WorldWideScience

Sample records for preparation instrumentation measurement

  1. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  2. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  3. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  4. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  5. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  6. Instruments for meteorological measurement

    International Nuclear Information System (INIS)

    1983-08-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This present rule has for objective to determine the means for meteorological measurement near a site of nuclear facility in which there is not a PWR power plant [fr

  7. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  8. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  9. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  10. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  11. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  12. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  13. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  14. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  15. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  16. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  17. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  18. Automatic HTS force measurement instrument

    International Nuclear Information System (INIS)

    Sanders, S.T.; Niemann, R.C.

    1999-01-01

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs

  19. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  20. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  1. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  2. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  3. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  4. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  5. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  6. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E; Papadopoulos, K [CRES (Greece); Borg, N van der [ECN, Petten (Netherlands); Petersen, S M [Risoe, Roskilde (Denmark); Seifert, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  7. Measurement control program for NDA instruments

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1983-01-01

    Measurement control checks for nondestructive assay instruments have been a constant and continuing concern at Los Alamos National Laboratory. This paper summarizes the evolution of the measurement control checks in the various high-resolution gamma systems we have developed. In-plant experiences with these systems and checks will be discussed. Based on these experiences, a set of measurement control checks is recommended for high-resolution gamma-ray systems

  8. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    International Nuclear Information System (INIS)

    Ridyard, A.

    2000-01-01

    The 'Erythemal Action Spectrum' shows an increase of 10 3 in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  9. Towards an Enterprise Architecture Benefits Measurement Instrument

    NARCIS (Netherlands)

    Dr.ir. Raymond Slot; Henk Plessius; Marlies Steenbergen, van

    2015-01-01

    Author supplied: Based on the Enterprise Architecture Value Framework (EAVF) - a generic framework to classify benefits of Enterprise Architecture (EA) - a measurement instrument for EA benefits has been developed and tested in a survey with 287 respondents. In this paper we present the results of

  10. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.

    Science.gov (United States)

    Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm

    2016-12-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research. A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones. This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties. We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care integration (33%) and patient

  11. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties

    Science.gov (United States)

    BAUTISTA, MARY ANN C.; NURJONO, MILAWATY; DESSERS, EZRA; VRIJHOEF, HUBERTUS JM

    2016-01-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research.A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones.This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties.We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Context Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Methods Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. Findings From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care

  12. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  13. Industrial measurement instruments that use radioisotopes

    International Nuclear Information System (INIS)

    Monno, Asao

    2004-01-01

    An example of a large-scale system for controlling hot rolling, and recent developments for a gamma-ray thickness gauge for the inner-mill housing of a plate and a thickness gauge for a hot seamless tube mill are introduced. The dramatically higher speed response, versatile intelligent elements, larger data capacity and formation of a database are advantages of these instruments over conventional devices. Moreover, Fuji Electric's industrial measuring instruments that use radioisotopes are manufactured and marketed to be compatible with those of Hitachi, and we have already compiled a track record of many deliveries. (author)

  14. Development of retrieval, reservation and management system for measuring instruments

    International Nuclear Information System (INIS)

    Tsuda, Kenzo; Ito, Emi.

    1985-08-01

    In order to computerize the lending and management of measuring instruments, at first, the specification of the software was examined, but thereafter, the development was begun. The largest aim of the computerization was the automation and labor saving of the lending works of diverse measuring instruments and the automatic management. From user side, it is desirable to know the specification and the state of use and reservation of measuring instruments and to be able to easily make reservation based on the information. Besides, from management side, it is desirable to know the location and the state of use and reservation of measuring instruments, to immediately prepare for lending and returning, and to automate the recording of lending and returning. So as to satisfy those conditions, the automatic reservation and management system for measuring instruments was developed. At the same time, the means to simply input required data such as specification, names of manufacturers and equipment number was developed. The input of data was carried out for three months from October, 1984, and the system was almost completed in December, 1984. The full scale operation was started in Junuary, 1985. (Kako, I.)

  15. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  16. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  17. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  18. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    Science.gov (United States)

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  20. Verification of the Indicating Measuring Instruments Taking into Account their Instrumental Measurement Uncertainty

    Directory of Open Access Journals (Sweden)

    Zakharov Igor

    2017-12-01

    Full Text Available The specific features of the measuring instruments verification based on the results of their calibration are considered. It is noted that, in contrast to the verification procedure used in the legal metrology, the verification procedure for calibrated measuring instruments has to take into account the uncertainty of measurements into account. In this regard, a large number of measuring instruments, considered as those that are in compliance after verification in the legal metrology, turns out to be not in compliance after calibration. In this case, it is necessary to evaluate the probability of compliance of indicating measuring instruments. The procedure of compliance probability determination on the basis of the Monte Carlo method is considered. An example of calibration of a Vernier caliper is given.

  1. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  2. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ridyard, A

    2000-07-01

    The 'Erythemal Action Spectrum' shows an increase of 10{sup 3} in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  3. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.

    Science.gov (United States)

    Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J

    2016-12-01

    Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume

  4. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  5. 77 FR 37409 - Request for Domains, Instruments, and Measures for Development of a Standardized Instrument for...

    Science.gov (United States)

    2012-06-21

    ... experience as well. On both issues, CMS is interested in instruments and items which can measure quality of... Measures for Development of a Standardized Instrument for Use in Public Reporting of Enrollee Satisfaction..., communication, coordination of care, customer service), instruments, and measures for measuring the level of...

  6. Portable radiation instrumentation traceability of standards and measurements

    International Nuclear Information System (INIS)

    Wiserman, A.; Walke, M.

    1995-01-01

    Portable radiation measuring instruments are used to estimate and control doses for workers. Calibration of these instruments must be sufficiently accurate to ensure that administrative and legal dose limits are not likely to be exceeded due to measurement uncertainties. An instrument calibration and management program is established which permits measurements made with an instrument to be traced to a national standard. This paper describes the establishment and maintenance of calibration standards for gamma survey instruments and an instrument management program which achieves traceability of measurement for uniquely identified field instruments. (author)

  7. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  8. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  9. Acoustic emission measurement during instrumented impact tests

    International Nuclear Information System (INIS)

    Crostack, H.A.; Engelhardt, A.H.

    1983-01-01

    Results of instrumented impact tests are discussed. On the one hand the development of the loading process at the hammer tup was recorded by means of a piezoelectric transducer. This instrumentation supplied a better representation of the load versus time than the conventional strain gauges. On the other hand the different types of acoustic emission occurring during a test could be separated. The acoustic emission released at the impact of the hammer onto the specimen is of lower frequency and its spectrum is strongly decreasing with increasing frequency. Plastic deformation also emits signals of lower frequency that are of quasi-continuous character. Both signal types can be discriminated by filtering. As a consequence typical burst signal were received afterwards that can be correlated with crack propagation. Their spectra exhibit considerable portions up to about 1.9 MHz. The development in time of the burst signals points to the kind of crack propagation resp. its sequence of appearance. However, definitive comparison between load and acoustic emission should become possible, only when the disadvantages of the common load measurement can be reduced, e.g. by determining the load directly at the specimen instead of the hammer tup

  10. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  11. Instrument for measuring moisture in wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1980-06-01

    A method to determine the moisture content in wood chips, in batch and on-line, has been investigated. The method can be used for frozen and non frozen chips. Samples of wood chips are thawn and dryed with microwaves. During the drying the sample is weighed continously and the rate of drying is measured. The sample is dried t 10 percent moisture content. The result is extrapolated to the drying rate zero. The acccuracy at the method is 1.6 to 1.7 percent for both frozen and non frozen chips. The accuracy of the method is considered acceptable, but sofisticated sampling equipment is necessary. This makes the method too complex to make the instrument marketable.

  12. Measuring Lagrangian accelerations using an instrumented particle

    International Nuclear Information System (INIS)

    Zimmermann, R; Fiabane, L; Volk, R; Pinton, J-F; Gasteuil, Y

    2013-01-01

    Accessing and characterizing a flow imposes a number of constraints on the employed measurement techniques; in particular, optical methods require transparent fluids and windows in the vessel. Whereas one can adapt the apparatus, fluid and methods in the laboratory to these constraints, this is hardly possible for industrial mixers. In this paper, we present a novel measurement technique which is suitable for opaque or granular flows: consider an instrumented particle, which continuously transmits the force/acceleration acting on it as it is advected in a flow. Its density is adjustable for a wide range of fluids and because of its small size and its wireless data transmission, the system can be used both in industrial and in scientific mixers, allowing for a better understanding of the flow within. We demonstrate the capabilities and precision of the particle by comparing its transmitted acceleration to alternative measurements, in particular in the case of a turbulent von Kármán flow. Our technique proves to be an efficient and fast tool to characterize flows. (paper)

  13. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  14. A critical appraisal of instruments to measure outcomes of interprofessional education.

    Science.gov (United States)

    Oates, Matthew; Davidson, Megan

    2015-04-01

    Interprofessional education (IPE) is believed to prepare health professional graduates for successful collaborative practice. A range of instruments have been developed to measure the outcomes of IPE. An understanding of the psychometric properties of these instruments is important if they are to be used to measure the effectiveness of IPE. This review set out to identify instruments available to measure outcomes of IPE and collaborative practice in pre-qualification health professional students and to critically appraise the psychometric properties of validity, responsiveness and reliability against contemporary standards for instrument design. Instruments were selected from a pool of extant instruments and subjected to critical appraisal to determine whether they satisfied inclusion criteria. The qualitative and psychometric attributes of the included instruments were appraised using a checklist developed for this review. Nine instruments were critically appraised, including the widely adopted Readiness for Interprofessional Learning Scale (RIPLS) and the Interdisciplinary Education Perception Scale (IEPS). Validity evidence for instruments was predominantly based on test content and internal structure. Ceiling effects and lack of scale width contribute to the inability of some instruments to detect change in variables of interest. Limited reliability data were reported for two instruments. Scale development and scoring protocols were generally reported by instrument developers, but the inconsistent application of scoring protocols for some instruments was apparent. A number of instruments have been developed to measure outcomes of IPE in pre-qualification health professional students. Based on reported validity evidence and reliability data, the psychometric integrity of these instruments is limited. The theoretical test construction paradigm on which instruments have been developed may be contributing to the failure of some instruments to detect change in

  15. Measurement of non-invasive X-ray measuring instruments

    International Nuclear Information System (INIS)

    Abe, Shinji

    2013-01-01

    Described are the history, measuring system, characteristics and present state of the instruments in the title (NXMI). NXMI, non-invasive to the inner circuit of X-ray generator, is now essential for the quality control of generator with reference to definitions by International Electrotechnical Commission (IEC) and Japan Industrial Standards (JIS). Non-invasive measurement of the generator's tube voltage in 1944 is the first report where the absorption difference of Cu plates with different thickness is used. At present, NXMI, being compact, can measure multiple properties of X-ray generated, such as the tube voltage (TV), current (TC), imaging time, dose/dose rate, total filtration, half value layer, and TV/output waveform. TV is measurable by the penetration difference of X-rays through Cu filters of different thickness, which is a linear function of TV; TC, with the clamp-type ammeter placed at the generator high voltage cable; and the dose, with the semiconductor detector. Characteristics can be evaluable within the upper trigger level of the detector (radiation time, dose measured here), in which measured are the irradiation (imaging) time, delay time, and TV (within the window width). Authors' practical quality control of the generator is conducted through calibration for which data are obtained by invasive (direct) precise measurement of TV, TC, imaging time and dose with reference to JIS. Periodical calibration and consequent quality control of NXMI are essential for the maintenance of precision of the generator. (T.T.)

  16. Impact of instrument response variations on health physics measurements

    International Nuclear Information System (INIS)

    Armantrout, G.A.

    1984-10-01

    Uncertainties in estimating the potential health impact of a given radiation exposure include instrument measurement error in determining exposure and difficulty in relating this exposure to an effective dose value. Instrument error can be due to design or manufacturing deficiencies, limitations of the sensing element used, and calibration and maintenance of the instrument. This paper evaluates the errors which can be introduced by design deficiencies and limitations of the sensing element for a wide variety of commonly used survey instruments. The results indicate little difference among sensing element choice for general survey work, with variations among specific instrument designs being the major factor. Ion chamber instruments tend to be the best for all around use, while scintillator-based units should not be used where accurate measurements are required. The need to properly calibrate and maintain an instrument appears to be the most important factor in instrument accuracy. 8 references, 6 tables

  17. Instruments to measure behavioural and psychological symptoms of dementia.

    Science.gov (United States)

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Preparation of severely curved simulated root canals using engine-driven rotary and conventional hand instruments.

    Science.gov (United States)

    Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D

    2001-03-01

    This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.

  19. Development of assessment instruments to measure critical thinking skills

    Science.gov (United States)

    Sumarni, W.; Supardi, K. I.; Widiarti, N.

    2018-04-01

    Assessment instruments that is commonly used in the school generally have not been orientated on critical thinking skills. The purpose of this research is to develop assessment instruments to measure critical thinking skills, to test validity, reliability, and practicality. This type of research is Research and Development. There are two stages on the preface step, which are field study and literacy study. On the development steps, there some parts, which are 1) instrument construction, 2) expert validity, 3) limited scale tryout and 4) narrow scale try-out. The developed assessment instrument are analysis essay and problem solving. Instruments were declared valid, reliable and practical.

  20. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  1. Research and development of thermal-fluid measuring instrument

    International Nuclear Information System (INIS)

    Tuzla, K.; Chen, J.C.

    1991-01-01

    The goal of this program is to develop an instrument to measure the time-fraction of liquid contact in the transition and film boiling regimes for flow within a vertical tube. The work was carried out at Lehigh University between February 15, 1989 to February 15, 1991. The instrument to measure time-fraction of liquid contact was successfully developed and tested

  2. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  3. Developing an instrument to measure effective factors on Clinical Learning.

    Science.gov (United States)

    Dadgaran, Ideh; Shirazi, Mandana; Mohammadi, Aeen; Ravari, Ali

    2016-07-01

    Although nursing students spend a large part of their learning period in the clinical environment, clinical learning has not been perceived by its nature yet. To develop an instrument to measure effective factors on clinical learning in nursing students. This is a mixed methods study performed in 2 steps. First, the researchers defined "clinical learning" in nursing students through qualitative content analysis and designed items of the questionnaire based on semi-structured individual interviews with nursing students. Then, as the second step, psychometric properties of the questionnaire were evaluated using the face validity, content validity, construct validity, and internal consistency evaluated on 227 students from fourth or higher semesters. All the interviews were recorded and transcribed, and then, they were analyzed using Max Qualitative Data Analysis and all of qualitative data were analyzed using SPSS 14. To do the study, we constructed the preliminary questionnaire containing 102 expressions. After determination of face and content validities by qualitative and quantitative approaches, the expressions of the questionnaire were reduced to 45. To determine the construct validity, exploratory factor analysis was applied. The results indicated that the maximum variance percentage (40.55%) was defined by the first 3 factors while the rest of the total variance percentage (59.45%) was determined by the other 42 factors. Results of exploratory factor analysis of this questionnaire indicated the presence of 3 instructor-staff, students, and educational related factors. Finally, 41 expressions were kept in 3 factor groups. The α-Cronbach coefficient (0.93) confirmed the high internal consistency of the questionnaire. Results indicated that the prepared questionnaire was an efficient instrument in the study of the effective factors on clinical learning as viewed by nursing students since it involves 41 expressions and properties such as instrument design based

  4. The effects of different nickel-titanium instruments on dentinal microcrack formations during root canal preparation.

    Science.gov (United States)

    Ustun, Yakup; Aslan, Tugrul; Sagsen, Burak; Kesim, Bertan

    2015-01-01

    The aim of the present study was to investigate the incidence of dentinal microcracks caused by different preparation techniques. 120 extracted human mandibular incisor teeth were divided into five experimental groups and one control group (n = 20): Group 1: Hand preparation with balanced force technique up to #25 K-file. Group 2: Preparation with only ProTaper F2 instrument in a reciprocating movement. Group 3: Preparation with Reciproc R25 instrument in a reciprocating movement. Group 4: Preparation with ProTaper instruments up to F2 instrument. Group 5: Preparation with ProTaper Next instruments up to X2 instrument. No procedure was applied to control group. The roots were sectioned horizontally at 3, 6 and 9 mm from the apex and examined. Absence or presence of dentinal microcracks was noted. The Chi-square test was performed to compare the appearance of cracked roots between all groups. There were no significant differences among the groups (P > 0.05). In conclusion, except the hand file and control group, all experimental groups showed microcrack formations.

  5. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  6. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  7. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  8. Comparative Study of Three Rotary Instruments for root canal Preparation using Computed Tomography

    International Nuclear Information System (INIS)

    Mohamed, A.M.E.

    2015-01-01

    Cleaning and shaping the root canal is a key to success in root canal treatment. This includes the removal of organic substrate from the root canal system by chemo mechanical methods, and the shaping of the root canal system into a continuously tapered preparation. This should be done while maintaining the original path of the root canal. Although instruments for root canal preparation have been progressively developed and optimized, a complete mechanical debridement of the root canal system is rarely achievable. One of the main reasons is the geometrical dis symmetry between the root canal and preparation instruments. Rotary instruments regardless of their type and form produce a preparation with a round outline if they are used in a simple linear filing motion, which in most of the cases do not coincide with the outline of the root canal. Root canal preparation in narrow, curved canals is a challenge even for experienced endodontists. Shaping of curved canals became more effective after the introduction of nickel-titanium (Ni-Ti) endodontic instruments. Despite the advantages of Ni-Ti rotary instruments, intra canal fracture is the most common procedural accident that occurs with these instruments during clinical use. It is a common experience between clinicians that Ni-Ti rotary instruments may undergo unexpected fracture without any visible warning, such as any previous permanent defect or deformation. Pro Taper Ni-Ti instruments were introduced with a unique design of variable taper within one instrument and continuously changing helical angles. Pro Taper rotary instruments are claimed to generate lower torque values during their use because of their modified nonradial landed cross-section that increases the cutting efficiency and reduces contact areas. On the other hand, the variable taper within one instrument is believed to reduce the ‘taper lock’ effect (torsional failure) in comparison with similarly tapered instruments. Nevertheless, Pro Taper

  9. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  12. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  13. The classical behavior of measuring instruments

    International Nuclear Information System (INIS)

    Kraus, K.

    1986-01-01

    This paper constructs a quantum mechanical model of a counter monitoring the decay of an unstable microsystem. In spite of its quantum mechanical nature, the counter may be assumed to behave classically during the measurement. The relevance of this result for a particular interpretation of quantum mechanics is discussed. The quantum mechanical nature of the model counter could be easily detected in measurements of counter observables which do not commute with the observable P/sub +/. The statistical predictions for such measurements will be definitely incompatible with classical concepts

  14. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  15. The laser, measuring instrument for plasmas

    International Nuclear Information System (INIS)

    Anderegg, F.; Behn, R.; Paris, P.J.; Salito, S.A.; Siegrist, M.R.; Weisen, H.

    1988-06-01

    There are several different and in general complementary methods for the investigation of plasmas. All of them have different characteristics and properties covering a large spectrum of physical measuring techniques. Electromagnetic waves serving as 'thermometers' permit to detect the global behaviour of the plasma as well as that of the particles composing it. One of the advantages of these introspective methods is that it brings information on temporary and local conditions of the domain being interrogated. With the development of micro-wave sources and lasers after the war the principal tools of this type of plasma diagnostics are now available. In this paper the emphasis is on the lasers which are different according to the type of measurement. Their versatility in measuring plasma parameters is largely acknowledged. We illustrate the potential of measuring methods by lasers by means of the research work done at two experimental installations of CRPP. (author) 21 figs., 8 refs

  16. FINANCIAL ACCOUNTING MEASUREMENT: INSTRUMENTATION AND CALIBRATION

    OpenAIRE

    stanley c. w. salvary

    2005-01-01

    In its Conceptual Framework (CF), the Financial Accounting Standards Board (FASB) has not identified the observable phenomena and was not able to identify a single measurement property in financial accounting. While identifying aspects of the observable phenomena in financial accounting, the FASB has indicated that there are five measurement attributes which are used in financial accounting and the result is a mixed-attributes model. Lacking a critical underlying theory, the FASB’s Conceptual...

  17. The preparation of synthetic standards for use in instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Watterson, J.I.W.; Erasmus, C.S.

    1979-01-01

    An account is given of the formulation and preparation of synthetic standards suitable for the routine analysis of minerals, ores, and ore concentrates by instrumental neutron activation. Fifteen standards were prepared, each containing from one to seven elements. The standards contain forty-four elements that produce isotopes with half-lives longer than 12 hours. An evaluation of the accuracy and precision of the method of preparation is given

  18. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  19. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  20. Instruments measuring family or caregiver burden in severe mental illness

    NARCIS (Netherlands)

    Schene, A. H.; Tessler, R. C.; Gamache, G. M.

    1994-01-01

    The consequences of psychiatric disorders for family members, usually called family or caregiver burden, have been studied during the last 4 decades. During this period a variety of instruments have been developed to measure the impact of mental illness on family members, but not all instruments

  1. Requirements for a quality measurement instrument for semantic standards

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Oude Luttighuis, P.; Hillegersberg van, J. van

    2010-01-01

    This study describes requirements for an instrument to measure the quality of semantic standards. A situational requirements engineering method was used, resulting in a goal-tree in which requirements are structured. This structure shows requirements related to the input of the instrument; stating

  2. An intelligent instrument for measuring the dynamic parameters of groundwater

    International Nuclear Information System (INIS)

    Du Guoping

    2002-01-01

    An intelligent instrument was developed for measuring direction and velocity of the groundwater, permeability coefficient, hydraulic transmitting coefficient, static level, hydraulic gradient and flow direction of each layer. The instrument can be widely applied for detecting seepage of abutment and river bank, exploitation of groundwater, conservation of water and soil, water surging in mine, survey of groundwater resource and environment protection etc

  3. An instrumentation for control and measurement of activated mineral samples

    International Nuclear Information System (INIS)

    Skaarup, P.

    1976-01-01

    A description is given of an instrumentation for control of a pneumatic tube system used to transport mineral samples for activation in a reactor and from there to a detector arrangement. A possible content of uranium in the samples can be seen from the radiation measured. The instrumentation includes a PDP-11 computer and a CAMAC crate

  4. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  5. Multichannel measuring instrument of small currents

    International Nuclear Information System (INIS)

    Kunetsov, A.N.; Kuznetsov, E.A.

    2009-01-01

    The device intended for display of a profile of an ion beam by measurement of currents of the co-ordinate wires is developed. Technical characteristics, basic electric and logic schemes, time diagrams, and also photos of the basic parts of the device are presented

  6. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  7. Neutron measuring instruments for radiation protection

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Schneider, W.; Hoefert, M.; Kuehn, H.; Jahr, R.; Wagner, S.; Piesch, E.

    1979-09-01

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP) [de

  8. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  9. MODERN INSTRUMENTS FOR MEASURING ORGANIZATIONAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    RADU CATALINA

    2010-12-01

    Full Text Available Any significant management action can be assessed both in terms of success of immediate goals and as effect of the organization ability to embrace change. Market competition intensifies with the development of Romanian society and its needs. Companies that offer different products and services need to impose certain advantages and to increase their performances. The paper will present modern tools for measuring and evaluating organizational performance, namely: Balanced Scorecard, Deming model and Baldrige model. We also present an example for Balance Scorecard, of an organizations belonging to the cosmetics industry.

  10. Assessing Minimum Competencies of Beginning Teachers: Instrumentation, Measurement Issues, Legal Concerns.

    Science.gov (United States)

    Ellett, Chad D.

    An overview is presented of a performance-based assessment system, Teacher Performance Assessment Instruments (TPAI), developed by the Teacher Assessment Project at the University of Georgia to measure competencies of beginning teachers for initial professional certification. To clearly separate the preparation and certification functions within…

  11. Development an Instrument to Measure University Students' Attitude towards E-Learning

    Science.gov (United States)

    Mehra, Vandana; Omidian, Faranak

    2012-01-01

    The study of student's attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students' attitude towards e-learning. The scale was administered to 200 University students from two countries (India…

  12. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  13. 27 CFR 19.277 - Measuring devices and proofing instruments.

    Science.gov (United States)

    2010-04-01

    ... proof or volume. (b) Instruments. Hydrometers and thermometers used by proprietors to gauge spirits... made in conjunction with the volumetric measurement of spirits by meter. If a meter does not have a...

  14. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  15. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  16. Measurement of sexual functioning after spinal cord injury: preferred instruments

    DEFF Research Database (Denmark)

    Alexander, Marcalee Sipski; Brackett, Nancy L; Bodner, Donald

    2009-01-01

    into male and female sexual function, male reproductive function, and female reproductive function. The instruments that have been used most frequently to measure these aspects of sexual function over the past 5 years were identified by expert consensus. Finally, these instruments were subjected...... to a critical review. RESULTS: The Female Sexual Function Index (FSFI), measurement of vaginal pulse amplitude (VPA), the International Index of Erectile Function (IIEF), and the measurement of ejaculatory function and semen quality were considered appropriate measures to assess sexual responses......BACKGROUND/OBJECTIVE: To determine the utility of certain instruments to assess sexuality and fertility after SCI, an expert panel identified key areas to study and evaluated available instruments. These were rated according to certain predefined criteria. METHODS: The authors divided sexual issues...

  17. A measuring instrument for evaluation of quality systems.

    NARCIS (Netherlands)

    Wagner, C.; Bakker, D.H. de; Groenewegen, P.P.

    1999-01-01

    Objective: To develop an instrument for provider organizations, consumers, purchasers, and policy makers to measure and compare the development of quality systems in provider organizations. Design: Cross-sectional study of provider organizations using a structured questionnaire to survey managers.

  18. Cardiac output measurement instruments controlled by microprocessors

    International Nuclear Information System (INIS)

    Spector, M.; Barritault, L.; Boeri, C.; Fauchet, M.; Gambini, D.; Vernejoul, P. de

    The nuclear medicine and biophysics laboratory of the Necker-Enfants malades University Hospital Centre has built a microprocessor controlled Cardiac flowmetre. The principle of the cardiac output measurement from a radiocardiogram is well established. After injection of a radioactive indicator upstream from the heart cavities the dilution curve is obtained by the use of a gamma-ray precordial detector. This curve normally displays two peaks due to passage of the indicator into the right and left sides of the heart respectively. The output is then obtained from the stewart Hamilton principle once recirculation is eliminated. The graphic method used for the calculation however is long and tedious. The decreasing fraction of the dilution curve is projected in logarithmic space in order to eliminate recirculation by determining the mean straight line from which the decreasing exponential is obtained. The principle of the use of microprocessors is explained (electronics, logics) [fr

  19. Repairing method of color TV with measuring instrument

    International Nuclear Information System (INIS)

    1996-01-01

    This book concentrates on repairing method of color TV with measuring instrument, which deals with direction and sorts of measuring instrument for service, application and basic technique of an oscilloscope and a synchroscope, constituent of TV and wave reading, everything for test skill for service man, service technique by electronic voltmeter, service technique by sweep generator and maker generator, dot-bar generator and support skill for color TV and color bar generator and application technology of color circuit.

  20. Legal control scenario applied to embedded software in measuring instruments

    International Nuclear Information System (INIS)

    Castro, C.G. de; Brandao, P.C.; Leitao, F.O.

    2013-01-01

    This paper presents a scenario of legal control of software in measuring instruments. Such control is hampered by intrinsic problems related to software analysis and verification. To circumvent these difficulties, several projects are being developed to attack different stages of legal control, such as the model type approval, periodic verifications and metrological expertise. The proposals that will arise from these projects will be discussed among the parts and may be incorporated into the measuring instruments. (author)

  1. Witness sample preparation for measuring antireflection coatings.

    Science.gov (United States)

    Willey, Ronald R

    2014-02-01

    Measurement of antireflection coating of witness samples from across the worldwide industry has been shown to have excess variability from a sampling taken for the OSA Topical Meeting on Optical Interference Coatings: Measurement Problem. Various sample preparation techniques have been discussed with their limitations, and a preferred technique is recommended with its justification, calibration procedures, and limitations. The common practice of grinding the second side to reduce its reflection is less than satisfactory. One recommended practice is to paint the polished second side, which reduces its reflection to almost zero. A method to evaluate the suitability of given paints is also described.

  2. Contextuality for preparations, transformations, and unsharp measurements

    International Nuclear Information System (INIS)

    Spekkens, R.W.

    2005-01-01

    The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of contextuality is introduced which generalizes the standard notion in three ways: (i) it applies to arbitrary operational theories rather than just quantum theory (ii) it applies to arbitrary experimental procedures rather than just sharp measurements, and (iii) it applies to a broad class of ontological models of quantum theory rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality

  3. Calculations of flexibility module in measurements instruments

    Science.gov (United States)

    Wróbel, A.; Płaczek, M.; Baier, A.

