Longcheng; Li, Chunxiang; Zhang, Rongxian

    2012-10-01

    The first use of yeast as a support in the molecular imprinting field combined with atom transfer radical polymerization was described. Then, the as-prepared molecularly imprinted polymers were characterized by Fourier transmission infrared spectrometry, scanning electron microscope, thermogravimetric analysis, and elemental analysis. The obtained imprinted polymers demonstrated elliptical-shaped particles with the thickness of imprinting layer of 0.63 μm. The batch mode experiments were adopted to investigate the adsorption equilibrium, kinetics, and selectivity. The kinetic properties of imprinted polymers were well described by the pseudo-second-order kinetic equation, indicating the chemical process was the rate-limiting step for the adsorption of cefalexin (CFX). The equilibrium data were well fitted by the Freundlich isotherm, and the multimolecular layers adsorption capacity of imprinted polymers was 34.07 mg g(-1) at 298 K. The selectivity analysis suggested that the imprinted polymers exhibited excellent selective recognition for CFX in the presence of other compounds with related structure. Finally, the analytical method based on the imprinted polymers extraction coupled with high-performance liquid chromatograph was successfully used for CFX analysis in spiked pork and water samples.

  7. Preparation of Multicomponent Schr(o)dinger Cat States Through Resonant Atom-Field Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2005-01-01

    A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavity filled with a strong coherent field sequentially. Then state-selective measurements are performed on the atoms. The detections of the atoms in ground states collapse the cavity field onto a superposition of 2n coherent states. This is the first way for producing superpositions of many coherent states through resonant atom-field interaction.

  8. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    Science.gov (United States)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  9. Electromagnetic interference shielding behaviors of Zn-based conducting oxide films prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-June; Kang, Kyung-Mun; Lee, Hong-Sub; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr

    2015-05-29

    The structural, electrical, and optical properties of undoped ZnO, F-doped ZnO (ZnO:F), and Al-doped ZnO (ZnO:Al) thin films with two different thicknesses deposited by atomic layer deposition (ALD) were investigated to evaluate the electromagnetic interference shielding effectiveness (EMI-SE). A diluted fluoride hydroxide was used as a single reactant source for F doping in a ZnO matrix, and the F doping concentration was about 1 at.% in the ZnO:F films. The fabrication of the ZnO:Al films was followed by the typical ALD method, and the Al doping concentration of about 2 at.% was adjusted by the dopant deposition intervals of the ZnO:Al{sub 2}O{sub 3} precursor pulse cycle ratios, which were fixed at 19:1. The film thickness variations were controlled with 600 and 1600 total ALD cycles of approximately 100 nm and 300 nm, respectively. The carrier concentration of the films is monotonically increased in order of the undoped ZnO, ZnO:F, and ZnO:Al films. The EMI-SE values of the undoped ZnO, ZnO:F, and ZnO:Al films at 1 GHz were 0.9 dB, 2.6 dB, and 6.0 dB for ~ 100 nm, and were 2.1 dB, 9.7 dB, and 13.1 dB for ~ 300 nm, respectively. In our work, the EMI-SE value was increased by the enhancement of both the carrier concentration and film thickness due to reflection via the free carrier scattering effect. - Highlights: • Fluorine or aluminum doped ZnO thin films prepared by atomic layer deposition • Electromagnetic interference shielding effectiveness (EMI-SE) of ZnO thin films • Carrier concentration and film thickness enhanced the EMI-SE. • The enhancement of EMI-SE was due to reflection via free carrier scattering effect.

  10. Influence of Different Annealing Ambients on the Properties of Zinc Sulfide Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Yoo, Dongjun; Heo, Seung Chan; Choi, Moon Suk; Kim, Dohyung; Chung, Chulwon; Choi, Hag Young; Jeon, Hyeongtag; Choi, Changhwan

    2013-10-01

    The effects of different post annealing ambients (vacuum, O2, and H2S gases) on the chemical, structural, and optical properties of zinc sulfide (ZnS) thin films prepared by atomic layer deposition (ALD) were investigated. Diethylzinc [DEZ, Zn(C2H5)2] and H2S gas were used as precursor and reactant gas, respectively. Compared to as-deposited 50-nm-thick ZnS film, the optical energy band gap (Eg) of ZnS annealed under vacuum and H2S conditions increased from 3.73 to 3.85 eV, while it decreased down to 3.23 eV for the O2 annealing case. The change in the Eg of the thicker ZnS is similar to that of the thinner ZnS case. This behavior is related to the change in the Zn to S ratio. The vacuum and H2S anneals increases the Zn/S ratio, leading to higher Zn interstitial defects or S vacancy sites in the films. X-ray diffraction analysis reveals that ZnS thin film has a preferred orientation of hexagonal wurtizte (002) and cubic zinc blend (111) at ˜28.2°, and its grain size changes in a range from 18.79 to 28.14 nm after annealing. However, for O2 annealing, the patterns of both the newly formed ZnO phase and the reduced ZnS phase appear at 34.04°. This result suggests that change in the composition and crystal structure during the process significantly affects the optical properties of ZnS thin film, which should be taken into consideration in searching for an alternative buffer layer for Cu2InGaSe(S)4 (CIGS) thin film solar cell systems.

  11. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  12. Interaction Enhanced Imaging of Rydberg P states. Preparation and detection of Rydberg atoms for engineering long-range interactions

    Science.gov (United States)

    Gavryusev, Vladislav; Ferreira-Cao, Miguel; Kekić, Armin; Zürn, Gerhard; Signoles, Adrien

    2016-12-01

    The Interaction Enhanced Imaging technique allows to detect the spatial distribution of strongly interacting impurities embedded within a gas of background atoms used as a contrast medium [1]. Here we present a detailed study of this technique, applied to detect Rydberg P states. We experimentally realize fast and efficient three-photon excitation of P states, optimized according to the results of a theoretical effective two-level model. Few Rydberg P-state atoms, prepared in a small cloud with dimensions comparable to the blockade radius, are detected with a good sensitivity by averaging over 50 shots. The main aspects of the technique are described with a hard-sphere model, finding good agreement with experimental data. This work paves the way to a non-destructive optical detection of single Rydberg atoms with high spatial and temporal resolution.

  13. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  14. Thermal compatibility studies of U 3Si 2 dispersion fuels prepared with centrifugally atomized powder

    Science.gov (United States)

    Kim, Ki-Hwan; Park, Jong-Man; Kim, Chang-Kyu; Hofman, Gerard L.; Paik, Kyung-Wook

    The interaction between atomized U 3Si 2 and aluminum in dispersion fuel samples has been characterized and compared with that of comminuted U 3Si 2. Fuel samples with atomized powder showed a smaller volume increase compared to those with the comminuted powder, irrespective of heat treatment, and volume fraction of U 3Si 2 powder. The possible reasons for this seem to be as follows: (1) the smaller specific surface area of the atomized spherical powder compared to the irregular comminuted powder translating in a smaller U 3Si 2-Al interface area for the former affecting what appears to be a diffusion-controlled interaction process, (2) the atomized fuel samples also contain lower fraction of as-fabricated porosity than the comminuted fuel samples, which may enhance the restraint force in the swelling fuel meat, (3) the comminuted powder particles have distinctive aluminum penetration paths in the form of deformation zones that originated from the comminution process. There appear to be two pronounced penetration paths of aluminum into atomized U 3Si 2 powder; (1) through the phase interface, leaving a central unreacted island, (2) along grain boundaries, leaving several unreacted islands.

  15. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal molecule bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.

  16. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    Science.gov (United States)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh; Singh, Vishal; Kumar, Sacheen

    2016-05-01

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  17. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  18. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  19. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  20. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas;

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...

  1. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya

    2012-01-01

    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed...

  2. Structural Characteristics and Properties of Precious Metal Powders and Copper Powder Prepared by High-speed Centrifugal Atomization Technique

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; YANG You-cai; LI Yu-shen; ZHANG Jian-kan; FU Shi-ji; SHI Qing-nan

    2007-01-01

    The principle and characteristics of the rapidly solidified centrifugal atomization technique are studied in present paper. It has been widely used to make fine, rapidly solidified precious metal powders for application as the electrical engineering materials, conductive coatings for electromagnetic shielding and brazing alloys. The silver powder, copper powder and some precious metal alloys powders are prepared by the new method. A comparative analysis is carried out with the conventional electrolytic silver powder and chemical deposition silver powder. The results show that rapidly solidified powders are fine and have higher solid solubility of the alloying elements, and their alloys have excellent properties in various aspects.

  3. Preparation of La-Ti Composite Oxide Nanocrystal and Examination of Their Surface Topography with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With sol-gel method, nanometer La-Ti composite oxide was successfully prepared at a low temperature (750~800℃) using polyethylene glycol as dispersant. By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area were studied. The compound particle surface appears as a smooth sheet, the mean size of the compound is 25.38 nm. On the specific surface, the particle erects at a height of 4.69 nm. The surface area is 58.90 nm2. The La-Ti composite oxide nanocrystal prefers to narrow and even particle size distribution and the homogeneity of surface topography.

  4. The Horrific World of "Nineteen Eighty-Four": A Classified Bibliography of Orwell's Prophetic Novel.

    Science.gov (United States)

    Schaeffer, Matthew M., Comp.

    Drawn from articles, books, book chapters, and audio and visual materials, this bibliography contains nearly 900 items pertaining to George Orwell's novel "Nineteen Eighty-Four." The items are arranged in a topical format under the following headings: (1) biographical materials, (2) general comment and literary criticism, (3) science and…

  5. Examining the Dutch Trends in the Nineteen-nineties: Age, Period and Cohort Effects

    NARCIS (Netherlands)

    Portrait, F.; Deeg, D.; Alessie, R.|info:eu-repo/dai/nl/074624385

    2004-01-01

    The paper focuses on changes in the prevalence of disability at older ages in the Netherlands during the nineteen-nineties. Disability is characterized by two self-reported indicators of mild and severe disability and two self-reported and objectivemeasures of functional limitations. Age, period, an

  6. NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu-zeng Zhao; Xin-lin Yang; Feng Bai; Wen-qiang Huang

    2005-01-01

    Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) microspheres were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as stabilizer. The surfaces of PDVB microspheres were chloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzene initiating core sites for subsequent ATRP grafting of styrene using CuC1/bpy as catalytic system. Polystyrene was found to be grafted not only from the particle surfaces but also from within a thin shell layer, resulting in the formation of particles size increased from 2.38-2.58 μm, which can further grow to 2.93 μm during secondary grafting polymerization of styrene. This demonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature. All of the prepared microspheres have narrow particle size distribution with coefficient of variation around 10%.

  7. Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology

    Institute of Scientific and Technical Information of China (English)

    Xiong Yu-Qing; Li Xing-Cun; Chen Qiang; Lei Wen-Wen; Zhao Qiao; Sang Li-Jun; Liu Zhong-Wei; Wang Zheng-Duo; Yang Li-Zhen

    2012-01-01

    Metal aluminum (Al) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas.We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity.The square resistivity of as-deposited Al films is greatly reduced after annealing and almost reaches the value of bulk metal.Through chemical and structural analysis,we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology,but by both the crystallinity and crystal size in this process.

  8. Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yanfeng; Mayes, Richard T.; Fulvio, Pasquale F.; Sun, Xiao-Guang [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Jungseung; Tsouris, Costas [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chen, Jihua [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brown, Suree [Department of Chemistry, University of Tennessee, Knoxville, TN (United States); Dai, Sheng [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Chemistry, University of Tennessee, Knoxville, TN (United States)

    2013-12-09

    Nanoporous template-free initiators for atom-transfer radical polymerization (ATRP) were synthesized with surface and framework initiator sites and tailorable pore structures. Polyacrylonitrile grown on one initiator was converted into polyamidoxime to generate a uranium sorbent for seawater extraction with a high uptake rate and capacity relative to those of nonwoven irradiation-grafted polyethylene-fiber composites. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    Science.gov (United States)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-10-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  10. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst

    Science.gov (United States)

    Murata, Junji; Sadakuni, Shun; Okamoto, Takeshi; Hattori, Azusa N.; Yagi, Keita; Sano, Yasuhisa; Arima, Kenta; Yamauchi, Kazuto

    2012-06-01

    This paper reports the structural and chemical characteristics of atomically flat gallium nitride (GaN) surfaces prepared by abrasive-free polishing with platinum (Pt) catalyst. Atomic force microscopy revealed regularly alternating wide and narrow terraces with a step height equivalent to that of a single bilayer on the flattened GaN surfaces, which originate from the differences in etching rate of two neighboring terraces. The material removal characteristics of the method for GaN surfaces were investigated in detail. We confirmed that an atomically smooth GaN surface with an extremely small number of surface defects, including pits and scratches, can be achieved, regardless of the growth method, surface polarity, and doping concentration. X-ray photoelectron spectroscopy showed that the flattening method produces clean GaN surfaces with only trace impurities such as Ga oxide and metallic Ga. Contamination with the Pt catalyst was also evaluated using total-reflection X-ray fluorescence analysis. A wet cleaning method with aqua regia is proposed, which markedly eliminates this Pt contamination without affecting the surface morphology.

  11. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing.

    Science.gov (United States)

    Yang, Peng; Tong, Xili; Wang, Guizhen; Gao, Zhe; Guo, Xiangyun; Qin, Yong

    2015-03-04

    NiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD. Electrochemical measurements illustrate that NiO/SiC prepared with 600 cycles for NiO ALD exhibits the highest glucose sensing ability in alkaline electrolytes with a low detection limit of 0.32 μM (S/N = 3), high sensitivity of 2.037 mA mM(-1) cm(-2), a linear detection range from approximately 4 μM to 7.5 mM, and good stability. Its sensitivity is about 6 times of that for commercial NiO nanoparticles and NiO/SiC nanocomposites prepared by a traditional incipient wetness impregnation method. It is revealed that the superior electrochemical ability of ALD NiO/SiC is ascribed to the strong interaction between NiO and the SiC substrate and the high dispersity of NiO nanoparticles on the SiC surface. These results suggest that ALD is an effective way to deposit NiO on SiC for nonenzymatic glucose sensing.

  12. Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cho, Hong Y; Gao, Haifeng; Srinivasan, Abiraman; Hong, Joanna; Bencherif, Sidi A; Siegwart, Daniel J; Paik, Hyun-Jong; Hollinger, Jeffrey O; Matyjaszewski, Krzysztof

    2010-09-13

    Poly(ethylene glycol) (PEG) star polymers containing GRGDS (Gly-Arg-Gly-Asp-Ser) peptide sequences on the star periphery were synthesized by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA), GRGDS modified poly(ethylene glycol) acrylate (GRGDS-PEG-Acryl), fluorescein o-methacrylate (FMA), and ethylene glycol dimethacrylate (EGDMA) via an "arm-first" method. Star polymers were approximately 20 nm in diameter, as measured by dynamic light scattering and atomic force microscopy. Conjugation of FMA to the stars was confirmed by fluorescence microscopy, and successful attachment of GRGDS segments to the star periphery was confirmed by (1)H NMR spectroscopy. Both fluorescent PEG star polymers with and without peripheral GRGDS peptide segments were cultured with MC3T3-E1.4 cells. These star polymers were biocompatible with ≥ 90% cell viability after 24 h of incubation. Cellular uptake of PEG star polymers in MC3T3-E1.4 cells was observed by confocal microscopy. Rapid uptake of PEG star polymers with GRGDS peptides (∼ 100% of FITC-positive cells in 15 min measured by flow cytometry) was observed, suggesting enhanced delivery potential of these functional star polymers.

  13. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization.

    Science.gov (United States)

    Farook, U; Stride, E; Edirisinghe, M J

    2009-03-01

    The use of phospholipid-coated microbubbles for medical applications is gaining considerable attention. However, the preparation of lipid-coated microbubble suspensions containing the ideal size and size distribution of bubbles still represents a considerable challenge. The most commonly used preparation methods of sonication and mechanical agitation result in the generation of polydisperse microbubbles with diameters ranging from less than 1 microm to greater than 50 microm. Efforts have been made via distinctly different techniques such as microfluidic and electrohydrodynamic bubbling to prepare lipid-coated microbubbles with diameters less than 10 microm and with a narrow size distribution, and recent results have been highly promising. In this paper, we describe a detailed investigation of the latter method that essentially combines liquid and air flow, and an applied electric field to generate microbubbles. A parametric plot was constructed between the air flow rate (Qg) and the lipid suspension flow rate (Ql) to identify suitable flow rate regimes for the preparation of phospholipid-coated microbubbles with a mean diameter of 6.6 microm and a standard deviation of 2.5 microm. The parametric plot has also helped in developing a scaling equation between the bubble diameter and the ratio Qg/Ql. At ambient temperature (22 degrees C), these bubbles were very stable with their size remaining almost unchanged for 160 min. The influence of higher temperatures such as the human body temperature (37 degrees C) on the size and stability of the microbubbles was also explored. It was found that the mean bubble diameter fell rapidly to begin with but then stabilized at 1-2 microm after 20 min.

  14. THERMOSENSITIVITY OF NARROW-DISPERSED POLY(N-N-PROPYLACRYLAMIDE) PREPARED BY ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Hua-yong Hu; Jing Du; Qing-bin Meng; Zhan-yong Li; Xiao-xia Zhu

    2008-01-01

    Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization (ATRP)in a N,N-dimethylformamide-water mixture (50 vol%) at room temperature with methyl 2-chloropropinonate as initiator andCuCl/tris(2-dimethylaminoethyl)amine as the catalytic system in a ratio of 1:1:1. High molecular weight homopolymers (upto 3.7×104) with narrow molecular weight distribution (less than 1.2) were obtained. The living character of thepolymerization was further demonstrated by self-blocking experiment. An inverse molecular weight dependence of the cloudpoint of narrow-dispersed poly(N-n-propylacrylamide) aqueous solution was determined by turbidimetry and differentialscanning calorimetry, especially for the low molecular weight samples.

  15. Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Qingshan

    2008-01-01

    Full Text Available Abstract Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide sheaths (denoted as Au/PNIPAAm were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP. The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR and hydrogen nuclear magnetic resonance (1H NMR spectroscopy. Transmission electron microscope (TEM results confirmed the core/shell structure of nanohybrids. The thickness and density of PNIPAAm sheaths can be adjusted by controlling the amount of cross-linker during the polymerization. Signature temperature response was observed from Au/cross-linked-PNIPAAm nanocables. Such smart nanocables show immense potentials as building blocks for novel thermosensitive nanodevices in future.

  16. Atomic force microscopy for the study of specially prepared surfaces including transferred Langmuir-Blodgett layers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. J. D. Miller

    1999-06-02

    During the past four years a major number of surface science research programs in the Department of Metallurgical Engineering at the University of Utah have involved the use of the Atomic Force Microscope (AFM) and the Langmuir-Blodgett (LB) film balance procured with financial assistance from DOE under grant number DE-FG03-96ER76049. These instruments have been used for research in the areas of nonsulfide flotation chemistry, mineral processing, waste paper deinking, water treatment, treatment of contaminated soil, coal preparation, and plastics recycling. In addition, the AFM and LB film balance have been of great help to university researchers in other departments at the University of Utah and elsewhere, as well as researchers from industry.

  17. PREPARATION OF MANY-ATOM ENTANGLED STATE VIA THE QUANTIZED CAVITY FIELD RESONANT INTERACTION WITH ATOM%利用原子-腔场共振相互作用制备多原子缠结态(英)

    Institute of Scientific and Technical Information of China (English)

    陈昌永

    2002-01-01

    A scheme for preparation of the many-atom entangled state via the resonant interaction of quantized cavity with atom is presented.It is injected an two-level atom initially prepared in the superposition of the ground state and excited state through the cavity prepared in the vacuum state.The atom passing through the cavity creates atom-field entanglement.The other two-level atoms prepared in the ground states are injected into the cavity at different angles,respectively.After the interaction with the cavity field,the many-atom entangled state is produced and the cavity field is still in the vacuum state.Comparing with the existing schemes,ours is easier to realize experimently.%提出了一个利用量子腔场与原子的共振相互作用制备多原子缠结态的方案.首先将一个初态制备在基态和激发态的叠加态的二能级原子注入一个真空态腔场中.原子通过腔时产生原子-场缠结.制备于基态的其它二能级原子分别以不同角度注入腔场,在与腔场相互作用时可制得多原子缠结态,而空腔仍然保持在真空态.与现存的方案比较,该方案在实验上更容易实现.

  18. Promotion Effect of Lantanum ions on Co/SiO2 Catalysts Prepared via Solvated Metal Atom Impregnation Method

    Institute of Scientific and Technical Information of China (English)

    吴世华; 张守民; 黄维平; 李保庆; 石娟

    2004-01-01

    In order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.

  19. Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy.

    Science.gov (United States)

    Adair, B M; Cobb, G P

    1999-05-01

    Concentrations of mercury in biological samples collected for environmental studies are often less than 0.1 microgram/g. Low mercury concentrations and small organ sizes in many wildlife species (approximately 0.1 g) increase the difficulty of mercury determination at environmentally relevant concentrations. We have developed a digestion technique to extract mercury from small (0.1 g), biological samples at these relevant concentrations. Mean recoveries (+/- standard error) from validation trials of mercury fortified tissue samples using cold vapor atomic absorption spectroscopy for analysis ranged from 102 +/- 4.3% (2.5 micrograms/L, n = 15) to 108 +/- 1.4% (25 micrograms/L, n = 15). Recoveries of inorganic mercury were 99 +/- 5 (n = 19) for quality assurance samples analyzed during environmental evaluations conducted during a 24 month period. This technique can be used to determine total mercury concentrations of 60 ng Hg/g sample. Samples can be analyzed in standard laboratories in a short time, at minimal cost. The technique is versatile and can be used to determine mercury concentrations in several different matrices, limiting the time and expense of method development and validation.

  20. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  1. Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species

    Science.gov (United States)

    Douglas, J. O.; Bagot, P. A. J.; Johnson, B. C.; Jamieson, D. N.; Moody, M. P.

    2016-08-01

    The practicalities for atom probe tomography (APT) analysis of near-surface chemistry, particularly the distribution of low concentration elements, are presented in detail. Specifically, the challenges of surface analysis using APT are described through the characterisation of near-surface implantation profiles of low concentration phosphorus into single crystal silicon. This material system was chosen to illustrate this surface specific approach as low concentration phosphorus has significant mass spectra overlaps with silicon species and the near surface location requires particular attention to focused ion beam specimen preparation and deposition of various capping layers. Required changes to standard sample preparation procedure are described and the effects of changes in APT analysis parameters are discussed with regards to this specific material system. Implantation profiles of 14 kV phosphorus ions with a predicted peak concentration of 0.2 at .% were successfully analysed using APT using pulsed laser assisted evaporation. It is demonstrated that the most important factor in obtaining the most accurate implantation profile was to ensure all phosphorus mass peaks were as free of background noise as possible, with thermal tails from the Si2+ ions obscuring the P2+ ions being the major overlap in the mass spectrum. The false positive contribution to the phosphorus profiles from hydride species appears minimal at the capping layer/substrate interface. The initial capping layer selection of nickel was successful in allowing the analysis of the majority of the phosphorus profile but nickel and phosphorus mass spectra overlaps prevent optimum quantification of phosphorus at the surface.

  2. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-01

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  3. Orwell's Satirical View of Romantic Love in the Terrorized World of Nineteen Eighty-Four

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Besharati

    2017-09-01

    Full Text Available The beginning of twentieth century was accompanied with the prevailing current of technology in different aspects of human life. At first, it incited a positive stimulus which could build a utopian world on the advancement of technology. However, the bloody World Wars averted this view and the technological utopia was replaced by Orwellian dystopia. Orwell's Nineteen Eighty-Four is a satirical work which moves against Wells' utopian toward the reflection of a distorted technological society. Undoubtedly, satire is the best literary mode for dystopic depiction of the world specifically the one portrayed in Nineteen Eighty-Four. Winston Smith, the central character of this novel, is lower from his society in terms of intelligence and power of action. Therefore, he is put under rigid controls and brainwashing. And at last, he awfully rejects his love in favor the principles of the Party. Thus, in this study, we try to investigate Winston's romantic life in a satiric manner with respect to Northrop Frye's theme of romance which includes the three phase of agon, pathos and anagnorisis.

  4. Room temperature sensing of O2 and CO by atomic layer deposition prepared ZnO films coated with Pt nanoparticles

    NARCIS (Netherlands)

    Erkens, I.J.M.; Blauw, M.A.; Verheijen, M.A.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    Ultralow-power gas sensing devices need to operate without an energy consuming heater element. This requires the design of sensing devices that are so efficient that they can operate at room temperature (RT). Here, we report on the RT sensing performance of atomic layer deposition (ALD) prepared i-Z

  5. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  6. On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition

    Science.gov (United States)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Barcones, Beatriz; Melskens, J.; Kessels, Wilhelmus M. M.

