WorldWideScience

Sample records for preparation instrumentation measurement

  1. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  2. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  3. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    Science.gov (United States)

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  5. Development of retrieval, reservation and management system for measuring instruments

    International Nuclear Information System (INIS)

    Tsuda, Kenzo; Ito, Emi.

    1985-08-01

    In order to computerize the lending and management of measuring instruments, at first, the specification of the software was examined, but thereafter, the development was begun. The largest aim of the computerization was the automation and labor saving of the lending works of diverse measuring instruments and the automatic management. From user side, it is desirable to know the specification and the state of use and reservation of measuring instruments and to be able to easily make reservation based on the information. Besides, from management side, it is desirable to know the location and the state of use and reservation of measuring instruments, to immediately prepare for lending and returning, and to automate the recording of lending and returning. So as to satisfy those conditions, the automatic reservation and management system for measuring instruments was developed. At the same time, the means to simply input required data such as specification, names of manufacturers and equipment number was developed. The input of data was carried out for three months from October, 1984, and the system was almost completed in December, 1984. The full scale operation was started in Junuary, 1985. (Kako, I.)

  6. Comparative Study of Three Rotary Instruments for root canal Preparation using Computed Tomography

    International Nuclear Information System (INIS)

    Mohamed, A.M.E.

    2015-01-01

    Cleaning and shaping the root canal is a key to success in root canal treatment. This includes the removal of organic substrate from the root canal system by chemo mechanical methods, and the shaping of the root canal system into a continuously tapered preparation. This should be done while maintaining the original path of the root canal. Although instruments for root canal preparation have been progressively developed and optimized, a complete mechanical debridement of the root canal system is rarely achievable. One of the main reasons is the geometrical dis symmetry between the root canal and preparation instruments. Rotary instruments regardless of their type and form produce a preparation with a round outline if they are used in a simple linear filing motion, which in most of the cases do not coincide with the outline of the root canal. Root canal preparation in narrow, curved canals is a challenge even for experienced endodontists. Shaping of curved canals became more effective after the introduction of nickel-titanium (Ni-Ti) endodontic instruments. Despite the advantages of Ni-Ti rotary instruments, intra canal fracture is the most common procedural accident that occurs with these instruments during clinical use. It is a common experience between clinicians that Ni-Ti rotary instruments may undergo unexpected fracture without any visible warning, such as any previous permanent defect or deformation. Pro Taper Ni-Ti instruments were introduced with a unique design of variable taper within one instrument and continuously changing helical angles. Pro Taper rotary instruments are claimed to generate lower torque values during their use because of their modified nonradial landed cross-section that increases the cutting efficiency and reduces contact areas. On the other hand, the variable taper within one instrument is believed to reduce the ‘taper lock’ effect (torsional failure) in comparison with similarly tapered instruments. Nevertheless, Pro Taper

  7. Verification of the Indicating Measuring Instruments Taking into Account their Instrumental Measurement Uncertainty

    Directory of Open Access Journals (Sweden)

    Zakharov Igor

    2017-12-01

    Full Text Available The specific features of the measuring instruments verification based on the results of their calibration are considered. It is noted that, in contrast to the verification procedure used in the legal metrology, the verification procedure for calibrated measuring instruments has to take into account the uncertainty of measurements into account. In this regard, a large number of measuring instruments, considered as those that are in compliance after verification in the legal metrology, turns out to be not in compliance after calibration. In this case, it is necessary to evaluate the probability of compliance of indicating measuring instruments. The procedure of compliance probability determination on the basis of the Monte Carlo method is considered. An example of calibration of a Vernier caliper is given.

  8. A critical appraisal of instruments to measure outcomes of interprofessional education.

    Science.gov (United States)

    Oates, Matthew; Davidson, Megan

    2015-04-01

    Interprofessional education (IPE) is believed to prepare health professional graduates for successful collaborative practice. A range of instruments have been developed to measure the outcomes of IPE. An understanding of the psychometric properties of these instruments is important if they are to be used to measure the effectiveness of IPE. This review set out to identify instruments available to measure outcomes of IPE and collaborative practice in pre-qualification health professional students and to critically appraise the psychometric properties of validity, responsiveness and reliability against contemporary standards for instrument design. Instruments were selected from a pool of extant instruments and subjected to critical appraisal to determine whether they satisfied inclusion criteria. The qualitative and psychometric attributes of the included instruments were appraised using a checklist developed for this review. Nine instruments were critically appraised, including the widely adopted Readiness for Interprofessional Learning Scale (RIPLS) and the Interdisciplinary Education Perception Scale (IEPS). Validity evidence for instruments was predominantly based on test content and internal structure. Ceiling effects and lack of scale width contribute to the inability of some instruments to detect change in variables of interest. Limited reliability data were reported for two instruments. Scale development and scoring protocols were generally reported by instrument developers, but the inconsistent application of scoring protocols for some instruments was apparent. A number of instruments have been developed to measure outcomes of IPE in pre-qualification health professional students. Based on reported validity evidence and reliability data, the psychometric integrity of these instruments is limited. The theoretical test construction paradigm on which instruments have been developed may be contributing to the failure of some instruments to detect change in

  9. The effects of different nickel-titanium instruments on dentinal microcrack formations during root canal preparation.

    Science.gov (United States)

    Ustun, Yakup; Aslan, Tugrul; Sagsen, Burak; Kesim, Bertan

    2015-01-01

    The aim of the present study was to investigate the incidence of dentinal microcracks caused by different preparation techniques. 120 extracted human mandibular incisor teeth were divided into five experimental groups and one control group (n = 20): Group 1: Hand preparation with balanced force technique up to #25 K-file. Group 2: Preparation with only ProTaper F2 instrument in a reciprocating movement. Group 3: Preparation with Reciproc R25 instrument in a reciprocating movement. Group 4: Preparation with ProTaper instruments up to F2 instrument. Group 5: Preparation with ProTaper Next instruments up to X2 instrument. No procedure was applied to control group. The roots were sectioned horizontally at 3, 6 and 9 mm from the apex and examined. Absence or presence of dentinal microcracks was noted. The Chi-square test was performed to compare the appearance of cracked roots between all groups. There were no significant differences among the groups (P > 0.05). In conclusion, except the hand file and control group, all experimental groups showed microcrack formations.

  10. Assessing Minimum Competencies of Beginning Teachers: Instrumentation, Measurement Issues, Legal Concerns.

    Science.gov (United States)

    Ellett, Chad D.

    An overview is presented of a performance-based assessment system, Teacher Performance Assessment Instruments (TPAI), developed by the Teacher Assessment Project at the University of Georgia to measure competencies of beginning teachers for initial professional certification. To clearly separate the preparation and certification functions within…

  11. Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the preparation and use of a flat stress-free test specimen for the purpose of checking the systematic error caused by instrument misalignment or sample positioning in X-ray diffraction residual stress measurement, or both. 1.2 This test method is applicable to apparatus intended for X-ray diffraction macroscopic residual stress measurement in polycrystalline samples employing measurement of a diffraction peak position in the high-back reflection region, and in which the θ, 2θ, and ψ rotation axes can be made to coincide (see Fig. 1). 1.3 This test method describes the use of iron powder which has been investigated in round-robin studies for the purpose of verifying the alignment of instrumentation intended for stress measurement in ferritic or martensitic steels. To verify instrument alignment prior to stress measurement in other metallic alloys and ceramics, powder having the same or lower diffraction angle as the material to be measured should be prepared in similar fashion...

  12. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  13. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  14. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  15. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.