    2017-08-01

    Piezoelectricity has found a lot of applications since it were discovered in 1880 by Pierre and Jacques Curie. There are many applications of the direct piezoelectric effect - the production of an electric potential when stress is applied to the piezoelectric material, as well as the reverse piezoelectric effect - the production of strain when an electric field is applied. This work presents a mathematical model of a new model of vibration sensor. The principle of operation of currently used sensors is based on the idea: changes in thickness of the piezoelectric plates cause the vibration of the mechanical element, so-called “fork”. If the “forks” are not buried by the material deformation of the full tiles broadcasting is transmitted to receiver piezoelectric plate. As a result of vibration of receiver plates the cladding is formed on the potential difference proportional to the force. The value of this voltage is processed by an electronic circuit. In the case of backfilling “forks” the electric signal is lower. At the same time is not generated the potential for cladding tiles. Such construction have a lot of drawbacks, for example: need to use several piezoelectric plates, with the increase in number of components is increased failure of sensors, sensors have now produced two forks resonance, using these sensors in moist materials is often the case that the material remains between the forks and at the same time causes a measurement error. Mentioned disadvantages do not appear in the new proposed sensor design. The Galerkin method of the analysis of considered systems will be presented started from development of the mathematical model, to determine the graphs of flexibility and confirm two methods: exact and approximate. Analyzed beam is a part of the vibration level sensor and the results will be used to identify the electrical parameters of the generator. Designing of technical systems containing piezoelectric transducers is a complex process

  4. Developing an instrument to measure effective factors on clinical learning

    Directory of Open Access Journals (Sweden)

    IDEH DADGARAN

    2016-07-01

    Full Text Available Introduction: Although nursing students spend a large part of their learning period in the clinical environment, clinical learning has not been perceived by its nature yet. To develop an instrument to measure effective factors on clinical learning in nursing students. Methods: This is a mixed methods study performed in 2 steps. First, the researchers defined “clinical learning” in nursing students through qualitative content analysis and designed items of the questionnaire based on semi-structured individual interviews with nursing students. Then, as the second step, psychometric properties of the questionnaire were evaluated using the face validity, content validity, construct validity, and internal consistency evaluated on 227 students from fourth or higher semesters. All the interviews were recorded and transcribed, and then, they were analyzed using Max Qualitative Data Analysis and all of qualitative data were analyzed using SPSS 14. Results: To do the study, we constructed the preliminary questionnaire containing 102 expressions. After determination of face and content validities by qualitative and quantitative approaches, the expressions of the questionnaire were reduced to 45. To determine the construct validity, exploratory factor analysis was applied. The results indicated that the maximum variance percentage (40.55% was defined by the first 3 factors while the rest of the total variance percentage (59.45% was determined by the other 42 factors. Results of exploratory factor analysis of this questionnaire indicated the presence of 3 instructor-staff, students, and educational related factors. Finally, 41 expressions were kept in 3 factor groups. The α-Cronbach coefficient (0.93 confirmed the high internal consistency of the questionnaire. Conclusion: Results indicated that the prepared questionnaire was an efficient instrument in the study of the effective factors on clinical learning as viewed by nursing students since it

  5. Development of a Computerized Multifunctional Form and Position Measurement Instrument

    International Nuclear Information System (INIS)

    Liu, P; Tian, W Y

    2006-01-01

    A model machine of multifunctional form and position measurement instrument controlled by a personal computer has been successfully developed. The instrument is designed in rotary table type with a high precision air bearing and the radial rotation error of the rotary table is 0.08 μm. Since a high precision vertical sliding carriage supported by an air bearing is used for the instrument, the straightaway motion error of the carriage is 0.3 μm/200 mm and the parallelism error of the motion of the carriage relative to the rotation axis of the rotary table is 0.4 μm/200 mm. The mathematical models have been established for assessing planar and spatial straightness, flatness, roundness, cylindricity, and coaxality errors. By radial deviation measurement, the instrument can accurately measure form and position errors of such workpieces as shafts, round plates and sleeves of medium or small dimensions with the tolerance grades mostly used in industry

  6. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  7. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation.

    Science.gov (United States)

    Bürklein, Sebastian; Tsotsis, Polymnia; Schäfer, Edgar

    2013-04-01

    The purpose of this study was to evaluate the incidence of dentinal defects after root canal preparation with reciprocating instruments (Reciproc and WaveOne) and rotary instruments. One hundred human central mandibular incisors were randomly assigned to 5 groups (n = 20 teeth per group). The root canals were instrumented by using the reciprocating single-file systems Reciproc and WaveOne and the full-sequence rotary Mtwo and ProTaper instruments. One group was left unprepared as control. Roots were sectioned horizontally at 3, 6, and 9 mm from the apex and evaluated under a microscope by using 25-fold magnification. The presence of dentinal defects (complete/incomplete cracks and craze lines) was noted and analyzed by using the chi-square test. No defects were observed in the controls. All canal preparation created dentinal defects. Overall, instrumentation with Reciproc was associated with more complete cracks than the full-sequence files (P = .021). Although both reciprocating files produced more incomplete cracks apically (3 mm) compared with the rotary files (P = .001), no statistically significant differences were obtained concerning the summarized values of all cross sections (P > .05). Under the conditions of this study, root canal preparation with both rotary and reciprocating instruments resulted in dentinal defects. At the apical level of the canals, reciprocating files produced significantly more incomplete dentinal cracks than full-sequence rotary systems (P < .05). Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  9. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  10. Thickness measurement instrument with memory storage of multiple calibrations

    International Nuclear Information System (INIS)

    Lieber, S.; Schlesinger, J.; Lieber, D.; Baker, A.

    1979-01-01

    An improved backscatter instrument for the nondestructive measurement of coatings on a substrate is described. A memory having selectable memory areas, each area having stored intelligence available which is determinative of the shape of a functional plot of coating thickness versus backscatter counts per minute unique for each particular combination of emitting isotope, substrate material, coating material and physical characteristics of the measuring instrument. A memory selector switch connects a selected area of memory to a microprocessor operating under program control whereby the microprocessor reads the intelligence stored at the selected area and converts the backscattered count of the coating being measured into indicia of coating thickness

  11. Cone-beam computed tomography analysis of curved root canals after mechanical preparation with three nickel-titanium rotary instruments

    Science.gov (United States)

    Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.

    2013-01-01

    Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273

  12. Toward Development of a Generalized Instrument to Measure Andragogy

    Science.gov (United States)

    Holton, Elwood F., III; Wilson, Lynda Swanson; Bates, Reid A.

    2009-01-01

    Andragogy has emerged as one of the dominant frameworks for teaching adults during the past 40 years. A major and glaring gap in andragogy research is the lack of a measurement instrument that adequately measures both andragogical principles and process design elements. As a result, no definitive empirical test of the theory has been possible. The…

  13. Instruments for measuring mental health recovery: a systematic review.

    Science.gov (United States)

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide. © 2013.

  14. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  15. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  16. Comparison of nanoparticle measurement instruments for occupational health applications

    International Nuclear Information System (INIS)

    Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J.

    2012-01-01

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30–140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  17. Instrumentation for Structure Measurements on Highly Non-equilibrium Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Argonne National Laboratory (ANL); Benmore, Chris J [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Wilding, Martin C [ORNL

    2011-01-01

    Containerless techniques (levitation) completely eliminate contact with the sample. This unique sample environment allows deep supercooling of many liquids and avoids contamination of high temperature melts. Recent experiments at the APS high energy beamline 11 ID-C used aerodynamic levitation with laser beam heating and acoustic levitation with cryogenic cooling. By using these two methods, liquids were studied over much of the temperature range from -40 to +2500 C. This paper briefly describes the instrumentation and its use with an -Si area detector that allows fast, in-situ measurements. Use of the instruments is illustrated with examples of measurements on molten oxides and aqueous materials.

  18. Characterization of a traceable profiler instrument for areal roughness measurement

    International Nuclear Information System (INIS)

    Thomsen-Schmidt, P

    2011-01-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x–y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments

  19. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review

    NARCIS (Netherlands)

    Hidding, J.T.; Viehoff, P.B.; Beurskens, C.H.G.; Laarhoven, H.W. van; Sanden, M.W. van der; Wees, P.J. van der

    2016-01-01

    BACKGROUND: Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. PURPOSE: The purpose of this study was to provide best evidence regarding which measurement

  20. Health Status Measurement Instruments in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Yves Lacasse

    1997-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is associated with primary respiratory impairment, disability and handicap, as well as with secondary impairments not necessarily confined to the respiratory system. Because the primary goals of managing patients with COPD include relief of dyspnea and the improvement of health-related quality of life (HRQL, a direct measurement of HRQL is important. Fourteen disease-specific and nine generic questionnaires (four health profiles and five utility measures most commonly used to measure health status in patients with COPD were reviewed. The measures were classified according to their domain of interest, and their measurement properties - specifications, validity, reliability, responsiveness and interpretability - were described. This review suggests several findings. Currently used health status instruments usually refer to the patients’ perception of performance in three major domains of HRQL - somatic sensation, physical and occupational function, and psychological state. The choice of a questionnaire must be related to its purpose, with a clear distinction being made between its evaluative and discriminative function. In their evaluative function, only a few instruments fulfilled the criteria of responsiveness, and the interpretability of most questionnaires is limited. Generic questionnaires should not be used alone in clinical trials as evaluative instruments because of their inability to detect change over time. Further validation and improved interpretability of existing instruments would be of greater benefit to clinicians and scientists than the development of new questionnaires.

  1. An intelligent instrument for measuring exhaust temperature of marine engine

    Science.gov (United States)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  2. Measurement of shared decision making - a review of instruments

    NARCIS (Netherlands)

    Scholl, I.; Koelewijn-van Loon, M.; Sepucha, K.; Elwyn, G.; Legare, F.; Harter, M.; Dirmaier, J.

    2011-01-01

    The last years have seen a clear move towards shared decision making (SDM) and increased patient involvement in many countries. However, as the field of SDM research is still relatively young, new instruments for the measurement of (shared) decision making (process, outcome and surrounding elements)

  3. Towards a measurement instrument for determinants of innovations

    NARCIS (Netherlands)

    Fleuren, M.A.H.; Paulussen, T.G.W.M.; van Dommelen, P.; van Buuren, S.

    2014-01-01

    Objective. To develop a short instrument to measure determinants of innovations that may affect its implementation. Design. We pooled the original data from eight empirical studies of the implementation of evidence-based innovations. The studies used a list of 60 potentially relevant determinants

  4. The Construct Validity of an Instrument for Measuring Type 2 ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop an instrument (DSCKQ-30) for measuring type 2 diabetic patients' knowledge of self-care practices. Methods: A 30-item questionnaire (DSCKQ-30) consisting of close ended questions was developed for this study. DSCKQ-30 was self administered to a cross-section of randomly selected 400 ...

  5. A review of instruments developed to measure food neophobia

    DEFF Research Database (Denmark)

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-01-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measur...

  6. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The

  7. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  8. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  9. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  10. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  11. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  12. Current situation and prospect of market on the latest radiation measuring instrument

    International Nuclear Information System (INIS)

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  13. Quantifying Human Response: Linking metrological and psychometric characterisations of Man as a Measurement Instrument

    International Nuclear Information System (INIS)

    Pendrill, L R; Fisher, William P Jr

    2013-01-01

    A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity

  14. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-07-01

    The IERICS (Independent Engineering Review of Instrumentation and Control Systems) mission is a comprehensive engineering review service directly addressing strategy and the key elements for implementation of modern instrumentation and control (I&C) systems, noting in applicable cases, specific concerns related to the implementation of advanced digital I&C systems and the use of software and/or digital logic in safety applications of a nuclear power plant. The guidelines outlined in this publication provide a basic structure, common reference and checklist across the various areas covered by an IERICS mission. Publications referenced in these guidelines could provide additional useful information for the counterpart while preparing for the IERICS mission. A structure for the mission report is given in the Appendix. In 2016, this publication was revised by international experts who had participated in previous IERICS missions. The revision reflects experiences and lessons learned from the preparation and conduct of those missions

  15. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  16. Measurement of proton momentum distributions using a direct geometry instrument

    International Nuclear Information System (INIS)

    Senesi, R; Andreani, C; Kolesnikov, A I

    2014-01-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy E i = 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO

  17. Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments

    Science.gov (United States)

    Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875

  18. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    Directory of Open Access Journals (Sweden)

    Braulio Pasternak-Júnior

    2012-02-01

    Full Text Available OBJECTIVE: This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG. MATERIAL AND METHODS: The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. RESULTS: There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. CONCLUSION: The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.

  19. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    Science.gov (United States)

    PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba

    2012-01-01

    Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679

  20. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  1. NCTM workshop splinter session, IR thermal measurement instruments

    Science.gov (United States)

    Kaplan, Herbert

    1989-06-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  2. Measurements with the new PHE neutron survey instrument

    International Nuclear Information System (INIS)

    Eakins, J.S.; Tanner, R.J.; Hager, L.G.

    2014-01-01

    A novel design of survey instrument has been developed to accurately estimate ambient dose equivalent from neutrons with energies in the range from thermal to 20 MeV. The device features moderating and attenuating layers to ease measurement of fast and intermediate energy neutrons, combined with guides that channel low-energy neutrons to the single, central detector. A prototype of this device has been constructed and exposed to a set of calibration fields: the resulting measured responses are presented and discussed here, and compared against Monte Carlo data. A simple simulated workplace neutron field has also been developed to test the device. Measured response data have been determined for a prototype design of neutron survey instrument, using facilities at PHE and NPL. In general, the results demonstrated good directional invariance and agreed well with data obtained by Monte Carlo modelling, raising confidence in the accuracy of the response characteristics expected for the device. A simple simulated workplace field has also been developed and characterised, and the performance of the device assessed in it: agreement between measured and modelled results suggests that the device would behave as anticipated in real workplace fields. These performances will be investigated further in the future, as the design makes the transition from a research prototype to a commercially available instrument. (authors)

  3. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  4. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  5. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  6. Complex Susceptibility Measurement Using Multi-frequency Slingram EMI Instrument

    OpenAIRE

    Simon , François Xavier; Tabbagh , Alain; Thiesson , Julien; Donati , J.C.; Sarris , A.

    2014-01-01

    International audience; Complex magnetic susceptibility is a well-known property both theoretically and experimentally. To achieve this measurement, different ways have been tested, like TDEM or multi-frequential measurement on soil sample. In this study we carry out the measurements by the use of a multi-frequential EMI Slingram instrument to collect data quickly and in-situ. The use of multi-frequency data is also a way to correct effects of the conductivity on the in-phase component and ef...

  7. A digital instrument for reactivity measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1979-01-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given. (author)

  8. Digital instrument for reactivity measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S [Institute of Nuclear Research, Warsaw (Poland)

    1979-07-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given.

  9. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  10. Satisfaction measurement instruments for healthcare service users: a systematic review

    OpenAIRE

    Almeida, Renato Santos de; Bourliataux-Lajoinie, Stephane; Martins, Mônica

    2015-01-01

    Patient satisfaction surveys can be an interesting way to improve quality and discuss the concept of patient-centered care. This study aimed to conduct a systematic review of the validated patient satisfaction measurement instruments applied in healthcare. The systematic review searched the MEDLINE/PubMed, LILACS, SciELO, Scopus and Web of Knowledge. The search strategy used the terms: "Patient Satisfaction" AND "Patient centered care" AND "Healthcare survey OR Satisfaction questionnaire" AND...

  11. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  12. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... being measured and a sufficient distance from the surface to allow the light sensing element in the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d...

  13. Measurement properties of adult quality-of-life measurement instruments for eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Deckert, S; Chalmers, J R; Drucker, A M; Ofenloch, R; Humphreys, R; Sach, T; Chamlin, S L; Schmitt, J; Apfelbacher, C

    2016-03-01

    The Harmonising Outcome Measures for Eczema (HOME) initiative has identified quality of life (QoL) as a core outcome domain to be evaluated in every eczema trial. It is unclear which of the existing QoL instruments is most appropriate for this domain. Thus, the aim of this review was to systematically assess the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in adult eczema. We conducted a systematic literature search in PubMed and Embase identifying studies on measurement properties of adult eczema QoL instruments. For all eligible studies, we assessed the adequacy of the measurement properties and the methodological quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis summarizing findings from different studies was the basis to assign four degrees of recommendation (A-D). A total of 15 articles reporting on 17 instruments were included. No instrument fulfilled the criteria for category A. Six instruments were placed in category B, meaning that they have the potential to be recommended depending on the results of further validation studies. Three instruments had poor adequacy in at least one required adequacy criterion and were therefore put in category C. The remaining eight instruments were minimally validated and were thus placed in category D. Currently, no QoL instrument can be recommended for use in adult eczema. The Quality of Life Index for Atopic Dermatitis (QoLIAD) and the Dermatology Life Quality Index (DLQI) are recommended for further validation research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  15. Evaluation of the measurement properties of symptom measurement instruments for atopic eczema: a systematic review.

    Science.gov (United States)

    Gerbens, L A A; Prinsen, C A C; Chalmers, J R; Drucker, A M; von Kobyletzki, L B; Limpens, J; Nankervis, H; Svensson, Å; Terwee, C B; Zhang, J; Apfelbacher, C J; Spuls, P I

    2017-01-01

    Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. ProTaper rotary instrument fracture during root canal preparation: a comparison between rotary and hybrid techniques.

    Science.gov (United States)

    Farid, Huma; Khan, Farhan Raza; Rahman, Munawar

    2013-03-01

    This study aimed to compare the frequency of ProTaper rotary instrument fracture with rotary (conventional) and hybrid (rotary and hand files) canal preparation techniques. Secondary objectives were to determine whether there was an association of ProTaper file fracture with the canal curvature and to compare the mean time required for canal preparation in the two techniques. An in vitro experiment was conducted on 216 buccal canals of extracted maxillary and mandibular first molars. After creating an access cavity and a glide path for each canal, a periapical radiograph was taken and the canal curvature was measured with Schneider's technique. The canals were then randomly divided into Group A (rotary technique) and Group B (hybrid technique). The length of ProTaper files were measured before and after each canal preparation. Time taken for each canal preparation was recorded. A total of seven ProTaper files fractured in Group A (P=0.014) in canals with a curvature >25 degrees (PProTaper rotary files, although time consuming, was safer in canals having a curvature greater than 25 degrees.

  17. Teacher Competency in Classroom Testing, Measurement Preparation, and Classroom Testing Practices.

    Science.gov (United States)

    Newman, Dorothy C.; Stallings, William M.

    An assessment instrument and a questionnaire (Appendices A and B) were developed to determine how well teachers understand classroom testing principles and to gain information on the measurement preparation and classroom practices of teachers. Two hundred ninety-four inservice teachers, grades 1 through 12, from three urban school systems in…

  18. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  19. The Preparation of an Electron Beam Machine 500 keV/10 mA Instrumentation

    International Nuclear Information System (INIS)

    Sudiyanto; Prayitno; Dewita; Bambang-Supardiyono; Widi-Setyawan

    2000-01-01

    The preparation of an Electron Beam Machine 500 keV/10 mA instrumentation by using a Distributed Instrumentation System have been done. The system consisting of industrial interfaces PCL-718 ADC 12 bit, PCLD-889 Mux/Prog Gain Amp PCLD-786 Driver Relay with solid state relays, PCL 745 serial com, DC motor 12-24 V/8.6 A with reduction gear 10:1 and a pair of PC's connected with twisted cable and an isolated amplifier AD-210 equipped with high voltage divider. The operation can be done using animation Pascal program on the remote mode using twisted cable and a pair of RS-485 interfaces, some operation sequences such as switch on/off blower unit, water pump cooling unit, filament voltage, anode voltage and some timer's have already been adapted on the computer program. Non intercepting beam monitoring technique have been discussed in this paper. (author)

  20. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  1. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  2. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    International Nuclear Information System (INIS)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a 241 Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long term storage

  3. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  4. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  5. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  6. Seed drill instrumentation for spatial coulter depth measurements

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2017-01-01

    coulter depth varied up to ±5 mm between the blocks. In addition, significant depth variations between the individual coulters were found. The mean depths varied between −14.2 and −25.9 mm for the eleven coulters. The mean shallowest coulter depth (−14.2 mm) was measured for the coulter running...... in the wheel track of the tractor. The power spectral densities (distribution) of the coulter depth oscillation frequencies showed that the majority of oscillations occurred below 0.5 Hz without any natural vibration frequency. The study concluded that the instrumentation concept was functional for on...

  7. Development of a portable instantaneous soil radon measurement instrument

    International Nuclear Information System (INIS)

    Wang Yushuang; Ge Liangquan; Jiang Haijing; Lin Yanchang

    2007-01-01

    A dual-channel instantaneous soil radon measurement instrument based on the method of electrostatic collection is designed. It has the features of small size, low cost, and high sensitivity, etc. A single chip microcomputer is adopted as the data processing and control unit. The concentration of radon can be reported in field. The result is also corrected by the pressure sensing system. A double channel discriminator is used so that the detector can eliminate the interference from the progenies of radon except RaA. LCD and MCU based encoding keyboard are used to give users a friendly interface. Operating and function setting is easy. (authors)

  8. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  9. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    International Nuclear Information System (INIS)

    Thorseth, Trond Morten

    2000-01-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe

  10. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  11. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. An Instrument to Prepare for Acute Care of the Individual with Autism Spectrum Disorder in the Emergency Department

    Science.gov (United States)

    Venkat, Arvind; Migyanka, Joann M.; Cramer, Ryan; McGonigle, John J.

    2016-01-01

    We present an instrument to allow individuals with autism spectrum disorder, their families and/or their caregivers to prepare emergency department staff for the care needs of this patient population ahead of acute presentation.

  13. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient.

    Science.gov (United States)

    Blum, J Y; Machtou, P; Ruddle, C; Micallef, J P

    2003-09-01

    The purpose of this study was to apply the Endographe to analyze the vertical forces and torque developed during mechanical preparations in extracted teeth. The data collected in this study may be used to calculate the safety quotient (SQ) as proposed by J.T. McSpadden. The SQ formula is defined as the torque required to break a file at D3 divided by the mean working torque required to cut dentin. The Endographe is a unique force-analyzer device equipped to measure, record, and generate graphs of the vertical forces and torque exerted during root canal preparation. All preparations were performed by endodontists in roots with narrow, more restrictive canals, larger, more open canals, or in roots sectioned in two halves. All canals, including the sectioned canals, were prepared with ProTaper files in accordance with the manufacturer's guidelines for use. For narrow canals, the mean values of the generated vertical forces (g) and torque (g.cm) varied from 80 (+/- 20) g (SX) to 232 (+/- 60) g (F2) and from 80 (+/- 24) g x cm (F1) to 150 (+/- 45) g x cm (S2), respectively. For large canals, the mean values of the generated vertical forces (g) and torque (g x cm) varied from 80 (+/- 20) g (SX) to 340 (+/- 20) g (F1) and from 31 (+/- 9) g x cm (S2) to 96 (+/- 35) g x cm (SX), respectively. The SQ varied from 0.93 to 7.95 for narrow canals and from 1.58 to 14.50 for large canals. The SQ is intended to provide values that can be analyzed to predict whether a rotary file will have a tendency to break or will work safely during clinical use. However, if the formula is going to provide useful information, it must index the "rotation to failure torque" with the "mean working torque" at a specific location along the cutting blades of a file. Additionally, this mathematical formula does not account for factors such as the concentration of forces, the way the instruments are used, or the wear of the instruments. A precise protocol for canal preparation should emphasize using

  14. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  15. Instrument to measure psychological contract violation in pharmacy students.

    Science.gov (United States)

    Spies, Alan R; Wilkin, Noel E; Bentley, John P; Bouldin, Alicia S; Wilson, Marvin C; Holmes, Erin R

    2010-08-10

    To adapt and evaluate an instrument that measures perceived psychological contract violations in pharmacy students by schools and colleges of pharmacy. A psychological contract violations measure was developed from existing literature and the 1997 ACPE Guidelines and pilot-tested with second-year pharmacy students at 2 schools of pharmacy. A revised measure then was administered to second-year pharmacy students at 6 schools of pharmacy. Using a 5-point Likert-type scale, participants were asked to indicate the level of obligations they received compared to what was promised by the school of pharmacy. Exploratory factor analysis on the psychological contract violations measure was conducted using principal components analysis resulting in 7 factors, which led to a revised measure with 26 items. Using a sample of 339 students, the proposed 7-factor measurement model was tested using confirmatory factor analysis. In general, the results supported the hypothesized model. The final 23-item scale demonstrated both reliability and validity. Some students perceived certain aspects of the psychological contract that exists with their school of pharmacy were being violated. The psychological contract violations measure may serve as a valuable tool in helping to identify areas where their students believe that schools/colleges of pharmacy have not fulfilled promised obligations.

  16. "Dentinal microcracks after root canal preparation" a comparative evaluation with hand, rotary and reciprocating instrumentation.

    Science.gov (United States)

    Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E

    2014-12-01

    The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (pProtaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.

  17. Source preparations for alpha and beta measurements

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. [Risoe National Lab., Roskilde (Denmark)

    2001-01-01

    Regarding alpha particle emitters subject for environmental studies, electrodeposition or co-precipitation as fluorides are the most common methods. For electro deposition stainless steel is generally used as cathode material but also other metals such as Ni, Ag, and Cu showed promising results. The use of other anode material than platinum, such as graphite should be investigated. For other purposes such as optimal resolution other more sophisticated methods are used but often resulting in poorer recovery. For beta particle emitters the type of detection system will decide the source preparation. Similar methods as for alpha particle emitters, electrodeposition or precipitation techniques can be used. Due to the continuous energy distribution of the beta pulse height distribution a high resolution is not required. Thicker sources from the precipitates or a stable isotopic carrier can be accepted but correction for absorption in the source must be done. (au)

  18. Climate cure 2020 measures and instruments to achieve Norwegian climate goals by 2020. Chapter 10 - the transport sector analysis

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    This document is a translation of Chapter 10, Sector analysis of transport, in the Norwegian report Climate Cure 2020, Measures and Instruments for Achieving Norwegian Climate Goals by 2020. The sector analysis has been prepared by an inter agency working group, conducted by the Norwegian Public Road Administration. (Author)

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  20. 2nd International Conference on Measurement Instrumentation and Electronics

    International Nuclear Information System (INIS)

    2017-01-01

    Preface It is our great pleasure to welcome you to 2017 2nd International Conference on Measurement Instrumentation and Electronics which has been held in Prague, Czech Republic during June 9-11, 2017. ICMIE 2017 is dedicated to issues related to measurement instrumentation and electronics. The major goal and feature of the conference is to bring academic scientists, engineers, industry researchers together to exchange and share their experiences and research results, and discuss the practical challenges encountered and the solutions adopted. Professors from Czech Republic, Germany and Italy are invited to deliver keynote speeches regarding latest information in their respective expertise areas. It is a golden opportunity for the students, researchers and engineers to interact with the experts and specialists to get their advice or consultation on technical matters, teaching methods and strategies. These proceedings present a selection from papers submitted to the conference from universities, research institutes and industries. All of the papers were subjected to peer-review by conference committee members and international reviewers. The papers selected depended on their quality and their relevancy to the conference. The volume tends to present to the readers the recent advances in the field of computer and communication system, system design and measurement and control technology, power electronics and electrical engineering, materials science and engineering, power machinery and equipment maintenance, architectural design and project management, environmental analysis and detection etc. We would like to thank all the authors who have contributed to this volume and also to the organizing committee, reviewers, speakers, chairpersons, and all the conference participants for their support to ICMIE 2017. ICMIE 2017 Organizing Committee June 20th, 2017 (paper)

  1. DEVELOPMENT AN INSTRUMENT TO MEASURE UNIVERSITY STUDENTS' ATTITUDE TOWARDS E-LEARNING

    Directory of Open Access Journals (Sweden)

    Vandana MEHRA

    2012-01-01

    Full Text Available The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning; Ease of e-learning use; Technical and pedagogical support; E-learning stressors ; Pressure to use e-learning.

  2. DEVELOPMENT AN INSTRUMENT TO MEASURE UNIVERSITY STUDENTS' ATTITUDE TOWARDS E-LEARNING

    OpenAIRE

    Vandana MEHRA; Faranak OMIDIAN

    2012-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning; Ease o...

  3. D-Catch instrument : development and psychometric testing of a measurement instrument for nursing documentation in hospitals

    NARCIS (Netherlands)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos; van der Schans, Cees P.

    AIM: This paper is a report of the development and testing of the psychometric properties of an instrument to measure the accuracy of nursing documentation in general hospitals. BACKGROUND: Little information is available about the accuracy of nursing documentation. None of the existing instruments

  4. How is the instrumental color of meat measured?

    Science.gov (United States)

    Tapp, W N; Yancey, J W S; Apple, J K

    2011-09-01

    Peer-reviewed journal articles (n=1068) were used to gather instrumental color measurement information in meat science research. The majority of articles, published in 10 peer-reviewed journals, originated from European countries (44.8%) and North America (38.5%). The predominant species was pork (44.2%), and most researchers used Minolta (60.0%) over Hunter (31.6%) colorimeters. Much of the research was done using illuminant D65 (32.3%); nevertheless, almost half (48.9%) of the articles did not report the illuminant. Moreover, a majority of the articles did not report aperture size (73.6%) or the number of readings per sample (52.4%). Many factors influence meat color, and a considerable proportion of the peer-reviewed, published research articles failed to include information necessary to replicate and/or interpret instrumental color results; therefore, a standardized set of minimum reportable parameters for meat color evaluation should be identified. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    Directory of Open Access Journals (Sweden)

    Beloica Miloš

    2014-01-01

    Full Text Available Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient’s adjustment to dental intervention which is of importance, especially in pediatric dentistry. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  6. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  7. Influence of instrument design on neutron lifetime measurements

    International Nuclear Information System (INIS)

    Youmans, A.H.; Hopkinson, E.C.

    1975-01-01

    Commercially available logging services provide a measurement of the lifetime of thermal neutrons in formations adjacent to a borehole. This lifetime provides a measure of the macroscopic thermal neutron-capture cross-section Σ of the formation, which in turn is functionally related to the abundance and constituency of the rock matrix and contained fluids. Because the measurement is extremely sensitive to an abundance of trace elements like boron and gadolinium, it is very difficult to find rock formations with an accurately known value of Σ, which is required for the accuracy of the measuring system to be experimentally tested. Various theoretical studies published suggest that errors in the determination of Σ may occur because of the influence of borehole parameters and the effects of neutron diffusion. Experimental results are reported that demonstrate that the design of the instrument is crucial to the validity of any theoretical treatment of the subject. The influence of neutron diffusion and borehole effects can be overcome by optimal selection of spacing and shielding parameters

  8. Experience of the use of radiation measuring instruments for Russia

    International Nuclear Information System (INIS)

    Matsubara, S.; Ohshima, T.; Kawaguti, H.