    2016-08-01

    Hydrogen-doped indium oxide (In2O3:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In2O3:H. This process consists of ALD of In2O3:H films at 100 °C, followed by a solid phase crystallization step at 150-200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  7. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Loïc Assaud

    2014-02-01

    Full Text Available Three-dimensionally (3D nanoarchitectured palladium/nickel (Pd/Ni catalysts, which were prepared by atomic layer deposition (ALD on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4. Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  8. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  9. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    Science.gov (United States)

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  10. Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry

    Science.gov (United States)

    Vieira, R. S.; Lima Santos, A.

    2017-09-01

    We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.

  11. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  12. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  13. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    Science.gov (United States)

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO3, HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL(-1) HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg(-1) for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg(-1) which were below the limits of 300, 200 and 100µgkg(-1) set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Facile Preparation of Crosslinked Polymeric Nanocapsules via Combination of Surface-Initiated Atom Transfer Radical Polymerization and Ultraviolet Irradiated Crosslinking Techniques

    Directory of Open Access Journals (Sweden)

    Mu Bin

    2009-01-01

    Full Text Available Abstract A facile approach for the preparation of crosslinked polymeric nanocapsules was developed by the combination of the surface-initiated atom transfer radical polymerization and ultraviolet irradiation crosslinking techniques. The well-defined polystyrene grafted silica nanoparticles were prepared via the SI-ATRP of styrene from functionalized silica nanoparticles. Then the grafted polystyrene chains were crosslinked with ultraviolet irradiation. The cross-linked polystyrene nanocapsules with diameter of 20–50 nm were achieved after the etching of the silica nanoparticle templates with hydrofluoric acid. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis, and transmission electron microscopy.

  15. [Democracy without equity: analysis of health reform and nineteen years of National Health System in Brazil].

    Science.gov (United States)

    Coelho, Ivan Batista

    2010-01-01

    This paper aims to evaluate the nineteen years of the National Health System in Brazil, under the prism of equity. It takes into account the current political context in Brazil in the 80s, that the democratization of the country and the health sector could, per se, lead to a more equitable situation regarding the access to health services. Democracy and equity concepts are here discussed; analyzing which situations may facilitate or make it difficult its association in a theoretical plan, applying them to the Brazilian context in a more general form and, to emphasizing practical implications to the National Health System and to groups of activism related to health reforms. It also seeks to show the limits and possibilities of these groups with regards to the reduction of inequality, in relation to the access to health services, which still remain. To conclude, the author points out the need for other movements to be established which seek the reduction of such and other inequalities, such as access to education, housing, etc, drawing special attention to the role played by the State, which is questioned regarding its incapacity of promoting equity, once it presents itself as being powerful when approaching other matters.

  16. Symmetry classes of alternating sign matrices in a nineteen-vertex model

    Science.gov (United States)

    Hagendorf, Christian; Morin-Duchesne, Alexi

    2016-05-01

    The nineteen-vertex model of Fateev and Zamolodchikov on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg’s determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.

  17. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  18. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  19. Victory Gin Lane. Starvation and Beverages in Orwell’s Nineteen Eighty-Four

    Directory of Open Access Journals (Sweden)

    Paolo Caponi

    2015-05-01

    Full Text Available Gin is an ubiquitous presence in the domestic and urban scenery of Nineteen Eighty-Four (1949. For a population mercilessly hungered, it represents a handy and cheap commodity item providing a fluid opportunity for social aggregation. Victory Gin, served “in handless chine mugs” (53, is part of the workers’ staple diet at the Ministry of Truth, and is sold “at ten cents the large nip” from the small bar (actually, “a mere hole in the wall”, 51 in the canteen; served with cloves, it is the “speciality” (79 of that disreputable place which is the Chestnut Tree Café, where Winston Smith once spotted three fallen-out-of-favor members of the Inner Party – Jones, Aaronson and Rutherford – drink it silently after their release from Oceania prison camps (79. As is typical of the fate of spirits in literature, gin also serves as self-medication and can fuel a kind of inner escapism. It is to make the world “look more cheerful” that Winston gulps it down “like a dose of medicine”, and only after the “shock” of swallowing it can he squeeze himself into his alcove and begin his diary (7; gin clears out Winston’s stomach (53, and is the ultima ratio against that prescient “dull ache” in his belly (105; 106 that originates after bumping into “the girl with dark hair” (later: Julia one evening outside Mr. Charrington’s shop.

  20. Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Haifeng [Department of Chemical & Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque NM 87131 USA; Lin, Sen [Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002 China; Goetze, Joris [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99 3584 CG Utrecht The Netherlands; Pletcher, Paul [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99 3584 CG Utrecht The Netherlands; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque NM 87131 USA; Kovarik, Libor [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Artyushkova, Kateryna [Department of Chemical & Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque NM 87131 USA; Weckhuysen, Bert M. [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99 3584 CG Utrecht The Netherlands; Datye, Abhaya K. [Department of Chemical & Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque NM 87131 USA

    2017-06-28

    CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation of small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.

  1. Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water

    Science.gov (United States)

    Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.

    2016-04-01

    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns.

  2. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards

  3. Characterization of U-2 wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization

    Science.gov (United States)

    Kim, Ki Hwan; Lee, Don Bac; Kim, Chang Kyu; Hofman, Gerard E.; Paik, Kyung Wook

    1997-06-01

    The characteristics of high density UMo alloy powder solidified rapidly by the centrifugal atomization process have been examined. The results indicate that most of the atomized UMo alloy particles have a smooth surface and near-perfect spherical shape. The atomized powder, irrespective of particle size, is found to be single phase γ-U alloy with isotropic structure and non-dendritic grain. The continuous cooling DSC trace of U-2 wt% Mo alloy shows a small, broad endothermic peak originated from the formation of α-U phase and U 2Mo phase, whereas that of U-10 wt% Mo alloy shows no peak over all temperature ranges associated with the decomposition of γ-U phase. The γ-U phase of U-2 wt% Mo powder is decomposed as the α-U phase and the U 2Mo phase after an annealing treatment at 400°C for 100 h. But the γ-U phase of atomized U-10 wt% Mo powder remains as it was.

  4. Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition

    NARCIS (Netherlands)

    Wu, Y.; Hermkens, P.M.; Loo, B.W.H. van de; Knoops, H.C.M.; Potts, S.E.; Verheijen, M.A.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    In this work, the structural, electrical, and optical properties as well as chemical bonding state of Al-doped ZnO films deposited by atomic layer deposition have been investigated to obtain insight into the doping and electrical transport mechanisms in the films. The range in doping levels from 0%

  5. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2014-11-01

    Full Text Available In this work supercritical assisted atomization (SAA) process was used for the co-precipitation of poly(d,l-lactide) (PDLLA) and rifampicin (RIF) as nanoparticles for sustained release applications. The effect of the variation of PDLLA/RIF ratio...

  6. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Han, Siyuan

    2004-12-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation.

  7. Study of AB{sub 2} alloy electrodes for Ni/MH battery prepared by centrifugal casting and gas atomization

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwoyoung@yahoo.co [Energy Conversion Devices Inc./Ovonic Battery Company, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Koch, J.; Ouchi, T. [Energy Conversion Devices Inc./Ovonic Battery Company, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Banik, A. [Special Metal Corporation, 100 Industry Lane, Princeton, KY 42445 (United States); Fetcenko, M.A. [Energy Conversion Devices Inc./Ovonic Battery Company, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)

    2010-04-30

    Centrifugal casting and gas atomization processes were applied on multiple phase AB{sub 2} alloys and compared to the conventional melt-and-cast. Four different compositions were chosen for this study. The roles of Zr, Mn, Cr, and Ni in various battery aspects are identified. Cooling speed was found to be crucial for the C14 and C15 phase abundances. As the cooling speed increased from 10{sup 2} to 10{sup 4} degrees per second, a higher percentage of C15 was found. The centrifugal casting process provided better cycle life and low temperature performance with the only trade-off being slower activation. The gas atomization process can achieve lower production cost due to the elimination of a grinding procedure and extended cycle life, but suffers from higher bulk oxygen content and thicker surface oxide, and thus inferior in all battery performance characteristics other than cycle life and charge retention.

  8. Politics in Language:on George Orwell’s View of Language in Nineteen Eighty-Four

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-jing; WANG Jing

    2015-01-01

    Language stood in the foreground of George Orwell’s social and political thinking. Language is not only a vehicle for transmitting ideas, but also a product originating from social and political interactions. This paper examines the language, particu⁃larly the abuse of language, in the context of politics presented in Nineteen Eighty-Four, so as to find out George Orwell’s view of language:language as a manipulated tool to control people’s minds.

  9. Dye-sensitized solar cell based on optically transparent TiO{sub 2} nanocrystalline electrode prepared by atomized spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, H.M.N., E-mail: hmnb@pdn.ac.l [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Rajapakse, R.M.G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Murakami, K. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Kumara, G.R.R.A.; Anuradha Sepalage, G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka)

    2011-10-30

    Highlights: > Transparent TiO{sub 2} films were prepared by the atomized spray pyrolysis method. > These films contain 3-5 nm discrete particles, interconnected to give a crack-free thin film structure. > Dye-absorption of the TiO{sub 2} film is 2.16 times higher than those used in conventional DSCs. > Conversion efficiency of 8.2% can be achieved with 1000 W m{sup -2} irradiation. - Abstract: Preparation of crack-free thin films of interconnected and non-agglomerated TiO{sub 2} nanoparticles on electronically conducting fluorine doped tin oxide surfaces is instrumental in designing and developing transparent dye-sensitized solar cells (DSCs). A novel technique called 'Atomized Spray Pyrolysis' (ASP) has been designed and developed to achieve such perfectly transparent thin films. Optical transmittance of TiO{sub 2} films produced on FTO surface by this ASP method has been compared with those obtained by doctor-blading and by hand spray methods and found that the atomized spray pyrolysis technique give films with high transparency. Dye adsorption per gram of TiO{sub 2} is 2.16 times higher in the sample produced by the ASP method when compared to the film produced by the hand spray method and is 1.60 times higher than that produced by the doctor-blading method using a commercially available TiO{sub 2} nanocrystalline paste. SEM studies show the presence of interconnected discrete particles in the film produced by the ASP method. The fill factor (ff) remains almost constant for the cells with thickness from 6 {mu}m to 13 {mu}m but the highest photovoltage and photocurrent were found in {approx}10 {mu}m film based DSC which gave 8.2% conversion efficiency at AM 1.5 irradiation for cells of 0.25 cm{sup 2} active area.

  10. Preparation of Nano-Sized γ-Al2O3 Supported Iron Catalyst for Fischer-Tropsch Synthesis by Solvated Metal Atom Impregnation Methods

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, M(o)ssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced α-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.

  11. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Cassiana S. [Instituto de Quimica, Universidade de Sao Paulo, CP 26077, Sao Paulo, SP 05513-970 (Brazil); Silva, Cintia S. [Instituto de Quimica, Universidade de Sao Paulo, CP 26077, Sao Paulo, SP 05513-970 (Brazil); Nogueira, Ana R.A. [Embrapa Pecuaria Sudeste, CP 339, Sao Carlos, SP 13560-970 (Brazil); Oliveira, Pedro V. [Instituto de Quimica, Universidade de Sao Paulo, CP 26077, Sao Paulo, SP 05513-970 (Brazil)]. E-mail: pvolivei@iq.usp.br

    2005-06-30

    This work describes a systematic study for the bovine liver sample preparation for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. The main parameters investigated were sample drying, grinding process, particle size, sample size, microsample homogeneity, and their relationship with the precision and accuracy of the method. A bovine liver sample was prepared using different drying procedures: (1) freeze drying, and (2) drying in a household microwave oven followed by drying in a stove at 60 deg. C until constant mass. Ball and cryogenic mills were used for grinding. Less sensitive wavelengths for Cu (216.5 nm) and Zn (307.6 nm), and Zeeman-based three-field background correction for Cu were used to diminish the sensitivities. The pyrolysis and atomization temperatures adopted were 1000 deg. C and 2300 deg. C for Cu, and 700 deg. C and 1700 deg. C for Zn, respectively. For both elements, it was possible to calibrate the spectrometer with aqueous solutions. The use of 250 {mu}g of W + 200 {mu}g of Rh as permanent chemical modifier was imperative for Zn. Under these conditions, the characteristic mass and detection limit were 1.4 ng and 1.6 ng for Cu, and 2.8 ng and 1.3 ng for Zn, respectively. The results showed good agreement (95% confidence level) for homogeneity of the entire material (> 200 mg) when the sample was dried in microwave/stove and ground in a cryogenic mill. The microsample homogeneity study showed that Zn is more dependent on the sample pretreatment than Cu. The bovine liver sample prepared in microwave/stove and ground in a cryogenic mill presented results with the lowest relative standard deviation for Cu than Zn. Good accuracy and precision were observed for bovine liver masses higher than 40 {mu}g for Cu and 30 {mu}g for Zn. The concentrations of Cu and Zn in the prepared bovine liver sample were 223 mg kg{sup -} {sup 1} and 128 mg kg{sup -} {sup 1}, respectively. The relative standard deviations were lower

  12. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    .3. The bromoisobutyrate functionalized polyether macroinitiators with molecular masses (M-n) of approx. 10 000 enabled the addition of between 15 and 39 wt.% flanking PFS as found by H-1 NMR. In a similar fashion monomethoxy PEG ( MPEG, Mn 5 000) was added 50 wt.% PFS. Polymer electrolytes were prepared by complexing...

  13. The Atomic Energy Commission's Annual Report to Congress for 1959. Major Activities in the Atomic Energy Programs, January - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  14. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Science.gov (United States)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai; Zhang, Zuoguang

    2017-04-01

    Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 1020 atoms/cm2 were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  15. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    Science.gov (United States)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  16. Growth of nitrogen-doped p-type ZnO thin films prepared by atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    LEE Chongmu; LIM Jongmin; PARK Suyoung; KIM Hyounwoo

    2006-01-01

    Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2[Diethylzinc,DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·m with a hole concentration of 3.71×1017cm-3 . Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is ap-type semiconductor.

  17. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    Science.gov (United States)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  18. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cheng, Ting; Zhu, Shuqiang; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-04-01

    The nucleoside or modified nucleoside level in biological fluids reflects the pathological or physiological state of the body. Boronate affinity absorbents are widely used to selectively extract nucleosides from complex samples. In this work, a novel functionalized absorbent was synthesized by attaching 4-mercaptophenylboronic acid to gold nanoparticles on modified attapulgite. The surface of the attapulgite was modified by poly(acryloyloxyethyltrimethyl ammonium chloride) by atom transfer radical polymerization, creating many polymer brushes on the surface. The resultant material exhibited superior binding capacity (30.83 mg/g) for adenosine and was able to capture cis-diol nucleosides from 1000-fold interferences. Finally, to demonstrate its potential for biomolecule extraction, this boronate affinity material was used to preconcentrate nucleosides from human urine and plasma.

  19. The Nature of Atoms.

    Science.gov (United States)

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  20. Hybrid functional IrO2-TiO2 thin film resistor prepared by atomic layer deposition for thermal inkjet printheads

    Institute of Scientific and Technical Information of China (English)

    Won-Sub KWACK; Hyoung-Seok MOON; Seong-Jun JEONG; Qi-min WANG; Se-Hun KWON

    2011-01-01

    IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP).in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of lrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor.Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.

  1. Effect of mid-annealing process on the device characteristics of the TFT using Al-doped ZnO active channels prepared by atomic layer deposition

    Science.gov (United States)

    Kim, Eom-Ji; Bak, Jun-Yong; Choi, Jeong-Seon; Yoon, Sung-Min

    2015-03-01

    A specified mid-annealing process, which is a thermal treatment in oxygen ambient right after an active layer deposition, was proposed for obtaining a sufficiently wide process window for the atomic layer deposition in order to realize a high performance Al-doped ZnO (AZO) thin-film transistors (TFTs). While the crystalline phases of the AZO thin films were not changed after the mid-annealing process, the electrical conductivities of the films experienced drastic changes owing to the significant reduction of oxygen vacancies during the mid-annealing process. The decrease in the electrical conductivity was more markedly observed for the AZO films prepared at higher deposition temperature. Top-gate-structured TFTs using the mid-annealed AZO active channel layers were fabricated and characterized. Sound on/off switching behaviors of TFTs were obtained at a wider range of deposition temperature. Additionally, the improvements in carrier mobility and negative bias stress stability were successfully confirmed.

  2. Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing

    Science.gov (United States)

    Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Mousel, M.; Redinger, A.; Siebentritt, S.; Raabe, D.

    2013-01-01

    We use atom probe tomography (APT) for resolving nanometer scale compositional fluctuations in Cu2ZnSnSe4 (CZTSe) thin-films prepared by co-evaporation and post-deposition annealing. We detect a complex, nanometer-sized network of CZTSe and ZnSe domains in these films. Some of the ZnSe domains contain precipitates having a Cu- and Sn-rich composition, where the composition cannot be assigned to any of the known equilibrium phases. Furthermore, Na impurities are found to be segregated at the CZTSe/ZnSe interface. The insights given by APT are essential for understanding the growth of CZTSe absorber layers for thin-film solar cells and for optimizing their optoelectronic properties.

  3. Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W.J. [Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, WI 53706 (United States); Choi, Dong-Won [Division of Materials Science and Engineering, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul, 133-719 (Korea, Republic of); Park, Jozeph, E-mail: jozeph.park@gmail.com [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Jin-Seong, E-mail: jsparklime@hanyang.ac.kr [Division of Materials Science and Engineering, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul, 133-719 (Korea, Republic of)

    2015-11-15

    Transparent conducting Indium oxide (InO{sub x}) thin films were deposited by atomic layer deposition at low deposition temperatures below 100 °C. For the comparative study with liquid precursors in low temperature thermal ALD, diethyl[1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]-Indium, [3-(dimethylamino-kN)propyl-kC]dimethyl-Indium, and triethyl indium (TEIn) were used as the In precursors. Ozone was used as the oxidant for all precursors. InO{sub x} films grown using the three precursors all exhibit relatively low electrical resistivity below 10{sup −3} Ω cm at temperatures above 150 °C. Below 100 °C, the lowest resistivity (2 × 10{sup −3} Ω cm) was observed in the films grown with TEIn. The electrical, structural and optical properties were systematically investigated as functions of the deposition temperature and precursors. - Highlights: • InO{sub x} thin films were deposited by ALD at extremely low deposition temperatures below 100 °C. • InO{sub x} films exhibit relatively low electrical resistivity below 10{sup −3} Ω cm at temperatures above 150 °C. • Ozone stimulate the chemical reactions to yield dense indium oxide films at low temperatures.

  4. Lipase Immobilization onto the Surface of PGMA-b-PDMAEMA-grafted Magnetic Nanoparticles Prepared via Atom Transfer Radical Polymerization☆

    Institute of Scientific and Technical Information of China (English)

    Jingyun Wang; Fangling Ji; Jishuang Xing; Shuang Cui; Yongming Bao; Wenbo Hao

    2014-01-01

    A block copolymer of 2-dimethylaminoethyl methacrylate (DMAEMA) and glycidyl methacrylate (GMA) was grafted onto the surface of magnetic nanoparticles (Fe3O4) via atom transfer radical polymerization. The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1%under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher pH stability than the free lipase at pH 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over 55%of its initial activity.

  5. Active MnO{sub x} electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pickrahn, Katie L.; Park, Sang Wook; Gorlin, Yelena; Lee, Han-Bo-Ram; Jaramillo, Thomas F.; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025 (United States)

    2012-10-15

    The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD-MnO{sub x} on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn{sub 2}O{sub 3} catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn{sub 2}O{sub 3} catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnO{sub x} catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth-abundant materials for the ORR and the OER. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition

    Science.gov (United States)

    Seo, Wondeok; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Lee, Seungjin; Choi, Hyeongsu; Jeon, Hyeongtag

    2017-03-01

    Tin disulfide (SnS2) thin films were deposited by a thermal atomic layer deposition (ALD) method at low temperatures. The physical, chemical, and electrical characteristics of SnS2 were investigated as a function of the film thickness. SnS2 exhibited a (001) hexagonal plane peak at 14.9° in the X-ray diffraction (XRD) results and an A1g peak at 311 cm‑1 in the Raman spectra. These results demonstrate that SnS2 thin films grown at 150 °C showed a crystalline phase at film thicknesses above 11.2 nm. The crystallinity of the SnS2 thin films was evaluated by a transmission electron microscope (TEM). The X-ray photoelectron spectroscopy (XPS) analysis revealed that SnS2 consisted of Sn4+ and S2‑ valence states. Both the optical band gap and the transmittance of SnS2 decreased as the film thickness increased. The band gap of SnS2 decreased from 3.0 to 2.4 eV and the transmittance decreased from 85 to 32% at a wavelength of 400 nm. In addition, the resistivity of the thin film SnS2 decreased from 1011 to 106 Ω·cm as the film thickness increased.

  7. Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods

    Science.gov (United States)

    Al-Saadi, Mubarak J.; Al-Harthi, Salim H.; Kyaw, Htet H.; Myint, Myo T. Z.; Bora, Tanujjal; Laxman, Karthik; Al-Hinai, Ashraf; Dutta, Joydeep

    2017-01-01

    We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV ( 1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.

  8. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition.

    Science.gov (United States)

    Hou, Qiongqiong; Meng, Fanjie; Sun, Jiaming

    2013-03-28

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10-3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology.

  9. HREELS and photoemission study of GaSb( 1 0 0 )-(1×3) surfaces prepared by optimal atomic hydrogen cleaning

    Science.gov (United States)

    Veal, T. D.; Lowe, M. J.; McConville, C. F.

    2002-03-01

    High-resolution electron-energy-loss spectroscopy (HREELS) and synchrotron-radiation photoemission spectroscopy (SRPES) have been used to study the Sb-stabilised GaSb(1 0 0)-(1×3) surface prepared by a two-stage low-temperature atomic hydrogen cleaning (AHC) procedure. The use of a maximum annealing temperature of 300 °C avoids the degradation of surface stoichiometry associated with higher annealing temperatures. After AHC at a sample temperature of 100 °C, SRPES results show that all Sb oxides have been removed and only a small amount of Ga oxide remains. Further AHC treatment at 300 °C results in a clean surface with a sharp (1×3) low energy electron diffraction pattern. SRPES results indicate that the surface stoichiometry is identical to that previously found for GaSb(1 0 0)-(1×3) prepared by in situ molecular beam epitaxy. Electron energy-dependent HREEL spectra exhibit a coupled plasmon-phonon mode which has been used to study the electronic structure of the near-surface region. Semi-classical dielectric theory simulations of the HREEL spectra of the clean GaSb(1 0 0)-(1×3) surface indicate no detectable electronic damage or dopant passivation results from the AHC treatment. Valence band SRPES indicates that the surface Fermi level is close to the valence band maximum, suggesting the presence of an inversion layer at the surface.

  10. Propaganda and Surveillance in George Orwell’s Nineteen Eighty-Four: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Michael Yeo

    2010-01-01

    Full Text Available Propaganda and surveillance are pervasive in contemporary society. Extensive literatures have developed around each. George Orwell’s Nineteen Eighty-Four is an important point of reference in both literatures. Orwell takes both propaganda and surveillance to extreme limits: total surveillance and total propaganda. Writing them large he brings important aspects of each into sharp relief, which is why his novel has the iconic status that it does for theorists in both literatures. However Nineteen Eighty-Four is of interest not just for its potential contribution to theorizing about propaganda or about surveillance. Propaganda and surveillance in the novel are not just accidentally related but essentially linked. I show how they work not just individually but in tandem in Orwell’s text, playing complementary roles in an absurd project of total social control directed not just at behaviour but also thought. Relating propaganda and surveillance in a sustained and systematic reading of the novel reveals it to be an even richer resource for theorizing about either surveillance or propaganda than it is when read, as it typically is, with an emphasis on one or the other. Additionally, from a literary perspective this reading opens up what I believe is a fresh perspective on the novel and makes it more inviting for a thoughtful and rewarding reread.