    Science.gov (United States)

    Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm

    2016-12-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research. A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones. This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties. We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care integration (33%) and patient

  16. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties

    Science.gov (United States)

    BAUTISTA, MARY ANN C.; NURJONO, MILAWATY; DESSERS, EZRA; VRIJHOEF, HUBERTUS JM

    2016-01-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research.A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones.This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties.We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Context Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Methods Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. Findings From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care

  17. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  18. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  19. Development an Instrument to Measure University Students' Attitude towards E-Learning

    Science.gov (United States)

    Mehra, Vandana; Omidian, Faranak

    2012-01-01

    The study of student's attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students' attitude towards e-learning. The scale was administered to 200 University students from two countries (India…

  20. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation.

    Science.gov (United States)

    Bürklein, Sebastian; Tsotsis, Polymnia; Schäfer, Edgar

    2013-04-01

    The purpose of this study was to evaluate the incidence of dentinal defects after root canal preparation with reciprocating instruments (Reciproc and WaveOne) and rotary instruments. One hundred human central mandibular incisors were randomly assigned to 5 groups (n = 20 teeth per group). The root canals were instrumented by using the reciprocating single-file systems Reciproc and WaveOne and the full-sequence rotary Mtwo and ProTaper instruments. One group was left unprepared as control. Roots were sectioned horizontally at 3, 6, and 9 mm from the apex and evaluated under a microscope by using 25-fold magnification. The presence of dentinal defects (complete/incomplete cracks and craze lines) was noted and analyzed by using the chi-square test. No defects were observed in the controls. All canal preparation created dentinal defects. Overall, instrumentation with Reciproc was associated with more complete cracks than the full-sequence files (P = .021). Although both reciprocating files produced more incomplete cracks apically (3 mm) compared with the rotary files (P = .001), no statistically significant differences were obtained concerning the summarized values of all cross sections (P > .05). Under the conditions of this study, root canal preparation with both rotary and reciprocating instruments resulted in dentinal defects. At the apical level of the canals, reciprocating files produced significantly more incomplete dentinal cracks than full-sequence rotary systems (P < .05). Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  2. Cone-beam computed tomography analysis of curved root canals after mechanical preparation with three nickel-titanium rotary instruments

    Science.gov (United States)

    Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.

    2013-01-01

    Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273

  3. Preparation of severely curved simulated root canals using engine-driven rotary and conventional hand instruments.

    Science.gov (United States)

    Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D

    2001-03-01

    This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.

  4. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  5. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  6. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  7. Teacher Competency in Classroom Testing, Measurement Preparation, and Classroom Testing Practices.

    Science.gov (United States)

    Newman, Dorothy C.; Stallings, William M.

    An assessment instrument and a questionnaire (Appendices A and B) were developed to determine how well teachers understand classroom testing principles and to gain information on the measurement preparation and classroom practices of teachers. Two hundred ninety-four inservice teachers, grades 1 through 12, from three urban school systems in…

  8. Portable radiation instrumentation traceability of standards and measurements

    International Nuclear Information System (INIS)

    Wiserman, A.; Walke, M.

    1995-01-01

    Portable radiation measuring instruments are used to estimate and control doses for workers. Calibration of these instruments must be sufficiently accurate to ensure that administrative and legal dose limits are not likely to be exceeded due to measurement uncertainties. An instrument calibration and management program is established which permits measurements made with an instrument to be traced to a national standard. This paper describes the establishment and maintenance of calibration standards for gamma survey instruments and an instrument management program which achieves traceability of measurement for uniquely identified field instruments. (author)

  9. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  10. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  11. The preparation of synthetic standards for use in instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Watterson, J.I.W.; Erasmus, C.S.

    1979-01-01

    An account is given of the formulation and preparation of synthetic standards suitable for the routine analysis of minerals, ores, and ore concentrates by instrumental neutron activation. Fifteen standards were prepared, each containing from one to seven elements. The standards contain forty-four elements that produce isotopes with half-lives longer than 12 hours. An evaluation of the accuracy and precision of the method of preparation is given

  12. Quantifying Human Response: Linking metrological and psychometric characterisations of Man as a Measurement Instrument

    International Nuclear Information System (INIS)

    Pendrill, L R; Fisher, William P Jr

    2013-01-01

    A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity

  13. ProTaper rotary instrument fracture during root canal preparation: a comparison between rotary and hybrid techniques.

    Science.gov (United States)

    Farid, Huma; Khan, Farhan Raza; Rahman, Munawar

    2013-03-01

    This study aimed to compare the frequency of ProTaper rotary instrument fracture with rotary (conventional) and hybrid (rotary and hand files) canal preparation techniques. Secondary objectives were to determine whether there was an association of ProTaper file fracture with the canal curvature and to compare the mean time required for canal preparation in the two techniques. An in vitro experiment was conducted on 216 buccal canals of extracted maxillary and mandibular first molars. After creating an access cavity and a glide path for each canal, a periapical radiograph was taken and the canal curvature was measured with Schneider's technique. The canals were then randomly divided into Group A (rotary technique) and Group B (hybrid technique). The length of ProTaper files were measured before and after each canal preparation. Time taken for each canal preparation was recorded. A total of seven ProTaper files fractured in Group A (P=0.014) in canals with a curvature >25 degrees (PProTaper rotary files, although time consuming, was safer in canals having a curvature greater than 25 degrees.

  14. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  15. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  16. DEVELOPMENT AN INSTRUMENT TO MEASURE UNIVERSITY STUDENTS' ATTITUDE TOWARDS E-LEARNING

    OpenAIRE

    Vandana MEHRA; Faranak OMIDIAN

    2012-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning; Ease o...

  17. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  18. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  19. Comparison of dentinal damage induced by different nickel-titanium rotary instruments during canal preparation: An in vitro study.

    Science.gov (United States)

    Garg, Shiwani; Mahajan, Pardeep; Thaman, Deepa; Monga, Prashant

    2015-01-01

    To compare dentinal damage caused by hand and rotary nickel-titanium instruments using ProTaper, K3 Endo, and Easy RaCe systems after root canal preparation. One hundred and fifty freshly extracted mandibular premolars were randomly divided into five experimental groups of 30 teeth each and biomechanical preparation was done: Group 1 with unprepared teeth; Group 2 were prepared with hand files; Group 3 with ProTaper rotary instruments; Group 4 with K3 rotary; Group 5 with Easy RaCe rotary instruments. Then, roots were cut horizontally at 3, 6, and 9 mm from apex and were viewed under stereomicroscope. The presence of dentinal defects was noted. Groups were analyzed with the Chi-square test. Significant difference was seen between groups. No defects were found in unprepared roots and those prepared with hand files. ProTaper, K3 rotary, and Easy RaCe preparations resulted in dentinal defects in 23.3%, 10%, and 16.7% of teeth, respectively. More defects were shown in coronal and middle sections, and no defect was seen in apical third. The present study revealed that use of rotary instruments could result in an increased chance for dentinal defects as compared to hand instrumentation.

  20. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  1. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  2. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  3. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  4. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.

    Science.gov (United States)

    Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J

    2016-12-01

    Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume

  5. Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments

    Science.gov (United States)

    Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875

  6. 77 FR 37409 - Request for Domains, Instruments, and Measures for Development of a Standardized Instrument for...

    Science.gov (United States)

    2012-06-21

    ... experience as well. On both issues, CMS is interested in instruments and items which can measure quality of... Measures for Development of a Standardized Instrument for Use in Public Reporting of Enrollee Satisfaction..., communication, coordination of care, customer service), instruments, and measures for measuring the level of...

  7. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  8. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  9. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  10. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  11. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  12. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  13. Comparison among manual instruments and PathFile and Mtwo rotary instruments to create a glide path in the root canal preparation of curved canals.