    1994-01-01

    After the Chernobyl accident, among a series of international cooperations, also from our company T.OHSHIMA visited Russia in October, 1991 as a member of the USSR and Japan Joint Specialist Meeting on Environmental Radiation and Shelter Structure of Chernobyl-4 Nuclear Power Plant, and a few members including H.KAWAGUTI visited there in December, 1991 for the handling instructions of the apparatus delivered to Sasagawa Memorial Health Cooperation Foundation. During these visits to Russia they carried electronic personal dosimeters and pocketsize dose ratemeters, measured the doses and dose rate of some areas including the actual polluted areas and gained interesting data. Especially T.OHSHIMA entered the turbine structure of Chernobyl No.4 Reactor and experienced 7m Sv/h. I introduce these measurement data and the instruments used for the measurement. Also H.KAWAGUTI and others explained the maintenance and handling of the whole body counter loaded into the medical examination car offered to Russia for Chernobyl Sasagawa Medical Care Cooperation Project of Sasagawa Memorial Health Cooperation Foundation. I introduce the outline of this medical examination car laying stress on the whole body counter and present a part of the data by the whole body counter measured during the medical care cooperation. (author)

  9. Smart phone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

    International Nuclear Information System (INIS)

    Chang, Byoung Yong

    2012-01-01

    This report presents a mobile instrumentation platform based on a smart phone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smart phone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smart phone for demonstration. This report is believed to show the possibility of adapting a smart phone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smart phone

  10. Multi-instrument comparisons of D-region plasma measurements

    Directory of Open Access Journals (Sweden)

    M. Friedrich

    2013-01-01

    Full Text Available The ECOMA (Existence and Charge state Of Meteoric dust grains in the middle Atmosphere series of sounding rocket flights consisted of nine flights with almost identical payload design and flight characteristics. All flights carried a radio wave propagation experiment together with a variety of plasma probes. Three of these measured electron densities, two ion densities. The rockets were all launched from the Andøya Rocket Range, Norway, in four campaigns between 2006 and 2010. Emphasis is on the final three flights from 2010 where the payloads were equipped with four instruments capable of measuring plasma densities in situ, among them a novel probe flown for the first time in conjunction with a wave propagation experiment. Deviation factors of all probe data relative to the wave propagation results were derived and revealed that none of the probe data were close to the wave propagation results at all heights, but – more importantly – the instruments showed very different behaviour at different altitudes. The novel multi-needle Langmuir probe exhibits the best correlation to the wave propagation data, as there is minimal influence of the payload potential, but it is still subject to aerodynamics, especially at its location at the rear of the payload. For all other probe types, the deviation factor comes closer to unity with increasing plasma density. No systematic difference of the empirical deviation factor between day and night can be found. The large negative payload potential in the last three flights may be the cause for discrepancies between electron and ion probe data below 85 km.

  11. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    International Nuclear Information System (INIS)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo

    2015-01-01

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  12. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  13. Measurement of radiation dose with a PC-based instrument

    International Nuclear Information System (INIS)

    Jangland, L.; Neubeck, R.

    1994-01-01

    The purpose of this study was to investigate in what way the introduction of Digital Subtraction Angiography has influenced absorbed doses to the patient and personnel. Calculation of the energy imparted to the patient, ε, was based on measurements of the dose-area product, tube potential and tube current which were registered with a PC-based instrument. The absorbed doses to the personnel were measured with TLD. The measurements on the personnel were made only at the digital system. The results indicate large variations in ε between different types of angiographic examinations of the same type. The total ε were similar on both systems, although the relative contribution from image acquisition and fluoroscopy were different. At the conventional system fluoroscopy and image acquisition contributed almost equally to the total ε. At the digital system 25% of the total ε was due to fluoroscopy and 75% to image acquisition. The differences were due to longer fluoroscopic times on the conventional system, mainly due to lack of image memory and road mapping, and lower ε/image, due to lower dose settings to the film changer compared to the image intensifier on the digital system. 11 refs., 8 figs., 9 tabs

  14. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  15. Spectrometric methods used in the calibration of radiodiagnostic measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, W [Rijksuniversiteit Utrecht (Netherlands)

    1995-12-01

    Recently a set of parameters for checking the quality of radiation for use in diagnostic radiology was established at the calibration facility of Nederlands Meetinstituut (NMI). The establishment of the radiation quality required re-evaluation of the correction factors for the primary air-kerma standards. Free-air ionisation chambers require several correction factors to measure air-kerma according to its definition. These correction factors were calculated for the NMi free-air chamber by Monte Carlo simulations for monoenergetic photons in the energy range from 10 keV to 320 keV. The actual correction factors follow from weighting these mono-energetic correction factors with the air-kerma spectrum of the photon beam. This paper describes the determination of the photon spectra of the X-ray qualities used for the calibration of dosimetric instruments used in radiodiagnostics. The detector used for these measurements is a planar HPGe-detector, placed in the direct beam of the X-ray machine. To convert the measured pulse height spectrum to the actual photon spectrum corrections must be made for fluorescent photon escape, single and multiple compton scattering inside the detector, and detector efficiency. From the calculated photon spectra a number of parameters of the X-ray beam can be calculated. The calculated first and second half value layer in aluminum and copper are compared with the measured values of these parameters to validate the method of spectrum reconstruction. Moreover the spectrum measurements offer the possibility to calibrate the X-ray generator in terms of maximum high voltage. The maximum photon energy in the spectrum is used as a standard for calibration of kVp-meters.

  16. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  17. Comparison of dentinal damage induced by different nickel-titanium rotary instruments during canal preparation: An in vitro study.

    Science.gov (United States)

    Garg, Shiwani; Mahajan, Pardeep; Thaman, Deepa; Monga, Prashant

    2015-01-01

    To compare dentinal damage caused by hand and rotary nickel-titanium instruments using ProTaper, K3 Endo, and Easy RaCe systems after root canal preparation. One hundred and fifty freshly extracted mandibular premolars were randomly divided into five experimental groups of 30 teeth each and biomechanical preparation was done: Group 1 with unprepared teeth; Group 2 were prepared with hand files; Group 3 with ProTaper rotary instruments; Group 4 with K3 rotary; Group 5 with Easy RaCe rotary instruments. Then, roots were cut horizontally at 3, 6, and 9 mm from apex and were viewed under stereomicroscope. The presence of dentinal defects was noted. Groups were analyzed with the Chi-square test. Significant difference was seen between groups. No defects were found in unprepared roots and those prepared with hand files. ProTaper, K3 rotary, and Easy RaCe preparations resulted in dentinal defects in 23.3%, 10%, and 16.7% of teeth, respectively. More defects were shown in coronal and middle sections, and no defect was seen in apical third. The present study revealed that use of rotary instruments could result in an increased chance for dentinal defects as compared to hand instrumentation.

  18. Clinical tooth preparations and associated measuring methods: a systematic review.

    Science.gov (United States)

    Tiu, Janine; Al-Amleh, Basil; Waddell, J Neil; Duncan, Warwick J

    2015-03-01

    The geometries of tooth preparations are important features that aid in the retention and resistance of cemented complete crowns. The clinically relevant values and the methods used to measure these are not clear. The purpose of this systematic review was to retrieve, organize, and critically appraise studies measuring clinical tooth preparation parameters, specifically the methodology used to measure the preparation geometry. A database search was performed in Scopus, PubMed, and ScienceDirect with an additional hand search on December 5, 2013. The articles were screened for inclusion and exclusion criteria and information regarding the total occlusal convergence (TOC) angle, margin design, and associated measuring methods were extracted. The values and associated measuring methods were tabulated. A total of 1006 publications were initially retrieved. After removing duplicates and filtering by using exclusion and inclusion criteria, 983 articles were excluded. Twenty-three articles reported clinical tooth preparation values. Twenty articles reported the TOC, 4 articles reported margin designs, 4 articles reported margin angles, and 3 articles reported the abutment height of preparations. A variety of methods were used to measure these parameters. TOC values seem to be the most important preparation parameter. Recommended TOC values have increased over the past 4 decades from an unachievable 2- to 5-degree taper to a more realistic 10 to 22 degrees. Recommended values are more likely to be achieved under experimental conditions if crown preparations are performed outside of the mouth. We recommend that a standardized measurement method based on the cross sections of crown preparations and standardized reporting be developed for future studies analyzing preparation geometry. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  20. Comparison among manual instruments and PathFile and Mtwo rotary instruments to create a glide path in the root canal preparation of curved canals.

    Science.gov (United States)

    Alves, Vanessa de Oliveira; Bueno, Carlos Eduardo da Silveira; Cunha, Rodrigo Sanches; Pinheiro, Sérgio Luiz; Fontana, Carlos Eduardo; de Martin, Alexandre Sigrist

    2012-01-01

    Nickel-titanium rotary instruments reduce procedural errors and the time required to finish root canal preparation. The goal of this study was to evaluate the occurrences of apical transportation and canal aberrations produced with different instruments used to create a glide path in the preparation of curved root canals, namely manual K-files (Dentsply Maillefer, Ballaigues, Switzerland) and PathFile (Dentsply Maillefer) and Mtwo (Sweden and Martina, Padua, Italy) nickel-titanium rotary files. The mesial canals of 45 mandibular first and second molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 3 groups with 15 canals each, and canal preparation was performed by an endodontist using #10-15-20 K-type stainless steel manual files (group M), #13-16-19 PathFile rotary instruments (group PF), and #10-15-20 Mtwo rotary instruments (group MT). The double digital radiograph technique was used, pre- and postinstrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. The initial and final images of the central axis of the canals were compared by superimposition through computerized analysis and with the aid of magnification. The specimens were analyzed by 3 evaluators, whose calibration was checked using the Kendall agreement test. No apical transportation or aberration in root canal morphology occurred in any of the teeth; therefore, no statistical analysis was conducted. Neither the manual instruments nor the PathFile or Mtwo rotary instruments used to create a glide path had any influence on the occurrence of apical transportation or produced any canal aberration. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  2. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

    Science.gov (United States)

    Walters, Stephen John; Stern, Cindy; Robertson-Malt, Suzanne

    2016-04-01

    There is a growing call by consumers and governments for healthcare to adopt systems and approaches to care to improve patient safety. Collaboration within healthcare settings is an important factor for improving systems of care. By using validated measurement instruments a standardized approach to assessing collaboration is possible, otherwise it is only an assumption that collaboration is occurring in any healthcare setting. The objective of this review was to evaluate and compare measurement properties of instruments that measure collaboration within healthcare settings, specifically those which have been psychometrically tested and validated. Participants could be healthcare professionals, the patient or any non-professional who contributes to a patient's care, for example, family members, chaplains or orderlies. The term participant type means the designation of any one participant; for example 'nurse', 'social worker' or 'administrator'. More than two participant types was mandatory. The focus of this review was the validity of tools used to measure collaboration within healthcare settings. The types of studies considered for inclusion were validation studies, but quantitative study designs such as randomized controlled trials, controlled trials and case studies were also eligible for inclusion. Studies that focused on Interprofessional Education, were published as an abstract only, contained patient self-reporting only or were not about care delivery were excluded. The outcome of interest was validation and interpretability of the instrument being assessed and included content validity, construct validity and reliability. Interpretability is characterized by statistics such as mean and standard deviation which can be translated to a qualitative meaning. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilized in this review. The databases searched included PubMed, CINAHL, Embase, Cochrane Central

  3. Nuclear instrumentation and measurement: a review based on the ANIMMA conferences

    Science.gov (United States)

    Giot, Michel; Vermeeren, Ludo; Lyoussi, Abdallah; Reynard-Carette, Christelle; Lhuillier, Christian; Mégret, Patrice; Deconinck, Frank; Gonçalves, Bruno Soares

    2017-12-01

    The ANIMMA conferences offer a unique opportunity to discover research carried out in all fields of nuclear measurements and instrumentation with applications extending from fundamental physics to fission and fusion reactors, medical imaging, environmental protection and homeland security. After four successful editions of the Conference, it was decided to prepare a review based to a large extent but not exclusively on the papers presented during the first four editions of the conference. This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical measurements, as well as medical imaging and specific challenges linked to data acquisition and electronic hardening. The paper describes the main challenges justifying research in these different areas, and summarizes the recent progress reported. It offers researchers and engineers a way to quickly and efficiently access knowledge in highly specialized areas.

  4. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  5. MEASURING INSTRUMENT CONSTRUCTION AND VALIDATION IN ESTIMATING UNICYCLING SKILL LEVEL

    Directory of Open Access Journals (Sweden)

    Ivan Granić

    2012-09-01

    Full Text Available Riding the unicycle presupposes the knowledge of the set of elements which describe motoric skill, or just part of that set with which we could measure the level of that knowledge. Testing and evaluation of the elements is time consuming. In order to design a unique, composite measuring instrument, to facilitate the evaluation of the initial level of unicycling skill, we tested 17 recreative subjects who were learning to ride the unicycle in 15 hours of training, without any previous knowledge or experience what was measured before the beginning of the training. At the beginning and at the end of the training they were tested with the set of the 12 riding elements test that was carried out to record only successful attempts, followed by unique SLALOM test which include previously tested elements. It was found that the unique SLALOM test has good metric features and a high regression coefficient showed that the SLALOM could be used instead of the 12 elements of unicycle riding skill, and it could be used as a uniform test to evaluate learned or existing knowledge. Because of its simplicity in terms of action and simultaneous testing of more subjects, the newly constructed test could be used in evaluating the unicycling recreational level, but also for monitoring and programming transformation processes to develop the motor skills of riding of unicycle. Because of its advantages, it is desirable to include unicycling in the educational processes of learning new motor skills, which can be evaluated by the results of this research. The obtained results indicate that the unicycle should be seriously consider as a training equipment to “refresh” or expand the recreational programs, without any fear that it is just for special people. Namely, it was shown that the previously learned motor skills (skiing, roller-skating, and cycling had no effect on the results of final testing.

  6. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  7. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yin Peili

    2017-08-01

    Full Text Available Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI. The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  8. [In vitro comparison of root canal preparation with step-back technique and GT rotary file--a nickel-titanium engine driven rotary instrument system].

    Science.gov (United States)

    Krajczár, Károly; Tóth, Vilmos; Nyárády, Zoltán; Szabó, Gyula

    2005-06-01

    The aim of the authors' study was to compare the remaining root canal wall thickness and the preparation time of root canals, prepared either with step-back technique, or with GT Rotary File, an engine driven nickel-titanium rotary instrument system. Twenty extracted molars were decoronated. Teeth were divided in two groups. In Group 1 root canals were prepared with step-back technique. In Group 2 GT Rotary File System was utilized. Preoperative vestibulo-oral X-ray pictures were taken from all teeth with radiovisiograph (RVG). The final preparations at the mesiobuccal canals (MB) were performed with size #30 and palatinal/distal canals with size #40 instruments. Postoperative RVG pictures were taken ensuring the preoperative positioning. The working time was measured in seconds during each preparation. The authors also assessed the remaining root canal wall thickness at 3, 6 and 9 mm from the radiological apex, comparing the width of the canal walls of the vestibulo-oral projections on pre- and postoperative RVG pictures both mesially and buccally. The ratios of the residual and preoperative root canal wall thickness were calculated and compared. The largest difference was found at the MB canals of the coronal and middle third level of the root, measured on the distal canal wall. The ratio of the remaining dentin wall thickness at the coronal and the middle level in the case of step-back preparation was 0.605 and 0.754, and 0.824 and 0.895 in the cases of GT files respectively. The preparation time needed for GT Rotary File System was altogether 68.7% (MB) and 52.5% (D/P canals) of corresponding step-back preparation times. The use of GT Rotary File with comparison of standard step-back method resulted in a shortened preparation time and excessive damage of the coronal part of the root canal could be avoided.

  9. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  10. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  11. Verifax: Biometric instruments measuring neuromuscular disorders/performance impairments

    Science.gov (United States)

    Morgenthaler, George W.; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    VeriFax, founded in 1990 by Dr. Ruth Shrairman and Mr. Alex Landau, began operations with the aim of developing a biometric tool for the verification of signatures from a distance. In the course of developing this VeriFax Autograph technology, two other related applications for the technologies under development at VeriFax became apparent. The first application was in the use of biometric measurements as clinical monitoring tools for physicians investigating neuromuscular diseases (embodied in VeriFax's Neuroskill technology). The second application was to evaluate persons with critical skills (e.g., airline pilots, bus drivers) for physical and mental performance impairments caused by stress, physiological disorders, alcohol, drug abuse, etc. (represented by VeriFax's Impairoscope prototype instrument). This last application raised the possibility of using a space-qualified Impairoscope variant to evaluate astronaut performance with respect to the impacts of stress, fatigue, excessive workload, build-up of toxic chemicals within the space habitat, etc. The three applications of VeriFax's patented technology are accomplished by application-specific modifications of the customized VeriFax software. Strong commercial market potentials exist for all three VeriFax technology applications, and market progress will be presented in more detail below.

  12. Precision Tiltmeter as a Reference for Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-01-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 (micro)rad (rms)

  13. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  14. Application of expert system in measurement instrument instrumentation's maintenance on a acquisition system

    International Nuclear Information System (INIS)

    Pinastiko, W.S.

    1997-01-01

    Expert system is a part of the artificial intelligence, a solution software for complicated problems, which solving the problems need experiences and knowledge. This paper discussed about the research's result, that is a design of expert system to help instrumentation's maintenance on a data acquisition system. By using application of expert system, the system can do health monitoring, automatic trouble trouble tracing ang gives advise toward the trouble. this instrumentation's maintenance system is a tool which has an analytic and inference ability toward th trouble. This smart system is a very useful tool to get a good data acquisition system quality. the model system also can be developed to be a specific application as a remote instrumentation's management system

  15. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  16. Developing and evaluating an instrument to measure Recovery After INtensive care: the RAIN instrument.

    Science.gov (United States)

    Bergbom, Ingegerd; Karlsson, Veronika; Ringdal, Mona

    2018-01-01

    Measuring and evaluating patients' recovery, following intensive care, is essential for assessing their recovery process. By using a questionnaire, which includes spiritual and existential aspects, possibilities for identifying appropriate nursing care activities may be facilitated. The study describes the development and evaluation of a recovery questionnaire and its validity and reliability. A questionnaire consisting of 30 items on a 5-point Likert scale was completed by 169 patients (103 men, 66 women), 18 years or older (m=69, SD 12.5) at 2, 6, 12 or 24 months following discharge from an ICU. An exploratory factor analysis, including a principal component analysis with orthogonal varimax rotation, was conducted. Ten initial items, with loadings below 0.40, were removed. The internal item/scale structure obtained in the principal component analysis was tested in relation to convergent and discrimination validity with a multi-trait analysis. Items consistency and reliability were assessed by Cronbach's alpha and internal item consistency. Test of scale quality, the proportion of missing values and respondents' scoring at maximum and minimum levels were also conducted. A total of 20 items in six factors - forward looking, supporting relations, existential ruminations, revaluation of life, physical and mental strength and need of social support were extracted with eigen values above one. Together, they explained 75% of the variance. The half-scale criterion showed that the proportion of incomplete scale scores ranged from 0% to 4.3%. When testing the scale's ability to differentiate between levels of the assessed concept, we found that the observed range of scale scores covered the theoretical range. Substantial proportions of respondents, who scored at the ceiling for forward looking and supporting relations and at floor for the need of social support, were found. These findings should be further investigated. The factor analysis, including discriminant validity

  17. Instrumentation for collecting and measuring radon and its daughters

    International Nuclear Information System (INIS)

    Essling, M.A.; Hengde, W.; Markun, F.; Toohey, R.E.; Rundo, J.; Miranda, J.E. Jr.

    1982-01-01

    A new sampling can is described for collecting an air sample for determination of its radon content. Instruments which are employed for the continuous monitoring of radon or its daughters in houses are described and their performances discussed

  18. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  19. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  20. Chemomechanical preparation by hand instrumentation and by Mtwo engine-driven rotary files, an ex vivo study.

    Science.gov (United States)

    Krajczár, Károly; Tigyi, Zoltán; Papp, Viktória; Marada, Gyula; Sára, Jeges; Tóth, Vilmos

    2012-07-01

    To compare the disinfecting efficacy of the sodium hypochlorite irrigation by root canal preparation with stainless steel hand files, taper 0.02 and nickel-titanium Mtwo files with taper 0.04-0.06. 40 extracted human teeth were sterilized, and then inoculated with Enterococcus faecalis (ATCC 29212). After 6 day incubation time the root canals were prepared by hand with K-files (n=20) and by engine-driven Mtwo files (VDW, Munich, Germany) (n=20). Irrigation was carried out with 2.5% NaOCl in both cases. Samples were taken and determined in colony forming units (CFU) from the root canals before and after the preparation with instruments #25 and #35. Significant reduction in bacterial count was determined after filing at both groups. The number of bacteria kept on decreasing with the extension of apical preparation diameter. There was no significant difference between the preparation sizes in the bacterial counts after hand or engine-driven instrumentation at the same apical size. Statistical analysis was carried out with Mann-Whitney test, paired t-test and independent sample t-test. Significant reduction in CFU was achieved after the root canal preparation completed with 2.5% NaOCl irrigation, both with stainless steel hand or nickel-titanium rotary files. The root canal remained slightly infected after chemo mechanical preparation in both groups. Key words:Chemomechanical preparation, root canal disinfection, nickel-titanium, conicity, greater taper, apical size.

  1. Preparation of reference material for the measurement of natural radioactivity

    International Nuclear Information System (INIS)

    Ben Tekaya, Malik

    2010-01-01

    The objective of this work is to prepare reference material for the calibration of gamma spectrometry, alpha and XRF .Many procedures of chemical preparation and radiological analysis of a reference material from Triple Superphosphate were tested. Several techniques and methods of measurement were used. In addition to a description and validation of these procedures, a study of repeatability was conducted which resulted in a positive characterization of this material.

  2. Theoretical and instrumental aspects of preparation of radioactive sources for precise nuclear spectroscopy

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Kadyrzhanov, K.K.; Zhdanov, V.S.

    2005-01-01

    particular attention both to systematization of available data on application of fractional sublimation and to consideration of a range of important issues regarding the mechanism of this process in order to optimize the procedures for preparation of radioactive sources for precise nuclear spectroscopy. Employing the method of fractional sublimation at the complex there were produced the following sources: 101 Pd, 105,106,111 Ag, 107,111 Cd, 131 J, 131,136 Cs 194 Au and 209 , 210 , 211 At. The works on obtaining highly active sources for measurements of important low-intensity spectra of three-electron Auger transitions are in process

  3. Measuring stakeholder participation in evaluation: an empirical validation of the Participatory Evaluation Measurement Instrument (PEMI).

    Science.gov (United States)

    Daigneault, Pierre-Marc; Jacob, Steve; Tremblay, Joël

    2012-08-01

    Stakeholder participation is an important trend in the field of program evaluation. Although a few measurement instruments have been proposed, they either have not been empirically validated or do not cover the full content of the concept. This study consists of a first empirical validation of a measurement instrument that fully covers the content of participation, namely the Participatory Evaluation Measurement Instrument (PEMI). It specifically examines (1) the intercoder reliability of scores derived by two research assistants on published evaluation cases; (2) the convergence between the scores of coders and those of key respondents (i.e., authors); and (3) the convergence between the authors' scores on the PEMI and the Evaluation Involvement Scale (EIS). A purposive sample of 40 cases drawn from the evaluation literature was used to assess reliability. One author per case in this sample was then invited to participate in a survey; 25 fully usable questionnaires were received. Stakeholder participation was measured on nominal and ordinal scales. Cohen's κ, the intraclass correlation coefficient, and Spearman's ρ were used to assess reliability and convergence. Reliability results ranged from fair to excellent. Convergence between coders' and authors' scores ranged from poor to good. Scores derived from the PEMI and the EIS were moderately associated. Evidence from this study is strong in the case of intercoder reliability and ranges from weak to strong in the case of convergent validation. Globally, this suggests that the PEMI can produce scores that are both reliable and valid.

  4. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro-Computed Tomographic Study.

    Science.gov (United States)

    de Almeida, Bernardo Corrêa; Ormiga, Fabíola; de Araújo, Marcos César Pimenta; Lopes, Ricardo Tadeu; Lima, Inayá Corrêa Barbosa; dos Santos, Bernardo Camargo; Gusman, Heloisa

    2015-12-01

    The aim of this study was to make a 3-dimensional comparison of the canal transportation and changes in apical geometry using micro-computed tomographic imaging after canal preparation with K3 (SybronEndo, Orange, CA) and K3XF (SybronEndo) file systems. Twenty-eight mandibular molars were randomly divided into 2 groups according to the rotary system used in instrumentation: K3 or K3XF. The specimens were scanned by micro-computed tomographic imaging before and after instrumentation. Images before and after instrumentation from each group were compared with regard to canal volume, surface area, and structure model index (SMI) (paired t test, P instrumentation, the canals from each group were compared regarding the changes in volume, surface area, SMI, and canal transportation in the last 4 apical mm (t test, P Instrumentation with the 2 rotary systems significantly changed the canal volume, surface area, and SMI (P instrument types concerning these parameters (P > .05). There were no significant differences between the 2 groups with regard to canal transportation in the last 4 apical mm (P > .05). Both rotary systems showed adequate canal preparations with reduced values of canal transportation. Heat treatment did not influence changes in root canal geometry in the apical region. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Measuring Instrument Constructs of Return Factors for Green Office Building Investments Variables Using Rasch Measurement Model

    Directory of Open Access Journals (Sweden)

    Isa Mona

    2016-01-01

    Full Text Available This paper is a preliminary study on rationalising green office building investments in Malaysia. The aim of this paper is attempt to introduce the application of Rasch measurement model analysis to determine the validity and reliability of each construct in the questionnaire. In achieving this objective, a questionnaire survey was developed consists of 6 sections and a total of 106 responses were received from various investors who own and lease office buildings in Kuala Lumpur. The Rasch Measurement analysis is used to measure the quality control of item constructs in the instrument by measuring the specific objectivity within the same dimension, to reduce ambiguous measures, and a realistic estimation of precision and implicit quality. The Rasch analysis consists of the summary statistics, item unidimensionality and item measures. A result shows the items and respondent (person reliability is at 0.91 and 0.95 respectively.

  6. Effect of canal preparation with TRUShape and Vortex rotary instruments on three-dimensional geometry of oval root canals.

    Science.gov (United States)

    Arias, Ana; Paqué, Frank; Shyn, Stephanie; Murphy, Sarah; Peters, Ove A

    2018-04-01

    The purpose of this study was to assess the geometry of non-round root canals after preparation with TRUShape (a novel instrument with s-shaped longitudinal design) in comparison to conventional rotary instrumentation using micro-computed tomography. Twenty distal root canals of mandibular molars were randomly distributed in two groups to be shaped with either TRUShape or Vortex rotaries. Percentages of unprepared surface and volume of dentin removal for the entire canal and for the apical 4 mm were calculated. Canal transportation and the structure model index (SMI) were assessed. Data were compared with Student t-tests. Shaping with both techniques resulted in similar prepared surface and volume of dentin removed, as well as the extent of canal transportation. The SMI shape factor was significantly lower for TRUShape preparations (P = 0.04) suggesting less rounding during rotary preparation. Although both instruments were suitable for the preparation of oval canals, TRUShape appeared to better conform to the original ribbon-shaped anatomy. © 2017 Australian Society of Endodontology Inc.

  7. The Measurement of Sexual Harassment: Comparison of the Results of Three Different Instruments

    NARCIS (Netherlands)

    Junger, Marianne

    1990-01-01

    This study examines the results of three instruments developed to measure sexual harassment. Two instruments were used in the Dutch national victimization survey: an oral interview and a written questionnaire. Three issues will be discussed: (1) do both instruments produce the same victimization

  8. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  9. Remote state preparation using positive operator-valued measures

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Siendong, E-mail: sdhuang@mail.ndhu.edu.tw [Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan (China)

    2013-02-04

    We consider the process of remote state preparation using a pure state |ψ〉 with the maximal Schmidt number n. For any given state σ, pure or mixed, a construction of a positive operator-valued measure {M_j}{sub j=0}{sup n} is provided. The classical outcome j=0 indicates the failure of a remote preparation of σ. All other classical outcomes j>0 correspond to unitary transformations of the receiver system such that σ can be prepared. The total probability of successful remote preparation depends on the state σ. Our protocol is a variation of conclusive teleportation and the classical bits required for this protocol are given by log{sub 2}(n+1), which is nearly half that of conclusive teleportation.

  10. Consumers' convenience orientation towards meal preparation: conceptualization and measurement.

    Science.gov (United States)

    Candel, M

    2001-02-01

    Consumer researchers consider convenience orientation towards meal preparation to be a relevant construct for understanding consumer behavior towards foods. This study set out to conceptualize this construct and to develop a scale that measures it. As examined in two different samples of meal preparers, the resulting scale is reliable, satisfies a unifactorial structure and has satisfactory convergent validity. The scale's nomological validity is supported in that it conforms to expectations regarding various psychographic constructs and various food-related behaviors. Convenience orientation was found to be negatively related to cooking enjoyment, involvement with food products and variety seeking, and to be positively related to role overload. The analyses also suggest that the lack of relation between the meal preparer's working status and convenience food consumption, as found in many studies, is due to convenience food not offering enough preparation convenience. Consuming take-away meals and eating in restaurants appear to satisfy the consumer's need for convenience more adequately. Copyright 2001 Academic Press.

  11. Measuring Instruments Control Methodology Performance for Analog Electronics Remote Labs

    Directory of Open Access Journals (Sweden)

    Unai Hernandez-Jayo

    2012-12-01

    Full Text Available This paper presents the work that has been developed in parallel to the VISIR project. The objective of this paper is to present the results of the validations processes that have been carried out to check the control methodology. This method has been developed with the aim of being independent of the instruments of the labs.