  11. Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Mardani, Mahdieh

    2015-04-01

    Manganese oxide supported on mesoporous silica SBA-15 catalyst (Mn-SBA-15) was tested with Mn contents in the range of 0.8–23 wt%. Samples were prepared by the controlled grafting process of atomic layer deposition (ALD). Other sample was prepared for comparisons by the wet impregnation method. These samples were characterized by the techniques of ICP, XRD, SEM, Raman, FT-IR spectroscopy, diffuse reflectance UV–Vis, TGA-DSC, and N{sub 2} absorption–desorption surface area measurement. Results indicated that anchored manganese oxide particles have been successfully synthesized over the surface of SBA-15. These samples contained Red-Ox ion pairs of Mn{sup 2+} and Mn{sup 3+} highly dispersed on the mesoporous silica surface. The impregnated sample exhibited lower surface area and contained Red-Ox ion pairs of Mn{sup 3+} and Mn{sup 4+} more aggregated particles on the SBA-15 surface. Results determined Mn-SBA-15 as an efficient and selective catalyst for oxidation of benzyl alcohol with tert-butylhydroperoxide in liquid phase. In accordance with expectations, there was a negligible amount of leaching of immobilized manganese oxide from the support during the reaction, because of strong surface interaction between manganese oxide and hydroxyls groups. The influences of reaction temperature, reaction time, solvent, TBHP/benzyl alcohol molar ratio, amount of catalyst and reusability were investigated. Under optimized conditions (0.2 g catalyst, TBHP/benzyl alcohol molar ratio 1, solvent acetonitrile; T = 90 °C; reaction time 8 h), results achieved 70% conversion of benzyl alcohol and 100% selectivity to benzaldehyde. - Highlights: • Manganese oxide immobilized on SBA-15 were prepared by atomic layer deposition (ALD). • Oxidation of benzyl alcohol to benzaldehyde over this catalyst were investigated. • Effects of loading of manganese oxide, T, oxidant/alcohol ratio were investigated. • The leaching of manganese oxide from support during the reaction was

  12. Teleportation of Atomic States for Atoms in a Lambda Configuration

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states making use of three-level lambda atoms. The experimental realization proposed makes use of cavity QED involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic EPR states involving two-level atoms via the interaction of these atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  13. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  14. Water wettability of Si(1 1 1) and (0 0 1) surfaces prepared to be reconstructed, atomic-hydrogen terminated and thinly oxidized in an ultrahigh vacuum chamber

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Tomoaki; Sasahara, Akira; Tomitori, Masahiko, E-mail: tomitori@jaist.ac.jp

    2015-09-15

    Graphical abstract: - Highlights: • Clean and oxidized Si surfaces show super-hydrophilicity at WCAs less than 6°. • The most super-hydrophilic surface was the oxidized Si(1 1 1) surface. • H-terminated (1 1 1) and (0 0 1) surfaces exhibited different water contact angles. • Estimated the energetic contribution of OH-termination for WCA from the Young equation. • Discussed the water wettability based on density and angle of Si dangling bonds. - Abstract: Water contact angles on three types of Si(1 1 1) and (0 0 1) surfaces were measured in nitrogen gas atmosphere without exposing them to air; the surfaces were prepared to be (I) cleaned and reconstructed, subsequently (II) atomic hydrogen (H) terminated, or (III) thinly oxidized in an ultrahigh vacuum (UHV) chamber. The surfaces were characterized by Auger electron spectroscopy and atomic force microscopy. The H-terminated Si surfaces showed as less hydrophilic with a water contact angle of about 37° on the (1 1 1) and about 60° on the (0 0 1) surface, respectively. The clean and oxidized surfaces showed as super-hydrophilic with the angles less than 6°. To quantitatively evaluate the contact angles on the super-hydrophilic surfaces, an optical interference fringe method was used under an optical microscope in air. The most super-hydrophilic surface was the oxidized Si(1 1 1) surface. The reactivity of the Si surfaces and their degree of hydroxyl group termination to the Si surfaces responsible for water wettability were discussed.

  15. Pioneer institutions of distance electronic learning in Poland in the years nineteen sixties and seventies of the XX century

    Directory of Open Access Journals (Sweden)

    Mariusz Portalski

    2012-12-01

    Full Text Available In the final years of XX century, and especially in first decade of recent century was developed a number of formal learning forms, informal and outside formal with using systems and devices based on electronic techniques. Especially Internet and computer techniques next to multitude of television channels, mobile telephony and many others opportunities of data processing, accumulation and sending allow for realisation modern forms of intramural and remote teaching and learning. Persons, which are interested in remote education, open education or e-learning is worth to close pioneer activities in Poland in this areas in years nineteen sixties and seventies of the previous century. Two of activities like that, one worldwide and second in local scale implemented electronic remote education with using television are exactly subjects of this publication.

  16. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    Science.gov (United States)

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  17. High mobility In{sub 2}O{sub 3}:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Wu, Y.; Vanhemel, D. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2014-12-01

    The preparation of high-quality In{sub 2}O{sub 3}:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In{sub 2}O{sub 3}:H films were deposited by atomic layer deposition at 100 C, after which they underwent solid phase crystallization by a short anneal at 200 C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm{sup 2}/V s at a device-relevant carrier density of 1.8 x 10{sup 20} cm{sup -3}. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Determination of β-lactam Antibiotics in Pharmaceutical Preparations by Uv-visible Spectrophotometry Atomic Absorption and High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    *A. J. Abdulghani

    2012-09-01

    Full Text Available The determination amoxicillin, ampicillin and cephalexin was studied by complexation of the antibiotics with Au(III and Hg(II ions in bulk and pharmaceutical preparations using uv-visible spectrophotometry, atomic absorption, and HPLC techniques. Optimum conditions for complex formation were fixed at pH 4 and (2-4 for Au(III and Hg(IIcomplexes respectively, heating temperature at (60 °C and heating time for (10 minute. All complexes were extracted from aqueous solution with benzyl alcohol prior to measurements except in the case of HPLC. The L:M ratios for all complexes were determined and stability constants were calculated using mole ratio method. The Beer's law was obeyed over the concentration range (5-60 and 5-50 µg/ml of antibiotics for Au(III and Hg(II complexes using colorimetric method and (1-25 µg/ml of Au(III for FAAS. The linearity for HPLC method was (10-110 and 10-120 µg/ml respectively. The correlation coefficients (r were (0.9981-0.9997. Generally, the highest sensitivity was recorded by FAAS.

  19. Butanol Dehydration over V2O5-TiO2/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jong-Ki Jeon

    2013-04-01

    Full Text Available MCM-41 was used as a support and, by using atomic layer deposition (ALD in the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and vanadium oxide to the support. This research analyzes the effect of the loading amount of vanadium oxide on the acidic characteristics and catalytic performance in the dehydration of butanol. The physical and chemical characteristics of the TiO2-V2O5/MCM-41 catalysts were analyzed using XRF, BET, NH3-TPD, XRD, Py-IR, and XPS. The dehydration reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium oxide loaded to TiO2/MCM-41 sample using the liquid phase ALD method, it was possible to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were retained well after titanium oxide and vanadium loading. The NH3-TPD and Py-IR results indicated that weak acid sites were produced over the TiO2/MCM-41 samples, which is attributed to the generation of Lewis acid sites. The highest activity of the V2O5(12.1-TiO2/MCM-41 catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid sites, as well as the highest vanadium dispersion.

  20. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    Science.gov (United States)

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  1. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  2. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  3. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Kitayama, Yukiya; Takeuchi, Toshifumi

    2014-06-03

    Highly sensitive and selective protein nanosensing based on localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) on which polymerized specific ligands were grafted as an artificial protein recognition layer for the target protein were demonstrated. As a model, optical nanosensing for C-reactive protein (CRP), a known biomarker for chronic inflammation that predicts the risk of arteriosclerosis or heart attacks, was achieved by measuring the shift of LSPR spectra derived from the change of permittivity of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted AuNPs (PMPC-g-AuNPs) upon interacting with CRP, in which the PMPC-g-AuNPs layer were grafted on AuNPs by surface-initiated atom transfer radical polymerization (ATRP). This nanosensing system was effective even for detecting CRP concentrations in a human serum solution diluted to 1% (w/w), at which point a limit of detection was ~50 ng/mL and nonspecific adsorption of other proteins was negligible. The nanosensing system using specific ligand-grafted AuNPs has several strengths, such as low preparation cost, avoiding the need for expensive instruments, no necessary complex pretreatments, and high stability, because it does not contain biobased molecules. We believe this novel synthetic route for protein nanosensors, composed of AuNPs and a polymerized specific ligand utilizing surface-initiated controlled/living radical polymerization, will provide a foundation for the design and synthesis of nanosensors targeting various other biomarker proteins, paving the way for future advances in the field of biosensing.

  4. Fullerene-Based Macro-Heterocycle Prepared through Selective Incorporation of Three N and Two O Atoms into C60.

    Science.gov (United States)

    Li, Yanbang; Zhang, Gaihong; Wang, Dian; Xu, Beidi; Xu, Dan; Lou, Ning; Gan, Liangbing

    2016-11-14

    A 14-membered heterocycle is created on the C60 cage skeleton through a multistep procedure. Key steps involve repeated PCl5 -induced hydroxylamino N-O bond cleavage leading to insertion of nitrogen atoms, and also piperidine-induced peroxo O-O bond cleavage leading to insertion of oxygen atoms. The hetero atoms form one pyrrole, two pyran, and one diazepine rings in conjunction with the C60 skeleton carbon atoms. The fullerene-based macrocycle showed unique reactivities towards fluoride ion and copper salts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. P A Jungian Approach to Self-fragmentation of Twentieth Century in Orwell’s Nineteen Eighty Four

    Directory of Open Access Journals (Sweden)

    Mozhdeh Alizadeh Shirazi

    2014-11-01

    Full Text Available The problematic life of modern human has always been a significant issue for many areas of study. In reaction to the absence of romantic values and the unity of the pre-modern world, Human being was afflicted with a sense of inner crises which is referred to as self-fragmentation. Fragmentation is one of the significant features of twentieth century when a mode of anxiety subjugated both art and society. In such an atmosphere many writers of the modern century attempted to reflect in their works of literature, what they had experienced in the real world. Orwell’s Nineteen Eighty Four is one of the popular novels of Modern Era that describes a modern but fragmented society wherein the modern human’s lack of self-integration is perceptible. By representing how the protagonists respond to the voices of their psyches through characterization and dreams, which is also of crucial significance in Jung’s Analytical Psychology, Orwell explores the roots of modern human’s urge for achieving a cohesive sense of self. Accordingly, this study, attempts to illustrate how modern human steps in the path of individuation and to what extent these efforts meet with success, if any. To achieve this goal, some terms and notions of Jungian Criticism such as archetypes and the process of individuation will be borrowed, and a particular focus will be held on dreams occurring in the course of the story. In addition, this paper would like to argue that the dystopian society portrayed in these novels is the offspring of a mere rationalism which prevents human from knowing the opposing forces working within as well as the forces functioning from without.

  6. Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse.

    Science.gov (United States)

    Saldaña-Ruíz, Sandra; Soler-Martín, Carla; Llorens, Jordi

    2012-01-25

    Allylnitrile, cis-crotononitrile, and 3,3'-iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. George Orwell &"Nineteen Eighty-Four": The Man and the Book. A Conference at the Library of Congress, April 30 and May 1, 1984.

    Science.gov (United States)

    Library of Congress, Washington, DC.

    Proceedings of a conference of international Orwell experts gathered at the Library of Congress are presented in this collection. The collection is divided into four sections, corresponding with the four conference sessions: "What Orwell Really Wrote"; "Orwell: The Man"; "'Nineteen Eighty-Four': The Book"; and…

  8. Atom probe tomography today

    OpenAIRE

    Alfred Cerezo; Peter H. Clifton; Mark J. Galtrey; Humphreys, Colin J.; Kelly, Thomas. F.; David J. Larson; Sergio Lozano-Perez; Marquis, Emmanuelle A.; Oliver, Rachel A.; Gang Sha; Keith Thompson; Mathijs Zandbergen; Roger L. Alvis

    2007-01-01

    This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments) but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks) and also...

  9. An unusual case 0020 in paternity testing: nineteen autosomal short tandem repeat typing and 12 X-chromosome markers could not clarify the case.

    Science.gov (United States)

    Tabrizi, Arash Alipour; Hejazi, Arya; Hosseini, Marzieh

    2013-12-01

    We introduce a case of disputed parentage with 2 presumptive related fathers, although using multiple genetic systems, neither of the 2 fathers may be excluded. Nineteen autosomal short tandem repeat typing and 12 X-chromosome markers could not clarify the case. We can conclude that forensic autosomic short tandem repeats included in commercial kits are not sufficient to definitively discriminate parent-offspring with related putative fathers in forensic laboratories, and supplementary investigations should be available for selected cases.

  10. Cooling Rate Calculation of Non-Equilibrium Aluminum Alloy Powders Prepared by Gas Atomization%气雾化制备非平衡态铝合金粉末冷却速度的计算

    Institute of Scientific and Technical Information of China (English)

    何世文; 刘咏; 郭晟

    2009-01-01

    The cooling rate of aluminum alloy powders prepared by ultrasonic gas atomization process was calculated through the convection heat transfer principle.A simple and theoretical model is established,which can be expressed as |dTd/dt|=12/ρ·Cp·(Td-Tf)·kg/d2.The average cooling rates of Al-Ni-Ce-Fe-Cu alloy powders prepared by argon gas atomization and by helium gas atomization are about 104~107 K/s and 105~108 K/s,respectively.The critical cooling rate is calculated to be 3.74× 105 K/s for Al-Ni-Ce-Fe-Cu alloy amorphous powders prepared by argon gas atomization.The cooling rates of gas-atomized powder particles estimated from secondary dendrite arm spacing are in consistence to those predicted from the theoretical model.%依据对流换热原理,对超音速气体雾化非平衡态铝合金粉末的冷却速度进行了理论计算.获得了一个较简单的理论计算公式,其表达式为|dTd/dt|=12/p·Cp·(Td-Tf)·kg/d2.根据理论公式,氩气和氦气雾化制备铝合金粉的冷却速度分别为104~107和105~108K、s,其结果与前期科研者的计算结果相符,且计算公式更简化.对于氩气雾化制各Al-NiCe-Fe-Cu合金而言,获得非晶态粉末其临界冷却速度为3.74×109K/S.通过测定合金晶态粉末的二次枝晶臂间距,并利用冷却速度和枝晶臂间距之间的经验关系,验算了合金粉末的冷却速度.其结果与理论计算相吻合.

  11. Atom probe tomography today

    Directory of Open Access Journals (Sweden)

    Alfred Cerezo

    2007-12-01

    Full Text Available This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks and also the atomic-level characterization of interfaces in multilayers, oxide films, and semiconductor materials and devices.

  12. Microstructure and mechanical properties of Al-Si-Ni-Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.R. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hui, X.D., E-mail: xdhui@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Wang, S.S.; Zhao, Y.F.; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-07-15

    Highlights: {yields} There are distinct microstructures in the as-atomized powders with different size. {yields} The morphology of Al{sub 11}Ce{sub 3} crystals is related to the Ni content. {yields} Tiny Al{sub 3}Ni precipitated from the supersaturated matrix after SPS process. {yields} Hot-extrusion leads to the improved microstructures. {yields} This kind of alloy exhibits high comprehensive mechanical properties. - Abstract: Al-Si-Ni-Ce alloys with the composition of Al{sub 78.5}Si{sub 19}Ni{sub 2}Ce{sub 0.5}, Al{sub 76}Si{sub 19}Ni{sub 4}Ce{sub 1} and Al{sub 73}Si{sub 19}Ni{sub 7}Ce{sub 1} were atomized and then sintered by using spark plasma method. The microstructure of the as-atomized powders, sintered and hot-extruded samples was analyzed. The influences of granularity and sintering parameters including time and temperature on the density of sintered alloy were also discussed. It is shown that the atomized powders are composed of Si, Al{sub 11}Ce{sub 3}, Al{sub 3}Ni and alpha Al. Tiny Al{sub 3}Ni particles precipitate from supersaturated matrix near the powder boundaries during SPS. Hot-extrusion process leads to the layer structure and more homogeneous distribution of precipitates. These alloys exhibit high comprehensive mechanical properties with combination of high Vicker's micro-hardness, moderate tensile properties and elongation, which provide a novel kind of promising engineering materials.

  13. Three novel triazine-based materials with different O/S/N set of donor atoms: One-step preparation and comparison of their capability in selective separation of uranium.

    Science.gov (United States)

    Bai, Chiyao; Zhang, Meicheng; Li, Bo; Tian, Yin; Zhang, Shuang; Zhao, Xiaosheng; Li, Yang; Wang, Lei; Ma, Lijian; Li, Shoujian

    2015-12-30

    Cyanuric chloride was chosen as a core skeleton which reacted with desired linker molecules, urea, thiourea and thiosemicarbazide, to prepare three novel functional covalent triazine-based frameworks, CCU (O-donor set), CCTU (S-donor set) and CCTS (S, N-donor set) respectively, designed for selective adsorption of U(VI). The products have high nitrogen concentration (>30 wt%), regular structure, relatively high chemical and thermal stability. Adsorption behaviors of the products on U(VI) were examined by batch experiments. CCU and CCTU can extract U(VI) from simulated nuclear industrial effluent containing 12 co-existing cations with relatively high selectivity (54.4% and 54.2%, respectively). Especially, effects of donor atoms O/S on adsorption were investigated, and the outcomes indicate that the difference in coordinating ability between the donor atoms is weakened in large conjugated systems, and the related functional groups with originally very strong coordination abilities may not be the best choice for the application in selective adsorption of uranium and also other metals. The as-proposed approach can easily be expanded into design and preparation of new highly efficient adsorbents for selective separation and recovery of uranium through adjusting the structures, types and amounts of functional groups of adsorbents by choosing suitable linkers.

  14. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  15. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  16. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.

    2016-12-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

  17. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  18. Ge Implantation to Improve Crystallinity and Productivity for Solid Phase Epitaxy Prepared by Atomic Mass Unit Cross Contamination-Free Technique

    Science.gov (United States)

    Lee, Kong-Soo; Yoo, Dae-Han; Han, Jae-Jong; Son, Gil-Hwan; Lee, Chang-Hun; Noh, Ju-Hee; Kim, Seok-Jae; Kim, Yong-Kwon; You, Young-Sub; Hyung, Yong-Woo; Lee, Hyeon-Deok

    2006-11-01

    Germanium (Ge) ion implantation was investigated for crystallinity enhancement during solid phase epitaxial (SPE) regrowth. Electron back-scatter diffraction (EBSD) measurement showed numerical increase of 19% of (100) signal, which might be due to the effect of pre-amorphization implantation (PAI) on silicon layer. On the other hand, electrical property such as off-leakage current of n-channel metal oxide semiconductor (NMOS) transistor degraded in specific regions of wafers. It was confirmed that arsenic (As) atoms were incorporated into channel area during Ge ion implantation. Since the equipment for Ge PAI was using several source gases such as BF3 and AsH3, atomic mass unit (AMU) contamination during PAI of Ge with AMU 74 caused the incorporation of As with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use Ge isotope of AMU 72 to suppress AMU contamination. It was effective to use enriched Ge source gas with AMU 72 in order to improve productivity.

  19. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  20. Atom transfer as a preparative tool in coordination chemistry. Synthesis and characterization of Cr(V) nitrido complexes of bidentate ligands

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2003-01-01

    The transfer of a terminal nitrido ligand from MnV(N)(salen) to Cr(III) complexes is explored as a new preparative route to CrV nitrido complexes. Reaction of MnV(N)(salen) with labile CrCl3(THF)3 in acetonitrile solution precipitate [Mn(Cl)(salen)]·(CH3CN) and yields a solution containing a mixt...

  1. Atomic entanglement and decoherence

    Science.gov (United States)

    Genes, Claudiu

    The generation of entanglement in atomic systems plays a central topic in the fields of quantum information storage and processing. Moreover, a special category of entangled states of multi-atom ensembles, spin squeezed states, have been proven to lead to considerable improvement in the sensitivity of precision measurements compared to systems involving uncorrelated atoms. A treatment of entanglement in open systems is, however, incomplete without a precise description of the process of decoherence which necessarily accompanies it. The theory of entanglement and decoherence are the two main topics of this thesis. Methods are described for the generation of strong correlations in large atomic ensembles using either cavity quantum electrodynamics or measurement outcome conditioned quantum dynamics. Moreover, the description of loss of entanglement resulting from the coupling to a noise reservoir (electromagnetic vacuum) is explored. A spin squeezing parameter is used throughout this thesis as both a measure of entanglement strength and as an indication of the sensitivity improvement above the so-called standard quantum limit (sensitivity obtained with uncorrelated particles) in metrology. The first scheme considered consists of a single mode cavity field interacting with a collection of atoms for which spin squeezing is produced in both resonant and off-resonant regimes. In the resonant case, transfer of squeezing from a field state to the atoms is analyzed, while in the off-resonant regime squeezing is produced via an effective nonlinear interaction (one-axis twisting Hamiltonian). A second, more experimentally realistic case, is one involving the interaction of free space atoms with laser pulses; a projective measurement of a source field originating from atomic fluctuations provides a means of preparing atomic collective states such as spin squeezed and Schrodinger cat states. A new "unravelling" is proposed, that employs the detection of photon number in a single

  2. Preparation of Mg(OH)2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing

    2016-02-01

    Mg(OH)2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)2 crystals and affect the formation of lamella-like Mg(OH)2 crystals. The cellulose fiber grafted with modified Mg(OH)2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  3. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-12-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  4. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-02-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  5. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  6. The Nineteen Ancient Poems' time awareness of life%对《古诗十九首》中时间生命意识的解读

    Institute of Scientific and Technical Information of China (English)

    李阿芳

    2012-01-01

    《古诗十九首》以浅语道出远意,对时间生命意识的深刻体认与率真表达,是整个建安时期“人的自觉”、“文的自觉”的前奏,并因此而具有撼人心魄的力量。时间生命意识在古诗十九首中的体现,展开为及时有为与不达的苦闷、政治幻灭之后转而及时行乐、相思怀人之作的率意表达等几个方面。%The language of Nineteen ancient poems is simple, but at the same time it has far-reaching senses of the expression. Human consciousness and Literature consciousness is the symbol of Jianan literature.The Nineteen Ancient Poems' time awareness of life begins the prelude of Jianan literature, and therefore has a shocking and touching power.Sense of time and life.embodied in the poetry showed in three aspects.They are timely and promising try but defeat, political disillusionment after the turn and time is swift, frankly expression of love poems.

  7. Assessing the Quality of Persian Translation of Orwell's Nineteen Eighty-four Based on House's Model: Overt-covert Translation Distinction

    Directory of Open Access Journals (Sweden)

    Hossein Heidani TABRIZI

    2014-12-01

    Full Text Available This study aimed to assess the quality of Persian translation of Orwell's (1949 Nineteen Eighty-Four by Balooch (2004 based on House's (1997 model of translation quality assessment. To do so, about 10 percent of the source text was randomly selected. The profile of the source text register was produced and the genre was realized. The source text profile was compared to the translation text profile. The result of this comparison was dimensional mismatches and overt errors. The dimensional mismatches were categorized based on different dimensions of register. The overt errors which were based on denotative mismatches and target system errors were categorized into omissions, additions, substitutions, and breaches of the target language system. Then, the frequencies of occurrences of subcategories of overt errors along with their percentages were calculated. The dimensional mismatches and a large number of major overt errors including omissions and substitutions indicated that the translation was not in accordance with the House's view stating that literary works needed to be translated overtly. Mismatches on different levels of register showed that the cultural filter was applied in translation and the second-level functional equivalence required for overt translation was not reached. Therefore, the Persian translation of Nineteen Eighty-Four did not fulfill the criteria to be an overt translation.

  8. 《一九八四》的女性主义批评%A feminist criticism on Nineteen Eighty Four

    Institute of Scientific and Technical Information of China (English)

    赵攀

    2012-01-01

    英国现代作家乔治·奥威尔的代表作《一九八四》被公认为是一部"反乌托邦"小说,其意义重大,影响深远。然而细观其文中女性人物的艺术形象却不免苍白和单薄,因为奥威尔强加给了她们传统家庭妇女的身份特征。试图从马克思主义女性主义和精神分析女性主义两个方面来阐述《一九八四》中体现出来的"性别等级"和女性的"他者"地位。%Modern British writer George Orwell's masterpiece Nineteen Eighty Four is recognized as a "dystopian novel" by critics,which has a significant and far-reaching effect.But if you examine female characters carefully you will find them artistically pale and thin because Orwell imposes the traditional woman identity on them.This novel is undoubtedly harmful from the feminist perspective.Therefore,in the Nineteen Eighty Four,"sexual rank" and women's "otherness" status will be illustrated from the perspective of Marxist feminism and psychoanalytic feminism.