    Science.gov (United States)

    Alves, Vanessa de Oliveira; Bueno, Carlos Eduardo da Silveira; Cunha, Rodrigo Sanches; Pinheiro, Sérgio Luiz; Fontana, Carlos Eduardo; de Martin, Alexandre Sigrist

    2012-01-01

    Nickel-titanium rotary instruments reduce procedural errors and the time required to finish root canal preparation. The goal of this study was to evaluate the occurrences of apical transportation and canal aberrations produced with different instruments used to create a glide path in the preparation of curved root canals, namely manual K-files (Dentsply Maillefer, Ballaigues, Switzerland) and PathFile (Dentsply Maillefer) and Mtwo (Sweden and Martina, Padua, Italy) nickel-titanium rotary files. The mesial canals of 45 mandibular first and second molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 3 groups with 15 canals each, and canal preparation was performed by an endodontist using #10-15-20 K-type stainless steel manual files (group M), #13-16-19 PathFile rotary instruments (group PF), and #10-15-20 Mtwo rotary instruments (group MT). The double digital radiograph technique was used, pre- and postinstrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. The initial and final images of the central axis of the canals were compared by superimposition through computerized analysis and with the aid of magnification. The specimens were analyzed by 3 evaluators, whose calibration was checked using the Kendall agreement test. No apical transportation or aberration in root canal morphology occurred in any of the teeth; therefore, no statistical analysis was conducted. Neither the manual instruments nor the PathFile or Mtwo rotary instruments used to create a glide path had any influence on the occurrence of apical transportation or produced any canal aberration. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  15. Effect of canal preparation with TRUShape and Vortex rotary instruments on three-dimensional geometry of oval root canals.

    Science.gov (United States)

    Arias, Ana; Paqué, Frank; Shyn, Stephanie; Murphy, Sarah; Peters, Ove A

    2018-04-01

    The purpose of this study was to assess the geometry of non-round root canals after preparation with TRUShape (a novel instrument with s-shaped longitudinal design) in comparison to conventional rotary instrumentation using micro-computed tomography. Twenty distal root canals of mandibular molars were randomly distributed in two groups to be shaped with either TRUShape or Vortex rotaries. Percentages of unprepared surface and volume of dentin removal for the entire canal and for the apical 4 mm were calculated. Canal transportation and the structure model index (SMI) were assessed. Data were compared with Student t-tests. Shaping with both techniques resulted in similar prepared surface and volume of dentin removed, as well as the extent of canal transportation. The SMI shape factor was significantly lower for TRUShape preparations (P = 0.04) suggesting less rounding during rotary preparation. Although both instruments were suitable for the preparation of oval canals, TRUShape appeared to better conform to the original ribbon-shaped anatomy. © 2017 Australian Society of Endodontology Inc.

  16. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient.

    Science.gov (United States)

    Blum, J Y; Machtou, P; Ruddle, C; Micallef, J P

    2003-09-01

    The purpose of this study was to apply the Endographe to analyze the vertical forces and torque developed during mechanical preparations in extracted teeth. The data collected in this study may be used to calculate the safety quotient (SQ) as proposed by J.T. McSpadden. The SQ formula is defined as the torque required to break a file at D3 divided by the mean working torque required to cut dentin. The Endographe is a unique force-analyzer device equipped to measure, record, and generate graphs of the vertical forces and torque exerted during root canal preparation. All preparations were performed by endodontists in roots with narrow, more restrictive canals, larger, more open canals, or in roots sectioned in two halves. All canals, including the sectioned canals, were prepared with ProTaper files in accordance with the manufacturer's guidelines for use. For narrow canals, the mean values of the generated vertical forces (g) and torque (g.cm) varied from 80 (+/- 20) g (SX) to 232 (+/- 60) g (F2) and from 80 (+/- 24) g x cm (F1) to 150 (+/- 45) g x cm (S2), respectively. For large canals, the mean values of the generated vertical forces (g) and torque (g x cm) varied from 80 (+/- 20) g (SX) to 340 (+/- 20) g (F1) and from 31 (+/- 9) g x cm (S2) to 96 (+/- 35) g x cm (SX), respectively. The SQ varied from 0.93 to 7.95 for narrow canals and from 1.58 to 14.50 for large canals. The SQ is intended to provide values that can be analyzed to predict whether a rotary file will have a tendency to break or will work safely during clinical use. However, if the formula is going to provide useful information, it must index the "rotation to failure torque" with the "mean working torque" at a specific location along the cutting blades of a file. Additionally, this mathematical formula does not account for factors such as the concentration of forces, the way the instruments are used, or the wear of the instruments. A precise protocol for canal preparation should emphasize using

  17. DEVELOPMENT AN INSTRUMENT TO MEASURE UNIVERSITY STUDENTS' ATTITUDE TOWARDS E-LEARNING

    Directory of Open Access Journals (Sweden)

    Vandana MEHRA

    2012-01-01

    Full Text Available The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning; Ease of e-learning use; Technical and pedagogical support; E-learning stressors ; Pressure to use e-learning.

  18. Measurement properties of adult quality-of-life measurement instruments for eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Deckert, S; Chalmers, J R; Drucker, A M; Ofenloch, R; Humphreys, R; Sach, T; Chamlin, S L; Schmitt, J; Apfelbacher, C

    2016-03-01

    The Harmonising Outcome Measures for Eczema (HOME) initiative has identified quality of life (QoL) as a core outcome domain to be evaluated in every eczema trial. It is unclear which of the existing QoL instruments is most appropriate for this domain. Thus, the aim of this review was to systematically assess the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in adult eczema. We conducted a systematic literature search in PubMed and Embase identifying studies on measurement properties of adult eczema QoL instruments. For all eligible studies, we assessed the adequacy of the measurement properties and the methodological quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis summarizing findings from different studies was the basis to assign four degrees of recommendation (A-D). A total of 15 articles reporting on 17 instruments were included. No instrument fulfilled the criteria for category A. Six instruments were placed in category B, meaning that they have the potential to be recommended depending on the results of further validation studies. Three instruments had poor adequacy in at least one required adequacy criterion and were therefore put in category C. The remaining eight instruments were minimally validated and were thus placed in category D. Currently, no QoL instrument can be recommended for use in adult eczema. The Quality of Life Index for Atopic Dermatitis (QoLIAD) and the Dermatology Life Quality Index (DLQI) are recommended for further validation research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Current situation and prospect of market on the latest radiation measuring instrument

    International Nuclear Information System (INIS)

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  20. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  1. Nuclear instrumentation and measurement: a review based on the ANIMMA conferences

    Science.gov (United States)

    Giot, Michel; Vermeeren, Ludo; Lyoussi, Abdallah; Reynard-Carette, Christelle; Lhuillier, Christian; Mégret, Patrice; Deconinck, Frank; Gonçalves, Bruno Soares

    2017-12-01

    The ANIMMA conferences offer a unique opportunity to discover research carried out in all fields of nuclear measurements and instrumentation with applications extending from fundamental physics to fission and fusion reactors, medical imaging, environmental protection and homeland security. After four successful editions of the Conference, it was decided to prepare a review based to a large extent but not exclusively on the papers presented during the first four editions of the conference. This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical measurements, as well as medical imaging and specific challenges linked to data acquisition and electronic hardening. The paper describes the main challenges justifying research in these different areas, and summarizes the recent progress reported. It offers researchers and engineers a way to quickly and efficiently access knowledge in highly specialized areas.