  12. Hardness and elasticity of abrasive particles measured by instrumented indentation

    Czech Academy of Sciences Publication Activity Database

    Hvizdoš, P.; Zeleňák, Michal; Hloch, Sergej

    2016-01-01

    Roč. 8, č. 1 (2016), s. 869-871 ISSN 1805-0476 Institutional support: RVO:68145535 Keywords : abrasive * garnet * hardness * elasticity * instrumental indentation Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201601.pdf

  13. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  14. Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the preparation and use of a flat stress-free test specimen for the purpose of checking the systematic error caused by instrument misalignment or sample positioning in X-ray diffraction residual stress measurement, or both. 1.2 This test method is applicable to apparatus intended for X-ray diffraction macroscopic residual stress measurement in polycrystalline samples employing measurement of a diffraction peak position in the high-back reflection region, and in which the θ, 2θ, and ψ rotation axes can be made to coincide (see Fig. 1). 1.3 This test method describes the use of iron powder which has been investigated in round-robin studies for the purpose of verifying the alignment of instrumentation intended for stress measurement in ferritic or martensitic steels. To verify instrument alignment prior to stress measurement in other metallic alloys and ceramics, powder having the same or lower diffraction angle as the material to be measured should be prepared in similar fashion...

  15. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Developments discussed include a transistorized- power supply for the Beckman DU spectrophotometer, a master clock pulse generator, a modular printing unit, a flash photolysis setup, a glove box assembly for a Perkin-Elmer infrared spectrophotometer, and a Faraday balance for measuring the magnetic susceptibilities of actinide compounds. (WHK)

  16. Development of a Self-Rating instrument to Measure Team Situation Awareness

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Koning, L. de; Hof, T.; Dongen, K. van

    2010-01-01

    The goal of this paper is to describe the development of an instrument to measure team situation awareness (TSA). Individual team member SA may or may not be shared through communication processes with other team members. Most existing instruments do not measure these processes but measure TSA as a

  17. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  18. Validation of behaviour measurement instrument of patients with diabetes mellitus and hypertension

    Science.gov (United States)

    Saputri, G. Z.; Akrom; Dini, S. M.

    2017-11-01

    Non-adherence to the treatment of chronic diseases such as hypertension and Diabetes Mellitus (DM) is a major obstacle in achieving patient therapy targets and quality of life of patients. A comprehensive approach involving pharmacists counselling has shown influences on changes in health behaviour and patient compliance. Behaviour changes in patients are one of the parameters to assess the effectiveness of counselling and education by pharmacists. Therefore, it is necessary to develop questionnaires of behaviour change measurement in DM-hypertension patients. This study aims to develop a measurement instrument in the form of questionnaires in assessing the behaviour change of DM-hypertension patients. Preparation of question items from the questionnaire research instrument refers to some guidelines and previous research references. Test of questionnaire instrument valid was done with expert validation, followed by pilot testing on 10 healthy respondents, and 10 DM-hypertension patients included in the inclusion criteria. Furthermore, field validation test was conducted on 37 patients who had undergone outpatient care at the PKU Muhammadiyah Yogyakarta City Hospital and The Gading Clinic in Yogyakarta. The inclusion criteria were male and female patients, aged 18-65, diagnosed with type 2 diabetes with hypertension who received oral antidiabetic drugs and antihypertensives, and who were not illiterate and co-operative. The data were collected by questionnaire interviews by a standardized pharmacist. The result of validation test using Person correlation shows the value of 0.33. The results of the questionnaire validation test on 37 patients showed 5 items of invalid questions with the value of r 0.33. The reliability value is shown from the Cronbach's alpha value of 0.722 (> 0.6), implying that the questionnaire is reliable for DM-hypertension patients. This Behavioural change questionnaire can be used on DM-hypertension patients, and an FGD approach is required

  19. Fault tolerance with noisy and slow measurements and preparation.

    Science.gov (United States)

    Paz-Silva, Gerardo A; Brennen, Gavin K; Twamley, Jason

    2010-09-03

    It is not so well known that measurement-free quantum error correction protocols can be designed to achieve fault-tolerant quantum computing. Despite their potential advantages in terms of the relaxation of accuracy, speed, and addressing requirements, they have usually been overlooked since they are expected to yield a very bad threshold. We show that this is not the case. We design fault-tolerant circuits for the 9-qubit Bacon-Shor code and find an error threshold for unitary gates and preparation of p((p,g)thresh)=3.76×10(-5) (30% of the best known result for the same code using measurement) while admitting up to 1/3 error rates for measurements and allocating no constraints on measurement speed. We further show that demanding gate error rates sufficiently below the threshold pushes the preparation threshold up to p((p)thresh)=1/3.

  20. Assessment Using AutoCAD Software of the Preparation of Dentin Walls in Root Canals Produced by 4 Different Endodontic Instrument Systems

    Directory of Open Access Journals (Sweden)

    Cristina Cabanillas

    2015-01-01

    Full Text Available Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique, ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p<0.05. Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences.

  1. Assessment Using AutoCAD Software of the Preparation of Dentin Walls in Root Canals Produced by 4 Different Endodontic Instrument Systems.

    Science.gov (United States)

    Cabanillas, Cristina; Monterde, Manuel; Pallarés, Antonio; Aranda, Susana; Montes, Raquel

    2015-01-01

    Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique), ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p < 0.05). Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences.

  2. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  3. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    Science.gov (United States)

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population

  4. Diabetes-related emotional distress instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Lee, Jiyeon; Lee, Eun-Hyun; Kim, Chun-Ja; Moon, Seung Hei

    2015-12-01

    The objectives of this study were to identify all available diabetes-related emotional distress instruments and evaluate the evidence regarding their measurement properties to help in the selection of the most appropriate instrument for use in practice and research. A systematic literature search was performed. PubMed, Embase, CINAHL, and PsycINFO were searched systematically for articles on diabetes-related emotional distress instruments. The Consensus-based Standards for the Selection of Health Measurement Instruments checklist was used to evaluate the methodological quality of the identified studies. The quality of results with respect to the measurement properties of each study was evaluated using Terwee's quality criteria. An ancillary meta-analysis was performed. Of the 2345 articles yielded by the search, 19 full-text articles evaluating 6 diabetes-related emotional distress instruments were included in this study. No instrument demonstrated evidence for all measurement properties. The Problem Areas in Diabetes scale (PAID) was the most frequently studied and the best validated of the instruments. Pooled summary estimates of the correlation coefficient between the PAID and serum glycated hemoglobin revealed a positive but weak correlation. No diabetes-related emotional distress instrument demonstrated evidence for all measurement properties. No instrument was better than another, although the PAID was the best validated and is thus recommended for use. Further psychometric studies of the diabetes-related emotional distress instruments with rigorous methodologies are required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments

    Science.gov (United States)

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  6. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    Science.gov (United States)

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  7. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Teixeira Ribeiro Vidigal

    2012-06-01

    Full Text Available It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (% and were evaluated using the texture profile analysis (TPA and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA. Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

  8. Traceability and measurement uncertainty in sample preparation (W5)

    International Nuclear Information System (INIS)

    Wegscheider, W.; Walner, U.; Moser, J.

    2002-01-01

    Full text: Very few chemical measurements are being made directly on the object of interest and sample preparation is thus the rule rather than the exception in daily practice. Unfortunately the operations undertaken in the course of sample preparation are prone to rendering a sample useless for the purpose of interpreting a measurement performed on it, as it might not represent the original and relevant status any longer. Sample preparation along with sampling itself constitutes therefore a procedure that leads to a loss of representation of the original specimen or population. On the other hand it is also not sufficient to confine aspects of traceability and measurement uncertainty to the ultimate measurement, as the key purpose of measuring is to supply adequate data for some kind of decision, be it in production, in health, in the environment, or indeed in any other circumstance. These considerations have led to severe confusion in the community as to what traceability really means in chemistry. CITAC and EURACHEM have only recently issued a preliminary document that clarifies these issues and gives a firm handle on the future development of quality assurance in analytical chemistry. In this talk it will be attempted to outline the general ideas and procedures that lead to traceability of analytical chemical results accompanied by valid statements of their uncertainty. It will be argued that the central element in achieving these goals is a well-designed validation study that frequently goes beyond those requirements currently laid out in official documents. (author)

  9. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  10. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  11. Analysis and protective measures of sharp instrument injury causes of sterilization and supply center

    Directory of Open Access Journals (Sweden)

    Hua YANG

    2014-11-01

    Full Text Available Objective: To analyze the causes of sharp injury in the sterilization and supply center, take protective measures, effectively avoid sharp instrument injury, and guarantee staff safety. Methods: Adopt a retrospective survey method, summarize sharp instrument injury data of sterilization and supply center in 2013, analyze the reasons of the occurrence of sharp instrument injury, and make protective countermeasures. Results: Sharp instrument injuries occurred mainly in the device classification, manual cleaning and device packaging process. Conclusion: Poor consciousness of occupational protection of the staff in the sterilization and supply center, nonstandard operation, and lack of training and supervision in place are the main reasons of occurrence of sharp instrument injury.

  12. Instruments to assess self-care among healthy children: A systematic review of measurement properties.

    Science.gov (United States)

    Urpí-Fernández, Ana-María; Zabaleta-Del-Olmo, Edurne; Montes-Hidalgo, Javier; Tomás-Sábado, Joaquín; Roldán-Merino, Juan-Francisco; Lluch-Canut, María-Teresa

    2017-12-01

    To identify, critically appraise and summarize the measurement properties of instruments to assess self-care in healthy children. Assessing self-care is a proper consideration for nursing practice and nursing research. No systematic review summarizes instruments of measurement validated in healthy children. Psychometric review in accordance with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. MEDLINE, CINAHL, PsycINFO, Web of Science and Open Grey were searched from their inception to December 2016. Validation studies with a healthy child population were included. Search was not restricted by language. Two reviewers independently assessed the methodological quality of included studies using the COSMIN checklist. Eleven studies were included in the review assessing the measurement properties of ten instruments. There was a maximum of two studies per instrument. None of the studies evaluated the properties of test-retest reliability, measurement error, criterion validity and responsiveness. Internal consistency and structural validity were rated as "excellent" or "good" in four studies. Four studies were rated as "excellent" in content validity. Cross-cultural validity was rated as "poor" in the two studies (three instruments) which cultural adaptation was carried out. The evidence available does not allow firm conclusions about the instruments identified in terms of reliability and validity. Future research should focus on generate evidence about a wider range of measurement properties of these instruments using a rigorous methodology, as well as instrument testing on different countries and child population. © 2017 John Wiley & Sons Ltd.

  13. The BEAR program NRL plasma physics instrumentation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.N.; Baumback, M.M.; Haas, D.G.; Rodriguez, P.; Siefring, C.L.; Doggett, R.A. [Naval Research Lab., Washington, DC (United States)

    1989-11-15

    The BEAR program was a joint effort to launch, and demonstrate the feasibility of operating, a 1 MeV 10 ma Neutral Particle Beam (NPB) accelerator from a space platform. The accelerator design and manufacture were the responsibility of Los Alamos National Lab (LANL); diagnostics associated with accelerator operation and beam-plasma effects were also to be undertaken by LANL and NRL. Payload Integration and Telemetry was provided by the Air Force Geophysical Lab (AFGL) and Northeastern University (NEU). Beam effects on the local plasma in addition to accelerator produced vehicle effects (e.g., charging) were the responsibility of NRL as outlined herein. The BEAR rocket was launched successfully during the early morning hours of July 13 from White Sands Missile Range, White Sands, N.M. The NRL contribution to this effort included three instrument packages designed to diagnose beam-plasma and vehicle-plasma interactions. The instruments included: (1) Langmuir probe (LP) design consisting of 4 separate sensors; (2) High voltage (HIV) Langmuir Probe designed to monitor vehicle charging through current polarity changes; and (3) Plasma Wave Receive (PWR) designed to characterize the plasma wave emissions covering a broad frequency range from near DC to 50 MHz.

  14. Development of the instrument IMAQE-Food to measure effectiveness of quality management

    NARCIS (Netherlands)

    Spiegel, van der M.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2005-01-01

    Purpose - Manufacturers use several quality assurance systems to assure quality. However, their effectiveness cannot be assessed because an instrument does not exist. This article is based on a study that was set up to identify performance measurement indicators of an instrument that measures

  15. Self-administered health literacy instruments for people with diabetes: systematic review of measurement properties.

    Science.gov (United States)

    Lee, Eun-Hyun; Kim, Chun-Ja; Lee, Jiyeon; Moon, Seung Hei

    2017-09-01

    The aims of this study were to identify all available self-administered instruments measuring health literacy in people with diabetes and to determine the current instrument that is the most appropriate for applying to this population in both practice and research. A systematic review of measurement properties. MEDLINE, EMBASE and CINAHL electronic databases from their inception up to 28 March 2016. The methodological quality of each included study was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The reported results for measurement properties in the studies were assessed according to Terwee's quality criteria. Thirteen self-administered instruments measuring health literacy in people with diabetes were identified, of which six (44%) were diabetes-specific instruments. The instruments that covered the broadest contents of health literacy were the Health Literacy Scale and Health Literacy Questionnaire. The (test-retest) reliability, measurement error and responsiveness were not evaluated for any instrument, while internal consistency and hypothesis testing validity were the most frequently assessed measurement properties. With the current evidence, the Health Literacy Scale may be the most appropriate instrument for patients with diabetes in practice and research. However, the structural validity of this scale needs to be further established, particularly in other language versions. It is also recommended to use the Diabetes Numeracy Test-15 along with the Health Literacy Scale to complement the lack of numeracy measures in the Health Literacy Scale. © 2017 John Wiley & Sons Ltd.

  16. The Development, Validity, and Reliability of a Psychometric Instrument Measuring Competencies in Student Affairs

    Science.gov (United States)

    Sriram, Rishi

    2014-01-01

    The study of competencies in student affairs began more than 4 decades ago, but no instrument currently exists to measure competencies broadly. This study builds upon previous research by developing an instrument to measure student affairs competencies. Results not only validate the competencies espoused by NASPA and ACPA, but also suggest adding…

  17. [German version of a validated instrument to measure the quality of life in patients with hypertension].

    Science.gov (United States)

    Chrubasik, C; Himmelberger, D; Kohlmann, T; Chrubasik, S

    2012-08-01

    The aim of this study was to prepare according to standardised criteria a German version of the validated short instrument for the quality of life in patients suffering from hypertension. This instrument is appropriate for clinical trials investigating the effectiveness of antihypertensive treatments. But also in the daily routine this instrument enables one to identify any impairment of life quality due to antihypertensive treatment as early as possible, especially sexual dysfunction, and to react appropriately with treatment adaptations. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  19. Thickness measuring instrument for rubber cord calender production

    International Nuclear Information System (INIS)

    Ye Songfeng

    1988-01-01

    The thickness measuring gauge has been used to measure the rubber film thickness on the coating of textile cord at tire four cord calenders. Combined with micro-computer it completes the automatic control system and acheives automatic thickness measurement and adjustment. The fundamentals, construction, specifications, characteristic and application results are described. Prominent economic benefit has been gained for tire production

  20. The Problem of the Instrument Stabilization During Hydrographic Measurements

    Directory of Open Access Journals (Sweden)

    Felski Andrzej

    2016-06-01

    Full Text Available Performing any measurement on watercraft is connected with many additional difficulties caused by the sea-environment. The most important is the problem of spatial stabilization of measurement systems, which are usually fastened to craft body. As soon as usually these measurement are executed during the move of the craft additional question is the accuracy of execution the planed trajectory.

  1. Use of the mathematical modelling method for the investigation of dynamic characteristics of acoustical measuring instruments

    Science.gov (United States)

    Vasilyev, Y. M.; Lagunov, L. F.

    1973-01-01

    The schematic diagram of a noise measuring device is presented that uses pulse expansion modeling according to the peak or any other measured values, to obtain instrument readings at a very low noise error.

  2. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument

    International Nuclear Information System (INIS)

    Lekstrom, M; McLachlan, M A; Husain, S; McComb, D W; Shollock, B A

    2008-01-01

    Transmission electron microscope (TEM) specimens are today routinely prepared using focussed ion beam (FIB) instruments. Specifically, the lift-out method has become an increasingly popular technique and involves removing thin cross-sections from site-specific locations and transferring them to a TEM grid. This lift-out process can either be performed ex situ or in situ. The latter is mainly carried out on combined dual-beam FIB and scanning electron microscope (SEM) systems whereas conventional single-beam instruments often are limited to the traditional ex situ method. It is nevertheless desirable to enhance the capabilities of existing single-beam instruments to allow for in situ lift-out preparation to be performed since this technique offers a number of advantages over the older ex situ method. A single-beam FIB instrument was therefore modified to incorporate an in situ micromanipulator fitted with a tungsten needle, which can be attached to a cut-out FIB section using ion beam induced platinum deposition. This article addresses the issues of using an ion beam to monitor the in situ manipulation process as well as approaches that can be used to create stronger platinum welds between two objects, and finally, views on how to limit the extent of ion beam damage to the specimen surface.

  3. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners

  4. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    OpenAIRE

    Beloica Miloš; Vulićević Zoran R.; Mandinić Zoran; Radović Ivana; Jovičić Olivera; Carević Momir; Tekić Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniqu...

  5. Field measurements and interpretation of TMI-2 instrumentation: IC-10-dPT

    International Nuclear Information System (INIS)

    Jones, J.E.; Smith, J.T.; Mathis, M.V.

    1982-01-01

    This report describes the measurements and results of the Control Rod Drive Bypass Flow IC-10-dPT. This instrument consists of a Bailey Type BY Process Computer Transmitter connected to a readout module by approximately 500 feet of cable through a penetration junction and an instrument mounting junction. The status of this instrument is uncertain, but it was producing a reasonable output reading of zero flow which could indicate it had not failed. As a result, measurements on this instrument were designed to determine if it were properly functioning

  6. Models and error analyses of measuring instruments in accountability systems in safeguards control

    International Nuclear Information System (INIS)

    Dattatreya, E.S.

    1977-05-01

    Essentially three types of measuring instruments are used in plutonium accountability systems: (1) the bubblers, for measuring the total volume of liquid in the holding tanks, (2) coulometers, titration apparatus and calorimeters, for measuring the concentration of plutonium; and (3) spectrometers, for measuring isotopic composition. These three classes of instruments are modeled and analyzed. Finally, the uncertainty in the estimation of total plutonium in the holding tank is determined

  7. Preparation of protactinium measurement source by electroplating method

    International Nuclear Information System (INIS)

    Li Zongwei; Yang Weifan; Fang Keming; Yuan Shuanggui; Guo Junsheng; Pan Qiangyan

    1998-01-01

    An electroplating method for the preparation of Pa sources is described, and the main factors (such as pH value of solution, electroplating time and current density) influencing the electroplating of Pa are tested and discussed with 233 Pa as a tracer. A thin and uniform electroplating Pa-Layer of 1 mg/cm 2 thick on thin stainless steel disk was obtained. The Pa source was measured by a HPGe detector to determine the chemical efficiency

  8. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  9. Measurement of the convergence angle in teeth prepared for single crown

    Directory of Open Access Journals (Sweden)

    NokarS

    2002-07-01

    Full Text Available Retention, resistance and marginal integrity mostly depend on tooth preparation. An appropriate convergence angle fulfil this purpose, to high extent. In this study, a new method was used to measure the convergence angle of the teeth prepared for single crowns in Genera! practitioners" offices in Tehran. In order to do this. 325 dyes, prepared by General dentists in Tehran, were collected from 10 laboratories. All dyes wore trimmed at the area below the finishing line and then were scanned (Genius Color page- FIR 6 buccoiingualiy and mesiodistaily. Convergence angle of dyes were also measured with Adobe Photoshop (5.0 software. Data were analyzed by variance analysis test and 1- student bv the help of SPSS software. Results showed that the average convergence angle ranged from 16.18+8.34 to 35.1 8~10.38 which belonged to maxillary canine and mandibular molars, respectively, and the measured convergence angle is more than the ideal value of 10-16 degrees. Dyes of the madibular molars were ma"illar" convergent. These conclusions are helpful for professors, dentistry students and dentists, and arc an indicative of the practice quality of General practitioners in Tehran. Due to the fact that a convergence angle, more than the allowed limitation, endangers retention, resistance and marginal integrity of the restoration, paying attention to the principles of tooth preparation and proper application of instruments and dental cements, can progress fwed restorations quality.

  10. Instruments to measure anxiety in children, adolescents, and young adults with cancer: a systematic review.

    Science.gov (United States)

    Lazor, Tanya; Tigelaar, Leonie; Pole, Jason D; De Souza, Claire; Tomlinson, Deborah; Sung, Lillian

    2017-09-01

    The primary objective was to describe anxiety measurement instruments used in children and adolescents with cancer or undergoing hematopoietic stem cell transplantation (HSCT) and summarize their content and psychometric properties. We conducted searches of MEDLINE, Embase, PsycINFO, HAPI, and CINAHL. We included studies that used at least one instrument to measure anxiety quantitatively in children or adolescents with cancer or undergoing HSCT. Two authors independently identified studies and abstracted study demographics and instrument characteristics. Twenty-seven instruments, 14 multi-item and 13 single-item, were used between 78 studies. The most commonly used instrument was the State-Trait Anxiety Inventory in 46 studies. Three multi-item instruments (Children's Manifest Anxiety Scale-Mandarin version, PROMIS Pediatric Anxiety Short Form, and the State-Trait Anxiety Inventory) and two single-item instruments (Faces Pain Scale-Revised and 10-cm Visual Analogue Scale, both adapted for anxiety) were found to be reliable and valid in children with cancer. We identified 14 different multi-item and 13 different single-item anxiety measurement instruments that have been used in pediatric cancer or HSCT. Only three multi-item and two single-item instruments were identified as being reliable and valid among pediatric cancer or HSCT patients and would therefore be appropriate to measure anxiety in this population.

  11. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  12. Metrological Array of Cyber-Physical Systems. Part 7. Additive Error Correction for Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-06-01

    Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.

  13. Measurement properties of quality-of-life measurement instruments for infants, children and adolescents with eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Sach, T; Drucker, A M; Ofenloch, R; Flohr, C; Apfelbacher, C

    2017-04-01

    Quality of life (QoL) is one of the core outcome domains identified by the Harmonising Outcome Measures for Eczema (HOME) initiative to be assessed in every eczema trial. There is uncertainty about the most appropriate QoL instrument to measure this domain in infants, children and adolescents. To systematically evaluate the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in infants, children and adolescents with eczema. A systematic literature search in PubMed and Embase, complemented by a thorough hand search of reference lists, retrieved studies on measurement properties of eczema QoL instruments for infants, children and adolescents. For all eligible studies, we judged the adequacy of the measurement properties and the methodological study quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Results from different studies were summarized in a best-evidence synthesis and formed the basis to assign four degrees of recommendation. Seventeen articles, three of which were found by hand search, were included. These 17 articles reported on 24 instruments. No instrument can be recommended for use in all eczema trials because none fulfilled all required adequacy criteria. With adequate internal consistency, reliability and hypothesis testing, the U.S. version of the Childhood Atopic Dermatitis Impact Scale (CADIS), a proxy-reported instrument, has the potential to be recommended depending on the results of further validation studies. All other instruments, including all self-reported ones, lacked significant validation data. Currently, no QoL instrument for infants, children and adolescents with eczema can be highly recommended. Future validation research should primarily focus on the CADIS, but also attempt to broaden the evidence base for the validity of self-reported instruments. © 2016 British Association of Dermatologists.

  14. The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation

    NARCIS (Netherlands)

    Bier, C.A.S.; Shemesh, H.; Tanomaru-Filho, M.; Wesselink, P.R.; Wu, M.K.

    2009-01-01

    The purpose of this study was to compare the incidence of dentinal defects (fractures and craze lines) after canal preparation with different nickel-titanium rotary files. Two hundred sixty mandibular premolars were selected. Forty teeth were left unprepared (n = 40). The other teeth were prepared

  15. The quality of systematic reviews of health-related outcome measurement instruments.

    Science.gov (United States)

    Terwee, C B; Prinsen, C A C; Ricci Garotti, M G; Suman, A; de Vet, H C W; Mokkink, L B

    2016-04-01

    Systematic reviews of outcome measurement instruments are important tools for the selection of instruments for research and clinical practice. Our aim was to assess the quality of systematic reviews of health-related outcome measurement instruments and to determine whether the quality has improved since our previous study in 2007. A systematic literature search was performed in MEDLINE and EMBASE between July 1, 2013, and June 19, 2014. The quality of the reviews was rated using a study-specific checklist. A total of 102 reviews were included. In many reviews the search strategy was considered not comprehensive; in only 59 % of the reviews a search was performed in EMBASE and in about half of the reviews there was doubt about the comprehensiveness of the search terms used for type of measurement instruments and measurement properties. In 41 % of the reviews, compared to 30 % in our previous study, the methodological quality of the included studies was assessed. In 58 %, compared to 55 %, the quality of the included instruments was assessed. In 42 %, compared to 7 %, a data synthesis was performed in which the results from multiple studies on the same instrument were somehow combined. Despite a clear improvement in the quality of systematic reviews of outcome measurement instruments in comparison with our previous study in 2007, there is still room for improvement with regard to the search strategy, and especially the quality assessment of the included studies and the included instruments, and the data synthesis.

  16. CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study

    Science.gov (United States)

    Nagaraja, Shruthi; Sreenivasa Murthy, B V

    2010-01-01

    Background: Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. Aim/Objectives: The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). Materials and Methods: For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. Result: It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. Conclusion: ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability. PMID:20582214

  17. CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study.

    Science.gov (United States)

    Nagaraja, Shruthi; Sreenivasa Murthy, B V

    2010-01-01

    Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability.

  18. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  19. The rhesus measurement system: A new instrument for space research

    Science.gov (United States)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  20. The Belgian Risk Perception Barometer Risk Perception Measuring Instruments Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Aeken, Koen van; Carle, Benny; Hardeman, Frank [SCK-CEN, Mol (Belgium). PISA

    2006-09-15

    The recognition of the societal dimension of risk assessment has been at the cradle of the opinion research on risks. Since risk estimates are not fixed by experts anymore, but are considered to show variation across a diverse population, the people themselves must be asked how they experience the risks. Following the rise in popularity of risk assessment and the recognition of its 'human' dimension, the demand for public opinion surveys on risks has been increasing at a fast pace. Unfortunately, this high demand sees some negative consequences. First, surveys are frequently conducted by people lacking even a minimal knowledge of survey methodology. In this respect, we might think of a journal or a newspaper trying to impress their readers with the definitive public opinion poll about the latest issue in vogue. Second, time pressure causes experienced or trained researchers to lower themselves to 'quick and dirty' work. While methodologically flawed opinion research might not be something to worry about when appearing in the amusement press, concern is due if the results of a survey inspire policy development. Indeed, when public opinion research is conceived as an instrument to support rational, evidence based public policy, the strictest methodological standards should be applied, even if it is clear that scientific research will never substitute political reasoning. This contribution deals with the safeguarding and enhancing of the quality of large scale surveys focusing on risk perception and related issues. This attention is relevant, not only for the reason that methodological standards may be flawed due to the immense popularity of the opinion poll, but also because the results of opinion surveys may have far-reaching policy consequences.

  1. The Belgian Risk Perception Barometer Risk Perception Measuring Instruments Revisited

    International Nuclear Information System (INIS)

    Aeken, Koen van; Carle, Benny; Hardeman, Frank

    2006-01-01

    The recognition of the societal dimension of risk assessment has been at the cradle of the opinion research on risks. Since risk estimates are not fixed by experts anymore, but are considered to show variation across a diverse population, the people themselves must be asked how they experience the risks. Following the rise in popularity of risk assessment and the recognition of its 'human' dimension, the demand for public opinion surveys on risks has been increasing at a fast pace. Unfortunately, this high demand sees some negative consequences. First, surveys are frequently conducted by people lacking even a minimal knowledge of survey methodology. In this respect, we might think of a journal or a newspaper trying to impress their readers with the definitive public opinion poll about the latest issue in vogue. Second, time pressure causes experienced or trained researchers to lower themselves to 'quick and dirty' work. While methodologically flawed opinion research might not be something to worry about when appearing in the amusement press, concern is due if the results of a survey inspire policy development. Indeed, when public opinion research is conceived as an instrument to support rational, evidence based public policy, the strictest methodological standards should be applied, even if it is clear that scientific research will never substitute political reasoning. This contribution deals with the safeguarding and enhancing of the quality of large scale surveys focusing on risk perception and related issues. This attention is relevant, not only for the reason that methodological standards may be flawed due to the immense popularity of the opinion poll, but also because the results of opinion surveys may have far-reaching policy consequences

  2. Preparation of iodine-125-labeled iothalamate for renal clearance measurements

    International Nuclear Information System (INIS)

    Rao, S.A.; Herold, T.J.; Dewanjee, M.K.

    1983-01-01

    Iothalamate, a derivative of benzoic acid, is used as a contrast medium for renal function studies, particularly for measurement of glomerular filtration rate. Its chemical composition and clearance properties are similar to those of diatrizoate. The structural differences between these groups of iodinated benzoic acid derivatives are dependent on the groups attached at the 3- and 5-positions of 2,4,6-tri-iodobenzoic acid. The renal clearance of sodium iothalamate in humans closely approximates that of inulin, and it is used as a replacement for inulin in determining glomerular filtration rate. /sup 125/I-labeled iothalamate sodium can be prepared by the exchange-labeling method at pH 4.0. Iothalamate must first be isolated from the contrast medium preparation and purified before radioiodination. After radioiodination, the product is purified by means of precipitation and is then converted to the sodium salt

  3. Measuring Certified Registered Nurse Anesthetist Organizational Climate: Instrument Adaptation.

    Science.gov (United States)

    Boyd, Donald; Poghosyan, Lusine

    2017-08-01

    No tool exists measuring certified registered nurse anesthetist (CRNA) organizational climate. The study's purpose is to adapt a validated tool to measure CRNA organizational climate. Content validity of the Certified Registered Nurse Anesthetist Organizational Climate Questionnaire (CRNA-OCQ) was established. Pilot testing was conducted to determine internal reliability consistency of the subscales. Experts rated the tool as content valid. The subscales had high internal consistency reliability (with respective Cronbach's alphas): CRNA-Anesthesiologist Relations (.753), CRNA-Physician Relations (.833), CRNA-Administration Relations (.895), Independent Practice (.830), Support for CRNA Practice (.683), and Professional Visibility (.772). Further refinement of the CRNA-OCQ is necessary. Measurement and assessment of CRNA organizational climate may produce evidence needed to improve provider and patient outcomes.