  9. Effects of global financial crisis on funding for health development in nineteen countries of the WHO African Region.

    Science.gov (United States)

    Kirigia, Joses M; Nganda, Benjamin M; Mwikisa, Chris N; Cardoso, Bernardino

    2011-04-13

    There is ample evidence in Asia and Latin America showing that past economic crises resulted in cuts in expenditures on health, lower utilization of health services, and deterioration of child and maternal nutrition and health outcomes. Evidence on the impact of past economic crises on health sector in Africa is lacking. The objectives of this article are to present the findings of a quick survey conducted among countries of the WHO African Region to monitor the effects of global financial crisis on funding for health development; and to discuss the way forward. This is a descriptive study. A questionnaire was prepared and sent by email to all the 46 Member States in the WHO African Region through the WHO Country Office for facilitation and follow up. The questionnaires were completed by directors of policy and planning in ministries of health. The data were entered and analyzed in Excel spreadsheet. The main limitations of this study were that authors did not ask whether other relevant sectors were consulted in the process of completing the survey questionnaire; and that the overall response rate was low. The main findings were as follows: the response rate was 41.3% (19/46 countries); 36.8% (7/19) indicated they had been notified by the Ministry of Finance that the budget for health would be cut; 15.8% (3/19) had been notified by partners of their intention to cut health funding; 61.1% (11/18) indicated that the prices of medicines had increased recently; 83.3% (15/18) indicated that the prices of basic food stuffs had increased recently; 38.8% (7/18) indicated that their local currency had been devalued against the US dollar; 47.1% (8/17) affirmed that the levels of unemployment had increased since the onset of global financial crisis; and 64.7% (11/17) indicated that the ministry of health had taken some measures already, either in reaction to the global financing crisis, or in anticipation. A rapid assessment, like the one reported in this article, of the

  10. Effects of global financial crisis on funding for health development in nineteen countries of the WHO African Region

    Directory of Open Access Journals (Sweden)

    Mwikisa Chris N

    2011-04-01

    Full Text Available Abstract Background There is ample evidence in Asia and Latin America showing that past economic crises resulted in cuts in expenditures on health, lower utilization of health services, and deterioration of child and maternal nutrition and health outcomes. Evidence on the impact of past economic crises on health sector in Africa is lacking. The objectives of this article are to present the findings of a quick survey conducted among countries of the WHO African Region to monitor the effects of global financial crisis on funding for health development; and to discuss the way forward. Methods This is a descriptive study. A questionnaire was prepared and sent by email to all the 46 Member States in the WHO African Region through the WHO Country Office for facilitation and follow up. The questionnaires were completed by directors of policy and planning in ministries of health. The data were entered and analyzed in Excel spreadsheet. The main limitations of this study were that authors did not ask whether other relevant sectors were consulted in the process of completing the survey questionnaire; and that the overall response rate was low. Results The main findings were as follows: the response rate was 41.3% (19/46 countries; 36.8% (7/19 indicated they had been notified by the Ministry of Finance that the budget for health would be cut; 15.8% (3/19 had been notified by partners of their intention to cut health funding; 61.1% (11/18 indicated that the prices of medicines had increased recently; 83.3% (15/18 indicated that the prices of basic food stuffs had increased recently; 38.8% (7/18 indicated that their local currency had been devalued against the US dollar; 47.1% (8/17 affirmed that the levels of unemployment had increased since the onset of global financial crisis; and 64.7% (11/17 indicated that the ministry of health had taken some measures already, either in reaction to the global financing crisis, or in anticipation. Conclusion A rapid

  11. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  12. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays

    Science.gov (United States)

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R.; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D.

    2016-11-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  13. Remote atom entanglement in a fibre-connected three-atom system

    Institute of Scientific and Technical Information of China (English)

    Guo Yan-Qing; Chen Jing; Song He-Shan

    2008-01-01

    An Ising-type atom-atom interaction is obtained in a fibre-connected three-atom system. The interaction is effective when △≈γO>>g.The preparations of remote two-atom and three-atom entanglements governed by this interaction are discussed in a specific parameter region.The overall two-atom entanglement is very small because of the existence of the third atom.However,the three-atom entanglement can reach a maximum very close to 1.

  14. Remote atom entanglement in a fiber-connected three-atom system

    OpenAIRE

    Yan-Qing, Guo; Jing, Chen; He-Shan, Song

    2008-01-01

    An Ising-type atom-atom interaction is obtained in a fiber-connected three-atom system. The interaction is effective when $\\Delta\\approx \\gamma _{0}\\gg g$. The preparations of remote two-atom and three-atom entanglement governed by this interaction are discussed in specific parameters region. The overall two-atom entanglement is very small because of the existence of the third atom. However, the three-atom entanglement can reach a maximum very close to 1.

  15. Structural effects due to the incorporation of Ar atoms in the lattice of ZrO sub 2 thin films prepared by ion beam assisted deposition

    CERN Document Server

    Holgado, J P; Veen, A V; Schut, H; Hosson, J T M; González-Elipe, A R

    2002-01-01

    Two sets of ZrO sub 2 thin films have been prepared at room temperature by ion beam induced chemical vapour deposition and subsequently annealed up to 1323 K. The two sets of samples have been prepared by using either O sub 2 sup + or mixtures of (O sub 2 sup + +Ar sup +) ions for the decomposition of a volatile metallorganic precursor of zirconium. The structure and microstructure of these two sets of samples have been determined by means of X-ray diffraction, Fourier transform infrared spectroscopy and positron beam analysis (PBA). The samples were very compact and dense and had a very low-surface roughness. After annealing in air at T>=573 K both sets of films were transparent and showed similar refraction indexes. For the (O sub 2 sup + +Ar sup +)-ZrO sub 2 thin films it is shown by X-ray photoelectron spectroscopy and Rutherford back scattering that a certain amount of incorporated Ar (5-6 at.%) remains incorporated within the oxide lattice. No changes were detected in the amount of incorporated Ar even ...

  16. 雾化-热分解法合成氧化铁纳米粒子及其磁性能%Preparation of Iron Oxide Nanoparticles by Atomization,Thermal-Decomposition and their Magnetic Property

    Institute of Scientific and Technical Information of China (English)

    王行展; 张宝林

    2012-01-01

    An iron oxide nanoparticles preparation system, which contained ultrasonic atomization, segmentally thermal decomposition and oxidation of iron pentacarbonyl, product collecting and modification, was established. The effect of different operating temperatures on phase composition and morphologies of the prepared nanoparticles were studied, and firstly used the method of adding modifiers in atomization liquid to control the sizes and dispersity of magnetic iron oxide nanoparticles products. The properties of nanoparticles were tested by X - ray diffraction( XRD) , transmission electron microscopy( TEM) and superconducting quantum interference device( SQUID) measurements. Spherical maghemite nanoparticles with different degree of dispersity and crystallinity were successfully synthesised, and SQUID test shows that with the decrease of size, the magnetism of maghemite nanoparticles changes from paramagnetic to superparamagnetic.%建立了将五羰基铁超声雾化、分段加热分解-氧化及产物收集-修饰一体化的氧化铁纳米粒子合成装置,研究了不同温度参数对纳米粒子的相组成和形貌的影响,并通过在雾化液及收集液中添加修饰剂以控制合成纳米粒子的粒径和分散性.采用XRD、TEM和SQUID对合成的纳米粒子进行了表征.成功合成了不同结晶性和分散性的球形γ-Fe2O3纳米粒子.随着粒径减小,合成纳米粒子由顺磁性过渡到超顺磁性.

  17. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO

    Science.gov (United States)

    Schreier, Marcel; Héroguel, Florent; Steier, Ludmilla; Ahmad, Shahzada; Luterbacher, Jeremy S.; Mayer, Matthew T.; Luo, Jingshan; Grätzel, Michael

    2017-07-01

    The solar-driven electrochemical reduction of CO2 to fuels and chemicals provides a promising way for closing the anthropogenic carbon cycle. However, the lack of selective and Earth-abundant catalysts able to achieve the desired transformation reactions in an aqueous matrix presents a substantial impediment as of today. Here we introduce atomic layer deposition of SnO2 on CuO nanowires as a means for changing the wide product distribution of CuO-derived CO2 reduction electrocatalysts to yield predominantly CO. The activity of this catalyst towards oxygen evolution enables us to use it both as the cathode and anode for complete CO2 electrolysis. In the resulting device, the electrodes are separated by a bipolar membrane, allowing each half-reaction to run in its optimal electrolyte environment. Using a GaInP/GaInAs/Ge photovoltaic we achieve the solar-driven splitting of CO2 into CO and oxygen with a bifunctional, sustainable and all Earth-abundant system at an efficiency of 13.4%.

  18. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wegler, Barbara, E-mail: barbara.wegler@siemens.com [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen, Germany and Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany); Schmidt, Oliver [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Hensel, Bernhard [Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany)

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  19. Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Novruzov, V.D. [Department of Physics, Recep Tayyip Erdogan University, Rize (Turkey); Keskenler, E.F., E-mail: keskenler@gmail.com [Department of Nanotechnology Engineering, Recep Tayyip Erdogan University, Rize (Turkey); Tomakin, M. [Department of Physics, Recep Tayyip Erdogan University, Rize (Turkey); Kahraman, S. [Department of Physics, Mustafa Kemal University, Hatay (Turkey); Gorur, O. [Department of Physics, Abant Izzet Baysal University, Bolu (Turkey)

    2013-09-01

    Boron doped CdS thin films were deposited by spray pyrolysis method using perfume atomizer. The effects of ultraviolet light on the structural, optical and electrical properties of B-doped CdS thin films were investigated as a function of dopant concentration (B/Cd). X-ray diffraction studies showed that all samples were polycrystalline nature with hexagonal structure. It was determined that the preferred orientation of non-illuminated samples changes from (1 0 1) to (0 0 2) with B concentration. The c lattice constant of films decreases from 6.810 Å to 6.661 Å with boron doping. The XRD peak intensity increased with the illumination for almost all the samples. The lattice parameters of B-doped samples remained nearly constant after illumination. It was found that the optical transmittance, photoluminescence spectra, resistivity and carrier concentration of the B-doped samples are stable after the illumination with UV light. Also the effects of UV light on B-doped CdS/Cu{sub 2}S solar cell were investigated and it was determined that photoelectrical parameters of B-doped solar cell were more durable against the UV light.

  20. Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer

    Science.gov (United States)

    Novruzov, V. D.; Keskenler, E. F.; Tomakin, M.; Kahraman, S.; Gorur, O.

    2013-09-01

    Boron doped CdS thin films were deposited by spray pyrolysis method using perfume atomizer. The effects of ultraviolet light on the structural, optical and electrical properties of B-doped CdS thin films were investigated as a function of dopant concentration (B/Cd). X-ray diffraction studies showed that all samples were polycrystalline nature with hexagonal structure. It was determined that the preferred orientation of non-illuminated samples changes from (1 0 1) to (0 0 2) with B concentration. The c lattice constant of films decreases from 6.810 Å to 6.661 Å with boron doping. The XRD peak intensity increased with the illumination for almost all the samples. The lattice parameters of B-doped samples remained nearly constant after illumination. It was found that the optical transmittance, photoluminescence spectra, resistivity and carrier concentration of the B-doped samples are stable after the illumination with UV light. Also the effects of UV light on B-doped CdS/Cu2S solar cell were investigated and it was determined that photoelectrical parameters of B-doped solar cell were more durable against the UV light.

  1. Preparation of Mg(OH){sub 2} hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: wangxiao@dlpu.edu.cn [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning Province (China); Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning Province (China); Pang, Guibing [School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, Liaoning Province (China)

    2016-02-15

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH){sub 2} crystal for Mg(OH){sub 2} pigments. • Uniform coverage of nanosized Mg(OH){sub 2} pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH){sub 2} pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH){sub 2} flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH){sub 2} hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH){sub 2} pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH){sub 2} crystals and affect the formation of lamella-like Mg(OH){sub 2} crystals. The cellulose fiber grafted with modified Mg(OH){sub 2} hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  2. Preparation of a new Cd(II)-imprinted polymer and its application to determination of cadmium(II) via flow-injection-flame atomic absorption spectrometry.

    Science.gov (United States)

    Gawin, Marta; Konefał, Jadwiga; Trzewik, Bartosz; Walas, Stanisław; Tobiasz, Anna; Mrowiec, Halina; Witek, Ewa

    2010-01-15

    A new cadmium(II)-imprinted polymer based on cadmium(II) 2,2'-{ethane-1,2-diylbis[nitrilo(E)methylylidene]} diphenolate-4-vinylpyridine complex was obtained via suspension polymerization. The beads were used as a minicolumn packing for flow-injection-flame atomic absorption spectrometry (FI-FAAS) determination of cadmium(II) in water samples. Sorption effectiveness was optimal within pH range of 6.6-7.7. Nitric acid, 0.5% (v/v) was used as eluent. Fast cadmium(II) sorption by the proposed material enabled to apply sample flow rates up to 10mLmin(-1) without loss in sorption effectiveness. Enrichment factor (EF), concentration efficiency (CE) and limit of detection (LOD, 3sigma) found for 120-s sorption time were 117, 39.1min(-1) and 0.11microgL(-1), respectively. Sorbent stability was proved for at least 100 preconcentration cycles (RSD=2.9%). When compared to non-imprinted polymer the new Cd(II)-imprinted polymer exhibited improved selectivity towards cadmium(II) against other heavy metal ions, especially Cu(II) and Pb(II), as well as light metal ions. Accuracy of the method was tested for ground water and waste water certified reference materials and fortified water. The method was applied to Cd(II) determination in natural water samples.

  3. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  4. Ar/O{sub 2} gas pressure dependence of atomic concentration of zirconia prepared by zirconium pulse arc PBII and D

    Energy Technology Data Exchange (ETDEWEB)

    Yukimura, Ken [Department of Electrical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan)]. E-mail: kyukimur@mail.doshisha.ac.jp; Yoshinaga, Hiroaki [Department of Electrical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Ohtsu, Yasunori [Department of Electrical and Electronic Engineering, Saga University, Honjo-machi1, Saga 840-8502 (Japan); Fujita, Hiroharu [Department of Electrical and Electronic Engineering, Saga University, Honjo-machi1, Saga 840-8502 (Japan); Nakamura, Keiji [Department of Electrical Engineering, College of Engineering, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Ma Xinxin [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2006-01-15

    Zirconium oxide films were prepared by plasma-based ion implantation and deposition (PBII and D), where a zirconium pulse arc discharge was generated in O{sub 2}/Ar gas mixture. The plasma was maintained for approximately 3 ms, and the ion current at the substrate was detected in a time range from 1 to 10 ms after the arc initiation. At O{sub 2}/Ar pressures of 2.6-3.0 Pa, a stoichiometric film was obtained, while at a pressure lower than 2.2 Pa, the film also contained ZrO {sub x} (x < 2) phase as well as ZrO{sub 2} phase. In the absence of argon gas, the plasma became unstable, which resulted in shortage of zirconium ions in the plasma, and hence, a stoichiometric condition was not found.

  5. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  6. Atomic Calligraphy

    Science.gov (United States)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  7. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    Science.gov (United States)

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  8. Teleportation of Atomic States via Cavity Quantum Electrodynamics

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  9. Nineteen papers on algebraic semigroups

    CERN Document Server

    Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM

    1988-01-01

    This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.

  10. Kinetic Atom.

    Science.gov (United States)

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  11. Capacitance and conductance versus voltage characterization of Al{sub 2}O{sub 3} layers prepared by plasma enhanced atomic layer deposition at 25 °C≤ T ≤ 200 °C

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Karsten, E-mail: henkel@tu-cottbus.de; Tallarida, Massimo; Schmeißer, Dieter [Applied Physics and Sensors, Brandenburg University of Technology Cottbus-Senftenberg, K.-Wachsmann-Allee 17, D-03046 Cottbus (Germany); Gargouri, Hassan; Gruska, Bernd; Arens, Michael [Sentech Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2014-01-15

    In this work, plasma enhanced atomic layer deposited (PE-ALD) samples were prepared at substrate temperatures in the range between room temperature (RT) and 200 °C and investigated by capacitance–voltage and conductance–voltage recordings. The measurements are compared to standard thermal atomic layer deposition (T-ALD) at 200 °C. Very low interface state density (D{sub it}) ∼10{sup 11} eV{sup −1} cm{sup −2} could be achieved for the PE-ALD process at 200 °C substrate temperature after postdeposition anneal (PDA) in forming gas at 450 °C. The PDA works very effectively for both the PE-ALD and T-ALD at 200 °C substrate temperature delivering also similar values of negative fixed charge density (N{sub fix}) around −2.5 × 10{sup 12} cm{sup −2}. At the substrate temperature of 150 °C, highest N{sub fix} (−2.9 × 10{sup 12} cm{sup −2}) and moderate D{sub it} (2.7 × 10{sup 11} eV{sup −1} cm{sup −2}) values were observed. The as deposited PE-ALD layer at RT shows both low D{sub it} in the range of (1 to 3) × 10{sup 11} eV{sup −1} cm{sup −2} and low N{sub fix} (−4.4 × 10{sup 11} cm{sup −2}) at the same time. The dependencies of N{sub fix}, D{sub it}, and relative permittivity on the substrate temperatures and its adjustability are discussed.

  12. Preparation of Modified Magnetic Nano-Fe3O4 Chitosan/ Graphene Oxide for the Preconcentration and Determination of Copper (П Ions in Biological and Environmental Water Samples Prior to Flame Atomic Absorption Spectrometry.

    Directory of Open Access Journals (Sweden)

    Mohammd Yari

    2016-06-01

    Full Text Available A simple, highly sensitive, accurate and selective method for determination of trace amounts of Cu2+in water samples .In this paper, chitosan grafted with graphene oxide sheets showed an increased surface area was used to encapsulate nano-Fe3O4 and produce a nano-Fe3O4-encapsulated-chitosan/graphene oxide sorbent based new sorbent was prepared. Flame atomic absorption spectrometer was utilized for determination of Cu2+.Some of the important parameters on the preconcentration and complex formation were selected and optimized. Under the optimized conditions the limit of detection (LOD and limit of quantification (LOQwere 0.30,0.750 and the proposed method has a good reproducibility 0.90% (RSD %.The enrichment factor was 200 and the percentage of recovery was in the range of 95-100% .The method was successfully applied to the recovery of Cu2+in different type of water samples. Graphene oxide and its derivates such as magnetic nano-Fe3O4-encapsulated-chitosan/graphene oxide in this study is full of potential to use as an excellent adsorbent in the extraction method like solid phase extraction(SPE and solid phase micro extraction(SPME. In the present study, we report the application of pre concentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS for quantification of Cu2+ in Formalin-fixed paraffin-embedded (FFPE tissues from Liver loggerhead turtles. This method exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent and optimum pH of solution presents in acidic media.

  13. Vacuum Ultraviolet Laser Photoion and Pulsed Field Ionization-Photoion Study of Rydberg Series of Chlorine Atoms Prepared in the 2PJ (J = 3/2 and 1/2) Fine-structure States

    Science.gov (United States)

    Yang, Lei; Gao, Hong; Zhou, Jingang; Ng, C. Y.

    2015-09-01

    We have measured the high-resolution vacuum ultraviolet (VUV) photoion (VUV-PI) and VUV pulsed-field ionization-photoion (VUV-PFI-PI) spectra of chlorine atoms (Cl) in the VUV energy range 103,580-105,600 cm-1 (12.842-13.093 eV) using a tunable VUV laser as the photoexcitation and photoionization source. Here, Cl atoms are prepared in the Cl(2P3/2) and Cl(2P1/2) fine-structure states by 193.3 nm laser photodissociation of chlorobenzene. The employment of VUV-PFI-PI detection has allowed the identification of Rydberg transitions that are not observed in VUV-PI measurements. More than 180 new Rydberg transition lines with principal quantum number up to n = 61 have been identified and assigned to members of nine Rydberg series originating from the neutral Cl(2P3/2) and Cl(2P1/2) fine-structure states. Two of these Rydberg series are found to converge to the Cl+(3P2), four to the Cl+(3P1), and three to the Cl+(3P0) ionization limits. Based on the convergence limits determined by least-squares fits of the observed Rydberg transitions to the modified Ritz formula, we have obtained a more precise ionization energy (IE) for the formation of the ionic Cl+(3P2) from the ground Cl(2P3/2) state to be 104,591.01 ± 0.13 cm-1. This is consistent with previous IE measurements, but has a smaller uncertainty. The analysis of the quantum defects obtained for the Rydberg transitions reveals that many high-n Rydberg transitions are perturbed.

  14. Total hip arthroplasty with cement and use of a collared matte-finish femoral component: nineteen to twenty-year follow-up.

    Science.gov (United States)

    Callaghan, John J; Liu, Steve S; Firestone, Daniel E; Yehyawi, Tameem M; Goetz, Devon D; Sullivan, Jason; Vittetoe, David A; O'Rourke, Michael R; Johnston, Richard C

    2008-02-01

    In the mid- to late 1970s, on the basis of laboratory and finite element data, many surgeons in the United States began using collared matte-finish femoral components and metal-backed acetabular components in their total hip arthroplasties. The purpose of this study was to evaluate the long-term results of the use of one such construct in arthroplasties performed by a single surgeon in a consecutive nonselected patient cohort. Between January 1984 and December 1985, 273 patients underwent a total of 304 consecutive nonselected total hip arthroplasties with cement and use of the Iowa femoral component (which is collared, has a proximal cobra shape, and has a matte finish) and a metal-backed TiBac acetabular component performed by a single surgeon. At nineteen to twenty years postoperatively, only two patients (two hips) were lost to follow-up. For clinical evaluation, we attempted to interview all living patients and the families of the patients who had died to verify the status of the hip prosthesis or any revisions. Radiographic evaluation consisted of analysis for loosening and osteolysis as well as wear of the acetabular component. At the time of the nineteen to twenty-year follow-up, the rate of revision of the arthroplasty for any reason was 10.5% (thirty-two hips) for all patients and 25% (twenty-three hips) for living patients. The rate of revision due to aseptic femoral loosening was 2.6% (eight hips). There was radiographic evidence of loosening of the femoral component in fifteen hips (4.9%), including those that were revised, and femoral osteolysis was seen distal to the trochanters in twenty-two hips (7.2%). The rate of revision due to aseptic loosening of the acetabular component was 7.9% (twenty-four hips), and there was radiographic evidence of acetabular loosening in forty-two hips (13.8%), including those that were revised. This study demonstrates the durability of a cemented matte-finish collared femoral component at twenty years postoperatively

  15. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO2/PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO2 content and could be increased up to 1.566 for 6.3 vol % TiO2 content (1.492 for pristine PMMA).

  16. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  17. 19例犬细小病毒病的诊疗报告%The Diagnosis and Treatment of Nineteen Cases of Canine Parvovirus Disease

    Institute of Scientific and Technical Information of China (English)

    李博岩; 陆曼

    2015-01-01

    Nineteen cases of enteritis type canine parvovirus disease in an animal hospital were diagnosed based on the analysis of the treatment protocol and experience. Among the cases, two of them were mixed infection with parasite, four of them were mixed infection with coronavirus, and other 13 cases were simple infection of parvovirus. The sufficient and prompt employment of antiviral drugs combining with anti-inflammation, fluid infusion and correcting the unbalance between acid and alkali were effective treatment measures for canine parvovirus disease.%对某动物医院确诊的19例犬细小病毒病患犬的治疗方法和经验进行汇总、归纳和分析,发现19例均为肠炎型。其中,与寄生虫混合感染的有2例,与冠状病毒感染的有4例,其余13例为单纯犬细小病毒感染。对于细小病毒病患犬要尽早、足量使用抗病毒药物治疗,并配合采取消炎、补液、纠正酸碱失衡等措施是保证疗效的关键。

  18. An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays

    CERN Document Server

    Barredo, Daniel; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine

    2016-01-01

    Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, to date, only disordered arrays have been demonstrated, due to the non-deterministic loading of the traps. Here, we demonstrate the preparation of fully loaded, two-dimensional arrays of up to 50 microtraps each containing a single atom, and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers that performs a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable geometries.

  19. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays

    Science.gov (United States)

    Barredo, Daniel; de Léséleuc, Sylvain; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine

    2016-11-01

    Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers, which together enable a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable two-dimensional geometries.

  20. Superconducting qubit-resonator-atom hybrid system

    Science.gov (United States)

    Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2017-09-01

    We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.

  1. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  2. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  3. Creation and recovery of a W(111) single atom gas field ion source.