  2. Instruments to measure behavioural and psychological symptoms of dementia.

    Science.gov (United States)

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  4. Measurement of the convergence angle in teeth prepared for single crown

    Directory of Open Access Journals (Sweden)

    NokarS

    2002-07-01

    Full Text Available Retention, resistance and marginal integrity mostly depend on tooth preparation. An appropriate convergence angle fulfil this purpose, to high extent. In this study, a new method was used to measure the convergence angle of the teeth prepared for single crowns in Genera! practitioners" offices in Tehran. In order to do this. 325 dyes, prepared by General dentists in Tehran, were collected from 10 laboratories. All dyes wore trimmed at the area below the finishing line and then were scanned (Genius Color page- FIR 6 buccoiingualiy and mesiodistaily. Convergence angle of dyes were also measured with Adobe Photoshop (5.0 software. Data were analyzed by variance analysis test and 1- student bv the help of SPSS software. Results showed that the average convergence angle ranged from 16.18+8.34 to 35.1 8~10.38 which belonged to maxillary canine and mandibular molars, respectively, and the measured convergence angle is more than the ideal value of 10-16 degrees. Dyes of the madibular molars were ma"illar" convergent. These conclusions are helpful for professors, dentistry students and dentists, and arc an indicative of the practice quality of General practitioners in Tehran. Due to the fact that a convergence angle, more than the allowed limitation, endangers retention, resistance and marginal integrity of the restoration, paying attention to the principles of tooth preparation and proper application of instruments and dental cements, can progress fwed restorations quality.

  5. Assessment Using AutoCAD Software of the Preparation of Dentin Walls in Root Canals Produced by 4 Different Endodontic Instrument Systems

    Directory of Open Access Journals (Sweden)

    Cristina Cabanillas

    2015-01-01

    Full Text Available Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique, ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p<0.05. Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences.

  6. Assessment Using AutoCAD Software of the Preparation of Dentin Walls in Root Canals Produced by 4 Different Endodontic Instrument Systems.

    Science.gov (United States)

    Cabanillas, Cristina; Monterde, Manuel; Pallarés, Antonio; Aranda, Susana; Montes, Raquel

    2015-01-01

    Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique), ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p < 0.05). Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences.

  7. [In vitro comparison of root canal preparation with step-back technique and GT rotary file--a nickel-titanium engine driven rotary instrument system].

    Science.gov (United States)

    Krajczár, Károly; Tóth, Vilmos; Nyárády, Zoltán; Szabó, Gyula

    2005-06-01

    The aim of the authors' study was to compare the remaining root canal wall thickness and the preparation time of root canals, prepared either with step-back technique, or with GT Rotary File, an engine driven nickel-titanium rotary instrument system. Twenty extracted molars were decoronated. Teeth were divided in two groups. In Group 1 root canals were prepared with step-back technique. In Group 2 GT Rotary File System was utilized. Preoperative vestibulo-oral X-ray pictures were taken from all teeth with radiovisiograph (RVG). The final preparations at the mesiobuccal canals (MB) were performed with size #30 and palatinal/distal canals with size #40 instruments. Postoperative RVG pictures were taken ensuring the preoperative positioning. The working time was measured in seconds during each preparation. The authors also assessed the remaining root canal wall thickness at 3, 6 and 9 mm from the radiological apex, comparing the width of the canal walls of the vestibulo-oral projections on pre- and postoperative RVG pictures both mesially and buccally. The ratios of the residual and preoperative root canal wall thickness were calculated and compared. The largest difference was found at the MB canals of the coronal and middle third level of the root, measured on the distal canal wall. The ratio of the remaining dentin wall thickness at the coronal and the middle level in the case of step-back preparation was 0.605 and 0.754, and 0.824 and 0.895 in the cases of GT files respectively. The preparation time needed for GT Rotary File System was altogether 68.7% (MB) and 52.5% (D/P canals) of corresponding step-back preparation times. The use of GT Rotary File with comparison of standard step-back method resulted in a shortened preparation time and excessive damage of the coronal part of the root canal could be avoided.

  8. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  9. Comparison of removed dentin thickness with hand and rotary instruments

    Science.gov (United States)

    Shahriari, Shahriar; Abedi, Hasan; Hashemi, Mahdi; Jalalzadeh, Seyed Mohsen

    2009-01-01

    INTRODUCTION: The aim of this study was to evaluate the amount of dentine removed after canal preparation using stainless steel (SS) hand instruments or rotary ProFile instruments. MATERIALS AND METHODS: Thirty-six extracted human teeth with root canal curvatures less than 30º were embedded in clear polyester resin. The roots were cut horizontally at apical 2, 4 and 7 mm. Dentin thickness was measured at each section and the sections were accurately reassembled using a muffle. Root canals were randomly prepared by SS hand instruments or rotary ProFile instruments. Root sections were again separated, and the remaining dentin thickness was measured. Mann-Whitney U and t tests were performed for analytic comparison of the results. RESULTS: The thickness of removed dentin was significantly different between the two used methods (Pinstrumentation group (Protary instrumentation prepares root canals with a greater conservation of tooth structure. PMID:23940489

  10. Impact of instrument response variations on health physics measurements

    International Nuclear Information System (INIS)

    Armantrout, G.A.

    1984-10-01

    Uncertainties in estimating the potential health impact of a given radiation exposure include instrument measurement error in determining exposure and difficulty in relating this exposure to an effective dose value. Instrument error can be due to design or manufacturing deficiencies, limitations of the sensing element used, and calibration and maintenance of the instrument. This paper evaluates the errors which can be introduced by design deficiencies and limitations of the sensing element for a wide variety of commonly used survey instruments. The results indicate little difference among sensing element choice for general survey work, with variations among specific instrument designs being the major factor. Ion chamber instruments tend to be the best for all around use, while scintillator-based units should not be used where accurate measurements are required. The need to properly calibrate and maintain an instrument appears to be the most important factor in instrument accuracy. 8 references, 6 tables

  11. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  12. Research and development of thermal-fluid measuring instrument

    International Nuclear Information System (INIS)

    Tuzla, K.; Chen, J.C.

    1991-01-01

    The goal of this program is to develop an instrument to measure the time-fraction of liquid contact in the transition and film boiling regimes for flow within a vertical tube. The work was carried out at Lehigh University between February 15, 1989 to February 15, 1991. The instrument to measure time-fraction of liquid contact was successfully developed and tested

  13. Evaluation of the measurement properties of symptom measurement instruments for atopic eczema: a systematic review.

    Science.gov (United States)

    Gerbens, L A A; Prinsen, C A C; Chalmers, J R; Drucker, A M; von Kobyletzki, L B; Limpens, J; Nankervis, H; Svensson, Å; Terwee, C B; Zhang, J; Apfelbacher, C J; Spuls, P I

    2017-01-01

    Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Chemomechanical preparation by hand instrumentation and by Mtwo engine-driven rotary files, an ex vivo study.

    Science.gov (United States)

    Krajczár, Károly; Tigyi, Zoltán; Papp, Viktória; Marada, Gyula; Sára, Jeges; Tóth, Vilmos

    2012-07-01

    To compare the disinfecting efficacy of the sodium hypochlorite irrigation by root canal preparation with stainless steel hand files, taper 0.02 and nickel-titanium Mtwo files with taper 0.04-0.06. 40 extracted human teeth were sterilized, and then inoculated with Enterococcus faecalis (ATCC 29212). After 6 day incubation time the root canals were prepared by hand with K-files (n=20) and by engine-driven Mtwo files (VDW, Munich, Germany) (n=20). Irrigation was carried out with 2.5% NaOCl in both cases. Samples were taken and determined in colony forming units (CFU) from the root canals before and after the preparation with instruments #25 and #35. Significant reduction in bacterial count was determined after filing at both groups. The number of bacteria kept on decreasing with the extension of apical preparation diameter. There was no significant difference between the preparation sizes in the bacterial counts after hand or engine-driven instrumentation at the same apical size. Statistical analysis was carried out with Mann-Whitney test, paired t-test and independent sample t-test. Significant reduction in CFU was achieved after the root canal preparation completed with 2.5% NaOCl irrigation, both with stainless steel hand or nickel-titanium rotary files. The root canal remained slightly infected after chemo mechanical preparation in both groups. Key words:Chemomechanical preparation, root canal disinfection, nickel-titanium, conicity, greater taper, apical size.