  4. Measuring Chinese psychological well-being with Western developed instruments.

    Science.gov (United States)

    Zhang, Jie; Norvilitis, Jill M

    2002-12-01

    We explored the possibility of applying 4 psychological scales developed and commonly used in the West to Chinese culture. The participants, 273 Chinese and 302 Americans, completed measures of self-esteem (Self-Esteem Scale; Rosenberg, 1965), depression (Center for Epidemiologic Studies-Depression Scale; Radloff, 1977), social support (Multidimensional Scale of Perceived Social Support; Zimet, Dahlem, Zimet, & Farley, 1988), and suicidal ideation (Scale for Suicide Ideation; Beck, Kovacs, & Weissman, 1979). All scales were found to be reliable and valid cross culturally. Comparative analyses suggest that gender differences on all 4 scales are smaller among the Chinese than the Americans. Americans were more likely to score higher on the socially desirable scales (self-esteem and social support) and lower on the socially undesirable scale (suicidal ideation). However, no cultural differences were found in this study on the measure of depression. Results suggest that, with a few considerations or potential modifications, the current measures could be used in Chinese culture.

  5. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  6. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  7. Development of an Instrument to Measure Higher Order Thinking Skills in Senior High School Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus

    2016-01-01

    The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…

  8. A measurement instrument for bone mineral content of adult and children

    International Nuclear Information System (INIS)

    Liu Shaofang

    1996-01-01

    The γ radiation source was used in bone mineral content measurement analysis of adult and children and a new instrument is developed successfully. It's precision is +2%. The advantage of this instrument is light, cheap and reliable. It can be used widely in medical science and clinic for diagnosis on certain diseases and research work

  9. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  10. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    NARCIS (Netherlands)

    van den Noort, J.C.; van den Noort, Josien C.; van der Esch, Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Petrus H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  11. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  12. Effect of the precrack preparation with an ultrasonic instrument on the ceramic bracket removal

    Directory of Open Access Journals (Sweden)

    Yen-Liang Chen

    2015-08-01

    Conclusion: The ultrasonic precrack preparation can significantly decrease the debonding force and may guide the bracket debonding through a favorable fracture plane without damage to either the bracket or the enamel.

  13. Direct measurement of skin friction with a new instrument

    Science.gov (United States)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.

  14. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  15. The measurement of instrumental ADL: content validity and construct validity

    DEFF Research Database (Denmark)

    Avlund, K; Schultz-Larsen, K; Kreiner, S

    1993-01-01

    do not depend on help. It is also possible to add the items in a valid way. However, to obtain valid IADL-scales, we omitted items that were highly relevant to especially elderly women, such as house-work items. We conclude that the criteria employed for this IADL-measure are somewhat contradictory....... showed that 14 items could be combined into two qualitatively different additive scales. The IADL-measure complies with demands for content validity, distinguishes between what the elderly actually do, and what they are capable of doing, and is a good discriminator among the group of elderly persons who...

  16. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  17. Informal caregiving in COPD: A systematic review of instruments and their measurement properties.

    Science.gov (United States)

    Cruz, Joana; Marques, Alda; Machado, Ana; O'Hoski, Sachi; Goldstein, Roger; Brooks, Dina

    2017-07-01

    Increasing symptoms and activity restriction associated with COPD progression greatly impact on the lives of their informal caregivers, who play a vital role in maintaining their health. An understanding of this impact is important for clinicians to support caregivers and maintain a viable patient environment at home. This systematic review aimed to identify the instruments commonly used to assess informal caregiving in COPD and describe their measurement properties in this population. Searches were conducted in PubMed, Scopus, Web of Science, CINAHL and PsycINFO and in references of key articles, until November 2016 (PROSPERO: CRD42016041401). Instruments used to assess the impact of COPD on caregivers were identified and their properties described. Quality of studies was rated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the measurement properties of instruments was rated as 'positive', 'negative' or 'indeterminate'. Patients cared for, had moderate to very severe COPD and the sample of caregivers ranged from 24 to 406. Thirty-five instruments were used in fifty studies to assess caregivers' psychological status and mood (9 instruments), burden/distress (12 instruments), quality of life (5 instruments) or other (9 instruments). Eighteen studies assessed the measurement properties of 21 instruments, most commonly hypothesis testing (known validity) and internal consistency. Study quality varied from 'poor' to 'fair' and with many properties rated as 'indeterminate'. Although several instruments have been used to assess the impact of COPD on caregivers, an increased understanding of their properties is needed before their widespread implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparing Alternative Instruments to Measure Service Quality in Higher Education

    Science.gov (United States)

    Brochado, Ana

    2009-01-01

    Purpose: The purpose of this paper is to examine the performance of five alternative measures of service quality in the high education sector--service quality (SERVQUAL), importance-weighted SERVQUAL, service performance (SERVPERF), importance-weighted SERVPERF, and higher education performance (HEdPERF). Design/methodology/approach: Data were…

  19. Savannah River Site delayed neutron instruments for safeguards measurements

    International Nuclear Information System (INIS)

    Studley, R.V.

    1992-01-01

    The Savannah River Site (SRS) includes a variety of nuclear production facilities that, since 1953, have processed special nuclear materials (SNM) including highly-enriched uranium (>90% 235 U), recycled enriched uranium (∼50% 235 U + 40% 236 U), low burnup plutonium (> 90% 239 Pu + 240 Pu ) and several other nuclear materials such as heat source plutonium ( 238 Pu). DOE Orders, primarily 5633.3, require all nuclear materials to be safeguarded through accountability and material control. Accountability measurements determine the total amount of material in a facility, balancing inventory changes against receipts and shipments, to provide assurance (delayed) that all material was present. Material control immediately detects or deters theft or diversion by assuring materials remain in assigned locations or by impeding unplanned movement of materials within or from a material access area. Goals for accountability or material control, and, therefore, the design of measurement systems, are distinctly different. Accountability measurements are optimized for maximum precision and accuracy, usually for large amounts of special nuclear material. Material control measurements are oriented more toward security features and often must be optimized for sensitivity, to detect small amounts of materials where none should be

  20. Comparison of asphere measurements by tactile and optical metrological instruments

    NARCIS (Netherlands)

    Bergmans, R.H.; Nieuwenkamp, H.J.; Kok, G.J.P.; Blobel, G.; Nouira, H.; Küng, A.; Baas, M.; Voert, M.J.A. te; Baer, G.; Stuerwald, S.

    2015-01-01

    A comparison of topography measurements of aspherical surfaces was carried out by European metrology institutes, other research institutes and a company as part of an European metrology research project. In this paper the results of this comparison are presented. Two artefacts were circulated, a

  1. An Instrument for the Measurement of Parental Authority Prototypes.

    Science.gov (United States)

    Buri, John R.

    Baumrind (1971) proposed three distinct patterns of parental authority (permissiveness, authoritarianism, and authoritativeness) and measured these parenting styles through interviews with parents and their children and through observations of parents interacting with their children. This study was undertaken to develop a readily-accessible,…

  2. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  3. Workplace Discrimination, Prejudice, and Diversity Measurement: A Review of Instrumentation.

    Science.gov (United States)

    Burkard, Alan W.; Boticki, Michael A.; Madson, Michael B.

    2002-01-01

    Critically reviews diversity measures in terms of item development, psychometric evidence, and utility for counseling and development: Workplace Prejudice/Discrimination Inventory, Attitudes toward Diversity Scale; Organizational Diversity Inventory, Workforce Diversity Questionnaire, Perceived Occupational Opportunity Scale-Form B, and Perceived…

  4. Measuring Student Learning Outcomes Using the SALG Instrument

    Science.gov (United States)

    Scholl, Kathleen; Olsen, Heather M.

    2014-01-01

    U.S. higher education institutions are being called to question their central nature, priorities, and functions, with prominent and unprecedented attention being given to accountability and the measurement of student learning outcomes. As higher education evolves in how it assesses student learning and leisure studies and recreation departments…

  5. New instrument for tribocharge measurement due to single particle impacts

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-01-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ∼100 μm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact

  6. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  7. The quantitative measurement of organizational culture in health care: a review of the available instruments.

    Science.gov (United States)

    Scott, Tim; Mannion, Russell; Davies, Huw; Marshall, Martin

    2003-06-01

    To review the quantitative instruments available to health service researchers who want to measure culture and cultural change. A literature search was conducted using Medline, Cinahl, Helmis, Psychlit, Dhdata, and the database of the King's Fund in London for articles published up to June 2001, using the phrase "organizational culture." In addition, all citations and the gray literature were reviewed and advice was sought from experts in the field to identify instruments not found on the electronic databases. The search focused on instruments used to quantify culture with a track record, or potential for use, in health care settings. For each instrument we examined the cultural dimensions addressed, the number of items for each questionnaire, the measurement scale adopted, examples of studies that had used the tool, the scientific properties of the instrument, and its strengths and limitations. Thirteen instruments were found that satisfied our inclusion criteria, of which nine have a track record in studies involving health care organizations. The instruments varied considerably in terms of their grounding in theory, format, length, scope, and scientific properties. A range of instruments with differing characteristics are available to researchers interested in organizational culture, all of which have limitations in terms of their scope, ease of use, or scientific properties. The choice of instrument should be determined by how organizational culture is conceptualized by the research team, the purpose of the investigation, intended use of the results, and availability of resources.

  8. AmeriFlux Measurement Component (AMC) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, Sebastien C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.

  9. PCPV instrumentation and measurement techniques at elevated temperatures

    International Nuclear Information System (INIS)

    Zemann, H.

    1978-11-01

    Strain measurement within the structural concrete of the prototype Prestressed Concrete Pressure Vessel have been performed during a one year operation at elevated temperatures up to 120 0 C. Laboratory investigations on the properties of the gauges and the concrete mix are applied to separate the different contributions to the strain data. A decrease of creep and loss of prestress and the arise of stable conditions is observed. (author)

  10. A preparation of thin flat target for RD lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, A M; Abdel Samie, Sh; Ahmed, A A [Department of Physics, Faculty of Science, El Minia University, Minia (Egypt); Kuroyanagi, T; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)

    1997-12-31

    An extreme flatness for a target surface is the most necessary in recoil distance method (RDM). A suitable technique was used for preparing a La target. The {sup 139} La target of thickness 0.22 mg/cm{sup 2} was evaporated onto a very flat soft Au foil of thickness 2 mg/cm{sup 2}. This target was successively used for lifetime measurements of the excited nuclear states in {sup 145} Sm nucleus through the nuclear reaction {sup 139} La ({sup 10} B, 4 n) {sup 145} Sm. Background {gamma} rays produced by the {sup 10} B irradiation for the Au backing and the Pb stopper without the La target were measured. Besides that, the {gamma} rays from residual activities were also measured. 3 figs.

  11. Measurement Instruments and Software Used in Biotribology Research Laboratory

    Directory of Open Access Journals (Sweden)

    Tyurin Andrei

    2015-07-01

    Full Text Available Precision measurements of friction processes have a key role in a variety of industrial processes. The emergence of fine electronic circuit techniques greatly expands capabilities of control. There are some difficulties for their full implementation today, especially when it regards the accuracy and frequency of measurements. The motion-measuring method in real-time system is considered in this article, paying special attention to increased accuracy. This method is based on rapid analog digital converter (ADC, transmission program and digital signal processor (DSP algorithms. Description of laboratory devices is included: Tribal-T and universal friction machine (MTU-01 designed for “Pin on disc” tests. Great emphasis is placed on the usability of accelerometers. The present study examined the collected data via laboratory system for data acquisition and control, and processing it in the laboratory of Biotribology. Laboratory supervisory control and data acquisition (SCADA algorithms is described below. Task of regulation is not considered. This paper describes only methods of automatic control theory to analyze the frictional quality.

  12. DESIGN AND TEST OF AN INSTRUMENT FOR MEASURING MICROTHERMAL SEEING ON THE MAGDALENA RIDGE

    International Nuclear Information System (INIS)

    Jorgensen, A. M.; Klinglesmith, D. A.; Speights, J.; Clements, A.; Patel, J.

    2009-01-01

    We have constructed and operated an automated instrument for measuring ground-level microthermal seeing at the Magdalena Ridge Observatory (MRO). The MRO is located at an altitude of 10500' in the Cibola National Forest in New Mexico, USA. It is the planned site for the MRO Optical Interferometer (MROI) planned for up to 10 collecting elements, each with a diameter of 1.4 m, and baselines eventually up to approximately 400 m. As part of the preparation for construction we deployed a system to characterize the ground-level seeing across the observatory site. The instrument is built largely of off-the-shelf components, with only the sensor head and power supply requiring electronic board assembly. Even in those cases the board architecture is very simple. The first proof-of-concept system was deployed for several weeks in the autumn of 2004, and has since undergone several iterations. The latest configuration operates entirely off batteries, incorporates wireless data acquisition, and is thus able to operate in an area with no shelter, power, or communications. In this paper we present the design of the instrument, and show initial data. The microthermal tower has four sensor pairs at heights from 0.8 to 4.41 m, significantly lower than other microthermal experiments, because of the need to characterize the seeing near the ground. We find significant variation in the contribution of this range of heights to the seeing, contributing up to 0.''3 of the seeing at some times and only 0.''02 at other times. The individual sensor power spectra have a slope in the range of 1.4--1.5, which is lower than the 1.67 slope predicted by Kolmogorov turbulence theory. We measure the well known effect of improved seeing immediately around sunset. While we find significant variation in the microthermal seeing, we did not find a pattern of corresponding variations in weather conditions, suggesting that a complicated set of factors control microthermal turbulence.

  13. Design and Test of an Instrument for Measuring Microthermal Seeing on the Magdalena Ridge

    Science.gov (United States)

    Jorgensen, A. M.; Klinglesmith, D. A., III; Speights, J.; Clements, A.; Patel, J.

    2009-05-01

    We have constructed and operated an automated instrument for measuring ground-level microthermal seeing at the Magdalena Ridge Observatory (MRO). The MRO is located at an altitude of 10500' in the Cibola National Forest in New Mexico, USA. It is the planned site for the MRO Optical Interferometer (MROI) planned for up to 10 collecting elements, each with a diameter of 1.4 m, and baselines eventually up to approximately 400 m. As part of the preparation for construction we deployed a system to characterize the ground-level seeing across the observatory site. The instrument is built largely of off-the-shelf components, with only the sensor head and power supply requiring electronic board assembly. Even in those cases the board architecture is very simple. The first proof-of-concept system was deployed for several weeks in the autumn of 2004, and has since undergone several iterations. The latest configuration operates entirely off batteries, incorporates wireless data acquisition, and is thus able to operate in an area with no shelter, power, or communications. In this paper we present the design of the instrument, and show initial data. The microthermal tower has four sensor pairs at heights from 0.8 to 4.41 m, significantly lower than other microthermal experiments, because of the need to characterize the seeing near the ground. We find significant variation in the contribution of this range of heights to the seeing, contributing up to 0farcs3 of the seeing at some times and only 0farcs02 at other times. The individual sensor power spectra have a slope in the range of 1.4--1.5, which is lower than the 1.67 slope predicted by Kolmogorov turbulence theory. We measure the well known effect of improved seeing immediately around sunset. While we find significant variation in the microthermal seeing, we did not find a pattern of corresponding variations in weather conditions, suggesting that a complicated set of factors control microthermal turbulence.

  14. Labor Relations and Social Dialogue: Measurement and Diagnosis Instruments

    Directory of Open Access Journals (Sweden)

    Viorel Lefter

    2007-02-01

    Full Text Available Social dialogue and tripartism play an important role in promoting and strengthening fundamental principles and rights at work, promoting job creation and expanding social protection. In the context of the severe challenges of globalization, a growing number of developing countries are recognizing the need to faster dialogue, partnership and participatory approaches to decision-making. Thus, social dialogue becomes a prerequisite for efficient corporate governance and means to attain national economic and social objectives and to contribute to poverty reduction policies. We shall propose a diagnosis and analysis system in order to measure and monitor the evolution of the industrial relations and social dialogue.

  15. Process Skill Assessment Instrument: Innovation to measure student’s learning result holistically

    Science.gov (United States)

    Azizah, K. N.; Ibrahim, M.; Widodo, W.

    2018-01-01

    Science process skills (SPS) are very important skills for students. However, the fact that SPS is not being main concern in the primary school learning is undeniable. This research aimed to develop a valid, practical, and effective assessment instrument to measure student’s SPS. Assessment instruments comprise of worksheet and test. This development research used one group pre-test post-test design. Data were obtained with validation, observation, and test method to investigate validity, practicality, and the effectivenss of the instruments. Results showed that the validity of assessment instruments is very valid, the reliability is categorized as reliable, student SPS activities have a high percentage, and there is significant improvement on student’s SPS score. It can be concluded that assessment instruments of SPS are valid, practical, and effective to be used to measure student’s SPS result.

  16. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments.

    Science.gov (United States)

    Joshi, Ashwini; Watts, Christopher R

    2017-03-01

    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Results of measurements of a proton spectrum in the energy range more then 1 TeV at satellites by the SOKOL instrument

    International Nuclear Information System (INIS)

    Grigor'ev, N.L.

    1989-01-01

    Proton spectra measured by SOKOL instrument at KOSMOS-1543 and KOSMOS-1713 satellites and published by the auther and independently by experiment preparation group are presented. Methods of experimental data application and their substantiation degree that caused differences in spectra and conclusions are analysed. 10 refs.; 7 figs.; 6 tabs

  18. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  19. Development of an atmospheric 214Bi measuring instrument

    International Nuclear Information System (INIS)

    1975-01-01

    Part of the radiation environment encountered during airborne gamma ray surveys is produced by 214 Bi existing in the atmosphere. The 214 Bi atmospheric concentration changes with time and location, and should be measured to process the acquired data correctly. Three methods of atmospheric 214 Bi measurement are evaluated in this work. These are: (1) an 11 1 / 2 '' dia. x 4'' thick NaI(Tl) crystal shielded from ground radiation, (2) a negatively charged wire to collect radioactive ions, and (3) a high volume air sampler collecting particulate matter on filter paper. The shielded detector and filter paper methods yield good results with the shielded detector producing a factor of about 10 times higher counting rate. The charged wire method gave very low counting rates where the shielded detector counting rates were about a factor of 100 times higher, and the results did not correlate with the 214 Bi atmospheric concentration as determined by the other two methods. The theory necessary to understand the collection and decay of the airborne radioactivity using the charged wire and filter paper methods is developed

  20. Spot measurements of radionuclides in air, water and solids with a single instrument

    International Nuclear Information System (INIS)

    Philipsborn, H. von

    1998-01-01

    A unique instrument for measuring environmental radionuclides and novel methods for their concentrative sampling are described here which meet high requirements of sensitivity, easy and reliable handling, and low cost for most applications in field screening, monitoring and training. (author)

  1. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  2. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    Science.gov (United States)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  3. A new radiometric instrument designed to measure the parameters of bituminous coal on transport belts

    International Nuclear Information System (INIS)

    Kubicek, P.

    1993-01-01

    A new radiometric instrument developed in Czechoslovakia, for the measurement of ash content of bituminous coal, and for the determination of approximate values of moisture and weight is described. (Author)

  4. Corporate Entrepreneurship Assessment Instrument (CEAI): Refinement and Validation of a Survey Measure

    National Research Council Canada - National Science Library

    Cates, Michael S

    2007-01-01

    .... The measurement instrument known as the Corporate Entrepreneurship Assessment Index (CEAI) has been designed to tap the climate-related organizational factors that represent and potentially encourage corporate entrepreneurship...

  5. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  6. Turbulence measurements using tethered balloon instrumentation during FIRE 1987

    Science.gov (United States)

    Hignett, Phillip

    1990-01-01

    As part of the surface-based observations conducted on San Nicolas Island, the U.K. Meteorological Office operated a set of turbulence probes attached to a balloon tether cable. Typically six probes were used, each capable of measuring momentum, heat, and humidity fluxes. Two probes were fitted with net radiometers, one positioned above cloud and the other below; a third probe carried a Lyman-alpha hygrometer fitted with a pre-heater for the measurement of total water content. Some preliminary results are presented from the 14th July describing the variation in structure of the cloudy boundary layer during the daytime. This day was characterized by a complete cloud cover, an inversion height of approximately 600 m. and north-westerly winds of approximately 6 m.s(-1). As an illustration the equivalent potential temperature derived from a profile ascent made between approximately 0830 and 0930 (PDT) is shown. The data has been smoothed to a height resolution of about 4 metres. At this time the cloud base was approximately 200 m. and very light drizzle was reaching the surface. The vertical velocity variance and potential temperature flux for two periods are shown; the first (shown by full lines) immediately follows the profile and the second (shown by dashed lines) is central around 1400 (PDT). The data have been normalized by their maximum values in the first period. Cloud base has now risen to approximately 300 m. There is a marked variation during the morning, particularly in sigma w. The net radiative flux above cloud top has by now reached its maximum value.

  7. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    OpenAIRE

    Radovanović Slobodan D.; Brajović Ljiljana M.; Pavić Maja L.; Đurić Srđan S.; Ranđelović Sanja D.; Milivojević Vladimir J.

    2015-01-01

    The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. P...

  8. Progress in the specification of optical instruments for the measurement of surface form and texture

    Science.gov (United States)

    de Groot, Peter J.

    2014-05-01

    Specifications for confocal microscopes, optical interferometers and other methods of measuring areal surface topography can be confusing and misleading. The emerging ISO 25178 standards, together with the established international vocabulary of metrology, provide a foundation for improved specifications for 3D surface metrology instrumentation. The approach in this paper links instrument specifications to metrological characteristics that can influence a measurement, using consistent definitions of terms, and reference to verification procedures.

  9. Engagement in Games: Developing an Instrument to Measure Consumer Videogame Engagement and Its Validation

    OpenAIRE

    Abbasi, Amir Zaib; Ting, Ding Hooi; Hlavacs, Helmut

    2017-01-01

    The aim of the study is to develop a new instrument to measure engagement in videogame play termed as consumer videogame engagement. The study followed the scale development procedure to develop an instrument to measure the construct of consumer videogame engagement. In this study, we collected the data in two different phases comprising study 1 (n=136) and study 2 (n=270). We employed SPSS 22.0 for exploratory factor analysis using study 1 respondents to explore the factors for consumer vide...

  10. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  11. Measurement equivalence of the food related lifestyle instrument (FRL) in Ireland and Great Britain

    DEFF Research Database (Denmark)

    O´Sullivan, C.; Scholderer, Joachim; Cowan, Cathal

    2005-01-01

    The food-related lifestyle instrument (FRL) is tested for cross-cultural validity. Representative consumer samples from the UK 1998 ( N = 1000) and Ireland 2001 (N = 1024) are compared using multi-sample confirmatory factor analysis with structured means. The results suggest that, in all five FRL...... domains, the measurement characteristics of the survey instrument were completely invariant across the two cultures. No indication was found of any bias. Regarding future applications of the FRL, it can be concluded that the instrument has identical measurement characteristics when applied to consumer...

  12. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    International Nuclear Information System (INIS)

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site

  13. NOTE FOR EDITOR: Development An Instrument To Measure 
University Students' Attitude Towards E-Learning

    OpenAIRE

    MEHRA, Vandana; OMIDIAN, Faranak

    2015-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning ; Ease...

  14. NOTE FOR EDITOR: Development An Instrument To Measure 
University Students' Attitude Towards E-Learning

    OpenAIRE

    MEHRA, Vandana; OMIDIAN, Faranak

    2012-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning ; Ease...

  15. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    Science.gov (United States)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  16. Measurement properties of adult quality-of-life measurement instruments for eczema: protocol for a systematic review.

    Science.gov (United States)

    Apfelbacher, Christian J; Heinl, Daniel; Prinsen, Cecilia A C; Deckert, Stefanie; Chalmers, Joanne; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Chamlin, Sarah; Schmitt, Jochen

    2015-04-16

    Eczema is a common chronic or chronically relapsing skin disease that has a substantial impact on quality of life (QoL). By means of a consensus-based process, the Harmonising Outcome Measures in Eczema (HOME) initiative has identified QoL as one of the four core outcome domains to be assessed in all eczema trials (Allergy 67(9):1111-7, 2012). Various measurement instruments exist to measure QoL in adults with eczema, but there is a great variability in both content and quality (for example, reliability and validity) of the instruments used, and it is not always clear if the best instrument is being used. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in adults with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for adults with eczema. Medline via PubMed and EMBASE will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for adult patients with eczema. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties, and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study has investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing QoL instruments in

  17. Instrumental measurement of beer taste attributes using an electronic tongue

    International Nuclear Information System (INIS)

    Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip; Legin, Andrey

    2009-01-01

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  18. Instrumental measurement of beer taste attributes using an electronic tongue.

    Science.gov (United States)

    Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R; Delvaux, Filip; Legin, Andrey

    2009-07-30

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  19. Instrumental measurement of beer taste attributes using an electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskaya, Alisa, E-mail: alisa.rudnitskaya@gmail.com [Chemistry Department, University of Aveiro, Aveiro (Portugal); Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Polshin, Evgeny [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Kirsanov, Dmitry [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Lammertyn, Jeroen; Nicolai, Bart [BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip [Centre for Malting and Brewing Sciences, Katholieke Universiteit Leuven, Heverelee (Belgium); Legin, Andrey [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation)

    2009-07-30

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  20. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  1. Measuring Financial Literacy: Developing and Testing a Measurement Instrument with a Selected Group of South African Military Officers

    Science.gov (United States)

    Schwella, E.; van Nieuwenhuyzen, Bernard J.

    2014-01-01

    Are South Africans financially literate, and how can this be measured? Until 2009 there was no South African financial literacy measure and, therefore, the aim was to develop a South African measurement instrument that is scientific, socially acceptable, valid and reliable. To achieve this aim a contextual and conceptual analysis of financial…

  2. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  3. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rooney, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  4. PRISM, a Patient-Reported Outcome Instrument, Accurately Measures Symptom Change in Refractory Gastroesophageal Reflux Disease.

    Science.gov (United States)

    Fuller, Garth; Bolus, Roger; Whitman, Cynthia; Talley, Jennifer; Erder, M Haim; Joseph, Alain; Silberg, Debra G; Spiegel, Brennan

    2017-03-01

    Most patients with gastroesophageal reflux disease (GERD) experience relief following treatment with proton pump inhibitors (PPIs) (Vakil et al. in Am J Gastroenterol 101:1900-1920, 2006; Everhart and Ruhl in Gastroenterology 136:376-386, 2009). As many as 17-44% of patients, however, exhibit only partial response to therapy. Most extant GERD patient-reported outcome (PRO) instruments fail to meet development best practices as described by the FDA (Talley and Wiklund in Qual Life Res 14:21-33, 2005; Van Pinxteren et al. in Cochrane Database Syst Rev 18:CD002095, 2004; El-Serag et al. in Aliment Pharmacol Ther 32:720-737, 2010). To develop and validate a PRO instrument for clinical trials involving patients with GERD who are PPI partial responders. We prepared a systematic literature review, held patient focus groups, convened an expert panel, and conducted cognitive interviews to establish content validity. Eligible participants took PPI therapy for at least 8 weeks, had undergone an upper endoscopy, and scored at least 8 points on the GerdQ [6]. Qualitative data guided development of 26 draft items. Items were reviewed by expert panels and debriefed with patients. The resulting 21-item instrument underwent psychometric evaluation during a Phase IIB trial. During the trial, confirmatory factor analysis (n = 220) resulted in a four-factor model displaying the highest goodness of fit. All domains had a high inter-item correlation (Cronbach's α > 0.8). Test-retest reliability and convergent validity were strong, with highly significant (p < 0.01) correlations between average weekly PRISM scores and severity anchors and significant (p < 0.05) correlations with anchor subscales. Cumulative distribution functions revealed significant differences between responders and non-responders. Analysis in a clinical trial setting demonstrated strong psychometric properties suggesting validity of PRISM. Developed in line with FDA guidance on PROs, PRISM represents an

  5. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  6. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    Directory of Open Access Journals (Sweden)

    Radovanović Slobodan D.

    2015-01-01

    Full Text Available The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. Processing the results of real inclination measurements on the dam 'Đerdap 2' with and without temperature correction showed the significant difference. Statistical analysis of measurement data consisted of performed regression analysis and forming of corresponding series with the expected measurement values depending on environmental conditions. At the end we give a summary conclusion on the instrument, the influence of temperature on the measurement and statistical model.

  7. Measuring teamwork in health care settings: a review of survey instruments.

    Science.gov (United States)

    Valentine, Melissa A; Nembhard, Ingrid M; Edmondson, Amy C

    2015-04-01

    Teamwork in health care settings is widely recognized as an important factor in providing high-quality patient care. However, the behaviors that comprise effective teamwork, the organizational factors that support teamwork, and the relationship between teamwork and patient outcomes remain empirical questions in need of rigorous study. To identify and review survey instruments used to assess dimensions of teamwork so as to facilitate high-quality research on this topic. We conducted a systematic review of articles published before September 2012 to identify survey instruments used to measure teamwork and to assess their conceptual content, psychometric validity, and relationships to outcomes of interest. We searched the ISI Web of Knowledge database, and identified relevant articles using the search terms team, teamwork, or collaboration in combination with survey, scale, measure, or questionnaire. We found 39 surveys that measured teamwork. Surveys assessed different dimensions of teamwork. The most commonly assessed dimensions were communication, coordination, and respect. Of the 39 surveys, 10 met all of the criteria for psychometric validity, and 14 showed significant relationships to nonself-report outcomes. Evidence of psychometric validity is lacking for many teamwork survey instruments. However, several psychometrically valid instruments are available. Researchers aiming to advance research on teamwork in health care should consider using or adapting one of these instruments before creating a new one. Because instruments vary considerably in the behavioral processes and emergent states of teamwork that they capture, researchers must carefully evaluate the conceptual consistency between instrument, research question, and context.