    Science.gov (United States)

    Pitters, Jason L; Urban, Radovan; Wolkow, Robert A

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  4. Structural and mechanical characterization of rapidly solidified Al{sub 95}Ni{sub 5} and Al{sub 93}Ni{sub 5}Mm{sub 2} alloys prepared by centrifugal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D., E-mail: Dalibor.Vojtech@vscht.c [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Prusa, F.; Michalcova, A. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2010-09-17

    Research highlights: {yields} Structure and properties of a rapidly solidified Al-Ni-Mm alloy with a relatively low Mm content. {yields} Comparison of slowly and rapidly solidified state. {yields} High hardness of the RS Al-Ni-Mm alloy, but low thermal stability. {yields} Chemical compositions of metastable primary phases in the RS Al-Ni-Mm alloy. - Abstract: Al{sub 95}Ni{sub 5} and Al{sub 93}Ni{sub 5}Mm{sub 2} (at.%) alloys were prepared by induction melting and centrifugal atomization. Both as-cast and rapidly solidified (RS) alloys were studied by various techniques, including light, scanning and transmission electron microscopy, energy dispersion spectrometry, differential scanning calorimetry and X-ray diffraction analysis. Room temperature hardness was measured for the rapidly solidified alloys, as well as after their long-term annealing at 400 {sup o}C. It is observed that the RS alloys are crystalline. The binary Al-Ni alloy consists of Al and Al{sub 3}Ni phases, while in the ternary Al-Ni-Mm alloy, there are Al dendrites supersaturated with Ni, Al{sub 3}Ni and non-equilibrium {alpha}Al{sub 11}(Mm,Ni){sub 3} phases. Average Al dendrite arm thickness is about 100 nm. Both supersaturated Al and {alpha}Al{sub 11}(Mm,Ni){sub 3} decompose upon heating at 300-450 {sup o}C. Room temperature hardness of the RS Al{sub 95}Ni{sub 5} and Al{sub 93}Ni{sub 5}Mm{sub 2} alloys are 150 and 300 HV, respectively. These values are discussed in relation to various hardening mechanisms. Thermal stability of both alloys is low, due a rapid structural coarsening and hardness reduction during annealing at 400 {sup o}C.

  5. Study on atomic layer deposition preparation of core-shell structured nanometer materials%原子层沉积方法制备核-壳型纳米材料研究

    Institute of Scientific and Technical Information of China (English)

    李勇; 李惠琪; 夏洋; 刘邦武

    2013-01-01

    Monocrystal Pt nanoparticles, amorphous Al2O3 thin film, polycrystalline ZnO and TiO2 thin films were fabricated on black carbon nanoparticles by means of atomic layer deposition (ALD). Using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometer (XPS), energy dispersive spectroscopy (EDS), We have characterized and analyzed the surface morphology, crystal structure and composition of the ranopasticles and thin filins. Results indicate that the ALD method is an ideal method to prepare core-shell stuctured nanometer materials. In addition, the reasons why the formation of ALD films with different crystal morphologies, such as monocrystal, amorphous, polycrystalline, were discussed.%采用原子层沉积方法在碳黑纳米颗粒表面分别沉积Al2 O3, ZnO, TiO2和Pt,成功制备出核-壳型纳米材料。通过高分辨率透射电子显微镜、X射线光电子能谱仪、能谱仪对材料的表面形貌、晶体结构、薄膜成分进行了表征和分析。结果表明,原子层沉积方法是制备核壳型纳米材料的理想方法。此外,还分析了采用原子层沉积方法沉积不同材料,所生长的薄膜材料有单晶、多晶、非晶等多种存在形式的形成原因。

  6. Determination of Tetracycline in Pharmaceutical Preparation by Molecular and Atomic Absorption Spectrophotometry and High Performance Liquid Chromatography via Complex Formation with Au(III) and Hg(II) Ions in Solutions.

    Science.gov (United States)

    Abdulghani, Ahlam Jameel; Jasim, Hadi Hassan; Hassan, Abbas Shebeeb

    2013-01-01

    UV-visible and atomic spectrophotometry and HPLC techniques were applied for the determination of tetracycline (TC) in pharmaceutical preparations via complexation of the drug with Au(III) and Hg(II) ions in solutions. The mole ratio of TC to metal ions was 1 : 1. Maximum peak absorption at λ 425 and 320 nm for the two ions, respectively, was optimized at heating temperature 75°C for 15 minutes at pH = 4 followed by the extraction with ethyl acetate. The percentage of extraction and stability constants for the two complexes was 95.247, 95.335% and 2.518 × 10(4), 1.162 × 10(5) M(-1), respectively. HPLC method was applied without extraction process. The analytical data obtained from direct calibration curves of UV-visible absorption, FAAS, and HPLC for Au(III) complexes were recovery (100.78, 104.85, and 101.777%, resp.); detection limits (0.7403, 0.0997, and 2.647  μ g/ml, resp.); linearity (5-70, 5-30, and 10-150  μ g/ml, resp.), and correlation coefficient (0.9991, 0.9967, and 0.9986, resp.). The analytical data obtained from direct calibration curves for Hg(II) complexes by UV-visible spectrophotometry and HPLC were recovery (100.95 and 102.000%, resp.); detection limits (0.5867 and 2.532  μ g/ml, resp.); linearity (5-70 and 10-150  μ g/ml, resp.); and correlation coefficients (0.9989 and 0.9997, resp.).

  7. Atoms at the Science Fair

    Energy Technology Data Exchange (ETDEWEB)

    LeCompte, Robert G. [AEC Division of Technical Information; Wood, Burrell L. [AEC Division of Special Projects

    1968-01-01

    The United States Atomic Energy Commission has prepared this booklet to help young science fair exhibitors, their science teachers, project counselors, and parents. The booklet suggests some of the numerous nuclear topics on which students can base meaningful science projects. It offers all exhibitors advice on how to plan, design, and construct successful exhibits.

  8. Laser cooling atoms to indistinguishability: Atomic Hong-Ou-Mandel interference and entanglement through spin exchange

    Science.gov (United States)

    Kaufman, Adam

    2016-05-01

    Motional control of neutral atoms has a rich history and increasingly interest has turned to single-atom control. In my thesis work, we created a platform to individually prepare single bosonic atoms in highly pure quantum states, by developing methods to laser cool single atoms to the vibrational ground state of optical tweezer traps. Applying this toolset, we observe the atomic Hong-Ou-Mandel effect when we arrange for atom tunneling to play the role of a balanced beam splitter between two optical tweezers. In another experiment, we utilize spin exchange to create entanglement, which we then verify after spatially separating the atoms to observe their non-local correlations. Merging these results with our recent demonstration of deterministic loading of atomic arrays, our results establish the concept of quantum gas assembly, which could be applied to a variety of systems ranging from the production of single dipolar molecules to the assembly of low-entropy arrays of atoms.

  9. A dense gas of laser-cooled atoms for hybrid atom-ion trapping

    Science.gov (United States)

    Höltkemeier, Bastian; Glässel, Julian; López-Carrera, Henry; Weidemüller, Matthias

    2017-01-01

    We describe the realization of a dark spontaneous-force trap of rubidium atoms. The atoms are loaded from a beam provided by a two-dimensional magneto-optical trap yielding a capture efficiency of 75%. The dense and cold atomic sample is characterized by saturated absorption imaging. Up to 10^9 atoms are captured with a loading rate of 3× 10^9 atoms/s into a cloud at a temperature of 250 μK with the density exceeding 10^{11} atoms/cm^3. Under steady-state conditions, more than 90% of the atoms can be prepared into the absolute atomic ground state, which provides favorable conditions for the investigation of sympathetic cooling of ions in a hybrid atom-ion trap.

  10. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  11. The Atomic orbitals of the topological atom

    OpenAIRE

    Ramos-Cordoba, Eloy; Salvador Sedano, Pedro

    2013-01-01

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These c...

  12. Entanglement Swapping: Entangling Atoms That Never Interacted

    CERN Document Server

    Guerra, E S

    2005-01-01

    In this paper we discuss four different proposals of entangling atomic states of particles which have never interacted. The experimental realization proposed makes use of the interaction of Rydberg atoms with a micromaser cavity prepared in either a coherent state or in a superposition of the zero and one field Fock states. We consider atoms in either a three-level cascade or lambda configuration

  13. $T^3$-interferometer for atoms

    CERN Document Server

    Zimmermann, M; Roura, A; Schleich, W P; DeSavage, S A; Davis, J P; Srinivasan, A; Narducci, F A; Werner, S A; Rasel, E M

    2016-01-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Earle H. Kennard \\cite{Kennard,Kennard2} contains a phase that scales with the third power of the time $T$ during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration $a$, this $T^3$-phase cancels out and the interferometer phase scales as $T^2$. In contrast, by applying an external magnetic field we prepare two different accelerations $a_1$ and $a_2$ for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as $T^3$. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  14. T 3-Interferometer for atoms

    Science.gov (United States)

    Zimmermann, M.; Efremov, M. A.; Roura, A.; Schleich, W. P.; DeSavage, S. A.; Davis, J. P.; Srinivasan, A.; Narducci, F. A.; Werner, S. A.; Rasel, E. M.

    2017-04-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Kennard [2, 3] contains a phase that scales with the third power of the time T during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration a, this T^3-phase cancels out and the interferometer phase scales as T^2. In contrast, by applying an external magnetic field we prepare two different accelerations a_1 and a_2 for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as T^3. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  15. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  16. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  17. Characterization of SiO2 aerogels beads prepared by atomizing%SiO2气凝胶微球的雾化制备及表征

    Institute of Scientific and Technical Information of China (English)

    何方; 李荣春; 熊先文; 吴菊英; 黄渝鸿; 张瑞珠; 邹文俊; 彭进; 马秋花; 朱贺

    2013-01-01

    研究硅溶胶的雾化方法和形成油包水的乳化体系,在乳化体系中加入凝胶剂制备SiO2湿凝胶微球.制得的湿凝胶微球在常温常压下老化3d后用过滤的方法分离湿凝胶微球和油相;用正己烷清洗微球表面的油和杂质,用乙醇除去湿凝胶微球内部的水;最后,用超临界CO2的方法干燥湿凝胶微球得到SiO2气凝胶微球.研究结果表明,该方法最大的优点是可以大规模化制备气凝胶微球,制得的气凝胶微球直径<50μm,大部分集中在15~35μm之间.SiO2气凝胶微球具有明显的介孔材料特征,孔径为10nm左右,比表面积高达846.14m2/g,堆积密度约为221kg/m3.%A new method for the preparation of SiO2 aerogels microspheres was studied in this paper. Small sol droplets were produced by atomization SiO2 sol into an oil phase system. At the same time, the oil phase was stirred to accelerate the droplets of dispersion for producing a homogeneous oil-water system. SiO2 wet gel mi-crospheres were obtained by adding ammonia water with stirring the oil phase. The microspheres were aged in ambient temperature and pressure for 3d following separation of oil and microspheres by a filter. Before super-critical drying , SiO2 wet gel microspheres needed for washing and solvent exchange to remove oil and water. The results show that this method can produce SiO2 aerogels microspheres on a large scale. Obtained aerogels microspheres were less than 50μm in diameter, mostly in the 15-35μm. Microspheres with the characteristics of mesoporous materials , the pore size of about 10nm, specific surface area of up to 846. 14m2 /g and the packing density of about 221kg/m3 were produced using the presented method.

  18. 超音速电弧喷射雾化制备AgNi15复合颗粒%AgNi15 composite particles prepared by ultrasonic arc spray atomization method

    Institute of Scientific and Technical Information of China (English)

    谢建斌; 温春明; 秦国义; 许思勇; 郭锦新

    2014-01-01

    Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 µm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%−0.36% (mole fraction).%采用超音速电弧喷射雾化法(UASA)制备高熔点、难互溶的AgNi15复合颗粒,采用筛分法测量复合颗粒粒度分布,使用SEM、EDS和XRD分析颗粒形貌、凝固组织结构和亚稳固溶扩展。结果表明:采用UASA制备的AgNi15复合颗粒具有球形度高和分散性好的特点,直径小于74和55µm颗粒的质量分数分别为99.5%和98%。复合颗粒凝固组织结构为富镍相β(Ni)球形颗粒弥散分布在富银相α(Ag)基体中,而较大的β(Ni)颗粒中又弥散分布着α(Ag)颗粒。Ag和Ni相互实现了亚稳固溶扩展,在室温条件Ni在Ag中的固溶度在0.16%~0.3%之间(摩尔分数)。

  19. 0.75 atoms improve the clock signal of 10,000 atoms

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K.; Peise, Jan

    2017-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case.......75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based...... on atomic squeezed vacuum....

  20. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  1. Detecting Neutral Atoms on an Atom Chip

    OpenAIRE

    Wilzbach, M.; Haase, A.; Schwarz, M; Heine, D.; Wicker, K.; Liu, X; Brenner, K. -H.; Groth, S.; Fernholz, Th.; Hessmo, B.; Schmiedmayer, J.

    2006-01-01

    Detecting single atoms (qubits) is a key requirement for implementing quantum information processing on an atom chip. The detector should ideally be integrated on the chip. Here we present and compare different methods capable of detecting neutral atoms on an atom chip. After a short introduction to fluorescence and absorption detection we discuss cavity enhanced detection of single atoms. In particular we concentrate on optical fiber based detectors such as fiber cavities and tapered fiber d...

  2. 超临界辅助喷雾法用于固体脂质纳米粒的制备%Supercritical Assisted Atomization for Preparation of Solid Lipid Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    叶邦阜; 袁弘; 杜永忠; 胡富强

    2011-01-01

    OBJECTIVE To prepare the solid lipid nanoparticles(SLN) via supercritical assisted atomization(SAA) and investigate the effect of formulation and process on physicochemical characteristics of nanoparticles (NPs). METHODS With self-made SAA particle-producing equipment, stearic acid(SA) based SLN was produced, and the effect of SA concentration, flow ratio of supercritical CO2 and material solution, pore size of nozzle, on particle size of SLN were investigated to discover the appropriate process conditions. SLN loading insulin, a hydrophilic macromolecule drug, was produced and their physicochemical characteristics was observed, such as size, zeta-potential, entrapment efficiency(EE) and drug-loading ratio(DL). RESULTS Particle size of NPs was depended on material concentration, flow ratio of supercritical CO2 and material solution, pore size of nozzle. SLN with mean size <300 nm were obtained through formulation and process adjustment during preparation . Insulin-loaded SLN with mean size of about 300 nm, EE 72.2% and DL 3.44% was obtained, which released drug slowly during 12 h in vitro. Poloxamer-modified formulation made SLN with reduced size and distribution range, meanwhile the drug EE was decreased and burst-release was significant. CONCLUSION SAA is successfully applied to produce SLN and hydrophilic-drug-loaded SLN with modified releasing profile.%目的 采用超临界辅助喷雾制粒法制备固体脂质纳米粒,并考察工艺与处方因素对纳米粒理化性质的影响.方法 采用自制超临界喷雾制粒设备,制备硬脂酸脂质纳米粒,考察硬脂酸浓度、超临界流体CO_2与载体溶液流量比、喷嘴孔径等对固体脂质纳米粒粒径的影响,筛选合适的处方工艺参数;以亲水性大分子药物胰岛素为模型药物,制备载药固体质纳米粒,评价纳米粒的粒径、电位、包封率、释放度等理化性质.结果 制备得到的纳米粒粒径与载体浓度、超临界流体CO_2与载体

  3. Radiative processes of uniformly accelerated entangled atoms

    CERN Document Server

    Menezes, G

    2015-01-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that the maximally entangled antisymmetric Bell state is a decoherence-free state.

  4. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.

    Science.gov (United States)

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-05-11

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.

  5. Realisation of a Frequency Standard Using an Atomic Fountain

    CERN Document Server

    Michaud, A; Zetie, K P; Cooper, C J; Hillenbrand, G; Lorent, V; Steane, A; Foot, C J

    2005-01-01

    We report the realisation and preliminary study of a frequency standard using a fountain of laser cooled caesium atoms. Our apparatus uses a magneto-optical trap as a source of cold atoms and optical pumping to prepare the atoms in the correct state before they enter the microwave cavity.

  6. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 1, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    AUTOINSTRUCTIONAL MATERIALS WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY OF THE SELF-TUTORING APPROACH IN EDUCATION. THE MATERIALS COVER SECTIONS ON (1) THE ATOM, (2) ATOMIC PARTICLES, (3) CATHODE RAYS, (4) MEASURING THE ELECTRON, (5) CHARGE AND MASS OF THE ELECTRON, AND (6) MASS OF ATOMS. RELATED REPORTS ARE ED 003 205 THROUGH ED 003 207, ED…

  7. Atomic Evolutions of a Single Atom in a High-Q Cavity

    Institute of Scientific and Technical Information of China (English)

    葛国勤

    2001-01-01

    Atomic evolutions in a single atom laser system are studied for different preparations of the initial atomic state and cavity field. Both the analytical and the numerical results are in very good agreement with the experiment carried out by Brune et al. [Phys. Rev. Lett. 76 (1996) 1800], if we choose the same parameters as the experiment. The research justified that the spontaneous emission rates are enhanced in the high-Q cavity.

  8. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  9. The atomic orbitals of the topological atom.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  10. Evolution of the Field Entropy and Preparation of Quantum States in the Control of Atomic Motion and Field-frequency Variation%原子运动与场频率变化操控下的场熵演化及量子态制备

    Institute of Scientific and Technical Information of China (English)

    刘小娟; 文一曼; 刘敏

    2011-01-01

    In the rotating-wave approximation,the evolution of the field quantum entropy in the system that consists of a two-level atom interacting with a single-mode field was studied,considering the atomic motion and the field frequency varying with the time in the form of sine-function at the same time. In two cases of neglecting atomic motion and considering atomic motion,figures of the time evolutions of the field entropy were plotted respectively using numerical calculations. Influences of the atomic motion, the field-model structure parameter, amplitude and angular frequency of the field-frequency variation on the field entropy were also discussed. The atom-field entangled states, field rock states and atomic high fidelity states were prepared by analytic method according to the decomposition theorem of Schmidt,and the related system parameters of these quantum states operation were acquired. The results show that: the time evolution behavior of the field entropy is modulated by the frequency variation of field; the interaction between the field and atom will weaken with the increase of the amplitude of variation of the field frequency; the period of the field entropy agrees with the period of field-frequency variation; the atomic motion will result in the period of the field entropy doubled; the evolution of the field entropy is related to the parity of field-mode structure parameter; the approximate EPR states of field-atom can be prepared periodically whether the atom moves or not.%在旋波近似下,同时考虑原子运动和光场频率随时间作正弦函数变化,研究了二能级原子与单模辐射场相互作用系统中场的量子约化熵的演化规律.运用数值计算的方法分别给出了在不考虑原子的运动和考虑原子的运动的情况下场熵随时间的演化曲线,讨论了原子运动、场模结构、场频率的幅值和角频率变化对场熵的影响.根据Schmidt分解定理,解析制备了光场与原子

  11. Manipulation of entanglement and preparation of quantum states for moving two-atom and the light field via intensity-dependent coupling%运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备

    Institute of Scientific and Technical Information of China (English)

    刘小娟; 周并举; 刘一曼; 姜春蕾

    2012-01-01

    将Tavis-Cummings模型推广到同时考虑原子运动及与光场依赖强度耦合的情况.运用原子约化熵和Concur-rence操纵了该系统在真空场、弱相干场和强相干场条件下,双原子一场之间以及双原子之间纠缠演化特性.以此为依据,选择双原子与场相互作用时间、选取双原子纠缠因子、调节场模结构参数,控制系统纯态概率幅和选择测量,制备了双原子.场W类态、双原子Bell态、Bell态原子保真态、光场的单光子态、双光子态及稳定的数态.实现了双原子Bell态突然产生及有限时间内的保持、Bell态原子周期量子回声的形成及其信息(态)持续保真.结果表明,该系统具有强大的量子信息功能,为量子信息处理的实验实现提供了物理载体和理论参数.%In this paper, the Tavis-Cummings model is generalized to simultaneously consider the atomic motion and the field via intensity dependent coupling. Under the conditions of vacuum field, weakly and strongly coherent field, the entanglement evolution properties of two-atom-field and two-atom-two-atom are investigated using atomic reduced entropy and concurrence, respectively. According to evolution characteristics above, we prepare the W-class states of two-atom-field, two-atom Bell state, fidelity state of Bell-state atoms, single-photon state, two-photon state and stable number-states of field by selecting the interaction time of the two-atom-field, selecting the entanglement factor of the two-atom, regulating the field-mode structure parameter, controlling the probability amplitude of pure state of the system and selective measurement. The manipulation of two-atom Bell state sudden generation and its maintenance in a limited time, the formation of periodic quantum echo of Bell-state atoms and the continuous fidelity of Bell-state atomic information are achieved. The results show that the system has a powerful function of quantum

  12. Preparation of entangled W state via resonant interaction of V-type three-level atoms and two-mode cavity-field%利用V-型三能级原子与双模腔场的共振相互作用制备纠缠W态

    Institute of Scientific and Technical Information of China (English)

    胡明亮; 田东平; 柳海

    2007-01-01

    提出了一种利用V-型三能级原子与双模腔场的共振相互作用制备多原子及多腔场纠缠W态的新方案,并用共生纠缠度研究了该模型中的纠缠演化和热纠缠现象.%A new scheme for the preparation of multi-atom and nulti-cavity entangled W state via resonant interaction of V-type three-level atoms and two-mode cavity- field is proposed. Also the time evolution and the thermal entanglement of this model will be studied by the concept of concurrence in this paper.

  13. Fusing atomic W states via quantum Zeno dynamics.

    Science.gov (United States)

    Ji, Y Q; Shao, X Q; Yi, X X

    2017-05-03

    We propose a scheme for preparation of large-scale entangled W states based on the fusion mechanism via quantum Zeno dynamics. By sending two atoms belonging to an n-atom W state and an m-atom W state, respectively, into a vacuum cavity (or two separate cavities), we may obtain a (n + m - 2)-atom W state via detecting the two-atom state after interaction. The present scheme is robust against both spontaneous emission of atoms and decay of cavity, and the feasibility analysis indicates that it can also be realized in experiment.

  14. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  15. Conditional quantum logic using two atomic qubits

    CERN Document Server

    Protsenko, I E; Schlosser, N; Grangier, P

    2002-01-01

    In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the preparation of all four Bell states, the reverse operation that is a Bell measurement, and a CNOT gate. We study the effect of atomic motion and multiple scattering, by evaluating Bell inequalities violations, and by calculating the CNOT gate fidelity.

  16. Index to the Understanding the Atom Series

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The U. S. Atomic Energy Commission publishes the Understanding the Atom Series of educational booklets for high school science students and their teachers. This series explains many aspects of nuclear science including its history and applications. Because these 51 booklets cover such a variety of scientific fields, this index was prepared to help the reader find quickly those booklets that contain the information he needs.

  17. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...... as compared to preparation protocols based on coherent unitary dynamics...

  18. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  19. Quantum Dynamical Theory for Squeezed Atom Laser

    Institute of Scientific and Technical Information of China (English)

    JING Hui; HAN Yi-Ang; CHEN Jing-Ling; MIAO Yuan-Xiu

    2000-01-01

    A model for the squeezed output coupler of the trapped Bose-Einstein condensed atoms is established with a simple many-boson system of two states with linear coupling, by preparing an initially squeezed light field. In the Bogoliubov approximation, its solutions show that the quadrature squeezing effect mutually oscillates between the coupling light field and the output atomic field. This manifests that the initially squeezed light will transform into a coherent state after some period of coupling interaction while the output atomic field is in a squeezed state.

  20. Atom Lithography with a Chromium Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; LI Tong-Bao

    2006-01-01

    @@ Direct write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on the substrate. We design an experiment setup to fabricate chromium nanolines by depositing an atomic beam of 52 Cr through an off-resonant laser standing wave with the wavelength of 425.55 nm onto a silicon substrate. The resulting nanolines exhibit a period of 215 ± 3 nm with height of 1 nm.

  1. Atoms and molecules interacting with light atomic physics for the laser era

    CERN Document Server

    Straten, Peter van der

    2016-01-01

    This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanc...

  2. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  3. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  4. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu

    2017-09-01

    A nano - scale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon - atom interactions . A neutral - atom platf orm based on this microfabrication technology will be pre - aligned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano - waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  5. Atomic Particle Detection, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  6. Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV-visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies

    Science.gov (United States)

    2009-06-15

    commercial anatase titania was also measured. The edge energy (Eg) for allowed transitions was determined by finding the intercept of the straight...150 °C (xTS-150C, where x is the number of cycles (1, 4, 10, and 20)) are depicted in Figure 1, where silica gel and anatase titania were also measured...titanium (atoms/nm2) BET surface area (m2/g) pore diameter (Å) chlorine (wt %, XRF) Eg (eV) silica powder 91.6 301.5 anatase TiO2 3.47 1TS-TTIP-150C 1.92

  7. Cold-atom Inertial Sensor without Deadtime

    CERN Document Server

    Fang, Bess; Savoie, Denis; Venon, Bertrand; Alzar, Carlos L Garrido; Geiger, Remi; Landragin, Arnaud

    2016-01-01

    We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are consequences of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomena have deleterious effects on the performance of these sensors. We show that our continuous operation improves the short-term sensitivity of atom interferometers, by demonstrating a record rotation sensitivity of $100$ nrad.s$^{-1}/\\sqrt{\\rm Hz}$ in a cold-atom gyroscope of $11$ cm$^2$ Sagnac area. We also demonstrate a rotation stability of $1$ nrad.s$^{-1}$ after $10^4$ s of integration, improving previous results by an order of magnitude. We expect that the continuous operation will allow cold-atom inertial sensors with long interrogation time to reach their full sensitivity, determined by the quantum noise limit.