  15. Climate cure 2020 measures and instruments to achieve Norwegian climate goals by 2020. Chapter 10 - the transport sector analysis

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    This document is a translation of Chapter 10, Sector analysis of transport, in the Norwegian report Climate Cure 2020, Measures and Instruments for Achieving Norwegian Climate Goals by 2020. The sector analysis has been prepared by an inter agency working group, conducted by the Norwegian Public Road Administration. (Author)

  16. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-07-01

    The IERICS (Independent Engineering Review of Instrumentation and Control Systems) mission is a comprehensive engineering review service directly addressing strategy and the key elements for implementation of modern instrumentation and control (I&C) systems, noting in applicable cases, specific concerns related to the implementation of advanced digital I&C systems and the use of software and/or digital logic in safety applications of a nuclear power plant. The guidelines outlined in this publication provide a basic structure, common reference and checklist across the various areas covered by an IERICS mission. Publications referenced in these guidelines could provide additional useful information for the counterpart while preparing for the IERICS mission. A structure for the mission report is given in the Appendix. In 2016, this publication was revised by international experts who had participated in previous IERICS missions. The revision reflects experiences and lessons learned from the preparation and conduct of those missions

  17. Measurement properties of adult quality-of-life measurement instruments for eczema: protocol for a systematic review.

    Science.gov (United States)

    Apfelbacher, Christian J; Heinl, Daniel; Prinsen, Cecilia A C; Deckert, Stefanie; Chalmers, Joanne; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Chamlin, Sarah; Schmitt, Jochen

    2015-04-16

    Eczema is a common chronic or chronically relapsing skin disease that has a substantial impact on quality of life (QoL). By means of a consensus-based process, the Harmonising Outcome Measures in Eczema (HOME) initiative has identified QoL as one of the four core outcome domains to be assessed in all eczema trials (Allergy 67(9):1111-7, 2012). Various measurement instruments exist to measure QoL in adults with eczema, but there is a great variability in both content and quality (for example, reliability and validity) of the instruments used, and it is not always clear if the best instrument is being used. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in adults with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for adults with eczema. Medline via PubMed and EMBASE will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for adult patients with eczema. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties, and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study has investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing QoL instruments in

  18. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    Science.gov (United States)

    PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba

    2012-01-01

    Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679

  19. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... being measured and a sufficient distance from the surface to allow the light sensing element in the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d...

  20. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  1. Measurement control program for NDA instruments

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1983-01-01

    Measurement control checks for nondestructive assay instruments have been a constant and continuing concern at Los Alamos National Laboratory. This paper summarizes the evolution of the measurement control checks in the various high-resolution gamma systems we have developed. In-plant experiences with these systems and checks will be discussed. Based on these experiences, a set of measurement control checks is recommended for high-resolution gamma-ray systems

  2. Comparison of nanoparticle measurement instruments for occupational health applications

    International Nuclear Information System (INIS)

    Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J.

    2012-01-01

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30–140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  3. Measurement of sexual functioning after spinal cord injury: preferred instruments

    DEFF Research Database (Denmark)

    Alexander, Marcalee Sipski; Brackett, Nancy L; Bodner, Donald

    2009-01-01

    into male and female sexual function, male reproductive function, and female reproductive function. The instruments that have been used most frequently to measure these aspects of sexual function over the past 5 years were identified by expert consensus. Finally, these instruments were subjected...... to a critical review. RESULTS: The Female Sexual Function Index (FSFI), measurement of vaginal pulse amplitude (VPA), the International Index of Erectile Function (IIEF), and the measurement of ejaculatory function and semen quality were considered appropriate measures to assess sexual responses......BACKGROUND/OBJECTIVE: To determine the utility of certain instruments to assess sexuality and fertility after SCI, an expert panel identified key areas to study and evaluated available instruments. These were rated according to certain predefined criteria. METHODS: The authors divided sexual issues...

  4. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  5. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  6. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  7. Diabetes-related emotional distress instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Lee, Jiyeon; Lee, Eun-Hyun; Kim, Chun-Ja; Moon, Seung Hei

    2015-12-01

    The objectives of this study were to identify all available diabetes-related emotional distress instruments and evaluate the evidence regarding their measurement properties to help in the selection of the most appropriate instrument for use in practice and research. A systematic literature search was performed. PubMed, Embase, CINAHL, and PsycINFO were searched systematically for articles on diabetes-related emotional distress instruments. The Consensus-based Standards for the Selection of Health Measurement Instruments checklist was used to evaluate the methodological quality of the identified studies. The quality of results with respect to the measurement properties of each study was evaluated using Terwee's quality criteria. An ancillary meta-analysis was performed. Of the 2345 articles yielded by the search, 19 full-text articles evaluating 6 diabetes-related emotional distress instruments were included in this study. No instrument demonstrated evidence for all measurement properties. The Problem Areas in Diabetes scale (PAID) was the most frequently studied and the best validated of the instruments. Pooled summary estimates of the correlation coefficient between the PAID and serum glycated hemoglobin revealed a positive but weak correlation. No diabetes-related emotional distress instrument demonstrated evidence for all measurement properties. No instrument was better than another, although the PAID was the best validated and is thus recommended for use. Further psychometric studies of the diabetes-related emotional distress instruments with rigorous methodologies are required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  9. Repairing method of color TV with measuring instrument

    International Nuclear Information System (INIS)

    1996-01-01

    This book concentrates on repairing method of color TV with measuring instrument, which deals with direction and sorts of measuring instrument for service, application and basic technique of an oscilloscope and a synchroscope, constituent of TV and wave reading, everything for test skill for service man, service technique by electronic voltmeter, service technique by sweep generator and maker generator, dot-bar generator and support skill for color TV and color bar generator and application technology of color circuit.

  10. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  11. NOTE FOR EDITOR: Development An Instrument To Measure 
University Students' Attitude Towards E-Learning

    OpenAIRE

    MEHRA, Vandana; OMIDIAN, Faranak

    2015-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning ; Ease...

  12. NOTE FOR EDITOR: Development An Instrument To Measure 
University Students' Attitude Towards E-Learning

    OpenAIRE

    MEHRA, Vandana; OMIDIAN, Faranak

    2012-01-01

    The study of student’s attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students’ attitude towards e-learning. The scale was administered to 200 University students from two countries (India and Iran) .The 83-item attitude towards e-learning scale was developed on six domains as Perceived usefulness ; Intention to adopt e-learning ; Ease...

  13. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ridyard, A

    2000-07-01

    The 'Erythemal Action Spectrum' shows an increase of 10{sup 3} in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  14. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    International Nuclear Information System (INIS)

    Ridyard, A.

    2000-01-01

    The 'Erythemal Action Spectrum' shows an increase of 10 3 in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  15. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    Directory of Open Access Journals (Sweden)

    Braulio Pasternak-Júnior

    2012-02-01

    Full Text Available OBJECTIVE: This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG. MATERIAL AND METHODS: The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. RESULTS: There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. CONCLUSION: The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.