  8. A ball diameter-measuring instrument in a gauge block interferometer

    NARCIS (Netherlands)

    Kotte, G.J.W.L.; Haitjema, H.; Decker, J.E.; Brown, N.

    1998-01-01

    An instrument for the measurement of ball diameters in the 0.5-20 mm range in a gauge block interferometer is realized. The measurement principle is that the ball is positioned between an optical flat and a calibrated gauge block. The total length is measured in a gauge block relative to the optical

  9. To IO-3 type instrument for measuring relative deviation of mean frequency

    International Nuclear Information System (INIS)

    Albats, Ya.Eh.; Bitite, Ya.A.; Ivanov, G.M.; Karpel'tseva, L.P.; Tesnavs, Eh.R.; Shuvtsan, Ya.V.

    1979-01-01

    A description is given of the 10-3 instrument intended for automatic measurement of a relative deviation of the pulse flow mean frequency from the preset value with digital presentation of measurement results, and also for the conversion of this relative deviation into an electric coded signal and in an analogue voltage signal. The 10-3 instrument comprises a master pulse generator, two preliminary scalers, two electronic switches, two storage pulse counters, control devices, a counter digital volume setter, a rewriting device, an internal storage, a digital display, and a digital-to-analog converter. The principle of the instrument operation consists in counting the pulses of measured and reference pulse flows by two storage counters. Basic performances of the instrument are given. The main advantage of the 10-3 instrument lies in the fact that it presents the results of measuring by a digital radioisotope instrument directly in physical units of the measured parameter, and that, in turn, obviates the necessity for additional mathematical operations when data processing [ru

  10. Reliability of Instruments Measuring At-Risk and Problem Gambling Among Young Individuals

    DEFF Research Database (Denmark)

    Edgren, Robert; Castrén, Sari; Mäkelä, Marjukka

    2016-01-01

    This review aims to clarify which instruments measuring at-risk and problem gambling (ARPG) among youth are reliable and valid in light of reported estimates of internal consistency, classification accuracy, and psychometric properties. A systematic search was conducted in PubMed, Medline, and Psyc......Info covering the years 2009–2015. In total, 50 original research articles fulfilled the inclusion criteria: target age under 29 years, using an instrument designed for youth, and reporting a reliability estimate. Articles were evaluated with the revised Quality Assessment of Diagnostic Accuracy Studies tool....... Reliability estimates were reported for five ARPG instruments. Most studies (66%) evaluated the South Oaks Gambling Screen Revised for Adolescents. The Gambling Addictive Behavior Scale for Adolescents was the only novel instrument. In general, the evaluation of instrument reliability was superficial. Despite...

  11. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  12. Measurement properties of quality of life measurement instruments for infants, children and adolescents with eczema: protocol for a systematic review.

    Science.gov (United States)

    Heinl, Daniel; Prinsen, Cecilia A C; Drucker, Aaron M; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Flohr, Carsten; Apfelbacher, Christian

    2016-02-09

    Eczema is a common chronic or chronically relapsing, inflammatory skin disease that exerts a substantial negative impact on quality of life (QoL). The Harmonising Outcome Measures for Eczema (HOME) initiative has used a consensus-based process which identified QoL as one of the four core outcome domains to be assessed in all eczema clinical trials. A number of measurement instruments exist to measure QoL in infants, children, and adolescents with eczema, and there is a great variability in both content and quality of the instruments used. Therefore, the objective of the proposed research is to comprehensively and systematically assess the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in infants, children, and adolescents with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for infants, children, and adolescents with eczema. A systematic literature search will be carried out in MEDLINE via PubMed and EMBASE using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for infants, children, and adolescents with eczema. Two reviewers will independently perform eligibility assessment and data abstraction. Evidence tables will be used to record study characteristics, instrument characteristics, measurement properties, and interpretability. The adequacy of the measurement properties will be assessed using predefined criteria. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist will be used to evaluate the methodological quality of included studies. A best evidence synthesis will be undertaken if more than one study has examined a particular measurement property. The proposed systematic review will yield a comprehensive assessment

  13. A systematic review of instruments that measure attitudes toward homosexual men.

    Science.gov (United States)

    Grey, Jeremy A; Robinson, Beatrice Bean E; Coleman, Eli; Bockting, Walter O

    2013-01-01

    Scientific interest in the measurement of homophobia and internalized homophobia has grown over the past 30 years, and new instruments and terms have emerged. To help researchers with the challenging task of identifying appropriate measures for studies in sexual-minority health, we reviewed measures of homophobia published in the academic literature from 1970 to 2012. Instruments that measured attitudes toward male homosexuals/homosexuality or measured homosexuals' internalized attitudes toward homosexuality were identified using measurement manuals and a systematic review. A total of 23 instruments met criteria for inclusion, and their features were summarized and compared. All 23 instruments met minimal criteria for adequate scale construction, including scale development, sampling, reliability, and evidence of validity. Validity evidence was diverse and was categorized as interaction with gay men, HIV/AIDS variables, mental health, and conservative religious or political beliefs. Homophobia was additionally correlated with authoritarianism and bias, gender ideology, gender differences, and reactions to homosexual stimuli. Internalized homophobia was validated by examining relationships with disclosing one's homosexuality and level of homosexual identity development. We hope this review will make the process of instrument selection more efficient by allowing researchers to easily locate, evaluate, and choose the proper measure based on their research question and population of interest.

  14. Assessing medical professionalism: A systematic review of instruments and their measurement properties

    Science.gov (United States)

    Li, Honghe; Liu, Yang; Wen, Deliang

    2017-01-01

    Background Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments’ measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. Methods A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument’s usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee’s criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. Results After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, Nurse Practitioners’ Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Conclusion Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing

  15. Measuring Medical Housestaff Teamwork Performance Using Multiple Direct Observation Instruments: Comparing Apples and Apples.

    Science.gov (United States)

    Weingart, Saul N; Yaghi, Omar; Wetherell, Matthew; Sweeney, Megan

    2018-04-10

    To examine the composition and concordance of existing instruments used to assess medical teams' performance. A trained observer joined 20 internal medicine housestaff teams for morning work rounds at Tufts Medical Center, a 415-bed Boston teaching hospital, from October through December 2015. The observer rated each team's performance using 9 teamwork observation instruments that examined domains including team structure, leadership, situation monitoring, mutual support, and communication. Observations recorded on paper forms were stored electronically. Scores were normalized from 1 (low) to 5 (high) to account for different rating scales. Overall mean scores were calculated and graphed; weighted scores adjusted for the number of items in each teamwork domain. Teamwork scores were analyzed using t-tests, pair-wise correlations, and the Kruskal-Wallis statistic, and team performance was compared across instruments by domain. The 9 tools incorporated 5 major domains, with 5-35 items per instrument for a total of 161 items per observation session. In weighted and unweighted analyses, the overall teamwork performance score for a given team on a given day varied by instrument. While all of the tools identified the same low outlier, high performers on some instruments were low performers on others. Inconsistent scores for a given team across instruments persisted in domain-level analyses. There was substantial variation in the rating of individual teams assessed concurrently by a single observer using multiple instruments. Since existing teamwork observation tools do not yield concordant assessments, researchers should create better tools for measuring teamwork performance.

  16. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  17. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  18. Developing a TPACK measurement instrument for 21st century pre-service teachers

    Directory of Open Access Journals (Sweden)

    Teemu Valtonen

    2015-11-01

    Full Text Available  Future skills, so-called 21st century skills, emphasise collaboration, creativity, critical thinking, problem-solving and especially ICT skills (Voogt & Roblin, 2012. Teachers have to be able to use various pedagogical approaches and ICT in order to support the development of their students’ 21st century skills (Voogt & Roblin, 2012. These skills, particularly ICT skills, pose challenges for teachers and teacher education. This paper focuses on developing an instrument for measuring pre-service teachers’ knowledge related to ICT in the context of 21st century skills.Technological Pedagogical Content Knowledge (TPACK; Mishra & Kohler, 2006 was used as a theoretical framework for designing the instrument. While the TPACK framework is actively used, the instruments used to measure it have proven challenging. This paper outlines the results of the development process of the TPACK-21 instrument. A new assessment instrument was compiled and tested on pre-service teachers in Study1 (N=94. Based on these results, the instrument was further developed and tested in Study2 (N=267. The data of both studies were analysed using multiple quantitative methods in order to evaluate the psychometric properties of the instruments. The results provide insight into the challenges of the development process itself and also suggest new solutions to overcome these difficulties.

  19. Assessment of Customer Service in Academic Health Care Libraries (ACSAHL): an instrument for measuring customer service.

    Science.gov (United States)

    Crossno, J E; Berkins, B; Gotcher, N; Hill, J L; McConoughey, M; Walters, M

    2001-04-01

    In a pilot study, the library had good results using SERVQUAL, a respected and often-used instrument for measuring customer satisfaction. The SERVQUAL instrument itself, however, received some serious and well-founded criticism from the respondents to our survey. The purpose of this study was to test the comparability of the results of SERVQUAL with a revised and shortened instrument modeled on SERVQUAL. The revised instrument, the Assessment of Customer Service in Academic Health Care Libraries (ACSAHL), was designed to better assess customer service in academic health care libraries. Surveys were sent to clients who had used the document delivery services at three academic medical libraries in Texas over the previous twelve to eighteen months. ACSAHL surveys were sent exclusively to clients at University of Texas (UT) Southwestern, while the client pools at the two other institutions were randomly divided and provided either SERVQUAL or ACSAHL surveys. Results indicated that more respondents preferred the shorter ACSAHL instrument to the longer and more complex SERVQUAL instrument. Also, comparing the scores from both surveys indicated that ACSAHL elicited comparable results. ACSAHL appears to measure the same type of data in similar settings, but additional testing is recommended both to confirm the survey's results through data replication and to investigate whether the instrument applies to different service areas.

  20. The Karen instruments for measuring quality of nursing care: construct validity and internal consistency.

    Science.gov (United States)

    Lindgren, Margareta; Andersson, Inger S

    2011-06-01

    Valid and reliable instruments for measuring the quality of care are needed for evaluation and improvement of nursing care. Previously developed and evaluated instruments, the Karen-patient and the Karen-personnel based on Donabedian's Structure-Process-Outcome triad (S-P-O triad) had promising content validity, discriminative power and internal consistency. The objective of this study was to further develop the instruments with regard to construct validity and internal consistency. This prospective study was carried out in medical and surgical wards at a hospital in Sweden. A total of 95 patients and 120 personnel were included. The instruments were tested for construct validity by performing factor analyses in two steps and for internal consistency using Cronbach's alpha coefficient. The first confirmatory factor analyses, with a pre-determined three-factor solution did not load well according to the S-P-O triad, but the second exploratory factor analysis with a six-factor solution appeared to be more coherent and the distribution of variables seemed to be logical. The reliability, i.e. internal consistency, was good in both factor analyses. The Karen-patient and the Karen-personnel instruments have achieved acceptable levels of construct validity. The internal consistency of the instruments is good. This indicates that the instruments may be suitable to use in clinical practice for measuring the quality of nursing care.

  1. Clinical and Radiographic Evaluation of Procedural Errors during Preparation of Curved Root Canals with Hand and Rotary Instruments: A Randomized Clinical Study

    Science.gov (United States)

    Khanna, Rajesh; Handa, Aashish; Virk, Rupam Kaur; Ghai, Deepika; Handa, Rajni Sharma; Goel, Asim

    2017-01-01

    Background: The process of cleaning and shaping the canal is not an easy goal to obtain, as canal curvature played a significant role during the instrumentation of the curved canals. Aim: The present in vivo study was conducted to evaluate procedural errors during the preparation of curved root canals using hand Nitiflex and rotary K3XF instruments. Materials and Methods: Procedural errors such as ledge formation, instrument separation, and perforation (apical, furcal, strip) were determined in sixty patients, divided into two groups. In Group I, thirty teeth in thirty patients were prepared using hand Nitiflex system, and in Group II, thirty teeth in thirty patients were prepared using K3XF rotary system. The evaluation was done clinically as well as radiographically. The results recorded from both groups were compiled and put to statistical analysis. Statistical Analysis: Chi-square test was used to compare the procedural errors (instrument separation, ledge formation, and perforation). Results: In the present study, both hand Nitiflex and rotary K3XF showed ledge formation and instrument separation. Although ledge formation and instrument separation by rotary K3XF file system was less as compared to hand Nitiflex. No perforation was seen in both the instrument groups. Conclusion: Canal curvature played a significant role during the instrumentation of the curved canals. Procedural errors such as ledge formation and instrument separation by rotary K3XF file system were less as compared to hand Nitiflex. PMID:29042727

  2. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  3. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-06-01

    The mission for Independent Engineering Review of Instrumentation and Control (I and C) Systems (IERICS) in Nuclear Power Plants (NPPs) has been established with the aim of conducting peer reviews of I and C design documents, implementation processes, prototype I and C systems, and actual systems already deployed in operating NPPs. Organizations in IAEA Member States, such as nuclear utilities, regulators, and technical support organizations can benefit from I and C technical reviews through requesting IERICS missions that provide a detailed technical assessment on I and C systems, as well as recommendations for improvement. The IERICS mission is conducted by a team of international subject matter experts from various complementing technical areas. The review is based on appropriate IAEA documents, such as Safety Guides and Nuclear Energy Series, and the mission's findings are summarized in a mission report, including a list of recommendations, suggestions, and identified good practices. The review is not intended to be a regulatory inspection or an audit against international codes and standards. Rather, it is a peer review aimed at improving design and implementation procedures through an exchange of technical experiences and practices at the working level. The IERICS mission is applicable at any stages of the life cycle of I and C systems in NPPs and it is initiated based on a formal request through official IAEA channels from an organization of a Member State. The formation of the IERICS mission is based on the recommendation of the IAEA Technical Working Group on Nuclear Power Plant Instrumentation and Control (TWG-NPPIC). The recommendation came from the recognition that the IAEA can play an important role in the independent assessment and review of NPP I and C systems in terms of their compliance with IAEA safety guides and technical documents.

  4. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  5. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments

    Science.gov (United States)

    Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit

    2015-01-01

    Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001). The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems. PMID:26697144

  6. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments.

    Science.gov (United States)

    Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit

    2015-01-01

    Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (PProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems.

  7. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments

    Directory of Open Access Journals (Sweden)

    Sonal Soi

    2015-09-01

    Full Text Available Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no peri-apical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical fo-ramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal prepa-ration using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30. The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calcu-lated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001. The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg. Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a sig-nificantly higher amount of debris than GT and RaCe systems.

  8. Non-invasive measuring instrument of kVp, R/M and exposure time

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alwin W.

    1996-01-01

    The development of an instrument for fast measurement of essential parameters related to quality control of X-ray equipment is described. The unit is designed with a 80 C31 micro controller, a function keyboard, an αnumeric display and a probe with PV diodes. Testing and calibration in this non-invasive instrument has been done at the X-rays equipment for the Santa Rita Hospital in Porto Alegre, Rio Grande do Sul State, Brazil

  9. The Development of a Tactical-Level Full Range Leadership Measurement Instrument

    Science.gov (United States)

    2010-03-01

    full range leadership theory has become established as the predominant and most widely researched theory on leadership . The most commonly used survey...instrument to assess full range leadership theory is the Multifactor Leadership Questionnaire, originally developed by Bass in 1985. Although much...existing literature to develop a new full range leadership theory measurement instrument that effectively targets low- to mid-level supervisors, or

  10. Instrumentation for two-phase flow measurements in code verification experiments

    International Nuclear Information System (INIS)

    Fincke, J.R.; Anderson, J.L.; Arave, A.E.; Deason, V.A.; Lassahn, G.D.; Goodrich, L.D.; Colson, J.B.; Fickas, E.T.

    1981-01-01

    The development of instrumentation and techniques for the measurement of mass flow rate in two-phase flows conducted at the Idaho National Engineering Laboratory during the past year is briefly described. Instruments discussed are the modular drag-disc turbine transducer, the gamma densitometers, the ultrasonic densitometer, Pitot tubes, and full-flow drag screens. Steady state air-water and transient steam-water data are presented

  11. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  12. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  13. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  14. A New Instrument for the Measurement of the Waveform in X-Ray Units

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, Francisco J.; Martinez-Hernandez, Marco A.

    2004-01-01

    The experience gained in the quality control in X-ray units used in Radiology has demonstrated that the measurement of the waveform of the X-ray beam, measured as the response of a radiation detector is very helpful to decide if the unit fulfills the quality control requirements and also has been useful to define some kind of faults in the unit. Several instruments are available on the market to make this measurement but they need in general a storage or digital oscilloscope to see the waveform. In this work a stand alone new instrument is proposed in which the waveform is seen in a Liquid Crystal Display (LCD). The instrument is based in the X-ray response of a photo diode. The analog response depending on time is converted to digital numbers that are stored sequentially in a memory. The stored information is recovered with a microcontroller and reconstructed in the screen of the LCD. The instrument is able to measure in the mammographic range from 22 kV to 35 kV and in the conventional range from 40 kV to 120 kV in the different settings of current encountered on practical applications, the time range for the measurement of the X-ray shot is from 100 ms to 3 s. The instrument can be useful in quality control practices and in the verification and maintenance of X-ray units

  15. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two

  16. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  17. Quantification and handling of sampling errors in instrumental measurements: a case study

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.

    2004-01-01

    in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...

  18. Automation by microcomputer of a geodetic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1985-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 μm and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  19. Engagement in Games: Developing an Instrument to Measure Consumer Videogame Engagement and Its Validation

    Directory of Open Access Journals (Sweden)

    Amir Zaib Abbasi

    2017-01-01

    Full Text Available The aim of the study is to develop a new instrument to measure engagement in videogame play termed as consumer videogame engagement. The study followed the scale development procedure to develop an instrument to measure the construct of consumer videogame engagement. In this study, we collected the data in two different phases comprising study 1 (n=136 and study 2 (n=270. We employed SPSS 22.0 for exploratory factor analysis using study 1 respondents to explore the factors for consumer videogame engagement and reliability analysis. Results of EFA resulted with six-factor solution. We further used SmartPLS 3.0 software on study 2 respondents to further confirm the six-factor solution as reflective measurement model on the first-order level, and three second-order formative constructs on the second-order or higher-order level as formative measurement model. Results of the reflective measurement model and formative measurement model evidenced that consumer videogame engagement has strong psychometric properties and is a valid instrument to measure engagement in videogame play. Results also confirmed that consumer videogame engagement is a multidimensional construct as well as a reflective-formative construct. The study is unique in its investigation as it develops an instrument to measure engagement in videogame play which comprises the cognitive, affective, and behavioral dimensions.

  20. A Unidimensional Instrument for Measuring Internal Marketing Concept in the Higher Education Sector: IM-11 Scale

    Science.gov (United States)

    Yildiz, Suleyman Murat; Kara, Ali

    2017-01-01

    Purpose: Although the existing internal marketing (IM) scales include various scale items to measure employee motivation, they fall short of incorporating the needs and expectations of service sector employees. Hence, the purpose of this study is to present a practical instrument designed to measure the IM construct in the higher education sector.…

  1. Automation by microprocessor of an geodesic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1984-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 micrometers and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  2. Radiation monitoring and measuring instrument developed by Turkish Atomic Energy Authority

    International Nuclear Information System (INIS)

    Kuecuekarslan, N.; Gueven, A.

    2001-01-01

    Turkish Atomic Energy Authority (TAEA), Cekmece Nuclear Research and Training Center, Nuclear Electronics Department is working on research, development and production of radiation monitoring and measuring instruments in the aims of TAEA to serve our Country. Advanced micro controller technology is used to cover problems of radiation measurement. Control by micro controller enables reliable, stable measurement and display of low level dose rate fields. It makes possible the simultaneous measurement of both dose and dose rate values

  3. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  4. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  5. A new approach to preparation of standard LEDs for luminous intensity and flux measurement of LEDs

    Science.gov (United States)

    Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2006-09-01

    This work presents an alternative approach for preparing photometric standard LEDs, which is based on a novel functional seasoning method. The main idea of our seasoning method is simultaneously monitoring the light output and the junction voltage to obtain quantitative information on the temperature dependence and the aging effect of the LED emission. We suggested a general model describing the seasoning process by taking junction temperature variation and aging effect into account and implemented a fully automated seasoning facility, which is capable of seasoning 12 LEDs at the same time. By independent measurements of the temperature dependence, we confirmed the discrepancy of the theoretical model to be less than 0.5 % and evaluate the uncertainty contribution of the functional seasoning to be less than 0.5 % for all the seasoned samples. To demonstrate assigning the reference value to a standard LED, the CIE averaged LED intensity (ALI) of the seasoned LEDs was measured with a spectroradiometer-based instrument and the measurement uncertainty was analyzed. The expanded uncertainty of the standard LED prepared by the new approach amounts to be 4 % ~ 5 % (k=2) depending on color without correction of spectral stray light in the spectroradiometer.

  6. Determination of acid ionization constants for weak acids by osmometry and the instrumental analysis self-evaluation feedback approach to student preparation of solutions

    Science.gov (United States)

    Kakolesha, Nyanguila

    One focus of this work was to develop of an alternative method to conductivity for determining the acid ionization constants. Computer-controlled osmometry is one of the emerging analytical tools in industrial research and clinical laboratories. It is slowly finding its way into chemistry laboratories. The instrument's microprocessor control ensures shortened data collection time, repeatability, accuracy, and automatic calibration. The equilibrium constants of acetic acid, chloroacetic acid, bromoacetic acid, cyanoacetic acid, and iodoacetic acid have been measured using osmometry and their values compared with the existing literature values obtained, usually, from conductometric measurements. Ionization constant determined by osmometry for the moderately strong weak acids were in reasonably good agreement with literature values. The results showed that two factors, the ionic strength and the osmotic coefficient, exert opposite effects in solutions of such weak acids. Another focus of the work was analytical chemistry students solution preparation skills. The prevailing teacher-structured experiments leave little room for students' ingenuity in quantitative volumetric analysis. The purpose of this part of the study was to improve students' skills in making solutions using instrument feedback in a constructivist-learning model. After making some solutions by weighing and dissolving solutes or by serial dilution, students used the spectrophotometer and the osmometer to compare their solutions with standard solutions. Students perceived the instrument feedback as a nonthreatening approach to monitoring the development of their skill levels and liked to clarify their understanding through interacting with an instructor-observer. An assessment of the instrument feedback and the constructivist model indicated that students would assume responsibility for their own learning if given the opportunity. This study involved 167 students enrolled in Quantitative Chemical

  7. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  8. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  9. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  10. Validating an instrument for measuring brand equity of CSR driven organizations in Malaysia

    Directory of Open Access Journals (Sweden)

    Singh Dara Singh Karpal

    2017-06-01

    Full Text Available The objective of this study is to develop and propose a valid and reliable instrument to measure brand equity of CSR driven organizations in Malaysia. An instrument to measure brand equity was constructed with adaptations from two key sources, namely Yew Leh and Lee (2011 and Yoo and Donthu (2001. As such the study only focuses on the development and validation of an instrument to measure brand equity of CSR driven organizations. The usable sample population included 909 respondents from 12 states of West Malaysia which were selected using a quota sampling plan. Confirmatory factor analysis (CFA and reliability analysis were carried out to test and validate the proposed brand equity instrument containing four components (brand awareness, brand association, perceived quality and brand loyalty with a total of 13 items. Results from the CFA and reliability analysis indicated that all the items representing the four components were valid and can be used to measure the brand equity of organizations that are practicing CSR. The study tried to set an empirical basis for brand equity and CSR related research which could be used by future researchers in different industries and geographical locations. The study also implies the need for organizations to assess the success of their CSR efforts through the use of the proposed instrument in order to gauge whether all their CSR efforts translate to improved brand equity.

  11. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  12. A Practitioner's Instrument for Measuring Secondary Mathematics Teachers' Beliefs Surrounding Learner-Centered Classroom Practice.

    Science.gov (United States)

    Lischka, Alyson E; Garner, Mary

    In this paper we present the development and validation of a Mathematics Teaching Pedagogical and Discourse Beliefs Instrument (MTPDBI), a 20 item partial-credit survey designed and analyzed using Rasch measurement theory. Items on the MTPDBI address beliefs about the nature of mathematics, teaching and learning mathematics, and classroom discourse practices. A Rasch partial credit model (Masters, 1982) was estimated from the pilot study data. Results show that item separation reliability is .96 and person separation reliability is .71. Other analyses indicate the instrument is a viable measure of secondary teachers' beliefs about reform-oriented mathematics teaching and learning. This instrument is proposed as a useful measure of teacher beliefs for those working with pre-service and in-service teacher development.

  13. QNOTE: an instrument for measuring the quality of EHR clinical notes.

    Science.gov (United States)

    Burke, Harry B; Hoang, Albert; Becher, Dorothy; Fontelo, Paul; Liu, Fang; Stephens, Mark; Pangaro, Louis N; Sessums, Laura L; O'Malley, Patrick; Baxi, Nancy S; Bunt, Christopher W; Capaldi, Vincent F; Chen, Julie M; Cooper, Barbara A; Djuric, David A; Hodge, Joshua A; Kane, Shawn; Magee, Charles; Makary, Zizette R; Mallory, Renee M; Miller, Thomas; Saperstein, Adam; Servey, Jessica; Gimbel, Ronald W

    2014-01-01

    The outpatient clinical note documents the clinician's information collection, problem assessment, and patient management, yet there is currently no validated instrument to measure the quality of the electronic clinical note. This study evaluated the validity of the QNOTE instrument, which assesses 12 elements in the clinical note, for measuring the quality of clinical notes. It also compared its performance with a global instrument that assesses the clinical note as a whole. Retrospective multicenter blinded study of the clinical notes of 100 outpatients with type 2 diabetes mellitus who had been seen in clinic on at least three occasions. The 300 notes were rated by eight general internal medicine and eight family medicine practicing physicians. The QNOTE instrument scored the quality of the note as the sum of a set of 12 note element scores, and its inter-rater agreement was measured by the intraclass correlation coefficient. The Global instrument scored the note in its entirety, and its inter-rater agreement was measured by the Fleiss κ. The overall QNOTE inter-rater agreement was 0.82 (CI 0.80 to 0.84), and its note quality score was 65 (CI 64 to 66). The Global inter-rater agreement was 0.24 (CI 0.19 to 0.29), and its note quality score was 52 (CI 49 to 55). The QNOTE quality scores were consistent, and the overall QNOTE score was significantly higher than the overall Global score (p=0.04). We found the QNOTE to be a valid instrument for evaluating the quality of electronic clinical notes, and its performance was superior to that of the Global instrument. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Measuring participants' immersion in healthcare simulation: the development of an instrument.

    Science.gov (United States)

    Hagiwara, Magnus Andersson; Backlund, Per; Söderholm, Hanna Maurin; Lundberg, Lars; Lebram, Mikael; Engström, Henrik

    2016-01-01

    Immersion is important for simulation-based education; however, questionnaire-based instruments to measure immersion have some limitations. The aim of the present work is to develop a new instrument to measure immersion among participants in healthcare simulation scenarios. The instrument was developed in four phases: trigger identification, content validity scores, inter-rater reliability analysis and comparison with an existing immersion measure instrument. A modified Delphi process was used to develop the instrument and to establish validity and reliability. The expert panel consisted of 10 researchers. All the researchers in the team had previous experience of simulation in the health and/or fire and rescue services as researchers and/or educators and simulation designers. To identify triggers, the panel members independently screened video recordings from simulation scenarios. Here, a trigger is an event in a simulation that is considered a sign of reduced or enhanced immersion among simulation participants. The result consists of the Immersion Score Rating Instrument (ISRI). It contains 10 triggers, of which seven indicate reduced and three enhanced immersion. When using ISRI, a rater identifies trigger occurrences and assigns them strength between 1 and 3. The content validity analysis shows that all the 10 triggers meet an acceptable content validity index for items (I-CVI) standard. The inter-rater reliability (IRR) among raters was assessed using a two-way mixed, consistency, average-measures intra-class correlation (ICC). The ICC for the difference between weighted positive and negative triggers was 0.92, which indicates that the raters are in agreement. Comparison with results from an immersion questionnaire mirrors the ISRI results. In conclusion, we present a novel and non-intrusive instrument for identifying and rating the level of immersion among participants in healthcare simulation scenarios.

  15. Feasibility study for CPR1000 incore measurement instrumentation educed from the reactor pressure vessel upper head

    International Nuclear Information System (INIS)

    Guang Jianwei; Liu Qian; Li Wenhong; Duan Yuangang

    2010-01-01

    The article discusses about the feasibility of in-core measurement instrumentation educed from the reactor pressure vessel (RPV) upper head. Incore instrumentation educed from the reactor pressure vessel upper head is one of advanced technology in the third generation nuclear power plant. This technology can reduce the manufacture problem of RPV; decrease the manufacture time effectively. Furthermore, this technology can get rid of the trouble for loss of water caused by many penetrations in the RPV bottom head, can increase security of nuclear power plant. By the description of structure analysis, comparison, maturity for four type incore instrumentation detectors, the incore instrumentation can be educed from RPV upper head, which can increase reactor's security, reduce the manufacture time, decrease group dose in refueling period. The core design ability can be enhanced through this study. (authors)

  16. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  17. Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication

    Directory of Open Access Journals (Sweden)

    Vahid Zamanzadeh

    2015-06-01

    Full Text Available ABSTRACT Introduction: The importance of content validity in the instrument psychometric and its relevance with reliability, have made it an essential step in the instrument development. This article attempts to give an overview of the content validity process and to explain the complexity of this process by introducing an example. Methods: We carried out a methodological study conducted to examine the content validity of the patient-centered communication instrument through a two-step process (development and judgment. At the first step, domain determination, sampling (item generation and instrument formation and at the second step, content validity ratio, content validity index and modified kappa statistic was performed. Suggestions of expert panel and item impact scores are used to examine the instrument face validity. Results: From a set of 188 items, content validity process identified seven dimensions includes trust building (eight items, informational support (seven items, emotional support (five items, problem solving (seven items, patient activation (10 items, intimacy/friendship (six items and spirituality strengthening (14 items. Content validity study revealed that this instrument enjoys an appropriate level of content validity. The overall content validity index of the instrument using universal agreement approach was low; however, it can be advocated with respect to the high number of content experts that makes consensus difficult and high value of the S-CVI with the average approach, which was equal to 0.93. Conclusion: This article illustrates acceptable quantities indices for content validity a new instrument and outlines them during design and psychometrics of patient-centered communication measuring instrument.