  8. Presenting the Bohr Atom.

    Science.gov (United States)

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  9. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  10. Nineteen Ancient Poems:Variation of Literatiˊs Life Tragedy Consciousness%《古诗十九首》:士人生命悲剧意识的变奏曲

    Institute of Scientific and Technical Information of China (English)

    覃素安

    2015-01-01

    Nineteen Ancient Poems is a collection in which the literati showed their tragic fate towards the end of the Eastern Han Dynasty. The writers of Nineteen Ancient Poems were suffering from life tragedy consciousness and going through life desolation,while they were actively seeking the way of dispelling the harassment of life tragedy conscious-ness. They pursued the material desire to dispel their sorrow for manˊs s short yet bitter life in anticipation of returning the spiritual home to dispel wondering. Their awaking of self-consciousness showed in Nineteen Ancient Poems is clearer than the predecessorsˊ,and their focus shifted from the society to their own internality. To despair to the politics is the catalyst of the awaking of self-consciousness. The study on the literatiˊs effort to break through their tragic fate is further study on the tragic view of the life since 1980s and gives own understanding.%《古诗十九首》是东汉末年士人的集体悲歌。文人在深受生命悲凉感侵蚀之时,努力突围生命悲剧意识的困扰,如追求物欲享乐以消解生命苦短,企望回归精神家园来对抗漂泊之悲。相比较于之前诗人自我意识的模糊,它清晰地体现了士人个体自我意识的觉醒。对政治的绝望是士人个体自我意识觉醒的催化剂。研究《古诗十九首》士人突围生命悲剧意识的困扰及其意义,意在深化上个世纪80年代以来诗歌生命悲剧意识主题的探讨。

  11. Single Atom Plasmonic Switch

    OpenAIRE

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individ...

  12. Atomic Scale Plasmonic Switch

    OpenAIRE

    Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J.

    2016-01-01

    The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...

  13. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  14. Atomic Storage States

    Institute of Scientific and Technical Information of China (English)

    汪凯戈; 朱诗尧

    2002-01-01

    We present a complete description of atomic storage states which may appear in the electromagnetically induced transparency (EIT). The result shows that the spatial coherence has been included in the atomic collective operators and the atomic storage states. In some limits, a set of multimode atomic storage states has been established in correspondence with the multimode Fock states of the electromagnetic field. This gives a better understanding of the fact that, in BIT, the optical coherent information can be preserved and recovered.

  15. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  17. Spontaneously induced atom-radiation entanglement in an ensemble of two-level atoms

    OpenAIRE

    Tesfa, Sintayehu

    2007-01-01

    Analysis of the spontaneously induced correlation on atom-radiation entanglement in an ensemble of two-level atoms initially prepared in the upper level and placed in a cavity containing a squeezed radiation employing the method of evaluating the coherent-state propagator is presented. It is found that the cavity radiation exhibits squeezing which is directly attributed to the squeezed radiation in the cavity. The intensity of the cavity radiation increases with the squeeze parameter and inte...

  18. 乔治·奥威尔《一九八四》在中国的研究综述及展望%Researches and Prospects of George Orwell' Nineteen Eighty-Four in China

    Institute of Scientific and Technical Information of China (English)

    李静; 许卉艳

    2011-01-01

    本文通过梳理国内学者对20世纪英国作家乔治·奥威尔的代表作《一九八四》的研究探讨,进一步阐述了奥威尔的写作风格、语言特点以及主要思想,并提出了研究空白及设想。%This paper reviews Chinese scholars' researches on Nineteen Eighty-Four by the 20th century British writer George Orwell. And then it further elaborates on Orwell's writing style, language features and the main idea, and proposes research gaps and ideas in the end.

  19. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  20. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  1. [Measurement of trace elements in blood serum by atomic absorption spectroscopy with electrothermal atomization].

    Science.gov (United States)

    Rogul'skiĭ, Iu V; Danil'chenko, S N; Lushpa, A P; Sukhodub, L F

    1997-09-01

    Describes a method for measuring trace elements Cr, Mn, Co, Fe, Cu, Zn, and Mo in the blood serum using non-flame atomization (KAC 120.1 complex). Optimal conditions for preparing the samples were defined, temperature regimens for analysis of each element selected, and original software permitting automated assays created. The method permits analysis making use of the minimal samples: 0.1 ml per 10 parallel measurements, which is 100 times less than needed for atomic absorption spectroscopy with flame atomization of liquid samples. Metrological characteristics of the method are assessed.

  2. Applicability of Rydberg atoms to quantum computers

    Science.gov (United States)

    Ryabtsev, Igor I.; Tretyakov, Denis B.; Beterov, Ilya I.

    2005-01-01

    The applicability of Rydberg atoms to quantum computers is examined from an experimental point of view. In many recent theoretical proposals, the excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interactions that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analysed. We also present the results of modelling experiments on microwave spectroscopy of single- and multi-atom excitations at the one-photon 37S1/2 → 37P1/2 and two-photon 37S1/2 → 38S1/2 transitions in an ensemble of a few sodium Rydberg atoms. The microwave spectra were investigated for various final states of the ensemble initially prepared in its ground state. The results may be applied to the studies on collective laser excitation of ground-state atoms aiming to realize quantum gates.

  3. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results. © 2013 Published by Elsevier B.V.

  4. Highly conducting, transparent, and flexible indium oxide thin film prepared by atomic layer deposition using a new liquid precursor Et2InN(SiMe3)2.

    Science.gov (United States)

    Maeng, Wan Joo; Choi, Dong-Won; Chung, Kwun-Bum; Koh, Wonyong; Kim, Gi-Yeop; Choi, Si-Young; Park, Jin-Seong

    2014-10-22

    Highly conductive indium oxide films, electrically more conductive than commercial sputtered indium tin oxide films films, were deposited using a new liquid precursor Et2InN(SiMe3)2 and H2O by atomic layer deposition (ALD) at 225-250 °C. Film resistivity can be as low as 2.3 × 10(-4)-5.16 × 10(-5) Ω·cm (when deposited at 225-250 °C). Optical transparency of >80% at wavelengths of 400-700 nm was obtained for all the deposited films. A self-limiting ALD growth mode was found 0.7 Å/cycle at 175-250 °C. X-ray photoelectron spectroscopy depth profile analysis showed pure indium oxide thin film without carbon or any other impurity. The physical and chemical properties were systematically analyzed by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, optical spectrometer, and hall measurement; it was found that the enhanced electrical conductivity is attributed to the oxygen deficient InOx phases.

  5. Preparation of W state in resonant bimodal cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a Ⅴ-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity,the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three Ⅴ-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.

  6. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  7. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    Science.gov (United States)

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions.

  8. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  9. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  12. The Software Atom

    CERN Document Server

    Javanainen, Juha

    2016-01-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  13. The Software Atom

    Science.gov (United States)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  14. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  15. Atomic homodyne detection of weak atomic transitions.

    Science.gov (United States)

    Gunawardena, Mevan; Elliott, D S

    2007-01-26

    We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.

  16. Atom probe crystallography

    National Research Council Canada - National Science Library

    Gault, Baptiste; Moody, Michael P; Cairney, Julie M; Ringer, Simon P

    2012-01-01

    This review addresses new developments in the emerging area of "atom probe crystallography", a materials characterization tool with the unique capacity to reveal both composition and crystallographic...

  17. Dephasing in an atom

    OpenAIRE

    2011-01-01

    When an atom in vacuum is near a surface of a dielectric the energy of a fluctuating electromagnetic field depends on a distance between them resulting, as known, in the force called van der Waals one. Besides this fluctuation phenomenon there is one associated with formation of a mean electric field which is equivalent to an order parameter. In this case atomic electrons are localized within atomic distances close to the atom and the total ground state energy is larger, compared to the bare ...

  18. Few-particle quantum magnetism with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Murmann, Simon

    2015-11-25

    This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.

  19. Entanglement and entropy engineering of atomic two-qubit states

    CERN Document Server

    Clark, S G

    2002-01-01

    We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal states of two atoms trapped in a high finesse optical cavity. Using laser and cavity fields to drive two separate Raman transitions between metastable atomic ground states, a system is realized corresponding to a pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir correlations lead to entanglement between the atoms, and, via local unitary transformations and adjustment of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed combination of linear entropy and entanglement of formation.

  20. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  1. Dipolar exchange induced transparency with Rydberg atoms

    Science.gov (United States)

    Petrosyan, David

    2017-03-01

    A three-level atomic medium can be made transparent to a resonant probe field in the presence of a strong control field acting on an adjacent atomic transition to a long-lived state, which can be represented by a highly excited Rydberg state. The long-range interactions between the Rydberg state atoms then translate into strong, non-local, dispersive or absorptive interactions between the probe photons, which can be used to achieve deterministic quantum logic gates and single photon sources. Here we show that long-range dipole–dipole exchange interaction with one or more spins—two-level systems represented by atoms in suitable Rydberg states—can play the role of control field for the optically dense medium of atoms. This induces transparency of the medium for a number of probe photons n p not exceeding the number of spins n s , while all the excess photons are resonantly absorbed upon propagation. In the most practical case of a single spin atom prepared in the Rydberg state, the medium is thus transparent only to a single input probe photon. For larger number of spins n s , all n p ≤ n s photon components of the probe field would experience transparency but with an n p -dependent group velocity.

  2. Atomic Scale Plasmonic Switch.

    Science.gov (United States)

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  3. Greek Atomic Theory.

    Science.gov (United States)

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  4. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  5. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  6. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  7. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  8. Fifth Semiannual Report of the Commission to the Congress: Atomic Energy Development, 1947- 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.

    1949-01-01

    The document represents the fifth semiannual report to Congress, covering specifically the various developments in atomic energy since the inception of the Atomic Energy Commission in 1946. This fifth report represents an expansion of effort in all phases of atomic energy development and is prepared against a background of world affairs.

  9. Towards a Precise Measurement of Atomic Parity Violation in a Single Ra+ Ion

    NARCIS (Netherlands)

    Jungmann, K.; Giri, G. S.; Versolato, O. O.; Steadman, SG; Stephans, GSF; Taylor, FE

    2012-01-01

    In the singly charged Ra+ ion the contributions of the weak interactions to the atomic level energies are some 50 times larger than in the Cs atom. We report the results of laser spectroscopy experiments on Ra-209-214(+) isotopes in preparation of a precision atomic parity violation experiment. Expe

  10. Coaxial airblast atomizers

    Science.gov (United States)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  11. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  12. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  13. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  14. An Exploration of the Rhetorical Effects of Tautology in The Nineteen Ancient Poems%《古诗十九首》的重言修辞效果探究

    Institute of Scientific and Technical Information of China (English)

    宋洁; 王腊娟

    2015-01-01

    Form and content interrelate with each other .The appropriate from can arouse the readers ' Emotional resonance .The Nineteen Ancient Poems is a good example of the rhetorical device tautology which appears 31 times in it.Firstly, tautology and other rhetorical devices make up an artistic form .Then tautology is effective and significant in creating the artistic state , the wanderer image and and the rhythm of poems .%形式与内容互相作用. 恰当的形式可以唤起读者情感,引起共鸣. 形式上,重言修辞在《古诗十九首》中高达31次,且堪称典范. 首先重言修辞格与其他修辞格共同作用构成其艺术形式,其次重言修辞格在其艺术境界的创造方面有重大作用,最后重言修辞格对游子形象的塑造和诗歌的节律具有重要影响.

  15. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Science.gov (United States)

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  16. One Photon Can Simultaneously Excite Two or More Atoms

    Science.gov (United States)

    Garziano, Luigi; Macrı, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-01

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  17. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  18. Entanglement and coherence of a three-level atom in Λ configuration interacting with two fields

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Song; Xu Jing-Bo

    2009-01-01

    We investigate the entanglement of a three-level atom in A configuration interacting with two quantized field modes by using logarithmic negativity. Then, we study the relationship of the atomic coherence and the entanglement between two fields which are initially prepared in vacuum or thermal states. We find that if the two fields are prepared in thermal states, the atomic coherence can induce the entanglement between two thermal fields. However, there is no coherence-induced entanglement between two vacuum fields.

  19. Solution preparation

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results.

  20. Linear atomic quantum coupler

    CERN Document Server

    El-Orany, Faisal A A

    2009-01-01

    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-m...

  1. Yale and the Atomic Bomb Casualty Commission.

    Science.gov (United States)

    Bowers, J. Z.

    1983-01-01

    This is a description, based largely on personal discussions, of the contributions of men from the Yale University School of Medicine to the saga of the immediate and long-term studies on the medical effects of the atomic bombs at Hiroshima and Nagasaki. They played key roles in the immediate studies of bomb effects, in the creation of long-term studies of delayed effects, and in elevating the Atomic Bomb Casualty Commission after 1955 to a position of excellence in its studies and relations with the Japanese. The accumulation of the information presented in this paper derives from research for the preparation of the history of the Atomic Bomb Casualty Commission. In 1975, the commission was passed to Japanese leadership as the Radiation Effects Research Foundation. PMID:6349145

  2. Photon-Atom Coupling with Parabolic Mirrors

    CERN Document Server

    Sondermann, Markus

    2014-01-01

    Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently 'natural' attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident on...

  3. Atomic Structure Theory Lectures on Atomic Physics

    CERN Document Server

    Johnson, Walter R

    2007-01-01

    Atomic Structure Theory is a textbook for students with a background in quantum mechanics. The text is designed to give hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. Numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations are given as well. B-spline basis sets are used to carry out sums arising in higher-order many-body calculations. Illustrative problems are provided, together with solutions. FORTRAN programs implementing the numerical methods in the text are included.

  4. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  5. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  6. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  7. Rydberg atoms in astrophysics

    CERN Document Server

    Gnedin, Yu N; Ignjatovic, Lj M; Sakan, N M; Sreckovic, V A; Zakharov, M Yu; Bezuglov, N N; Klycharev, A N; 10.1016/j.newar.2009.07.003

    2012-01-01

    Elementary processes in astrophysical phenomena traditionally attract researchers attention. At first this can be attributed to a group of hemi-ionization processes in Rydberg atom collisions with ground state parent atoms. This processes might be studied as a prototype of the elementary process of the radiation energy transformation into electrical one. The studies of nonlinear mechanics have shown that so called regime of dynamic chaos should be considered as typical, rather than exceptional situation in Rydberg atoms collision. From comparison of theory with experimental results it follows that a such kind of stochastic dynamic processes, occurred during the single collision, may be observed.

  8. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  9. EINSTEIN, SCHROEDINGER, AND ATOM

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Einstein’s atom model has been developed, and proved that atoms and atomic nuclei can be represented as standing gravitational waves

  10. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  11. Toward atom probe tomography of microelectronic devices

    Science.gov (United States)

    Larson, D. J.; Lawrence, D.; Lefebvre, W.; Olson, D.; Prosa, T. J.; Reinhard, D. A.; Ulfig, R. M.; Clifton, P. H.; Bunton, J. H.; Lenz, D.; Olson, J. D.; Renaud, L.; Martin, I.; Kelly, T. F.

    2011-11-01

    Atom probe tomography and scanning transmission electron microscopy has been used to analyze a commercial microelectronics device prepared by depackaging and focused ion beam milling. Chemical and morphological data are presented from the source, drain and channel regions, and part of the gate oxide region of an Intel® i5-650 p-FET device demonstrating feasibility in using these techniques to investigate commercial chips.

  12. History of early atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, N.F. [Harvard Univ., Cambridge, MA (United States). Lyman Lab. of Physics

    2005-06-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  13. Atomical Grothendieck categories

    Directory of Open Access Journals (Sweden)

    C. Năstăsescu

    2003-01-01

    Full Text Available Motivated by the study of Gabriel dimension of a Grothendieck category, we introduce the concept of atomical Grothendieck category, which has only two localizing subcategories, and we give a classification of this type of Grothendieck categories.

  14. Atomic bomb health benefits.

    Science.gov (United States)

    Luckey, T D

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment.

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  16. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  17. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  18. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  19. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  20. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  1. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  2. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  3. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  4. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  5. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  6. Quantum Entanglement in a System of Two Spatially Separated Atoms Coupled to the Thermal Reservoir

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiang-Ping; FANG Mao-Fa; ZHENG Xiao-Juan; CAI Jian-Wu

    2006-01-01

    We study quantum entanglement between two spatially separated atoms coupled to the thermal reservoir. The influences of the initial state of the system, the atomic frequency difference and the mean number of the thermal field on the entanglement are examined. The results show that the maximum of the entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms. The degree of entanglement is progressively decreased with the increase of the thermal noise. Interestingly, the two atoms can be easily entangled even when the two atoms are initially prepared in the most mixed states.

  7. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2.

    Science.gov (United States)

    Hogg, Rebecca; de Almeida, Rogerio Alves; Ruckshanthi, Jayalath P D; O'Keefe, Raymond T

    2014-07-01

    Removal of intron regions from pre-messenger RNA (pre-mRNA) requires spliceosome assembly with pre-mRNA, then subsequent spliceosome remodeling to allow activation for the two steps of intron removal. Spliceosome remodeling is carried out through the action of DExD/H-box ATPases that modulate RNA-RNA and protein-RNA interactions. The ATPase Prp16 remodels the spliceosome between the first and second steps of splicing by catalyzing release of first step factors Yju2 and Cwc25 as well as destabilizing U2-U6 snRNA helix I. How Prp16 destabilizes U2-U6 helix I is not clear. We show that the NineTeen Complex (NTC) protein Cwc2 displays genetic interactions with the U6 ACAGAGA, the U6 internal stem loop (ISL) and the U2-U6 helix I, all RNA elements that form the spliceosome active site. We find that one function of Cwc2 is to stabilize U2-U6 snRNA helix I during splicing. Cwc2 also functionally cooperates with the NTC protein Isy1/NTC30. Mutation in Cwc2 can suppress the cold sensitive phenotype of the prp16-302 mutation indicating a functional link between Cwc2 and Prp16. Specifically the prp16-302 mutation in Prp16 stabilizes Cwc2 interactions with U6 snRNA and destabilizes Cwc2 interactions with pre-mRNA, indicating antagonistic functions of Cwc2 and Prp16. We propose that Cwc2 is a target for Prp16-mediated spliceosome remodeling during pre-mRNA splicing. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Generation and Purification of Atomic Entangled States

    Institute of Scientific and Technical Information of China (English)

    YANG Ming; SONG Wei; LI Yingqun; SHI Shouhua; CAO Zhuoliang

    2004-01-01

    @@ Entangled state plays a more and more important role in quantum information, so the generation of entangled state is of scientific value and practical significance.Although the experimental realization of entangled pairs of atoms and polarized photons have been reported recently, the current preparation schemes cannot meet the need of the practical application of entangled state in Quantum Communication and Quantum Computation.At the same time, resulting from the coupling between the quantum systems and its environment, decoherence of the quantum systems is unavoidable, which sets a vital obstacle on the way of the application of entanglement.There exist some entanglement generation and purification schemes, but the range of its application is relative small.So we proposed a more efficient scheme for entanglement generation and purification.The scheme is mainly based on the combination of linear optics and Cavity QED technique.The entanglement generation scheme can entangle two atoms by using MZI plus an optical cavity.Pure maximally entangled atomic states can be generated from product states or mixed states.Using a MZI, we can extract not only two-atom near-maximally entangled states but also four-atom maximally entangled states from less entangled pure or mixed states.

  9. Effective potentials for atom-atom interaction at low temperatures

    OpenAIRE

    Gao, Bo

    2002-01-01

    We discuss the concept and design of effective atom-atom potentials that accurately describe any physical processes involving only states around the threshold. The existence of such potentials gives hope to a quantitative, and systematic, understanding of quantum few-atom and quantum many-atom systems at relatively low temperatures.

  10. Difluoromethane preparation

    NARCIS (Netherlands)

    Wiersma, A.; Sandt, E.J.A.; Van Bekkum, H.; Makkee, M.; Moulijn, J.A.

    1996-01-01

    Abstract of NL 9401574 (A) The invention relates to a method for preparing difluoromethane, wherein dichlorodifluoromethane or monochlorodifluoromethane is brought into contact with hydrogen in the presence of palladium on activated carbon, wherein the loading of the palladium on the activated c

  11. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  12. Single-atom spintronics

    Institute of Scientific and Technical Information of China (English)

    Susan Z. HUA; Matthew R. SULLIVAN; Jason N. ARMSTRONG

    2006-01-01

    Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition,stepwise or quantum magnetoresistance loops are observed,resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve,i.e.,a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as 'single-atom spintronics'. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided,the requisite hallmarks of artefact-free magnetoresistance is established across a QPC - stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.

  13. Unconditional two-mode squeezing of separated atomic ensembles

    CERN Document Server

    Parkins, A S; Solano, E

    2005-01-01

    We propose schemes for the unconditional preparation of a two-mode squeezed state of effective bosonic modes realized in a pair of atomic ensembles interacting collectively with optical cavity and laser fields. The scheme uses Raman transitions between stable atomic ground states and under ideal conditions produces pure entangled states in the steady state. The scheme works both for ensembles confined within a single cavity and for ensembles confined in separate, cascaded cavities.

  14. Storing light with correlations in arrays of atoms

    CERN Document Server

    Facchinetti, G; Ruostekoski, J

    2016-01-01

    We show how strong light-mediated resonant dipole-dipole interactions between atoms can be utilized in a control and storage of light. The method is based on a high-fidelity preparation of a collective atomic excitation in a single correlated subradiant eigenmode in a lattice. We demonstrate how a simple phenomenological model captures the qualitative features of the dynamics and scattering resonances.

  15. Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms

    Science.gov (United States)

    2008-06-28

    exceeds the optical scattering rate Γsc). For the lattice described above, the Lamb Dicke parameter ER/hν = 0.12 and the festina lente criterion Γsc...zero entropy ). Initialization of the quantum register for quantum computations requires a gas of neutral atoms in a near-zero- entropy state...zero- entropy state is prepared by selectively removing atoms in the second band from the lattice potential. optical lattice experiments have

  16. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    Science.gov (United States)

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  17. Quantum magnetism through atomic assembly

    NARCIS (Netherlands)

    Spinelli, A.

    2015-01-01

    This thesis presents an experimental study of magnetic structures, composed of only a few atoms. Those structures are first built atom-by-atom and then locally probed, both with a low-temperature STM. The technique that we use to assemble them is vertical atom manipulation, while to study their phy

  18. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  19. 表面引发原子转移自由基聚合制备聚电解质修饰的碳纳米管%Preparation of Polyelectrolyte Functionalized Multiwalled Carbon Nanotubes via Surface-Initiated Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    孙庆文; 于颖; 张南; 张法永

    2012-01-01

    Surface modification of multiwalled carbon nanotubes (MWNT) by polyelectrolyte can enhance the dispersibility of carbon nanotubes in various solvents. Hydroxyl groups were firstly introduced onto the surface of carbon nanotubes (CNT) via esterification of glycol with MWNT which previously treated by concentrated HNO3 and then excess thionyl chloride. Initiating sites (MWNT-Br or MWNT-C1) for atom transfer radical polymerization (ATRP) were formed by reacting MWNT-OH with 2-bromoisobutyryl bromide or 2-chloropropionyl chloride. Grafting polymerization of poly(terf-butyl acry-late) (PtBA) or poly(4-vinylpyridine) (P4VP) from MWNT-Br or MWNT-C1 was carried out by surface-initiated ATRP polymerization. The content of grafted polymer, determined by thermal gravimetric analysis (TGA), was tuned through the feed ratio of monomer to the initiating-sites on MWNT. After hydrolysis (or quaternary amination) of the polymers, different types of polyelectrolyte-functionalized MWNT with good dispersibility in water were prepared successfully. All the materials were well characterized by TGA and infer-red spectrum (IR).%利用聚电解质对多壁碳纳米管(MWNT的表面进行修饰,能有效改善碳纳米管在溶剂中的分散性.首先将经硝酸氧化的碳纳米管与二甲亚砜和乙二醇反应,得到羟基修饰的碳纳米管.然后利用羟基与α-溴异丁酰溴(或α-氯丙酰氯)的酯化反应,在碳纳米管的表面引入了原子转移自由基聚合(atom transfer radical polymerization,ATRP)引发基团,引发丙烯酸叔丁酯(tBA)或4-乙烯基吡啶(4VP)聚合,通过投料比的改变,得到接入量不同的聚合物修饰的碳纳米管.利用热重分析(TGA)和红外对聚合物修饰的碳纳米管进行表征.将聚合物修饰的碳纳米管进行水解(或季胺化),制备得到在水溶液中良好分散的聚电解质修饰的碳纳米管.