  16. NCTM workshop splinter session, IR thermal measurement instruments

    Science.gov (United States)

    Kaplan, Herbert

    1989-06-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  17. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  18. CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study.

    Science.gov (United States)

    Nagaraja, Shruthi; Sreenivasa Murthy, B V

    2010-01-01

    Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability.

  19. Industrial measurement instruments that use radioisotopes

    International Nuclear Information System (INIS)

    Monno, Asao

    2004-01-01

    An example of a large-scale system for controlling hot rolling, and recent developments for a gamma-ray thickness gauge for the inner-mill housing of a plate and a thickness gauge for a hot seamless tube mill are introduced. The dramatically higher speed response, versatile intelligent elements, larger data capacity and formation of a database are advantages of these instruments over conventional devices. Moreover, Fuji Electric's industrial measuring instruments that use radioisotopes are manufactured and marketed to be compatible with those of Hitachi, and we have already compiled a track record of many deliveries. (author)

  20. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  1. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  2. The instruments of higher order thinking skills

    Science.gov (United States)

    Ahmad, S.; Prahmana, R. C. I.; Kenedi, A. K.; Helsa, Y.; Arianil, Y.; Zainil, M.

    2017-12-01

    This research developed the standard of instrument for measuring the High Order Thinking Skill (HOTS) ability of PGSD students. The research method used is development research with eight steps namely theoretical studies, operational definition, designation construct, dimensions and indicators, the preparation of the lattice, the preparation of grain, an analysis of legibility and Social desirability, field trials, and data analysis. In accordance with the type of data to be obtained in this study, the research instrument using validation sheet, implementation observation, and questionnaire. The results show that the instruments are valid and feasible to be used by expert and have been tested on PGSD students with 60% of PGSD students with low categorization.

  3. Clinical and Radiographic Evaluation of Procedural Errors during Preparation of Curved Root Canals with Hand and Rotary Instruments: A Randomized Clinical Study

    Science.gov (United States)

    Khanna, Rajesh; Handa, Aashish; Virk, Rupam Kaur; Ghai, Deepika; Handa, Rajni Sharma; Goel, Asim

    2017-01-01

    Background: The process of cleaning and shaping the canal is not an easy goal to obtain, as canal curvature played a significant role during the instrumentation of the curved canals. Aim: The present in vivo study was conducted to evaluate procedural errors during the preparation of curved root canals using hand Nitiflex and rotary K3XF instruments. Materials and Methods: Procedural errors such as ledge formation, instrument separation, and perforation (apical, furcal, strip) were determined in sixty patients, divided into two groups. In Group I, thirty teeth in thirty patients were prepared using hand Nitiflex system, and in Group II, thirty teeth in thirty patients were prepared using K3XF rotary system. The evaluation was done clinically as well as radiographically. The results recorded from both groups were compiled and put to statistical analysis. Statistical Analysis: Chi-square test was used to compare the procedural errors (instrument separation, ledge formation, and perforation). Results: In the present study, both hand Nitiflex and rotary K3XF showed ledge formation and instrument separation. Although ledge formation and instrument separation by rotary K3XF file system was less as compared to hand Nitiflex. No perforation was seen in both the instrument groups. Conclusion: Canal curvature played a significant role during the instrumentation of the curved canals. Procedural errors such as ledge formation and instrument separation by rotary K3XF file system were less as compared to hand Nitiflex. PMID:29042727

  4. Comparison of two techniques for assessing the shaping efficacy of repeatedly used nickel-titanium rotary instruments.

    Science.gov (United States)

    Ounsi, Hani F; Franciosi, Giovanni; Paragliola, Raffaele; Al-Hezaimi, Khalid; Salameh, Ziad; Tay, Franklin R; Ferrari, Marco; Grandini, Simone

    2011-06-01

    The shaping capacity of nickel-titanium (NiTi) rotary instruments is often assessed by photographic or micro-computed tomography (micro-CT) measurements, and these instruments are often used more than once clinically. This study was conducted to compare photographic and micro-CT measurements and to assess if the repeated use of NiTi instruments affected the shape of canal preparation. Ten new sets of ProTaper Universal instruments (Dentsply-Maillefer, Ballaigues, Switzerland) were used in 60 resin blocks simulating curved root canals. Groups 1 to 6 (n=10) represented the first to sixth use of the instrument, respectively. Digitized images of the prepared blocks were taken in both mesiodistal (MD) and buccolingual (BL) directions and area measurements (mm(2)) were calculated using AutoCAD (Autodesk Inc, San Rafael, CA). The volumes of the same prepared canals were measured using micro-CT (mm(3)). Statistical analysis was performed to detect differences between photographic and volumetric measurements and differences between uses. Two-way repeated-measures analysis of variance revealed significant differences between groups (P < .001). Regarding measurement type, there were no significant differences between BL and MD measurements, but there were significant differences between micro-CT and BL measurements (P < .001) and micro-CT and MD measurements (P=.001). Significant differences were also noted between uses. Within the limitations of the present study, micro-CT scanning is more discriminative of the changes in canal space associated with repeated instrument use than photographic measurements. Canal preparations are significantly smaller after the third use of the same instrument. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. The quality of systematic reviews of health-related outcome measurement instruments.

    Science.gov (United States)

    Terwee, C B; Prinsen, C A C; Ricci Garotti, M G; Suman, A; de Vet, H C W; Mokkink, L B

    2016-04-01

    Systematic reviews of outcome measurement instruments are important tools for the selection of instruments for research and clinical practice. Our aim was to assess the quality of systematic reviews of health-related outcome measurement instruments and to determine whether the quality has improved since our previous study in 2007. A systematic literature search was performed in MEDLINE and EMBASE between July 1, 2013, and June 19, 2014. The quality of the reviews was rated using a study-specific checklist. A total of 102 reviews were included. In many reviews the search strategy was considered not comprehensive; in only 59 % of the reviews a search was performed in EMBASE and in about half of the reviews there was doubt about the comprehensiveness of the search terms used for type of measurement instruments and measurement properties. In 41 % of the reviews, compared to 30 % in our previous study, the methodological quality of the included studies was assessed. In 58 %, compared to 55 %, the quality of the included instruments was assessed. In 42 %, compared to 7 %, a data synthesis was performed in which the results from multiple studies on the same instrument were somehow combined. Despite a clear improvement in the quality of systematic reviews of outcome measurement instruments in comparison with our previous study in 2007, there is still room for improvement with regard to the search strategy, and especially the quality assessment of the included studies and the included instruments, and the data synthesis.

  6. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro-Computed Tomographic Study.