  18. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  19. Preparation of CH4 for 14C measurements

    International Nuclear Information System (INIS)

    Cechova, A.; Grgula, M.; Povinec, P.; Sivo, A.

    1988-01-01

    An improved method of methane preparation from wood samples is described. It consists of the preparation of α-cellulose to secure a complete removal of contamination from the wood, its combustion to the form of CO 2 and the preparation of CH 4 in a new designed hydrogenation converter. Purified methane is suitable as a gas filling of the proportional counter. (author). 1 fig., 16 ref

  20. Design and construction of an instrument for measuring thermistor electrical characteristic

    International Nuclear Information System (INIS)

    Budiono; Yudi Herdiana

    2007-01-01

    In this work an instrument for measuring the electrical characteristic of thermistor has been designed and constructed. The instrument was constructed from main components i.e. a micro controller AT89C51, 3 ADC-0804, a LM35 temperature sensor and IC MAX 232. The IC MAX 232 component is used to connect the micro controller to the personal computer serially by using RS-232 standard. While ADC-0804 was used to convert the analog data (DC voltage) to the digital one so that the data was readable by the micro controller. Digital data from 3 ADC-0804 circuit which have been read by the micro controller was sent directly to the personal computer. The data from the measurement which have been stored in the personal computer was then processed to know the value of temperature and measured thermistor resistance. The processed data could be either stored in a data base or displayed in a monitor or printed in the form of table data and in the form a graph of thermistor resistance as the function of temperature. The result of measurement from measuring instrument of the characteristic of thermistor electric's had been made, being compared by measuring calibrated instrument, the deviation is about 0.33 %. (author)

  1. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  2. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS

    International Nuclear Information System (INIS)

    Gaytan G, E.; Rivero G, T.; Cruz E, P.; Tovar M, V.M.; Vergara M, F.J.

    2007-01-01

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  3. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  4. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  5. Development of an instrument to measure organisational culture in community pharmacies in Great Britain.

    Science.gov (United States)

    Marques, Iuri; Willis, Sarah Caroline; Schafheutle, Ellen Ingrid; Hassell, Karen

    2018-04-09

    Purpose Organisational culture (OC) shapes individuals' perceptions and experiences of work. However, no instrument capable of measuring specific aspects of OC in community pharmacy exists. The purpose of this paper is to report the development and validation of an instrument to measure OC in community pharmacy in Great Britain (GB), and conduct a preliminary analysis of data collected using it. Design/methodology/approach Instrument development comprised three stages: Stage I: 12 qualitative interviews and relevant literature informed instrument design; Stage II: 30 cognitive interviews assessed content validity; and Stage III: a cross-sectional survey mailed to 1,000 community pharmacists in GB, with factor analysis for instrument validation. Statistical analysis investigated how community pharmacists perceived OC in their place of work. Findings Factor analysis produced an instrument containing 60 items across five OC dimensions - business and work configuration, social relationships, personal and professional development, skills utilisation, and environment and structures. Internal reliability for the dimensions was high (0.84 to 0.95); item-total correlations were adequate ( r=0.46 to r=0.76). Based on 209 responses, analysis suggests different OCs in community pharmacy, with some community pharmacists viewing the environment in which they worked as having a higher frequency of aspects related to patient contact and safety than others. Since these aspects are important for providing high healthcare standards, it is likely that differences in OC may be linked to different healthcare outcomes. Originality/value This newly developed and validated instrument to measure OC in community pharmacy can be used to benchmark existing OC across different pharmacies and design interventions for triggering change to improve outcomes for community pharmacists and patients.

  6. Instrumental neutron activation analysis of phosphorus in biological materials by Bremsstrahlung measurement

    International Nuclear Information System (INIS)

    Bajo, S.; Wyttenbach, A.

    1986-12-01

    The determination of phosphorus in biological materials by instrumental neutron activation via the reaction 31 P (n,γ) 32 P is described. The Bremsstrahlung produced by 32 P is measured in a well-type NaI(Tl) detector. The samples are measured within the polyethylene irradiation container with no changes between irradiation and measurement. The sources of error were studied and the proposed method was applied to the determination of phosphorus in ten internationally certified materials. (author)

  7. Post endodontic pain following single-visit root canal preparation with rotary vs reciprocating instruments: a meta-analysis of randomized clinical trials.

    Science.gov (United States)

    Hou, Xiao-Mei; Su, Zheng; Hou, Ben-Xiang

    2017-05-25

    In endodontic therapy, continuous rotary instrumentation reduced debris compared to reciprocal instrumentation, which might affect the incidence of post-endodontic pain (PP). The aim of our study was to assess whether PP incidence and levels were influenced by the choice of rotary or reciprocal instruments. In this meta-analysis the Pubmed and EM databases were searched for prospective clinical randomized trials published before April 20, 2016, using combinations of the keywords: root canal preparation/instrumentation/treatment/therapy; post-operative/endodontic pain; reciprocal and rotary instruments. Three studies were included, involving a total of 1,317 patients, 659 treated with reciprocating instruments and 658 treated with rotary instruments. PP was reported in 139 patients in the reciprocating group and 172 in the rotary group. The PP incidence odds ratio was 1.27 with 95% confidence interval (CI) (0.25, 6.52) favoring rotary instruments. The mild, moderate and severe PP levels odds ratios were 0.31 (0.11, 0.84), 2.24 (0.66, 7.59) and 11.71 (0.63, 218.15), respectively. No evidence of publication bias was found. Rotary instrument choice in endodontic therapy is associated with a lower incidence of PP than reciprocating instruments, while reciprocating instruments are associated with less mild PP incidence.

  8. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  9. Designing an Instrument to Measure the QoS of a Spanish Virtual Store

    Science.gov (United States)

    de Abajo, Beatriz Sainz; de La Torre Díez, Isabel; Salcines, Enrique García; Fernández, Javier Burón; Pernas, Francisco Díaz; Coronado, Miguel López; de Castro Lozano, Carlos

    This article describes the development of an instrument, in the form of a survey, which is distributed to users of a B2C website selling electronic books in order to ascertain their satisfaction. The opinions compiled from a pilot sample and the exploratory factor analysis carried out point to factors that best summarise the quality of the application analysed here. Analysis of the initial survey, with a total of 40 items, shaped the final instrument, encompassing 18 items divided into 6 dimensions, which measure the perceptions of users of the application in order to improve the contents of the website. Subsequently, a confirmatory factorial analysis is performed, ensuring the reliability of the study and which confirms that the structure of the instrument developed truly measures service quality in accordance with the requirements of the website in terms of offering a space that fulfils consumer expectations in the Information Society.

  10. Radioisotope instrument for measuring the position of interface of two liquid media with similar density

    International Nuclear Information System (INIS)

    Afanas'ev, V.N.; Kolyada, A.N.; Krejndlin, I.I.; Pakhunkov, Yu.I.

    1977-01-01

    A gamma level indicator is developed for automatic and continuous remote measuring the location of the interface of two liquids with close densities in closed and open containers. The density of the upper (light) medium is 1.0-1.2 g/cm 3 . The instrument incorporates a transmitter-receiver unit, a relay regulator, a power amplifier and a secondary instrument. The operating principle of the level indicator is based on the detection of gamma-radiation scattered by a controlled medium; the alternations in gamma radiation flux serve to automatically set the transmitter-receiver unit on the interface of two media. The specially developed small transmitter-receiver with an Am 241 gamma radiation source is very sensible to little medium density changes and stable against perturbing factor action. The level indicator developed may be used to measure and regulate the level of liquid contacting with an air (gas) medium. The specifications of the instrument are presented

  11. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  12. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  13. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    International Nuclear Information System (INIS)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15 0 . Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, and produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity

  14. Core outcome measurement instruments for clinical trials in nonspecific low back pain

    Science.gov (United States)

    Chiarotto, Alessandro; Boers, Maarten; Deyo, Richard A.; Buchbinder, Rachelle; Corbin, Terry P.; Costa, Leonardo O.P.; Foster, Nadine E.; Grotle, Margreth; Koes, Bart W.; Kovacs, Francisco M.; Lin, C.-W. Christine; Maher, Chris G.; Pearson, Adam M.; Peul, Wilco C.; Schoene, Mark L.; Turk, Dennis C.; van Tulder, Maurits W.; Terwee, Caroline B.; Ostelo, Raymond W.

    2018-01-01

    Abstract To standardize outcome reporting in clinical trials of patients with nonspecific low back pain, an international multidisciplinary panel recommended physical functioning, pain intensity, and health-related quality of life (HRQoL) as core outcome domains. Given the lack of a consensus on measurement instruments for these 3 domains in patients with low back pain, this study aimed to generate such consensus. The measurement properties of 17 patient-reported outcome measures for physical functioning, 3 for pain intensity, and 5 for HRQoL were appraised in 3 systematic reviews following the COSMIN methodology. Researchers, clinicians, and patients (n = 207) were invited in a 2-round Delphi survey to generate consensus (≥67% agreement among participants) on which instruments to endorse. Response rates were 44% and 41%, respectively. In round 1, consensus was achieved on the Oswestry Disability Index version 2.1a for physical functioning (78% agreement) and the Numeric Rating Scale (NRS) for pain intensity (75% agreement). No consensus was achieved on any HRQoL instrument, although the Short Form 12 (SF12) approached the consensus threshold (64% agreement). In round 2, a consensus was reached on an NRS version with a 1-week recall period (96% agreement). Various participants requested 1 free-to-use instrument per domain. Considering all issues together, recommendations on core instruments were formulated: Oswestry Disability Index version 2.1a or 24-item Roland-Morris Disability Questionnaire for physical functioning, NRS for pain intensity, and SF12 or 10-item PROMIS Global Health form for HRQoL. Further studies need to fill the evidence gaps on the measurement properties of these and other instruments. PMID:29194127

  15. Development of an instrument to measure self-efficacy in caregivers of people with advanced cancer.

    Science.gov (United States)

    Ugalde, Anna; Krishnasamy, Meinir; Schofield, Penelope

    2013-06-01

    Informal caregivers of people with advanced cancer experience many negative impacts as a result of their role. There is a lack of suitable measures specifically designed to assess their experience. This study aimed to develop a new measure to assess self-efficacy in caregivers of people with advanced cancer. The development and testing of the new measure consisted of four separate, sequential phases: generation of issues, development of issues into items, pilot testing and field testing. In the generation of issues, 17 caregivers were interviewed to generate data. These data were analysed to generate codes, which were then systematically developed into items to construct the instrument. The instrument was pilot tested with 14 health professionals and five caregivers. It was then administered to a large sample for field testing to establish the psychometric properties, with established measures including the Brief Cope and the Family Appraisals for Caregiving Questionnaire for Palliative Care. Ninety-four caregivers completed the questionnaire booklet to establish the factor structure, reliability and validity. The factor analysis resulted in a 21-item, four-factor instrument, with the subscales being termed Resilience, Self-Maintenance, Emotional Connectivity and Instrumental Caregiving. The test-retest reliability and internal consistency were both excellent, ranging from 0.73 to 0.85 and 0.81 to 0.94, respectively. Six convergent and divergent hypotheses were made, and five were supported. This study has developed a new instrument to assess self-efficacy in caregivers of people with advanced cancer. The result is a four-factor, 21-item instrument with demonstrated reliability and validity. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Precision and accuracy of blood glucose measurements using three different instruments.

    Science.gov (United States)

    Nowotny, B; Nowotny, P J; Strassburger, K; Roden, M

    2012-02-01

    Assessment of insulin sensitivity by dynamic metabolic tests such as the hyperinsulinemic euglycemic clamp critically relies on the reproducible and fast measurement of blood glucose concentrations. Although various instruments have been developed over the last decades, little is known as to the accuracy and comparability. We therefore compared the best new instrument with the former gold standard instruments to measure glucose concentrations in metabolic tests. Fasting blood samples of 15 diabetic and 10 healthy subjects were collected into sodium-fluoride tubes, spiked with glucose (0, 2.8, 6.9 and 11.1 mmol/l) and measured either as whole blood (range 3.3-26.3 mmol/l) or following centrifugation as plasma (range 3.9-32.0 mmol/l). Plasma samples were analyzed in the YSI-2300 STAT plus (YSI), EKF Biosen C-Line (EKF) and the reference method, Beckman Glucose analyzer-II (BMG), whole blood samples in EKF instruments with YSI as reference method. The average deviation of the EKF from the reference, BMG, was 3.0 ± 3.5% without any concentration-dependent variability. Glucose measurements by YSI were in good agreement with that by BMG (plasma) and EKF (plasma and whole blood) up to concentrations of 13.13 mmol/l (0.5 ± 3.7%), but deviation increased to -6.2 ± 3.8% at higher concentrations. Precision (n = 6) was ±2.2% (YSI), ±3.9% (EKF) and ±5.2% (BMG). The EKF instrument is comparable regarding accuracy and precision to the reference method BMG and can be used in metabolic tests, while the YSI showed a systematic shift at higher glucose concentrations. Based on these results we decided to replace BMG with EKF instrument in metabolic tests. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  17. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review.

    Science.gov (United States)

    Lima, Elaine; Teixeira-Salmela, Luci F; Simões, Luan; Guerra, Ana C C; Lemos, Andrea

    2016-03-15

    While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  18. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Elaine Lima

    2016-01-01

    Full Text Available Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  19. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts. 236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled “amount” and “difficulty”. After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test–retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity. Daily and clinical visit “PROactive physical activity in COPD” instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. PMID:26022965

  20. Development and validation of an instrument to measure nurse educator perceived confidence in clinical teaching.

    Science.gov (United States)

    Nguyen, Van N B; Forbes, Helen; Mohebbi, Mohammadreza; Duke, Maxine

    2017-12-01

    Teaching nursing in clinical environments is considered complex and multi-faceted. Little is known about the role of the clinical nurse educator, specifically the challenges related to transition from clinician, or in some cases, from newly-graduated nurse to that of clinical nurse educator, as occurs in developing countries. Confidence in the clinical educator role has been associated with successful transition and the development of role competence. There is currently no valid and reliable instrument to measure clinical nurse educator confidence. This study was conducted to develop and psychometrically test an instrument to measure perceived confidence among clinical nurse educators. A multi-phase, multi-setting survey design was used. A total of 468 surveys were distributed, and 363 were returned. Data were analyzed using exploratory and confirmatory factor analyses. The instrument was successfully tested and modified in phase 1, and factorial validity was subsequently confirmed in phase 2. There was strong evidence of internal consistency, reliability, content, and convergent validity of the Clinical Nurse Educator Skill Acquisition Assessment instrument. The resulting instrument is applicable in similar contexts due to its rigorous development and validation process. © 2017 The Authors. Nursing & Health Sciences published by John Wiley & Sons Australia, Ltd.

  1. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  2. INSTRUMENTS MEASURING PERCEIVED RACISM/RACIAL DISCRIMINATION: REVIEW AND CRITIQUE OF FACTOR ANALYTIC TECHNIQUES

    Science.gov (United States)

    Atkins, Rahshida

    2015-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis. PMID:25626225

  3. The impact of the use of different types of gloves and bare hands for preparation of clean surgical instruments.

    Science.gov (United States)

    Bruna, Camila Quartim de Moraes; Souza, Rafael Queiroz de; Massaia, Irineu Francisco Silva; Cruz, Áurea Silveira; Graziano, Kazuko Uchikawa

    2016-10-10

    to determine if there are differences on the safety of the preparation of clean surgical instruments using different types of gloves and bare hands and evaluate the microbiological load of these preparations without gloves. laboratory procedure with a pragmatic approach, in which the samples were handled with different types of gloves and bare hands. In addition, cytotoxicity assays were carried out by means of the agar diffusion method. Further samples were subjected to microbiological analysis after being handled without gloves. none of the samples showed cytotoxic effect. All microbiological cultures showed growth of microorganisms, but no microorganism has been recovered after autoclaving. there were no differences in the cytotoxic responses regarding the use of different types of gloves and bare hands in the handling of clean surgical instruments, which could entail iatrogenic risk. It is noteworthy that the use of gloves involves increase in the costs of process and waste generation, and the potential allergenic risk to latex. determinar se existe diferenças na segurança do preparo de instrumentais cirúrgicos relacionada ao uso de distintos tipos de luvas e das mãos nuas no preparo, e avaliar a carga microbiológica destes preparados sem luvas. experimento laboratorial com abordagem pragmática, onde amostras foram manipuladas com diferentes tipos de luvas e com as mãos nuas, elaborado teste de citotoxicidade por meio da difusão em ágar. Outras Amostras sofreram análise microbiológica após serem manipuladas sem luvas. nenhuma das amostras apresentou efeito citotóxico. Todas as culturas microbiológicas apresentaram crescimento de microrganismos, embora nenhum microrganismo tenha sido recuperado após a autoclavação. não houve diferenças nas respostas citotóxicas relacionadas ao uso de diferentes tipos de luvas e das mãos nuas na manipulação do instrumental cirúrgico limpo que sinalizasse risco de iatrogenia. Ressalta-se que o uso de luvas

  4. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    Science.gov (United States)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  5. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  6. Validation of an Instrument to Measure High School Students' Attitudes toward Fitness Testing

    Science.gov (United States)

    Mercier, Kevin; Silverman, Stephen

    2014-01-01

    Purpose: The purpose of this investigation was to develop an instrument that has scores that are valid and reliable for measuring students' attitudes toward fitness testing. Method: The method involved the following steps: (a) an elicitation study, (b) item development, (c) a pilot study, and (d) a validation study. The pilot study included 427…

  7. Student Response to Faculty Instruction (SRFI): An Empirically Derived Instrument to Measure Student Evaluations of Teaching

    Science.gov (United States)

    Beitzel, Brian D.

    2013-01-01

    The Student Response to Faculty Instruction (SRFI) is an instrument designed to measure the student perspective on courses in higher education. The SRFI was derived from decades of empirical studies of student evaluations of teaching. This article describes the development of the SRFI and its psychometric attributes demonstrated in two pilot study…

  8. On Studying Common Factor Dominance and Approximate Unidimensionality in Multicomponent Measuring Instruments with Discrete Items

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2018-01-01

    This article outlines a procedure for examining the degree to which a common factor may be dominating additional factors in a multicomponent measuring instrument consisting of binary items. The procedure rests on an application of the latent variable modeling methodology and accounts for the discrete nature of the manifest indicators. The method…

  9. Instrument for bone mineral measurement using a microprocessor as the control and arithmetic element

    International Nuclear Information System (INIS)

    Alberi, J.L.; Hardy, W.H. II.

    1975-11-01

    A self-contained instrument for the determination of bone mineral content by photon absorptometry is described. A high-resolution detection system allows measurements to be made at up to 16 photon energies. Control and arithmetic functions are performed by a microprocessor. Analysis capability and limitations are discussed

  10. Validation of the instrument IMAQE-Food to measure effectiveness of food quality management

    NARCIS (Netherlands)

    Spiegel, van der M.; Boer, de W.J.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2007-01-01

    Purpose - The purpose of this paper is to show that manufacturers use several quality assurance systems to assure quality. This paper aims to describe the validation of IMAQE-Food - an instrument that measures effectiveness of food quality systems. Design/methodology/approach - Generalisability,

  11. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  12. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  13. Construction and Validation of an Instrument to Measure Environmental Orientations in a Diverse Group of Children

    Science.gov (United States)

    Larson, Lincoln R.; Green, Gary T.; Castleberry, Steven B.

    2011-01-01

    An understanding of children's environmental orientations is of critical importance as opportunities for authentic contact with nature diminish. Current instruments for measuring children's environmental attitudes are complex, and few have been tested across diverse audiences. This study employed a mixed-methods approach that included pilot tests,…

  14. Understanding and Measuring Evaluation Capacity: A Model and Instrument Validation Study

    Science.gov (United States)

    Taylor-Ritzler, Tina; Suarez-Balcazar, Yolanda; Garcia-Iriarte, Edurne; Henry, David B.; Balcazar, Fabricio E.

    2013-01-01

    This study describes the development and validation of the Evaluation Capacity Assessment Instrument (ECAI), a measure designed to assess evaluation capacity among staff of nonprofit organizations that is based on a synthesis model of evaluation capacity. One hundred and sixty-nine staff of nonprofit organizations completed the ECAI. The 68-item…

  15. THE DEVELOPMENT OF AN INSTRUMENT FOR MEASURING THE UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES.

    Science.gov (United States)

    MCCORMICK, FLOYD G.

    THE PURPOSE OF THE STUDY WAS TO DEVELOP AN INSTRUMENT FOR MEASURING PROFIT-MAXIMIZING PRINCIPLES IN FARM MANAGEMENT WITH IMPLICATIONS FOR VOCATIONAL AGRICULTURE. PRINCIPLES WERE IDENTIFIED FROM LITERATURE SELECTED BY AGRICULTURAL ECONOMISTS. FORTY-FIVE MULTIPLE-CHOICE QUESTIONS WERE REFINED ON THE BASIS OF RESULTS OF THREE PRETESTS AND…

  16. Measurement Invariance of Early Development Instrument (EDI) Domain Scores across Gender and ESL Status

    Science.gov (United States)

    Mousavi, Amin; Krishnan, Vijaya

    2016-01-01

    The Early Development Instrument (EDI) is a widely used teacher rating tool to assess kindergartners' developmental outcomes in Canada and a number of other countries. This paper examines the measurement invariance of EDI domains across ESL status and gender by means of multi-group confirmatory factor analysis. The results suggest evidence of…

  17. Quality of local authority occupational therapy services: developing an instrument to measure the user's perspective.

    NARCIS (Netherlands)

    Calnan, S.; Sixma, H.J.; Calnan, M.W.; Groenewegen, P.P.

    2000-01-01

    The aims of this paper are threefold: (1) to describe the development of an instrument measuring quality of care from the specific perspective of the users of local authority occupational therapy services; (2) to present the results from a survey of users' views about the quality of services offered

  18. The manometric sorptomat—an innovative volumetric instrument for sorption measurements performed under isobaric conditions

    International Nuclear Information System (INIS)

    Kudasik, Mateusz

    2016-01-01

    The present paper discusses the concept of measuring the process of sorption by means of the volumetric method, developed in such a way as to allow measurements performed under isobaric conditions. On the basis of the concept in question, a prototype of a sorption instrument was built: the manometric sorptomat. The paper provides a detailed description of the idea of the instrument, and of the way it works. In order to evaluate the usefulness of the device in sorption measurements carried out under laboratory conditions, comparative studies were conducted, during which the results of sorption measurements obtained with the developed instrument were compared with the results Mateusz obtained with a reference device. The objects of comparison were the sorption capacities of hard coal samples, calculated on the basis of the established courses of the methane sorption process. The results were regarded as compatible if the compared values fell within the range of the measurement uncertainty of the two devices. For the sake of the comparative studies, fifteen granular samples of hard coal—representing the 0.20–0.25 mm grain fraction and coming from various mines of the Upper Silesian Coal Basin—were used. After comparing the results obtained with the original manometric sorptomat with the results obtained with the gravimetric reference device, it was observed that the compatibility of measurements of sorption capacities was over 90%, based on the defined criterion of the measurement compatibility. (paper)

  19. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    International Nuclear Information System (INIS)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug

  20. An instrument for measurement of 125I with automatic efficiency correction

    International Nuclear Information System (INIS)

    Holford, R.M.

    1979-10-01

    Counting efficiencies for 125 I are often uncertain because of self-absorption of the low-energy radiation. A special purpose instrument, AEP-5285, has been designed to simplify the measurement of 125 I activities using a known technique in which the observed counting rate is compensated for self-absorption and any other uncertainties in the counting efficiency by making use of the coicidence properties of the radiation. The instrument contains pulse amplifiers, discriminators to define the energy regions of interest, and operational amplifier circuits to perform the necessary calculations automatically, and it displays an estimate of the source activity in becquerels. (auth)

  1. Automation is an Effective Way to Improve Quality of Verification (Calibration) of Measuring Instruments

    Science.gov (United States)

    Golobokov, M.; Danilevich, S.

    2018-04-01

    In order to assess calibration reliability and automate such assessment, procedures for data collection and simulation study of thermal imager calibration procedure have been elaborated. The existing calibration techniques do not always provide high reliability. A new method for analyzing the existing calibration techniques and developing new efficient ones has been suggested and tested. A type of software has been studied that allows generating instrument calibration reports automatically, monitoring their proper configuration, processing measurement results and assessing instrument validity. The use of such software allows reducing man-hours spent on finalization of calibration data 2 to 5 times and eliminating a whole set of typical operator errors.

  2. Instrumenting a pressure suppression experiment for a Mark I boiling water reactor: another measurements engineering challenge

    International Nuclear Information System (INIS)

    Shay, W.M.; Brough, W.G.; Miller, T.B.

    1978-01-01

    A 1 / 5 -scale test facility of a pressure-suppression system from a Mark I boiling water reactor was instrumented with seven types of transducers to obtain high-accuracy, dynamic loading data during a hypothetical loss-of-coolant accident. A total of 27 air tests have been completed with an average of 175 transducers recorded for each test. An end-to-end calibration of the total measurement system was run to establish accuracy of the data. The instrumentation verified the analysis of the dynamic loading of the pressure-suppression system

  3. Pulse Wave Velocity Measuring System using Virtual Instrumentation on Mobile Device

    Directory of Open Access Journals (Sweden)

    Razvan Alin Ciobotariu

    2013-03-01

    Full Text Available Virtual instrumentation is a concept that permits customizable modular software measurement and the development of the user-defined tools for control, process and visualization of data, creating versatile systems, using modular programming, intuitive and easy to use. In this paper we investigate a possibility of using virtual instrumentation in the development of two physiological parameters monitoring system, in order to assess a cardiovascular parameter, the Pulse Wave Velocity (PWV. We choose to monitor this parameter due to major incidence and impact of cardiovascular diseases (CVD.

  4. POEM a core instrument to measure symptoms in clinical trials: a HOME statement

    OpenAIRE

    Spuls, Ph.I.; Gerbens, L.A.A.; Simpson, E.; Apfelbacher, C.J.; Chalmers, J.R.; Thomas, K.S.; Prinsen, C.A.C.; Kobyletzki, L.B. von; Singh, J.A.; Williams, Hywel C.; Schmitt, J.

    2016-01-01

    Background: The Harmonising Outcome Measures for Eczema (HOME) initiative has defined four core outcome domains for a core outcome set (COS) to be measured in all atopic eczema (AE) trials to ensure cross-trial comparison: clinical signs, symptoms, quality of life and longterm control. Objectives: The aim of this paper is to report on the consensus process that was used to select the core instrument to consistently assess symptoms in all future AE trials. Methods: Following the HOME roa...

  5. Studies on a double-interferometer and mesospheric temperature measurements with a sodium-LIDAR-instrument

    International Nuclear Information System (INIS)

    Serwazi, M.

    1989-07-01

    The first part of this report describes the integration and alignment of a second Fabry-Perot-Interferometer into the optical bench of the sodium LIDAR experiment in Northern Norway. The spectral efficiency of this double interferometer was instrumentally and theoretically examined. The second part of the report presents results of temperature measurements in March 1989, which were made jointly with a Rayleigh LIDAR from the Max Planck Institute for Aeronomy. Measured temperatures and Na densities of three nights are presented. (orig.)

  6. Preparation of gaseous CRMs from the primary system for "2"2"2Rn activity measurement

    International Nuclear Information System (INIS)

    Kim, B.J.; Kim, B.C.; Lee, K.B.; Lee, J.M.; Park, T.S.

    2016-01-01

    For disseminating the gaseous radon standard traceable to the KRISS primary system based on the defined solid angle counting method, two kinds of radon CRM (a glass ampule type and a stainless steel cylinder type) were developed. The activity of the CRM was certified by subtracting a residual activity from the measured activity by the primary system. After certification, the ampule CRM was used to calibrate a radon-monitoring instrument and the cylinder CRM to calibrate an HPGe system. We also improved the measurement procedure of the radon primary system. In a typical radon energy spectrum, the radon peak overlaps with the polonium peak. For more reliable and accurate measurement of radon activity, a fitting method was adopted for the evaluation of radon area in the alpha energy spectrum. The result of radon activity evaluated by using the fitting method is in good agreement with that by the previous integration method. - Highlights: • Preparation of gaseous Rn-222 CRMs from primary measurement system. • Convolution of 3 left-handed exponentials with a Gaussian function to count radon. • Calibration of continuous radon monitor using glass ampoule CRM. • Calibration of HPGe system as secondary standard for stainless steel cylinder CRM.