  20. Laser cooling and trapping of atomic strontium for ultracold atom physics, high-precision spectroscopy and quantum sensors

    OpenAIRE

    Sorrentino, F.; Ferrari, G.; Poli, N.; Drullinger, R. E.; G. M. Tino

    2006-01-01

    This review describes the production of atomic strontium samples at ultra-low temperature and at high phase-space density, and their possible use for physical studies and applications. We describe the process of loading a magneto-optical trap from an atomic beam and preparing the sample for high precision measurements. Particular emphasis is given to the applications of ultracold Sr samples, spanning from optical frequency metrology to force sensing at micrometer scale.

  1. Cavity-mediated entanglement between distant atoms: Effect of spatial dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Brouard, S., E-mail: sbrouard@ull.e [Departamento de Fisica Fundamental II, Universidad de La Laguna, La Laguna E38204, Tenerife (Spain); Instituto Universitario de Estudios Avanzados (IUdEA) en Fisica Atomica, Molecular y Fotonica, Universidad de La Laguna, La Laguna E38204, Tenerife (Spain); Martinez, R. [Departamento de Fisica Fundamental II, Universidad de La Laguna, La Laguna E38204, Tenerife (Spain)

    2011-04-11

    The decoherence effect of spatial atomic dispersion on entangled states prepared between two non-interacting atoms that pass through a resonant electromagnetic cavity is studied in detail. Entanglement is shown to oscillate with the atom-field interaction time with an amplitude that decays due to inhomogeneous coupling strength. An upper bound for the entanglement that can be obtained using this procedure is introduced and evaluated numerically for different sets of system parameters. This magnitude depends solely on the overlap between atomic wavefunctions evolved according to two different atom-field interactions. Analytical expressions for the associated decay rate are obtained under different approximations. - Highlights: Preparation of entangled atomic states mediated by a resonant electromagnetic cavity. Decoherent effect of spatial atomic dispersion is studied. Entanglement is evaluated for different sets of system parameters. An upper bound for the entanglement achievable is introduced and discussed. Different analytical approximations for the decay rate are presented.

  2. Morphometric and Productive Characterization of Nineteen Genotypes from the Colombian Coffea Collection / Caracterización Morfométrica y Productiva de Diecinueve Genotipos de la Colección Colombiana del Género Coffea

    Directory of Open Access Journals (Sweden)

    Jhon Wilson Mejía Montoya

    2013-12-01

    Full Text Available Nineteen genotypes of the Colombian Coffee (Coffeaarabica L. Collection were characterized through features related to productivity, crown architecture and light interception. The results revealed significant differences among genotypes. Branches and leaves were found to be dominantly plagiophyl. Leaf area (LA and Leaf area index (LAI made accession CU1812 (which correspondsto variety Castillo® stand out for its photosynthetically activeradiation (PAR interception and coffee bean production. Likewise, a PAR based cluster analysis allowed dividing the genotypes in three groups. Because of their higher yield, the most outstanding genotypes were Caturra, CU-1812 and Harrar R2. This factor showed correlation with PAR absorption. The current results are useful for future works in coffee breeding programs. / Se caracterizaron 19 genotipos de la Colección Colombiana de Café (Coffea arabica L.; para ello se estudiaron aspectos relacionados con la arquitectura del dosel, la interceptación de la radiación y la producción. Los resultados mostraron diferencias significativas entre los genotipos, predominando en las ramas la distribución plagiofila; una disposición similar se observóen las hojas. El área foliar (AF y el índice de área foliar (IAF,contribuyeron a que la introducción CU1812, componente de la variedad Castillo®, se destacara por presentar los mayores valores de interceptación de radiación fotosintéticamente activa (RFA y producción de café cereza. Así mismo, el análisis de agrupamiento con base en la RFA, permitió ordenar los genotipos en tres grupos,destacándose Caturra, CU-1812 y Harrar R2 por su mayorrendimiento, factor que mostró correlación con la RFA captadapor el dosel. Los resultados obtenidos en esta investigación son de utilidad en futuros trabajos de mejoramiento genético en café.

  3. 论《古诗十九首》中的异文与模件化套语%Analysis of the Variants and Modular Formulae of the Nineteen Ancient Poems

    Institute of Scientific and Technical Information of China (English)

    胡旭; 刘美惠

    2014-01-01

    Poems are always thought by readers that they can fully express the writer’s characteristics and in-ner world.Especially in the history of Chinese classical literary criticism,“Understanding human beings and re-flecting on society”is an important category.Also,“Finding poet’s mind through the poems”became a way by which those who live in the era far away from writers tried to approach the original circumstances.However,the connections between the writers and the texts have never been considered carefully.The Nineteen Ancient Poems and other pre-Tang Dynasty poems have so many variants and formulae that researchers are forced to reconsider the ancient theory of poems---“poetry can be watched”.%诗歌通常被认为是高度表达作者个性与内心世界的一种艺术形式,尤其在中国古代的文学评论传统中,“知人论世”成为基本的评判准则。与之类似的,“赋诗以观志”,即通过诗反观或推测作者的情感、品格与境遇,也反映了远离当时创作环境之人试图接近诗歌“初始”面貌的努力。然而,诗与人之间联系的相关度与可靠性并未得到深入的考量。在以《古诗十九首》为代表的一系列先唐古诗(包括乐府)中,一方面,为数众多的异文将使后世“一字千金”的评价显得暧昧可疑;另一方面,频繁且几乎以固定模式出现的某些套语迫使读者不得不重新思考从文本回溯到创作者或时代背景的努力能否达到。因此,“诗可以观”的古老理论面临着双重考验。

  4. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  5. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  6. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  7. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  8. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  9. Adiabatic control of atomic dressed states for transport and sensing

    Science.gov (United States)

    Cooper, N. R.; Rey, A. M.

    2015-08-01

    We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.

  10. Dynamics of atom-field entanglement in a bimodal cavity

    CERN Document Server

    Deçordi, G L

    2015-01-01

    We investigate some aspects of the dynamics and entanglement of bipartite quantum system (atom-quantized field), coupled to a third ``external" subsystem (quantized field). We make use of the Raman coupled model; a three-level atom in a lambda configuration interacting with two modes of the quantized cavity field. We consider the far off resonance limit, which allows the derivation of an effective Hamiltonian of a two-level atom coupled to the fields. We also make a comparison with the situation in which one of the modes is treated classically rather than prepared in a quantum field (coherent state).

  11. Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms.

    Science.gov (United States)

    Ge, Jingjie; He, Dongsheng; Bai, Lei; You, Rui; Lu, Haiyuan; Lin, Yue; Tan, Chaoliang; Kang, Yan-Biao; Xiao, Bin; Wu, Yuen; Deng, Zhaoxiang; Huang, Weixin; Zhang, Hua; Hong, Xun; Li, Yadong

    2015-11-25

    Monolayer Ru atoms covered highly ordered porous Pd octahedra have been synthesized via the underpotential deposition and thermodynamic control. Shape evolution from concave nanocube to octahedron with six hollow cavities was observed. Using aberration-corrected high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, we provide quantitative evidence to prove that only a monolayer of Ru atoms was deposited on the surface of porous Pd octahedra. The as-prepared monolayer Ru atoms covered Pd nanostructures exhibited excellent catalytic property in terms of semihydrogenation of alkynes.

  12. Evolution of Hydrogen Storage Alloys Prepared by Special Methods

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Ximin; Jing Hai; Li Chengdong; Xu Jun

    2004-01-01

    Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.

  13. Tunnelling of Two-Level Atoms in Two-Photon Mazer:Atomic Coherence Effect and Statistics of Cavity Fields

    Institute of Scientific and Technical Information of China (English)

    何小灵; 杜四德; 周鲁卫; 汪启胜; 陈灏

    2004-01-01

    Tunnelling of a two-level atom is investigated in the two-photon mazer when the atom is initially prepared in a coherent superposition state and the cavity in various quantum states. For a strong coherent field, the tunnelling exhibits more regular oscillations but less remarkable switch effect than that in the one-photon mazer. It is discovered that in the presence of atomic coherence, the transmission probabilities in the ultracold regime are significantly different when the cavity field is initially in coherent, squeezed vacuum, even cat and odd cat states,respectively.

  14. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  15. Energy from the Atom.

    Science.gov (United States)

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  16. Atomically Traceable Nanostructure Fabrication.

    Science.gov (United States)

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  17. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  18. Atomic and Molecular Processes

    Science.gov (United States)

    1980-06-25

    The topics investigated experimentally and theoretically by the Pittsburgh Atomic Sciences Institute with applications to high power laser development and atmospheric IR backgrounds are enumerated. Reports containing the detailed scientific progress in these studies are cited. Finally, a list of the journal articles describing the results of the programs, with full references, is given.

  19. Single-Atom Electrocatalysts.

    Science.gov (United States)

    Zhu, Chengzhou; Fu, Shaofang; Shi, Qiurong; Du, Dan; Lin, Yuehe

    2017-05-23

    Recent years have witnessed the increasing production of the sustainable and renewable energy. The limitations of electrochemical performances are closely associated with the search for highly efficient electrocatalysts with more rational control of size, shape, composition and structure. Specifically, the rapidly emerging studies on single-atom catalysts (SACs) have sparked new interests in electrocatalysis because of the unique properties such as high catalytic activity, selectivity and 100% atom utilization. In this review, we introduce the innovative synthesis and advanced characterizations of SACs and primarily focus on their electrochemical applications in oxygen reduction/evolution reaction, hydrogen evolution reaction, hydrocarbon conversion reactions for fuel cells (methanol, ethanol and formic acid electrooxidation) and other related fields. Significantly, this unique single atom-depended electrocatalytic performance together with the underlying mechanism will also be discussed. Furthermore, future research directions and challenges are proposed to further realize the ultimate goal of tailoring single-atoms for electrochemical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  1. Atomism, Pragmatism, Holism.

    Science.gov (United States)

    Miller, John P.

    1986-01-01

    Examines three world views influencing curriculum development--atomism (underpinning competency-based education), pragmatism (promoting inquiry-based approaches), amd holism (associated with confluent or Waldorf education). Holism embodies the perennial philosophy and attempts to integrate cognitive, affective, and transpersonal dimensions,…

  2. Experiments with Ξ- atoms

    Science.gov (United States)

    Batty, C. J.; Friedman, E.; Gal, A.

    1999-01-01

    Experiments with Ξ- atoms are proposed in order to study the nuclear interaction of Ξ hyperons. The production of Ξ- in the (K-,K+) reaction, the Ξ- stopping in matter, and its atomic cascade are incorporated within a realistic evaluation of the results expected for Ξ- x-ray spectra across the periodic table, using an assumed Ξ-nucleus optical potential Vopt. Several optimal targets for measuring the strong-interaction shift and width of the x-ray transition to the ``last'' atomic level observed are singled out: F, Cl, I, and Pb. The sensitivity of these observables to the parameters of Vopt is considered. The relevance of such experiments is discussed in the context of strangeness -2 nuclear physics and multistrange nuclear matter. Finally, with particular reference to searches for the H dibaryon, the properties of Ξ-d atoms are also discussed. The role of Stark mixing and its effect on S and P state capture of Ξ- by the deuteron together with estimates of the resulting probability for producing the H dibaryon are considered in detail.

  3. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  4. How Prepared is Prepared Enough?

    Science.gov (United States)

    Porter-Levy; Macleod; Rickert

    1996-10-01

    A 17-year-old female was in the final stage in treatment of right unilateral cleft lip and palate. She had undergone a number of previous surgeries. Hearing and speech were good on evaluation, and her social and family situation were deemed excellent. After preparatory orthodontics she underwent a Lefort I maxillary advancement. Surgery was successful and she was admitted into postoperative recovery. However, the lack of adequate preoperative preparation caused traumatic reaction from the patient and her parents: anxiety over appearance, crying, refusal of oral fluids and oral care, refusal of analgesia, and refusal to mobilize. The patience and persistence of hospital staff slowly overcame all adversities and the patient moved on to full and successful recovery, but this case prompted changes in preoperative procedures and involvement of patients and their families in postoperative meal selection, planing, and preparation.

  5. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    Science.gov (United States)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  6. Collisions of Rydberg Atoms with Charged Particles

    Science.gov (United States)

    MacAdam, Keith B.

    2000-10-01

    The long range of Coulomb interactions, together with the large size, long radiative lifetimes and high state densities of highly excited Rydberg atoms, results in inelastic collision cross sections of prodigious size -- often large enough to outweigh small number densities in astrophysica and cool laboratory plasmas -- and in other unusual features. This talk will provide: (a) a brief survey of the significant features of collisions between electron or positive ions and state-selected Rydberg atoms and of recent experiments( O. Makarov and K.B. MacAdam, Phys. Rev. A 60), 2131-8 (1999); and K.B. MacAdam, J.C. Day and D.M. Homan, Comm. At. Mol. Phys./Comm. Mod. Phys. 1(2), Part D, 57-73 (1999). to investigate them; (b) an introduction to some of the special techniques that have been developed(J.L. Horn, D.M. Homan, C.S. Hwang, W.L. Fuqua III and K.B. MacAdam, Rev. Sci. Instrum. 69), 4086-93 (1998). for preparation, manipulation and detection of Rydberg atoms; and (c) a glimpse at new directions in Rydberg atom collision research.

  7. One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED

    Science.gov (United States)

    Zou, Xubo; Mathis, W.

    2004-09-01

    We propose an experimental scheme for one-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED. In the scheme, many three-level atoms initially prepared in the same superposition states are simultaneously sent through one superconducting cavity, and maximally entangled states can be generated without requiring the measurement and individual addressing of the atoms.

  8. Photon-atom interactions

    CERN Document Server

    Weissbluth, Mitchel

    1989-01-01

    This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.

  9. Unravelling the Mystery of the Atomic Nucleus A Sixty Year Journey 1896 — 1956

    CERN Document Server

    Fernandez, Bernard

    2013-01-01

    Unravelling the Mystery of the Atomic Nucleus tells the story of how, in the span of barely sixty years, we made a transition from the belief that matter was composed of indivisible atoms, to the discovery that in the heart of each atom lies a nucleus which is ten thousand times smaller than the atom, which nonetheless carries almost all its mass, and the transformations of which involve energies that could never be reached by chemical reactions. It was not a smooth transition. The nature of nuclei, their properties, the physical laws which govern their behaviour, and the possibility of controlling to some extent their transformations, were discovered in discontinuous steps, following paths which occasionally led to errors which in turn were corrected by further experimental discoveries. The story begins in 1896 when radioactivity was unexpectedly discovered and continues up to the nineteen-sixties. The authors describe the spectacular progress made by physics during that time, which not only revealed a new f...

  10. Inelastic processes in atomic collisions involving ground state and laser-prepared atoms

    NARCIS (Netherlands)

    Planje, Willem Gilles

    2001-01-01

    In dit proefschrift worden experimenten beschreven waarbij ionen of atomen met een bepaalde snelheid op een ensemble van doelwitatomen worden gericht. Wanneer twee deeltjes elkaar voldoende genaderd hebben, vindt er wissel- werking plaats waarbij allerlei processen kunnen optreden. Deze processen re

  11. Entangled state fusion with Rydberg atoms

    Science.gov (United States)

    Ji, Y. Q.; Dai, C. M.; Shao, X. Q.; Yi, X. X.

    2017-10-01

    We propose a scheme for preparation of large-scale entangled GHZ states and W states with neutral Rydberg atoms. The scheme mainly depends on Rydberg antiblockade effect, i.e., as the Rydberg-Rydberg interaction strength and the detuning between the atom transition frequency and the classical laser frequency satisfies some certain conditions, the effective Rabi oscillation between the two ground states and the two excitation Rydberg states would be generated. The prominent advantage is that both two multiparticle GHZ states and two multiparticle W states can be fused in this model, especially the success probability for fusion of GHZ states can reach unit. In addition, the imperfections induced by the spontaneous emission is also discussed through numerical simulation.

  12. Atomic and Molecular Aspects of Astronomical Spectra

    CERN Document Server

    Sochi, Taha

    2012-01-01

    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate...

  13. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  14. Atomic Coherent Trapping and Properties of Trapped Atom

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Jian; XIA Li-Xin; XIE Min

    2006-01-01

    Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.

  15. Spin squeezing and entanglement via hole-burning in atomic coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)], E-mail: christopher.gerry@lehman.cuny.edu; Peart, Mark [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)

    2008-10-20

    We study the generation of spin squeezing via the hole burning of selected Dicke states out of an atomic coherent state prepared for a collection of N two-level atoms or ions. The atoms or ions of the atomic coherent state are not entangled, but the removal of one or more Dicke states generates entanglement, and spin squeezing occurs for some ranges of the relevant parameters. Spin squeezing in a collection of two-level atoms or ions is of importance for precision spectroscopy.

  16. Optical atomic clocks

    CERN Document Server

    Poli, N; Gill, P; Tino, G M

    2014-01-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femto-second optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in $10^{18}$. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  17. Rotary cup slurry atomization

    Science.gov (United States)

    Sommer, H. T.; Marnicio, R. J.

    1983-06-01

    The theory of a two-phase flow in a rotating cup atomizer is described. The analysis considers the separation of the solid and liquid media thus realistically modeling the flow of two layers along the inner cup wall: a slurry of increasing solids concentration and a supernatent liquid layer. The analysis is based on the earlier work of Hinze and Milborn (1950) which addressed the flow within a rotary cup for a homogeneous liquid. The superimposition of a settling velocity under conditions of high centrifugal acceleration permits the extended analysis of the separation of the two phases. Appropriate boundary conditions have been applied to the film's free surface and the cup wall and to match the flow characteristics at the liquid-slurry interface. The changing slurry viscosity, increasing nonlinearly with growing solid loading, was also considered. A parameter study illustrates the potential for a cup design to provide optimal slurry and liquid film thicknesses for effective atomization.

  18. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  19. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  20. Quantum entanglement in the system of two two-level atoms interacting with a single-mode vacuum field

    Institute of Scientific and Technical Information of China (English)

    Zeng Ke; Fang Mao-Fa

    2005-01-01

    The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.

  1. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  2. Atom-Light Hybrid Interferometer.

    Science.gov (United States)

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  3. Atomic Weights and Isotopic Compositions

    Science.gov (United States)

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  4. Into the atom and beyond

    CERN Multimedia

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  5. Artificial Rydberg atom

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Yong S. [Center for Computational Nanoscience, Department of Physics and Astronomy, Ball State University, Muncie, IN 47306 (United States)], E-mail: ysjoe@bsu.edu; Mkrtchian, Vanik E. [Institute for Physical Research, Armenian Academy of Sciences, Ashtarak-2, 378410, Republic of Armenia (Armenia); Lee, Sun H. [Center for Computational Nanoscience, Department of Physics and Astronomy, Ball State University, Muncie, IN 47306 (United States)

    2009-03-02

    We analyze bound states of an electron in the field of a positively charged nanoshell. We find that the binding and excitation energies of the system decrease when the radius of the nanoshell increases. We also show that the ground and the first excited states of this system have remarkably the same properties of the highly excited Rydberg states of a hydrogen-like atom, i.e., a high sensitivity to the external perturbations and long radiative lifetimes.

  6. Atom Interferometry Progress

    Science.gov (United States)

    1990-04-19

    Casher effect . RECENT PUBLICATION Atom Optics, David W. Keith and David E. Pritchard, New frontiers in QED and Quantumoptics, (Plenum Press, New York...frequencies (< 10 Hz) where the passive system is least effective . The reduction of relative motion provided by the active system will allow us to use much...experimental objective will probably be a demonstration of Berry’s phase with bosons. Another possibility would be an improved measurement of the Aharonov

  7. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  8. Strange exotic atoms

    Science.gov (United States)

    Friedman, E.

    1998-08-01

    Exotic atoms of K- and Σ- are analyzed using density-dependent optical potentials constrained by a low-density limit. Emphasis is placed on radial sensitivities of the real potential. A potential depth of 180MeV inside nuclei is confirmed for K-. For Σ- a shallow attractive potential outside the nuclear surface becomes repulsive in the interior. The information content of limited data sets is demonstrated.

  9. Atomic lighthouse effect.

    Science.gov (United States)

    Máximo, C E; Kaiser, R; Courteille, Ph W; Bachelard, R

    2014-11-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease in magnetic field efficiency.

  10. The Atomic Lighthouse Effect

    CERN Document Server

    Máximo, C E; Courteille, Ph W; Bachelard, R

    2014-01-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease of the magnetic field efficiency.

  11. Ghost imaging with atoms

    Science.gov (United States)

    Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.

    2016-12-01

    Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.

  12. Zitterbewegung in Cold Atoms

    Science.gov (United States)

    Penteado, Poliana; Egues, J. Carlos

    2013-03-01

    In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.

  13. 东西方视野下的古诗十九首研究--以木斋、宇文所安的研究为例%Research on “The Nineteen Old Poems” in the Eastern and Western Perspective:The Case Studies of MU Zhai and Stephen Owen

    Institute of Scientific and Technical Information of China (English)

    彭文良

    2014-01-01

    木斋所著《古诗十九首与建安诗歌研究》提出十九首可能产生的时间为建安时期,主要的作者则为曹植,观点新奇,论证严谨。美国学者宇文所安的新著《中国早期古典诗歌的生成》从迥然不同的角度,得出与木斋相近的结论。这两部著作从东西方不同的知识背景、文化视野下观照古诗十九首,为古诗十九首的研究提供新了的视角和方法。%The Research on The Nineteen Old Poems and Jian’ an Poetry made by MU Zhai argues that:The Nineteen Old Poems are probably created by Cao Zhi in Jian’ an Period.This study is from a novel perspective, and provides a rigorous agreement.American scholar Stephen Owen, in his new book The Making of Early Chinese Classical Poetry , discussed it from a different perspective and came to a similar conclusion with Mu Zhai.These two works treated The Nineteen Old Poems from different language back-ground and cultural horizons between the East and the West.This provides a new way to study The Nine-teen Old Poems.

  14. Atom Chip for Transporting and Merging Magnetically Trapped Atom Clouds

    CERN Document Server

    Hänsel, W; Hommelhoff, P; Hänsch, T W

    2000-01-01

    We demonstrate an integrated magnetic ``atom chip'' which transports cold trapped atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of magnetic potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve fluxes up to 10^6 /s with a negligible heating rate. An extension of this ``atomic conveyor belt'' allows the merging of magnetically trapped atom clouds by unification of two Ioffe-Pritchard potentials. Under suitable conditions, the clouds merge without loss of phase space density. We demonstrate this unification process experimentally.

  15. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  16. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  17. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  18. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  19. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  20. Encapsulation method for atom probe tomography analysis of nanoparticles

    NARCIS (Netherlands)

    Larson, D.J.; Giddings, A.D.; Wub, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact ma

  1. Workshop on foundations of the relativistic theory of atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    The conference is an attempt to gather state-of-the-art information to understand the theory of relativistic atomic structure beyond the framework of the original Dirac theory. Abstracts of twenty articles from the conference were prepared separately for the data base. (GHT)

  2. Two interacting atoms in a cavity: Entanglement vs decoherence

    CERN Document Server

    Torres, J M; Seligman, T H

    2009-01-01

    We address the problem of two interacting atoms of different species inside a cavity and find the explicit solutions of the corresponding eigenvalue problem. Closed expressions for concurrence and purity as a function of time when the cavity is prepared in a number state are found. The behavior in the concurrence-purity plane is discussed.

  3. Boundary effects on radiative processes of two entangled atoms

    CERN Document Server

    Arias, E; Menezes, G; Svaiter, N F

    2015-01-01

    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat boundaries. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transition rates from the entangled states to its collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single boundary the transition rate for the symmetric state undergoes a strong reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. For completeness we also investigate the case of two perfect mirrors.

  4. Boundary effects on radiative processes of two entangled atoms

    Energy Technology Data Exchange (ETDEWEB)

    Arias, E. [Instituto Politécnico, Universidade do Estado do Rio de Janeiro,28625-570 Nova Friburgo (Brazil); Dueñas, J.G. [Universidade Federal de Minas Gerais,Belo Horizonte, BH 31270-901 (Brazil); Menezes, G. [Grupo de Física Teórica e Matemática Física, Departamento de Física,Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000 (Brazil); Svaiter, N.F. [Centro Brasileiro de Pesquisas Físicas,Rio de Janeiro, RJ 22290-180 (Brazil)

    2016-07-29

    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat mirrors. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transitions rates from the entangled states to the collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single mirror the transition rate for the symmetric state undergoes a slight reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. Finally, we investigate the effect of multiple reflections by two perfect mirrors on the transition rates.