    Science.gov (United States)

    de Almeida, Bernardo Corrêa; Ormiga, Fabíola; de Araújo, Marcos César Pimenta; Lopes, Ricardo Tadeu; Lima, Inayá Corrêa Barbosa; dos Santos, Bernardo Camargo; Gusman, Heloisa

    2015-12-01

    The aim of this study was to make a 3-dimensional comparison of the canal transportation and changes in apical geometry using micro-computed tomographic imaging after canal preparation with K3 (SybronEndo, Orange, CA) and K3XF (SybronEndo) file systems. Twenty-eight mandibular molars were randomly divided into 2 groups according to the rotary system used in instrumentation: K3 or K3XF. The specimens were scanned by micro-computed tomographic imaging before and after instrumentation. Images before and after instrumentation from each group were compared with regard to canal volume, surface area, and structure model index (SMI) (paired t test, P instrumentation, the canals from each group were compared regarding the changes in volume, surface area, SMI, and canal transportation in the last 4 apical mm (t test, P Instrumentation with the 2 rotary systems significantly changed the canal volume, surface area, and SMI (P instrument types concerning these parameters (P > .05). There were no significant differences between the 2 groups with regard to canal transportation in the last 4 apical mm (P > .05). Both rotary systems showed adequate canal preparations with reduced values of canal transportation. Heat treatment did not influence changes in root canal geometry in the apical region. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

    Science.gov (United States)

    Walters, Stephen John; Stern, Cindy; Robertson-Malt, Suzanne

    2016-04-01

    There is a growing call by consumers and governments for healthcare to adopt systems and approaches to care to improve patient safety. Collaboration within healthcare settings is an important factor for improving systems of care. By using validated measurement instruments a standardized approach to assessing collaboration is possible, otherwise it is only an assumption that collaboration is occurring in any healthcare setting. The objective of this review was to evaluate and compare measurement properties of instruments that measure collaboration within healthcare settings, specifically those which have been psychometrically tested and validated. Participants could be healthcare professionals, the patient or any non-professional who contributes to a patient's care, for example, family members, chaplains or orderlies. The term participant type means the designation of any one participant; for example 'nurse', 'social worker' or 'administrator'. More than two participant types was mandatory. The focus of this review was the validity of tools used to measure collaboration within healthcare settings. The types of studies considered for inclusion were validation studies, but quantitative study designs such as randomized controlled trials, controlled trials and case studies were also eligible for inclusion. Studies that focused on Interprofessional Education, were published as an abstract only, contained patient self-reporting only or were not about care delivery were excluded. The outcome of interest was validation and interpretability of the instrument being assessed and included content validity, construct validity and reliability. Interpretability is characterized by statistics such as mean and standard deviation which can be translated to a qualitative meaning. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilized in this review. The databases searched included PubMed, CINAHL, Embase, Cochrane Central

  8. CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study

    Science.gov (United States)

    Nagaraja, Shruthi; Sreenivasa Murthy, B V

    2010-01-01

    Background: Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. Aim/Objectives: The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). Materials and Methods: For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. Result: It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. Conclusion: ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability. PMID:20582214

  9. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  10. Health Status Measurement Instruments in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Yves Lacasse

    1997-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is associated with primary respiratory impairment, disability and handicap, as well as with secondary impairments not necessarily confined to the respiratory system. Because the primary goals of managing patients with COPD include relief of dyspnea and the improvement of health-related quality of life (HRQL, a direct measurement of HRQL is important. Fourteen disease-specific and nine generic questionnaires (four health profiles and five utility measures most commonly used to measure health status in patients with COPD were reviewed. The measures were classified according to their domain of interest, and their measurement properties - specifications, validity, reliability, responsiveness and interpretability - were described. This review suggests several findings. Currently used health status instruments usually refer to the patients’ perception of performance in three major domains of HRQL - somatic sensation, physical and occupational function, and psychological state. The choice of a questionnaire must be related to its purpose, with a clear distinction being made between its evaluative and discriminative function. In their evaluative function, only a few instruments fulfilled the criteria of responsiveness, and the interpretability of most questionnaires is limited. Generic questionnaires should not be used alone in clinical trials as evaluative instruments because of their inability to detect change over time. Further validation and improved interpretability of existing instruments would be of greater benefit to clinicians and scientists than the development of new questionnaires.

  11. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E; Papadopoulos, K [CRES (Greece); Borg, N van der [ECN, Petten (Netherlands); Petersen, S M [Risoe, Roskilde (Denmark); Seifert, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  12. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  13. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  14. Development of assessment instruments to measure critical thinking skills

    Science.gov (United States)

    Sumarni, W.; Supardi, K. I.; Widiarti, N.

    2018-04-01

    Assessment instruments that is commonly used in the school generally have not been orientated on critical thinking skills. The purpose of this research is to develop assessment instruments to measure critical thinking skills, to test validity, reliability, and practicality. This type of research is Research and Development. There are two stages on the preface step, which are field study and literacy study. On the development steps, there some parts, which are 1) instrument construction, 2) expert validity, 3) limited scale tryout and 4) narrow scale try-out. The developed assessment instrument are analysis essay and problem solving. Instruments were declared valid, reliable and practical.

  15. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument

    International Nuclear Information System (INIS)

    Lekstrom, M; McLachlan, M A; Husain, S; McComb, D W; Shollock, B A

    2008-01-01

    Transmission electron microscope (TEM) specimens are today routinely prepared using focussed ion beam (FIB) instruments. Specifically, the lift-out method has become an increasingly popular technique and involves removing thin cross-sections from site-specific locations and transferring them to a TEM grid. This lift-out process can either be performed ex situ or in situ. The latter is mainly carried out on combined dual-beam FIB and scanning electron microscope (SEM) systems whereas conventional single-beam instruments often are limited to the traditional ex situ method. It is nevertheless desirable to enhance the capabilities of existing single-beam instruments to allow for in situ lift-out preparation to be performed since this technique offers a number of advantages over the older ex situ method. A single-beam FIB instrument was therefore modified to incorporate an in situ micromanipulator fitted with a tungsten needle, which can be attached to a cut-out FIB section using ion beam induced platinum deposition. This article addresses the issues of using an ion beam to monitor the in situ manipulation process as well as approaches that can be used to create stronger platinum welds between two objects, and finally, views on how to limit the extent of ion beam damage to the specimen surface.

  16. Requirements for a quality measurement instrument for semantic standards

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Oude Luttighuis, P.; Hillegersberg van, J. van

    2010-01-01

    This study describes requirements for an instrument to measure the quality of semantic standards. A situational requirements engineering method was used, resulting in a goal-tree in which requirements are structured. This structure shows requirements related to the input of the instrument; stating

  17. A systematic review of instruments that measure attitudes toward homosexual men.

    Science.gov (United States)

    Grey, Jeremy A; Robinson, Beatrice Bean E; Coleman, Eli; Bockting, Walter O

    2013-01-01

    Scientific interest in the measurement of homophobia and internalized homophobia has grown over the past 30 years, and new instruments and terms have emerged. To help researchers with the challenging task of identifying appropriate measures for studies in sexual-minority health, we reviewed measures of homophobia published in the academic literature from 1970 to 2012. Instruments that measured attitudes toward male homosexuals/homosexuality or measured homosexuals' internalized attitudes toward homosexuality were identified using measurement manuals and a systematic review. A total of 23 instruments met criteria for inclusion, and their features were summarized and compared. All 23 instruments met minimal criteria for adequate scale construction, including scale development, sampling, reliability, and evidence of validity. Validity evidence was diverse and was categorized as interaction with gay men, HIV/AIDS variables, mental health, and conservative religious or political beliefs. Homophobia was additionally correlated with authoritarianism and bias, gender ideology, gender differences, and reactions to homosexual stimuli. Internalized homophobia was validated by examining relationships with disclosing one's homosexuality and level of homosexual identity development. We hope this review will make the process of instrument selection more efficient by allowing researchers to easily locate, evaluate, and choose the proper measure based on their research question and population of interest.