  7. Proposal for a Universal Test Mirror for Characterization of Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll, Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-01-01

    The development of third generation light sources like the Advanced Light Source (ALS) or BESSY II brought to a focus the need for high performance synchrotron optics with unprecedented tolerances for slope error and micro roughness. Proposed beam lines at Free Electron Lasers (FEL) require optical elements up to a length of one meter, characterized by a residual slope error in the range of 0.1mu rad (rms),and rms values of 0.1 nm for micro roughness. These optical elements must be inspected by highly accurate measuring instruments, providing a measurement uncertainty lower than the specified accuracy of the surface under test. It is essential that metrology devices in use at synchrotron laboratories be precisely characterized and calibrated to achieve this target. In this paper we discuss a proposal for a Universal Test Mirror (UTM) as a realization of a high performance calibration instrument. The instrument would provide an ideal calibration surface to replicate a redundant surface under test of redundant figure. The application of a sophisticated calibration instrument will allow the elimination of the majority of the systematic error from the error budget of an individual measurement of a particular optical element. We present the limitations of existing methods, initial UTM design considerations, possible calibration algorithms, and an estimation of the expected accuracy

  8. The development of an instrument to measure teachers' use of fear appeals in the GCSE classroom.

    Science.gov (United States)

    Putwain, David W; Roberts, Christine M

    2009-12-01

    Previous work has suggested that teachers of General Certificate of Secondary Education classes may use fear appeals as a motivational device but these may have unwanted consequences by increasing examination-related anxiety in students. To facilitate future work in this area, an instrument was developed to measure teachers' use of fear appeals in the course of normal classroom instruction. Students in their final 2 years of compulsory schooling in England: 192 in Study 1 and 133 in Study 2. A construct validity approach was used in the development of this instrument. Study 1 reports the development and piloting of this measure. Study 2 reports refinement of this measure and relations with other constructs. A three-factor structure provided a reasonable model fit and all factors demonstrated acceptable reliability. Factors 1 and 2 described the perceived frequency of fear appeals made in relation to educational/occupational consequences and the third factor described the perceived threat of fear appeals. This instrument has demonstrated sufficient convergent and discriminant validity and reliability to be used in subsequent research, although the validation process should continue and it is hoped that the instrument will be adapted for use in other contexts.

  9. [Instrument to measure adherence in hypertensive patients: contribution of Item Response Theory].

    Science.gov (United States)

    Rodrigues, Malvina Thaís Pacheco; Moreira, Thereza Maria Magalhaes; Vasconcelos, Alexandre Meira de; Andrade, Dalton Francisco de; Silva, Daniele Braz da; Barbetta, Pedro Alberto

    2013-06-01

    To analyze, by means of "Item Response Theory", an instrument to measure adherence to t treatment for hypertension. Analytical study with 406 hypertensive patients with associated complications seen in primary care in Fortaleza, CE, Northeastern Brazil, 2011 using "Item Response Theory". The stages were: dimensionality test, calibrating the items, processing data and creating a scale, analyzed using the gradual response model. A study of the dimensionality of the instrument was conducted by analyzing the polychoric correlation matrix and factor analysis of complete information. Multilog software was used to calibrate items and estimate the scores. Items relating to drug therapy are the most directly related to adherence while those relating to drug-free therapy need to be reworked because they have less psychometric information and low discrimination. The independence of items, the small number of levels in the scale and low explained variance in the adjustment of the models show the main weaknesses of the instrument analyzed. The "Item Response Theory" proved to be a relevant analysis technique because it evaluated respondents for adherence to treatment for hypertension, the level of difficulty of the items and their ability to discriminate between individuals with different levels of adherence, which generates a greater amount of information. The instrument analyzed is limited in measuring adherence to hypertension treatment, by analyzing the "Item Response Theory" of the item, and needs adjustment. The proper formulation of the items is important in order to accurately measure the desired latent trait.

  10. Measuring pediatric hematology-oncology fellows' skills in humanism and professionalism: A novel assessment instrument.

    Science.gov (United States)

    Kesselheim, Jennifer C; Agrawal, Anurag K; Bhatia, Nita; Cronin, Angel; Jubran, Rima; Kent, Paul; Kersun, Leslie; Rao, Amulya Nageswara; Rose, Melissa; Savelli, Stephanie; Sharma, Mukta; Shereck, Evan; Twist, Clare J; Wang, Michael

    2017-05-01

    Educators in pediatric hematology-oncology lack rigorously developed instruments to assess fellows' skills in humanism and professionalism. We developed a novel 15-item self-assessment instrument to address this gap in fellowship training. Fellows (N = 122) were asked to assess their skills in five domains: balancing competing demands of fellowship, caring for the dying patient, confronting depression and burnout, responding to challenging relationships with patients, and practicing humanistic medicine. An expert focus group predefined threshold scores on the instrument that could be used as a cutoff to identify fellows who need support. Reliability and feasibility were assessed and concurrent validity was measured using three established instruments: Maslach Burnout Inventory (MBI), Flourishing Scale (FS), and Jefferson Scale of Physician Empathy (JSPE). For 90 participating fellows (74%), the self-assessment proved feasible to administer and had high internal consistency reliability (Cronbach's α = 0.81). It was moderately correlated with the FS and MBI (Pearson's r = 0.41 and 0.4, respectively) and weakly correlated with the JSPE (Pearson's r = 0.15). Twenty-eight fellows (31%) were identified as needing support. The self-assessment had a sensitivity of 50% (95% confidence interval [CI]: 31-69) and a specificity of 77% (95% CI: 65-87) for identifying fellows who scored poorly on at least one of the three established scales. We developed a novel assessment instrument for use in pediatric fellowship training. The new scale proved feasible and demonstrated internal consistency reliability. Its moderate correlation with other established instruments shows that the novel assessment instrument provides unique, nonredundant information as compared to existing scales. © 2016 Wiley Periodicals, Inc.

  11. Measuring leprosy-related stigma - a pilot study to validate a toolkit of instruments.

    Science.gov (United States)

    Rensen, Carin; Bandyopadhyay, Sudhakar; Gopal, Pala K; Van Brakel, Wim H

    2011-01-01

    Stigma negatively affects the quality of life of leprosy-affected people. Instruments are needed to assess levels of stigma and to monitor and evaluate stigma reduction interventions. We conducted a validation study of such instruments in Tamil Nadu and West Bengal, India. Four instruments were tested in a 'Community Based Rehabilitation' (CBR) setting, the Participation Scale, Internalised Scale of Mental Illness (ISMI) adapted for leprosy-affected persons, Explanatory Model Interview Catalogue (EMIC) for leprosy-affected and non-affected persons and the General Self-Efficacy (GSE) Scale. We evaluated the following components of validity, construct validity, internal consistency, test-retest reproducibility and reliability to distinguish between groups. Construct validity was tested by correlating instrument scores and by triangulating quantitative and qualitative findings. Reliability was evaluated by comparing levels of stigma among people affected by leprosy and community controls, and among affected people living in CBR project areas and those in non-CBR areas. For the Participation, ISMI and EMIC scores significant differences were observed between those affected by leprosy and those not affected (p = 0.0001), and between affected persons in the CBR and Control group (p < 0.05). The internal consistency of the instruments measured with Cronbach's α ranged from 0.83 to 0.96 and was very good for all instruments. Test-retest reproducibility coefficients were 0.80 for the Participation score, 0.70 for the EMIC score, 0.62 for the ISMI score and 0.50 for the GSE score. The construct validity of all instruments was confirmed. The Participation and EMIC Scales met all validity criteria, but test-retest reproducibility of the ISMI and GSE Scales needs further evaluation with a shorter test-retest interval and longer training and additional adaptations for the latter.

  12. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    Science.gov (United States)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  13. The evolution and development of an instrument to measure essential professional nursing practices.

    Science.gov (United States)

    Kramer, Marlene; Brewer, Barbara B; Halfer, Diana; Hnatiuk, Cynthia Nowicki; MacPhee, Maura; Schmalenberg, Claudia

    2014-11-01

    Nursing continues to evolve from a task-oriented occupation to a holistic professional practice. Increased professionalism requires accurate measurement of care processes and practice. Nursing studies often omit measurement of the relationship between structures in the work environment and processes of care or between processes of care and patient outcomes. Process measurement is integral to understanding and improving nursing practice. This article describes the development of an updated Essentials of Magnetism process measurement instrument for clinical nurses (CNs) practicing on inpatient units in hospitals. It has been renamed Essential Professional Nursing Practices: CN.

  14. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI: design, execution, and early results

    Directory of Open Access Journals (Sweden)

    A. J. M. Piters

    2012-02-01

    Full Text Available From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI. The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands. Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing, and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent

  15. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  16. Psychometric Evaluation of the D-Catch, an Instrument to Measure the Accuracy of Nursing Documentation.

    Science.gov (United States)

    D'Agostino, Fabio; Barbaranelli, Claudio; Paans, Wolter; Belsito, Romina; Juarez Vela, Raul; Alvaro, Rosaria; Vellone, Ercole

    2017-07-01

    To evaluate the psychometric properties of the D-Catch instrument. A cross-sectional methodological study. Validity and reliability were estimated with confirmatory factor analysis (CFA) and internal consistency and inter-rater reliability, respectively. A sample of 250 nursing documentations was selected. CFA showed the adequacy of a 1-factor model (chronologically descriptive accuracy) with an outlier item (nursing diagnosis accuracy). Internal consistency and inter-rater reliability were adequate. The D-Catch is a valid and reliable instrument for measuring the accuracy of nursing documentation. Caution is needed when measuring diagnostic accuracy since only one item measures this dimension. The D-Catch can be used as an indicator of the accuracy of nursing documentation and the quality of nursing care. © 2015 NANDA International, Inc.

  17. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  18. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  19. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    International Nuclear Information System (INIS)

    Wang, X.; Kamenev, K.V.

    2015-01-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed

  20. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  1. Using the Rasch measurement model to design a report writing assessment instrument.

    Science.gov (United States)

    Carlson, Wayne R

    2013-01-01

    This paper describes how the Rasch measurement model was used to develop an assessment instrument designed to measure student ability to write law enforcement incident and investigative reports. The ability to write reports is a requirement of all law enforcement recruits in the state of Michigan and is a part of the state's mandatory basic training curriculum, which is promulgated by the Michigan Commission on Law Enforcement Standards (MCOLES). Recently, MCOLES conducted research to modernize its training and testing in the area of report writing. A structured validation process was used, which included: a) an examination of the job tasks of a patrol officer, b) input from content experts, c) a review of the professional research, and d) the creation of an instrument to measure student competency. The Rasch model addressed several measurement principles that were central to construct validity, which were particularly useful for assessing student performances. Based on the results of the report writing validation project, the state established a legitimate connectivity between the report writing standard and the essential job functions of a patrol officer in Michigan. The project also produced an authentic instrument for measuring minimum levels of report writing competency, which generated results that are valid for inferences of student ability. Ultimately, the state of Michigan must ensure the safety of its citizens by licensing only those patrol officers who possess a minimum level of core competency. Maintaining the validity and reliability of both the training and testing processes can ensure that the system for producing such candidates functions as intended.

  2. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  3. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol

    Science.gov (United States)

    Trask, Catherine M; Boden, Catherine; Bath, Brenna; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-01

    Introduction Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Methods Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. Ethics and dissemination This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers’ compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. PROSPERO registration number CRD42017060390. PMID:29374671

  4. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol.

    Science.gov (United States)

    Goes, Suelen Meira; Trask, Catherine M; Boden, Catherine; Bath, Brenna; Ribeiro, Daniel Cury; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-27

    Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers' compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. CRD42017060390. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  5. Systematic review of measurement properties of self-reported instruments for evaluating self-care in adults.

    Science.gov (United States)

    Matarese, Maria; Lommi, Marzia; De Marinis, Maria Grazia

    2017-06-01

    The aims of this study were as follows: to identify instruments developed to assess self-care in healthy adults; to determine the theory on which they were based; their validity and reliability properties and to synthesize the evidence on their measurement properties. Many instruments have been developed to assess self-care in many different populations and conditions. Clinicians and researchers should select the most appropriate self-care instrument based on the knowledge of their measurement properties. Systematic review of measurement instruments according to the protocol recommended by the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. PubMed, Embase, PsycINFO, Scopus and CINAHL databases were searched from inception to December 2015. Studies testing measurement properties of self-report instruments assessing self-care in healthy adults, published in the English language and in peer review journals were selected. Two reviewers independently appraised the methodological quality of the studies with the COSMIN checklist and the quality of results using specific quality criteria. Twenty-six articles were included in the review testing the measurement properties of nine instruments. Seven instruments were based on Orem's Self-care theory. Not all the measurement properties were evaluated for the identified instruments. No self-care instrument showed strong evidence supporting the evaluated measurement properties. Despite the development of several instruments to assess self-care in the adult population, no instrument can be fully recommended to clinical nurses and researchers. Further studies of high methodological quality are needed to confirm the measurement properties of these instruments. © 2016 John Wiley & Sons Ltd.

  6. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties.

    Science.gov (United States)

    Longo, Umile Giuseppe; Saris, Daniël; Poolman, Rudolf W; Berton, Alessandra; Denaro, Vincenzo

    2012-10-01

    The aims of this study were to obtain an overview of the methodological quality of studies on the measurement properties of rotator cuff questionnaires and to describe how well various aspects of the design and statistical analyses of studies on measurement properties are performed. A systematic review of published studies on the measurement properties of rotator cuff questionnaires was performed. Two investigators independently rated the quality of the studies using the Consensus-based Standards for the selection of health Measurement Instruments checklist. This checklist was developed in an international Delphi consensus study. Sixteen studies were included, in which two measurement instruments were evaluated, namely the Western Ontario Rotator Cuff Index and the Rotator Cuff Quality-of-Life Measure. The methodological quality of the included studies was adequate on some properties (construct validity, reliability, responsiveness, internal consistency, and translation) but need to be improved on other aspects. The most important methodological aspects that need to be developed are as follows: measurement error, content validity, structural validity, cross-cultural validity, criterion validity, and interpretability. Considering the importance of adequate measurement properties, it is concluded that, in the field of rotator cuff pathology, there is room for improvement in the methodological quality of studies measurement properties. II.

  7. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle.

    Science.gov (United States)

    Bielmann, V; Gillan, J; Perkins, N R; Skidmore, A L; Godden, S; Leslie, K E

    2010-08-01

    Acquisition of high quality colostrum is an important factor influencing neonatal calf health. Many methods have been used to assess the Ig concentration of colostrum; however, improved, validated evaluation tools are needed. The aims of this study were to evaluate both optical and digital Brix refractometer instruments for the measurement of Ig concentration of colostrum as compared with the gold standard radial immunodiffusion assay laboratory assessment and to determine the correlation between Ig measurements taken from fresh and frozen colostrum samples for both Brix refractometer instruments. This research was completed using 288 colostrum samples from 3 different farms. It was concluded that the optical and digital Brix refractometers were highly correlated for both fresh and frozen samples (r=0.98 and r=0.97, respectively). Correlation between both refractometer instruments for fresh and frozen samples and the gold standard radial immunodiffusion assay were determined to be very similar, with a correlation coefficient between 0.71 and 0.74. Both instruments exhibited excellent test characteristics, indicating an appropriate cut-off point of 22% Brix score for the identification of good quality colostrum. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lukac, Martin [Cirrus Sense LLC, Los Angeles, CA (United States); Ramanathan, Nithya [Cirrus Sense LLC, Los Angeles, CA (United States); Graham, Eric [Cirrus Sense LLC, Los Angeles, CA (United States)

    2013-09-10

    Black carbon (BC) emissions from traditional cooking fires and other sources are significant anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation requires techniques for measuring and verifying such cookstove performance. The overarching goal of the proposed program was to develop a low-cost, wireless instrument to provide a high-resolution profile of the cookstove BC emissions and usage in the field. We proposed transferring the complexity of analysis away from the sampling hardware at the measurement site and to software at a centrally located server to easily analyze data from thousands of sampling instruments. We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of cookstove usage, fuel estimates, and emission values with low variability. Emission values from our instrument were consistent with published ranges of emissions for similar stove and fuel types.

  9. Neutron Measurement Instrumentation Development at KIT for the European ITER TBM

    Energy Technology Data Exchange (ETDEWEB)

    Klix, A.; Fischer, U.; Raj, P.; Reimann, Th.; Szalkai, D.; Tian, K. [Association KIT-EURATOM, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Angelone, M. [Associazione ENEA-EURATOM sulla Fusione, ENEA C.R., I-00044 Frascati (Italy); Gehre, D. [Technical University of Dresden, D-01069 Dresden (Germany); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data and Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for

  10. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  11. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  12. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results. PMID:29201011

  13. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load.

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 ( N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study ( N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  14. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Directory of Open Access Journals (Sweden)

    Melina Klepsch

    2017-11-01

    Full Text Available Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97, we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1 Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2 Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task, we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  15. Developing an Instrument to Measure Autonomous Adaptive Capacity to Climate Change among Urban Households

    Directory of Open Access Journals (Sweden)

    Kathryn R. Selm

    2018-02-01

    Full Text Available The capacity of households in urban environments to adapt and react to climate change can affect the resilience of the whole community, and instruments for systematically measuring that capacity are needed. We used Raleigh, NC as a case study to explore the dimensions of autonomous adaptive capacity of urban households and to create a scale and associated survey instrument to measure them. Our approach was guided by four capitals that support human livelihoods: social, human, physical, and financial. We surveyed 200 households in Raleigh, NC, and used a principal components analysis to test the scale and survey instrument. Results suggest the scale is a useful and concise tool. Three major dimensions were present among the scale items: financial capital, political awareness, and access to resources. Together, these three dimensions can be used to measure adaptive capacity among different households. These findings are supported by similar work illustrating the value of income inequality and political awareness as indicators of adaptive capacity. Our results also demonstrate that complex relationships among the livelihood capitals may confound our ability to measure financial, physical, and human capitals separately. This framework for assessing adaptive capacity of households, with further refinement and testing, may be used in urban areas to evaluate programs designed to impact resilience to climate change.

  16. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  17. Instrumented measurements on radioactive waste disposal containers during experimental drop testing - 59142

    International Nuclear Information System (INIS)

    Quercetti, Thomas; Musolff, Andre; Mueller, Karsten

    2012-01-01

    In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing. (authors)

  18. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  19. A pilot study to measure levels of selected elements in Thai foods by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.; Busamongkol, A.; Permnamtip, V.; Judprasong, K.; Chatt, A.

    2012-01-01

    A pilot study was carried out to evaluate the scope of instrumental neutron activation analysis (INAA) for measuring the levels of selected elements in a few commonly consumed food items in Thailand. Several varieties of rice, beans, aquatic food items, vegetables and soybean products were bought from major distribution centers in Bangkok, Thailand. Samples were prepared according to the protocols prescribed by the nutritionist for food compositional analysis. Levels of As, Br, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, and Zn were measured by INAA using the irradiation and counting facilities available at the Thai Research Reactor with the maximum in-core thermal neutron flux of 3 x 10 13 cm -2 s -1 of the Thailand Institute of Nuclear Technology in Bangkok. Selenium was determined by cyclic INAA using the Dalhousie University SLOWPOKE-2 Reactor facilities in Halifax, Canada at a thermal neutron flux of 2.5 x 10 11 cm -2 s -1 . Both cooked and uncooked foods were analyzed. The elemental composition of food products was found to depend significantly on the raw material as well as the preparation technique. (author)

  20. Measurement of Perceived Stress Among Pregnant Women: A Comparison of Two Different Instruments.

    Science.gov (United States)

    Solivan, Amber E; Xiong, Xu; Harville, Emily W; Buekens, Pierre

    2015-09-01

    Assess the amount of agreement between the classification of stress from the Perceived Stress Scale (PSS) and the Assessment of Stress portion of the Prenatal Psychosocial Profile (PPP) among pregnant women. A secondary data analysis on a cross-sectional study of 301 pregnant women from the New Orleans and Baton Rouge areas who were exposed to Hurricane Katrina was conducted. Women with complete data (219) were analyzed. Women scoring in the third tertile of each instrument were compared. The kappa statistic was used to assess agreement between instruments. Additional comparisons were made with three instruments that measure other important psychosocial constructs that could be related to stress: the Edinburgh Depression Scale (EDS) and the Assessments of Support (partner and other support) and Self-Esteem from the PPP. No significant difference was found between the two tests. The PSS and the PPP were both statistically significantly correlated to each other (ρ = 0.71, p < 0.01). Thirty-five women were classified discordantly resulting in a Kappa Coefficient of 0.61 (95% CI 0.50-0.72, p < 0.01). No significant differences were found between these two instruments in correlation with the EDS (PPP, r = 0.76; PSS, r = 0.72; p < 0.01 for each), partner support (PPP, r = -0.47; PSS r = -0.46; p < 0.01 for each), other support (PPP, r = -0.31; PSS r = -0.32; p < 0.01 for each) and self-esteem (PPP, r = -0.41; PSS, r = -0.52; p < 0.01 for each), respectively. Given the similarities between the PSS and PPP, researchers are encouraged to choose and administer one instrument to participants, or to use the instruments in combination as an external reliability check.

  1. Development And Validation Of An Organisational Justice Measurement Instrument For A South African Context

    Directory of Open Access Journals (Sweden)

    Ophillia Ledimo

    2015-03-01

    Full Text Available Measuring organisational justice in a South African context is a concern as the concept is multi-dimensional and there is no comprehensive definition; therefore, an integrative and well-developed measure of organisational justice can advance the measurement and analysis of this concept. This study investigates the development and validity of an organisational justice measuring instrument (OJMI, and determines the relationships between the different dimensions of the concept organisational justice. Data was gathered from 289 participants, employed in a public service organisation. To analyse the data the descriptive and inferential statistics used are Cronbach alpha coefficient, means, the explanatory factor analysis (EFA and the confirmatory factor analysis (CFA. It was found that the model fitted the data well and the measurement of each dimension, namely strategic direction; distributive, procedural, interactional, informational, diversity management; customer relations; service delivery innovation as well as ethical leadership and management justice were confirmed to be statistically significant and positive. These results indicate that OJMI is a reliable and valid measure that organisations need in order to measure perceptions of fairness, and to monitor trends of fair practices. The validated measuring instrument for organisational justice and the conducted analysis of the interrelationships between the different dimensions of the concept will enable organisations to initiate proactive and reactive interventions to facilitate justice and fair practices.

  2. Assessing the validity of measures of an instrument designed to measure employees' perceptions of workplace breastfeeding support.

    Science.gov (United States)

    Greene, Sally W; Wolfe, Edward W; Olson, Beth H

    2008-09-01

    Breastfeeding rates among working mothers are lower than among mothers who are not employed. An ecological framework suggests that health behaviors, such as breastfeeding, are influenced by intrapersonal and environmental factors. There is no existing instrument to measure women's perception of the workplace environment in providing breastfeeding support. The objective of this study was to pilot an instrument measuring perceptions of the work climate for breastfeeding support among working women. Data were collected from self-administered mailed questionnaires filled out by 104 pregnant women or women who had recently given birth and were employed and breastfeeding. Dimensionally analyses supported the two-dimensional model suggested by the literature. Internal consistency reliability coefficients were high (near 0.90), and the correlation between the subscales was moderately strong (0.68). Only a single item exhibited misfit to the scaling model, and that item was revised after review.

  3. Developing and validating an instrument for measuring mobile computing self-efficacy.

    Science.gov (United States)

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  4. Psychometric testing of an instrument to measure the experience of home.

    Science.gov (United States)

    Molony, Sheila L; McDonald, Deborah Dillon; Palmisano-Mills, Christine

    2007-10-01

    Research related to quality of life in long-term care has been hampered by a paucity of measurement tools sensitive to environmental interventions. The primary aim of this study was to test the psychometric properties of a new instrument, the Experience of Home (EOH) Scale, designed to measure the strength of the experience of meaningful person-environment transaction. The instrument was administered to 200 older adults in diverse dwelling types. Principal components analysis provided support for construct validity, eliciting a three-factor solution accounting for 63.18% of variance in scores. Internal consistency reliability was supported with Cronbach's alpha of .96 for the entire scale. The EOH Scale is a unique research tool to evaluate interventions to improve quality of living in residential environments.

  5. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  6. Measurements of radiation exposure on commercial aircraft with the LIULIN-3M instrument

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.; Stauffer, C.A.; Dachev, T.P.; Tomov, B.T.; Dimitrov, P.G.; Brucker, G.J.

    1999-01-01

    The LIULIN-3M evolved from an international cooperative project by a group of Bulgarian, Russian, German, and American scientists. The radiometer is a low power, small size, light weight, and low cost instrument composed of a solid state detector (SSD) with supporting electronics that enable it to operate as a pulse height analyzer of energy deposited in the detector, and to obtain from these measurements the total dose or the dose rate produced by charged particles. The instrument has also been used as a low-LET radiation spectrometer for measuring biological doses of potential human exposures. A flash memory allows self-storage of data during flights and post flight retrieval. Results will be presented and discussed. (author)

  7. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  8. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  9. Instrument for thickness measuring of a workpiece with the help of ultrasonic waves

    International Nuclear Information System (INIS)

    Wells, F.H.; Martin, R.

    1978-01-01

    The proposed ultrasonic measuring instrument has a generator for pulsed ultrasonic signals, a detector as well as a contact arrangement that connects both with the work piece. The transportation lag of the signals through the contact arrangements amounts to at least five times the transportation lag of the signals due to the thickness of a work piece. Furthermore there is an arrangement for the measurement of the delay between two successive echos from the back of the work piece with the help of a zero passage detector for the generation of a time-reference value on each echo signal. This permits an exact time control of the pulses which range in the field around nano seconds. The instrument is explained with 8 drawings and a detailed description. (RW) [de

  10. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  11. Developing an instrument to measure emotional behaviour abilities of meaningful learning through the Delphi technique.

    Science.gov (United States)

    Cadorin, Lucia; Bagnasco, Annamaria; Tolotti, Angela; Pagnucci, Nicola; Sasso, Loredana

    2017-09-01

    To identify items for a new instrument that measures emotional behaviour abilities of meaningful learning, according to Fink's Taxonomy. Meaningful learning is an active process that promotes a wider and deeper understanding of concepts. It is the result of an interaction between new and previous knowledge and produces a long-term change of knowledge and skills. To measure meaningful learning capability, it is very important in the education of health professionals to identify problems or special learning needs. For this reason, it is necessary to create valid instruments. A Delphi Study technique was implemented in four phases by means of e-mail. The study was conducted from April-September 2015. An expert panel consisting of ten researchers with experience in Fink's Taxonomy was established to identify the items of the instrument. Data were analysed for conceptual description and item characteristics and attributes were rated. Expert consensus was sought in each of these phases. An 87·5% consensus cut-off was established. After four rounds, consensus was obtained for validation of the content of the instrument 'Assessment of Meaningful learning Behavioural and Emotional Abilities'. This instrument consists of 56 items evaluated on a 6-point Likert-type scale. Foundational Knowledge, Application, Integration, Human Dimension, Caring and Learning How to Learn were the six major categories explored. This content validated tool can help educators (teachers, trainers and tutors) to identify and improve the strategies to support students' learning capability, which could increase their awareness of and/or responsibility in the learning process. © 2017 John Wiley & Sons Ltd.

  12. Quantifying and handling errors in instrumental measurements using the measurement error theory

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.; Brockhoff, P.B.

    2003-01-01

    . This is a new way of using the measurement error theory. Reliability ratios illustrate that the models for the two fish species are influenced differently by the error. However, the error seems to influence the predictions of the two reference measures in the same way. The effect of using replicated x...... measurements. A new general formula is given for how to correct the least squares regression coefficient when a different number of replicated x-measurements is used for prediction than for calibration. It is shown that the correction should be applied when the number of replicates in prediction is less than...

  13. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  14. Problems of Terminology in the Field of Measuring Instruments with Elements of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Roald TAYMANOV

    2009-03-01

    Full Text Available The paper examines some problems that concern terminology in the field of measuring instruments which include sensors and elements of artificial intelligence. At present, a "common language" in this area does not exist. It is shown that application of an evolutionary method helps to systematize the concepts and creates a basis facilitating understanding of the relations between terms. Proposals on terms and their definitions in the field considered are given.

  15. Ambipolar potential measurement plans and instrumentation. Final report, 1 October 1980-30 September 1982

    International Nuclear Information System (INIS)

    Dahlbacka, G.; Stringfield, R.; Glaros, S.; Buck, V.; Larsen, J.; Burr, L.; Boyle, M.; Lepage, J.; Cirigliano, R.

    1983-03-01

    A Thomson parabola charged particle spectrometer was built with an energy resolution of 80 keV and an active silicon detector array that is read by a computer-compatible CAMAC. The instrument was checked out at the University of Rochester Omega Laser facility. Experiments to measure the ambipolar potential and the dE/dx thermonuclear target to within 50 keV are now possible. The ion temperature of the burn can be determined to within 10%

  16. Organizational Learning in the Hotel Industry: an eclectic instrument of measurement

    OpenAIRE

    Fernandes, A. L.; Laureano, R. M. S.; Alturas, B.

    2018-01-01

    Organizational Learning, despite being a widely debated topic in the literature on management, regarding the hotel industry still suffers from scattered information. This study was conducted with 295 professionals, among them managers and employees of hotels in Brazil and Portugal in order to validate a measuring instrument of organizational learning, properly adapted for hotel industry, and identify differences in the degree of efficiency of the organizational learning process between hotels...

  17. Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240

    Science.gov (United States)

    2015-11-05

    Undissolved Water in Aviation Turbine Fuels per ASTM D3240 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Joel Schmitigal... water ) in Aviation Turbine Fuels per ASTM D3240 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water , undissolved water , Aqua-Glo 16...Michigan 48397-5000 Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240 Joel Schmitigal Force

  18. Inflammatory bowel disease-specific health-related quality of life instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin

    2017-09-15

    This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.

  19. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths

    NARCIS (Netherlands)

    Liu, R.; Kaiwar, A.; Shemesh, H.; Wesselink, P.R.; Hou, B.; Wu, M.K.

    2013-01-01

    Introduction The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Methods Two hundred forty mandibular incisors were mounted in resin blocks with simulated

  20. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    Science.gov (United States)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.