  5. Boundary effects on radiative processes of two entangled atoms

    Science.gov (United States)

    Arias, E.; Dueñas, J. G.; Menezes, G.; Svaiter, N. F.

    2016-07-01

    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat mirrors. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transitions rates from the entangled states to the collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single mirror the transition rate for the symmetric state undergoes a slight reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. Finally, we investigate the effect of multiple reflections by two perfect mirrors on the transition rates.

  6. Atomic Force Microscopy Characterization of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S [INFN - LNF Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (Italy); Gaggiotti, G [2M Strumenti S.p.A., Roma (Italy); Marchetti, M [Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Ingegneria Aerospaziale e Astronautica, Roma (Italy); Micciulla, F [INFN - LNF Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (Italy); Mucciato, R [2M Strumenti S.p.A., Roma (Italy); Regi, M [INFN - LNF Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (Italy)

    2007-03-15

    Carbon Nanotubes (CN) form a new class of materials that has attracted large interest in the scientific community because of their extraordinary properties (mechanical, electrical, thermal, etc.), as well as owing to the diversity of the proposed technological applications. The characterization of CN is the result of specific sample preparation procedures and requires the use of selected tools (e.g. SEM, HRTEM, EDX, Micro Raman, AFM, STM). We report some studies we carried out based on the CN characterization with the Atomic Force Microscopy (AFM). The general characteristics of the AFM employed and the sample preparation methods are illustrated. The research activities are focused on the development of specific analysis procedures. In fact, the interaction forces between the AFM cantilever tip and the sample, is the main parameter in the acquisition of a 3D topographic AFM micrograph.

  7. Preparing entangled states by Lyapunov control

    Science.gov (United States)

    Shi, Z. C.; Wang, L. C.; Yi, X. X.

    2016-09-01

    By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.

  8. Preparing entangled states by Lyapunov control

    Science.gov (United States)

    Shi, Z. C.; Wang, L. C.; Yi, X. X.

    2016-12-01

    By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.

  9. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  10. Atom lens without chromatic aberrations

    CERN Document Server

    Efremov, Maxim A; Schleich, Wolfgang P

    2012-01-01

    We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.

  11. Effects of dark atom excitations

    CERN Document Server

    Cudell, Jean-René; Wallemacq, Quentin

    2014-01-01

    New stable quarks and charged leptons may exist and be hidden from detection, as they are bound by Coulomb interaction in neutral dark atoms of composite dark matter. This possibility leads to fundamentally new types of indirect effects related to the excitation of such dark atoms followed by their electromagnetic de-excitation. Stable -2 charged particles, bound to primordial helium in O-helium (OHe) atoms, represent the simplest model of dark atoms. Here we consider the structure of OHe atomic levels which is a necessary input for the indirect tests of such composite dark matter scenarios, and we give the spectrum of electromagnetic transitions from the levels excited in OHe collisions.

  12. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  13. Harmonic Enhancement Mechanism of a Superposition State Atom Irradiated by Short Pulses

    Institute of Scientific and Technical Information of China (English)

    YANG Yu-Jun; ZHU Qi-Ren; CHEN Ji-Gen; HUANG Yu-Xin; GUO Fu-Ming; ZHANG Hong-Xing; SUN Jia-Zhong; ZHU Hong-Yu; WANG Li; WANG Hui

    2007-01-01

    We investigate the high-order harmonic generation (HHG) of a model atom whose initial state is prepared in a superposition of its ground state and an excited state irradiated by different duration laser pulses. Compared to the HHG generated from an atom whose initial state is in its ground state, its conversion efficiency obtains some enhancement. The enhancement originates from the higher ionization rate (rather than the ionization yield) of the atom with superposition initial state.

  14. Photoassociation of Atomic BEC within Mean-Field Approximation:Exact Solutions

    Institute of Scientific and Technical Information of China (English)

    CAI Wei; JING Hui; ZHAN Ming-Sheng; XU Jing-Jun

    2007-01-01

    We propose an exactly solvable method to study the coherent two-colour photoassociation of an atomic BoseEinstein condensate,by linearizing the bilinear atom-molecule coupling,which allows su to conveniently probe the quantum dynamics and statistics of the system.By preparing different initial states of the atomic condensate,we can observe very different quantum statistical properties of the system by exactly calculating the quadraturesqueezed and mode-correlated functions.

  15. Storage, transportation, and atomization of CWF for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Grimanis, M.P.; Breault, R.W. (TECOGEN, Inc., Waltham, MA (United States)); Smit, F.J.; Jha, M.C. (AMAX Research and Development Center, Golden, CO (United States))

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  16. Spin squeezing and Schrödinger cat generation in atomic samples with Rydberg blockade

    DEFF Research Database (Denmark)

    Opatrný, Tomáš; Mølmer, Klaus

    2012-01-01

    A scheme is proposed to prepare squeezed states and Schrödinger-cat-like states of the collective spin degrees of freedom associated with a pair of ground states in an atomic ensemble. The scheme uses an effective Jaynes-Cummings interaction which can be provided by excitation of the atoms...

  17. Doping of Semiconducting Atomic Chains

    Science.gov (United States)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  18. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan;

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks......Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case...

  19. An environmental transfer hub for multimodal atom probe tomography.

    Science.gov (United States)

    Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E

    2017-01-01

    Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

  20. Electrical and optical characterization of atomically thin WS₂.

    Science.gov (United States)

    Georgiou, Thanasis; Yang, Huafeng; Jalil, Rashid; Chapman, James; Novoselov, Kostya S; Mishchenko, Artem

    2014-07-21

    Atomically thin layers of materials, which are just a few atoms in thickness, present an attractive option for future electronic devices. Herein we characterize, optically and electronically, atomically thin tungsten disulphide (WS2), a layered semiconductor. We provide the distinctive Raman and photoluminescence signatures for single layers, and prepare field-effect transistors where atomically thin WS2 serves as the conductive channel. The transistors present mobilities μ = 10 cm(2) V(-1) s(-1) and exhibit ON/OFF ratios exceeding 100,000. Our results show that WS2 is an attractive option for applications in electronic and optoelectronic devices and pave the way for further studies in this two-dimensional material.

  1. Entangling two transportable neutral atoms via local spin exchange

    CERN Document Server

    Kaufman, A M; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-01-01

    To advance quantum information science a constant pursuit is the search for physical systems that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of Coulomb interactions between ions or dipolar interactions between Rydberg atoms. While these interactions allow fast gates, atoms subject to these interactions must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring significant wavefunction overlap, can alleviate these detrimental effects yet present a new challenge: To distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, via a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. While ult...

  2. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-02-06

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  3. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  4. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  5. Atom Probe Tomography 2012

    Science.gov (United States)

    Kelly, Thomas F.; Larson, David J.

    2012-08-01

    In the world of tomographic imaging, atom probe tomography (APT) occupies the high-spatial-resolution end of the spectrum. It is highly complementary to electron tomography and is applicable to a wide range of materials. The current state of APT is reviewed. Emphasis is placed on applications and data analysis as they apply to many fields of research and development including metals, semiconductors, ceramics, and organic materials. We also provide a brief review of the history and the instrumentation associated with APT and an assessment of the existing challenges in the field.

  6. Achieving atomic resolution

    Directory of Open Access Journals (Sweden)

    John Spence

    2002-04-01

    Full Text Available The discovery of the nanotube in 19915 by high resolution electron microscopy (HREM, following closely on the discovery of fullerenes, has initiated a new field of science known as nanoscience. (In fact the fullerene buckyball itself was first observed in 1980, by HREM1. While nanoscience now spans many disciplines, from molecular biology to quantum computing, for all of them, the HREM technique has become the indispensable tool for analyzing the atomic structure of individual bulk nanostructural elements. However this method has long been the technique of choice whenever questions of microstructural characterization arise in materials science.

  7. Entangling two transportable neutral atoms via local spin exchange

    Science.gov (United States)

    Kaufman, A. M.; Lester, B. J.; Foss-Feig, M.; Wall, M. L.; Rey, A. M.; Regal, C. A.

    2015-11-01

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  8. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  9. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  10. Ghost Imaging with Atoms

    CERN Document Server

    Khakimov, R I; Shin, D K; Hodgman, S S; Dall, R G; Baldwin, K G H; Truscott, A G

    2016-01-01

    Ghost imaging is a technique -- first realized in quantum optics -- in which the image emerges from cross-correlation between particles in two separate beams. One beam passes through the object to a bucket (single-pixel) detector, while the second beam's spatial profile is measured by a high resolution (multi-pixel) detector but never interacts with the object. Neither detector can reconstruct the image independently. However, until now ghost imaging has only been demonstrated with photons. Here we report the first realisation of ghost imaging of an object using massive particles. In our experiment, the two beams are formed by correlated pairs of ultracold metastable helium atoms, originating from two colliding Bose-Einstein condensates (BECs) via $s$-wave scattering. We use the higher-order Kapitza-Dirac effect to generate the large number of correlated atom pairs required, enabling the creation of a ghost image with good visibility and sub-millimetre resolution. Future extensions could include ghost interfe...

  11. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  12. A kilobyte rewritable atomic memory

    Science.gov (United States)

    Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.

    2016-11-01

    The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

  13. Can Atomic Force Microscopy Achieve Atomic Resolution in Contact Mode?

    Science.gov (United States)

    Jarvis, M. R.; Pérez, Rubén; Payne, M. C.

    2001-02-01

    Atomic force microscopy operating in the contact mode is studied using total-energy pseudopotential calculations. It is shown that, in the case of a diamond tip and a diamond surface, it is possible for a tip terminated by a single atom to sustain forces in excess of 30 nN. It is also shown that imaging at atomic resolution may be limited by blunting of the tip during lateral scanning.

  14. Electron correlation energies in atoms

    Science.gov (United States)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  15. Non-destructive detection of ions using atom-cavity collective strong coupling

    CERN Document Server

    Dutta, Sourav

    2016-01-01

    We present a technique, based on atoms coupled to an optical cavity, for non-destructive detection of trapped ions. We demonstrate the vacuum-Rabi splitting (VRS), arising due to the collective strong coupling of ultracold Rb atoms to a cavity, to change in presence of trapped Rb+ ions. The Rb+ ions are optically dark and the Rb atoms are prepared in a dark magneto-optical trap (MOT). The VRS is measured on an optically open transition of the initially dark Rb atoms. The measurement itself is fast, non-destructive and has sufficient fidelity to permit the measurement of atomic-state selective ion-atom collision rate. This demonstration illustrates a method based on atom-cavity coupling to measure two particle interactions generically and non-destructively.

  16. Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2001-01-01

    We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``

  17. Entanglement with Negative Wigner Function of Three Thousand Atoms Heralded by One Photon

    CERN Document Server

    McConnell, Robert; Hu, Jiazhong; Cuk, Senka; Vuletic, Vladan

    2015-01-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910(190) out of 3100 atoms. This is the first time a negative Wigner function or the mutual entanglement of virtually all atoms have been attained in an ensemble containin...

  18. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  19. A trapped atom interferometer with ultracold Sr atoms

    CERN Document Server

    Zhang, Xian; Mazzoni, Tommaso; Poli, Nicola; Tino, Guglielmo M

    2016-01-01

    We report on a trapped atom interferometer based on Bragg diffraction and Bloch oscillations with alkaline-earth-metal atoms. We use a Ramsey-Bord\\'e Bragg interferometer with $^{88}$Sr atoms combined with Bloch oscillations to extend the interferometer time. Thanks to a long coherence time for Bloch oscillations of $^{88}$Sr atoms, we observed interference up to 1 s evolution time in the lattice. A detailed study of decoherence sources during the Bloch phase is also presented. While still limited in sensitivity by lattice lifetime and beam inhomogeneity this result opens the way to high contrast trapped interferometers with extended interrogation time.

  20. Atomic Data: Division B / Commission 14 / Working Group Atomic Data

    CERN Document Server

    Nave, Gillian; Zhao, Gang

    2015-01-01

    This report summarizes laboratory measurements of atomic wavelengths, energy levels, hyperfine and isotope structure, energy level lifetimes, and oscillator strengths. Theoretical calculations of lifetimes and oscillator strengths are also included. The bibliography is limited to species of astrophysical interest. Compilations of atomic data and internet databases are also included. Papers are listed in the bibliography in alphabetical order, with a reference number in the text. Comprehensive lists of references for atomic spectra can be found in the NIST Atomic Spectra Bibliographic Databases http://physics.nist.gov/asbib.

  1. Preparation of the W state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; YE Liu

    2004-01-01

    A scheme for preparation of the tripartite W state via cavity quantum electrodynamics is presented in this paper. And the scheme can be generalized to prepare the n-atom W states. The second part of this paper shows how to prepare n-cavity W states. All cavities involved are initially in the vacuum states, thus the requirement on the quality factor of the cavities is greatly loosened.

  2. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  3. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  4. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  5. Atomic Basic Blocks

    Science.gov (United States)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  6. Atoms in astronomy

    Science.gov (United States)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  7. Variational electrodynamics of Atoms

    CERN Document Server

    De Luca, Jayme

    2013-01-01

    We study extrema with velocity discontinuities for the variational electromagnetic two-body problem. Along $C^2$ segments, these broken extrema satisfy the Euler-Lagrange equations of the variational principle, which are neutral differential delay equations with state-dependent deviating arguments. At points where accelerations are not defined and velocities are discontinuous, broken extrema satisfy Weierstrass-Erdmann corner conditions that energies and momenta are continuous. Here we construct periodic broken extrema near the $C^{\\infty}$ two-body circular orbits, using piecewise-defined $C^2$ solutions of the neutral differential delay equations along regular segments and a variational approximation for the boundary-layer segments. Broken periodic extrema with an integer number of corner points bifurcate from a discrete set of circular orbits, with scales defined by the Weierstrass-Erdmann corner conditions. We consider the three cases of hydrogen, muonium and positronium atoms. In each case the broken ext...

  8. Einstein's Hydrogen Atom

    CERN Document Server

    Kim, Y S

    2011-01-01

    In 1905, Einstein formulated his special relativity for point particles. For those particles, his Lorentz covariance and energy-momentum relation are by now firmly established. How about the hydrogen atom? It is possible to perform Lorentz boosts on the proton assuming that it is a point particle. Then what happens to the electron orbit? The orbit could go through an elliptic deformation, but it is not possible to understand this problem without quantum mechanics, where the orbit is a standing wave leading to a localized probability distribution. Is this concept consistent with Einstein's Lorentz covariance? Dirac, Wigner, and Feynman contributed important building blocks for understanding this problem. The remaining problem is to assemble those blocks to construct a Lorentz-covariant picture of quantum bound states based on standing waves. It is shown possible to assemble those building blocks using harmonic oscillators.

  9. Atomic transportation via carbon nanotubes.

    Science.gov (United States)

    Wang, Quan

    2009-01-01

    The transportation of helium atoms in a single-walled carbon nanotube is reported via molecular dynamics simulations. The efficiency of the atomic transportation is found to be dependent on the type of the applied loading and the loading rate as well as the temperature in the process. Simulations show the transportation is a result of the van der Waals force between the nanotube and the helium atoms through a kink propagation initiated in the nanotube.

  10. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  11. Nonlinear dynamics in atom optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics

    1996-12-31

    In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.

  12. Inertial measurement using atom interferometry

    Institute of Scientific and Technical Information of China (English)

    JIA; Aiai; YANG; Jun; YAN; Shuhua; LUO; Yukun; HU; Qingqing; WEI; Chunhua; LI; Zehuan

    2015-01-01

    The recent advances of atom interferometer and its application in precision inertial measurement are review ed. The principle,characteristics and implementation of atom interferometer are introduced and it can be used to measure gravitational acceleration,gravity gradient and rotation for its high sensitivity. We also present the principle,structure and new progress of gravimeter,gravity gradiometer and gyroscope based on atom interferometer.

  13. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-05

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  14. Nuclear effects in atomic transitions

    OpenAIRE

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...

  15. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching

    Science.gov (United States)

    Ghazaryan, Lilit; Kley, E.-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-01

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  16. Similarity of atoms in molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cioslowski, J.; Nanayakkara, A. (Florida State Univ., Tallahassee, FL (United States))

    1993-12-01

    Similarity of atoms in molecules is quantitatively assessed with a measure that employs electron densities within respective atomic basins. This atomic similarity measure does not rely on arbitrary assumptions concerning basis functions or 'atomic orbitals', is relatively inexpensive to compute, and has straightforward interpretation. Inspection of similarities between pairs of carbon, hydrogen, and fluorine atoms in the CH[sub 4], CH[sub 3]F, CH[sub 2]F[sub 2], CHF[sub 3], CF[sub 4], C[sub 2]H[sub 2], C[sub 2]H[sub 4], and C[sub 2]H[sub 6] molecules, calculated at the MP2/6-311G[sup **] level of theory, reveals that the atomic similarity is greatly reduced by a change in the number or the character of ligands (i.e. the atoms with nuclei linked through bond paths to the nucleus of the atom in question). On the other hand, atoms with formally identical (i.e. having the same nuclei and numbers of ligands) ligands resemble each other to a large degree, with the similarity indices greater than 0.95 for hydrogens and 0.99 for non-hydrogens. 19 refs., 6 tabs.

  17. Bloch oscillations in atom interferometry

    CERN Document Server

    Cladé, Pierre

    2014-01-01

    In Paris, we are using an atom interferometer to precisely measure the recoil velocity of an atom that absorbs a photon. In order to reach a high sensitivity, many recoils are transferred to atoms using the Bloch oscillations technique. In this lecture, I will present in details this technique and its application to high precision measurement. I will especially describe in details how this method allows us to perform an atom recoil measurement at the level of $1.3 \\times 10^{-9}$. This measurement is used in the most precise determination of the fine structure constant that is independent of quantum electrodynamics.

  18. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  19. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  20. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  1. A Quantum Model of Atoms (the Energy Levels of Atoms).

    Science.gov (United States)

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  2. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig,

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  3. Intermolecular atom-atom bonds in crystals - a chemical perspective.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-03-01

    Short atom-atom distances between molecules are almost always indicative of specific intermolecular bonding. These distances may be used to assess the significance of all hydrogen bonds, including the C-H⋯O and even weaker C-H⋯F varieties.

  4. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case......, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0...

  5. Bright Solitons in an Atomic Tunnel Array with Either Attractive or Repulsive Atom-Atom Interactions

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xue; YOU Jun; WU Ying

    2004-01-01

    @@ Taking a coherent state representation, we derive the nonlinear Schrodinger-type differential-difference equations from the quantized model of an array of traps containing Bose-Einstein condensates and linked by the tunnelling process among the adjacent traps. It is shown that no matter whether two-body interactions among atoms are repulsive or attractive, a nearly uniform atom distribution can evolve into a bright soliton-type localized ensemble of atoms and a lump of atom distribution can also be smeared out by redistributing atoms among traps under appropriate initial phase differences of atoms in adjacent traps. These two important features originate from the tailoring effect of the initial phase conditions in coherent tunnelling processes, which differs crucially from the previous tailoring effect coming mainly from the periodicity of optical lattices.

  6. Radiative processes of two entangled atoms outside a Schwarzschild black hole

    Science.gov (United States)

    Menezes, G.

    2016-11-01

    We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and interacting with a quantum electromagnetic field prepared in one of the usual vacuum states, namely, the Boulware, Unruh, or Hartle-Hawking vacuum states. We study the structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation reaction to the entanglement generation between the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms. We show that the thermal nature of the Hartle-Hawking and Unruh vacuum state allows the atoms to get entangled even if they were initially prepared in the separable ground state.

  7. In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen

    Science.gov (United States)

    Molle, Alessandro; Bhuiyan, Md. Nurul Kabir; Tallarida, Grazia; Fanciulli, Marco

    2006-08-01

    The exposure of Ge(001) substrates to atomic oxygen was studied in situ to establish the stability of the germanium oxide. After preparing chemically clean and atomically flat Ge(001) surfaces, the Ge samples were exposed to atomic oxygen in a wide temperature range from room temperature to 400°C. The chemical composition of the so-formed oxides was studied by means of x-ray photoelectron spectroscopy, while the structure was observed by reflection high energy electron diffraction. At low substrate temperatures the atomic oxygen is efficiently chemisorbed and suboxides coexist with the dioxide, which in turn is remarkably promoted in the high temperature range.

  8. Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    Jiang Chun-Lei; Fang Mao-Fa; Hu Yao-Hua

    2008-01-01

    In this paper,we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms.It is shown that the scheme can also be used to create multi-atom cluster state.During the interaction between atom and cavity,the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay.With the help of our scheme it is very simple to prepare the N-atom cluster state with perfect fidelity and probability.The practical feasibility of this method is also discussed.

  9. Trapping of ultra cold atoms in a 3He/4He dilution refrigerator

    CERN Document Server

    Jessen, F; Bell, S C; Vergien, P; Hattermann, H; Weiss, P; Rudolph, M; Reinschmidt, M; Meyer, K; Gaber, T; Cano, D; Guenther, A; Bernon, S; Koelle, D; Kleiner, R; Fortagh, J

    2013-01-01

    We describe the preparation of ultra cold atomic clouds in a dilution refrigerator. The closed cycle 3He/4He cryostat was custom made to provide optical access for laser cooling, optical manipulation and detection of atoms. We show that the cryostat meets the requirements for cold atom experiments, specifically in terms of operating a magneto-optical trap, magnetic traps and magnetic transport under ultra high vacuum conditions. The presented system is a step towards the creation of a quantum hybrid system combining ultra cold atoms and solid state quantum devices.

  10. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    Science.gov (United States)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  11. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  12. Spontaneous excitation of an atom in Kerr space-time

    CERN Document Server

    Menezes, G

    2016-01-01

    We consider radiative processes of an atom in a rotating black-hole background. We assume the atom, represented by a hypothetical two-level system, is coupled via a monopole interaction with a massless quantum scalar field prepared in each one of the usual physical vacuum states of interest. We constrain ourselves to two different states of motion for the atom, namely a static situation in which the atom is placed at a fixed radial distance, and also the case in which it has a stationary motion but with zero angular momentum. We study the structure of the rate of variation of the atomic energy. The intention is to clarify in a quantitative way the effect of the distinguished contributions of vacuum fluctuations and radiation reaction on spontaneous excitation and on spontaneous emission of atoms. In particular, we are interested in the comprehension of the combined action of the different physical processes underlying the Hawking effect in the scenario of rotating black holes as well as the Unruh-Starobinskii...

  13. Ultrastable optical clock with two cold-atom ensembles

    Science.gov (United States)

    Schioppo, M.; Brown, R. C.; McGrew, W. F.; Hinkley, N.; Fasano, R. J.; Beloy, K.; Yoon, T. H.; Milani, G.; Nicolodi, D.; Sherman, J. A.; Phillips, N. B.; Oates, C. W.; Ludlow, A. D.

    2017-01-01

    Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with the 'dead' time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise from the laser interrogating the atomic transition. Despite recent advances in optical clock stability that have been achieved by improving laser coherence, the Dick effect has continually limited the performance of optical clocks. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock that is based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability assessed to be for an averaging time τ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor of Q > 4 × 1015.

  14. Preparing for Surgery

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preparing for Surgery Home For Patients Search FAQs Preparing for Surgery ... Surgery FAQ080, August 2011 PDF Format Preparing for Surgery Gynecologic Problems What is the difference between outpatient ...

  15. Preparing for Surgery

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preparing for Surgery Home For Patients Search FAQs Preparing for Surgery ... Surgery FAQ080, August 2011 PDF Format Preparing for Surgery Gynecologic Problems What is the difference between outpatient ...

  16. The Theory of Atom Lasers

    OpenAIRE

    Ballagh, R.; Savage, C. M.

    2000-01-01

    We review the current theory of atom lasers. A tutorial treatment of second quantisation and the Gross-Pitaevskii equation is presented, and basic concepts of coherence are outlined. The generic types of atom laser models are surveyed and illustrated by specific examples. We conclude with detailed treatments of the mechanisms of gain and output coupling.

  17. Traps for neutral radioactive atoms

    CERN Document Server

    Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R

    2002-01-01

    We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.

  18. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  19. A criterion for atomicity revisited

    NARCIS (Netherlands)

    Hesselink, Wim H.

    2007-01-01

    Concurrent and reactive programs are specified by their behaviours in the presence of a nondeterministic environment. In a natural way, this gives a specification (ARW) of an atomic variable. Several implementations of atomic variables by lower level primitives are known. A few years ago, we formula

  20. Atomic toposes and countable categoricity

    OpenAIRE

    Caramello, Olivia

    2008-01-01

    We give a model-theoretic characterization of the class of geometric theories classified by an atomic topos having enough points; in particular, we show that every complete geometric theory classified by an atomic topos is countably categorical. Some applications are also discussed.