  18. Measurement properties of quality-of-life measurement instruments for infants, children and adolescents with eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Sach, T; Drucker, A M; Ofenloch, R; Flohr, C; Apfelbacher, C

    2017-04-01

    Quality of life (QoL) is one of the core outcome domains identified by the Harmonising Outcome Measures for Eczema (HOME) initiative to be assessed in every eczema trial. There is uncertainty about the most appropriate QoL instrument to measure this domain in infants, children and adolescents. To systematically evaluate the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in infants, children and adolescents with eczema. A systematic literature search in PubMed and Embase, complemented by a thorough hand search of reference lists, retrieved studies on measurement properties of eczema QoL instruments for infants, children and adolescents. For all eligible studies, we judged the adequacy of the measurement properties and the methodological study quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Results from different studies were summarized in a best-evidence synthesis and formed the basis to assign four degrees of recommendation. Seventeen articles, three of which were found by hand search, were included. These 17 articles reported on 24 instruments. No instrument can be recommended for use in all eczema trials because none fulfilled all required adequacy criteria. With adequate internal consistency, reliability and hypothesis testing, the U.S. version of the Childhood Atopic Dermatitis Impact Scale (CADIS), a proxy-reported instrument, has the potential to be recommended depending on the results of further validation studies. All other instruments, including all self-reported ones, lacked significant validation data. Currently, no QoL instrument for infants, children and adolescents with eczema can be highly recommended. Future validation research should primarily focus on the CADIS, but also attempt to broaden the evidence base for the validity of self-reported instruments. © 2016 British Association of Dermatologists.

  19. Development of a Self-Rating instrument to Measure Team Situation Awareness

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Koning, L. de; Hof, T.; Dongen, K. van

    2010-01-01

    The goal of this paper is to describe the development of an instrument to measure team situation awareness (TSA). Individual team member SA may or may not be shared through communication processes with other team members. Most existing instruments do not measure these processes but measure TSA as a

  20. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  1. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  2. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  3. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  4. D-Catch instrument : development and psychometric testing of a measurement instrument for nursing documentation in hospitals

    NARCIS (Netherlands)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos; van der Schans, Cees P.

    AIM: This paper is a report of the development and testing of the psychometric properties of an instrument to measure the accuracy of nursing documentation in general hospitals. BACKGROUND: Little information is available about the accuracy of nursing documentation. None of the existing instruments

  5. To IO-3 type instrument for measuring relative deviation of mean frequency

    International Nuclear Information System (INIS)

    Albats, Ya.Eh.; Bitite, Ya.A.; Ivanov, G.M.; Karpel'tseva, L.P.; Tesnavs, Eh.R.; Shuvtsan, Ya.V.

    1979-01-01

    A description is given of the 10-3 instrument intended for automatic measurement of a relative deviation of the pulse flow mean frequency from the preset value with digital presentation of measurement results, and also for the conversion of this relative deviation into an electric coded signal and in an analogue voltage signal. The 10-3 instrument comprises a master pulse generator, two preliminary scalers, two electronic switches, two storage pulse counters, control devices, a counter digital volume setter, a rewriting device, an internal storage, a digital display, and a digital-to-analog converter. The principle of the instrument operation consists in counting the pulses of measured and reference pulse flows by two storage counters. Basic performances of the instrument are given. The main advantage of the 10-3 instrument lies in the fact that it presents the results of measuring by a digital radioisotope instrument directly in physical units of the measured parameter, and that, in turn, obviates the necessity for additional mathematical operations when data processing [ru

  6. Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments

    Science.gov (United States)

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  7. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations.

    Science.gov (United States)

    Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A

    2017-03-01

    The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Development of a Computerized Multifunctional Form and Position Measurement Instrument

    International Nuclear Information System (INIS)

    Liu, P; Tian, W Y

    2006-01-01

    A model machine of multifunctional form and position measurement instrument controlled by a personal computer has been successfully developed. The instrument is designed in rotary table type with a high precision air bearing and the radial rotation error of the rotary table is 0.08 μm. Since a high precision vertical sliding carriage supported by an air bearing is used for the instrument, the straightaway motion error of the carriage is 0.3 μm/200 mm and the parallelism error of the motion of the carriage relative to the rotation axis of the rotary table is 0.4 μm/200 mm. The mathematical models have been established for assessing planar and spatial straightness, flatness, roundness, cylindricity, and coaxality errors. By radial deviation measurement, the instrument can accurately measure form and position errors of such workpieces as shafts, round plates and sleeves of medium or small dimensions with the tolerance grades mostly used in industry

  9. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  10. Results of measurements of a proton spectrum in the energy range more then 1 TeV at satellites by the SOKOL instrument

    International Nuclear Information System (INIS)

    Grigor'ev, N.L.

    1989-01-01

    Proton spectra measured by SOKOL instrument at KOSMOS-1543 and KOSMOS-1713 satellites and published by the auther and independently by experiment preparation group are presented. Methods of experimental data application and their substantiation degree that caused differences in spectra and conclusions are analysed. 10 refs.; 7 figs.; 6 tabs

  11. Characterization of a traceable profiler instrument for areal roughness measurement

    International Nuclear Information System (INIS)

    Thomsen-Schmidt, P

    2011-01-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x–y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments

  12. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  13. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    Science.gov (United States)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  14. Measurements with the new PHE neutron survey instrument

    International Nuclear Information System (INIS)

    Eakins, J.S.; Tanner, R.J.; Hager, L.G.

    2014-01-01

    A novel design of survey instrument has been developed to accurately estimate ambient dose equivalent from neutrons with energies in the range from thermal to 20 MeV. The device features moderating and attenuating layers to ease measurement of fast and intermediate energy neutrons, combined with guides that channel low-energy neutrons to the single, central detector. A prototype of this device has been constructed and exposed to a set of calibration fields: the resulting measured responses are presented and discussed here, and compared against Monte Carlo data. A simple simulated workplace neutron field has also been developed to test the device. Measured response data have been determined for a prototype design of neutron survey instrument, using facilities at PHE and NPL. In general, the results demonstrated good directional invariance and agreed well with data obtained by Monte Carlo modelling, raising confidence in the accuracy of the response characteristics expected for the device. A simple simulated workplace field has also been developed and characterised, and the performance of the device assessed in it: agreement between measured and modelled results suggests that the device would behave as anticipated in real workplace fields. These performances will be investigated further in the future, as the design makes the transition from a research prototype to a commercially available instrument. (authors)

  15. Validation of behaviour measurement instrument of patients with diabetes mellitus and hypertension

    Science.gov (United States)

    Saputri, G. Z.; Akrom; Dini, S. M.

    2017-11-01

    Non-adherence to the treatment of chronic diseases such as hypertension and Diabetes Mellitus (DM) is a major obstacle in achieving patient therapy targets and quality of life of patients. A comprehensive approach involving pharmacists counselling has shown influences on changes in health behaviour and patient compliance. Behaviour changes in patients are one of the parameters to assess the effectiveness of counselling and education by pharmacists. Therefore, it is necessary to develop questionnaires of behaviour change measurement in DM-hypertension patients. This study aims to develop a measurement instrument in the form of questionnaires in assessing the behaviour change of DM-hypertension patients. Preparation of question items from the questionnaire research instrument refers to some guidelines and previous research references. Test of questionnaire instrument valid was done with expert validation, followed by pilot testing on 10 healthy respondents, and 10 DM-hypertension patients included in the inclusion criteria. Furthermore, field validation test was conducted on 37 patients who had undergone outpatient care at the PKU Muhammadiyah Yogyakarta City Hospital and The Gading Clinic in Yogyakarta. The inclusion criteria were male and female patients, aged 18-65, diagnosed with type 2 diabetes with hypertension who received oral antidiabetic drugs and antihypertensives, and who were not illiterate and co-operative. The data were collected by questionnaire interviews by a standardized pharmacist. The result of validation test using Person correlation shows the value of 0.33. The results of the questionnaire validation test on 37 patients showed 5 items of invalid questions with the value of r 0.33. The reliability value is shown from the Cronbach's alpha value of 0.722 (> 0.6), implying that the questionnaire is reliable for DM-hypertension patients. This Behavioural change questionnaire can be used on DM-hypertension patients, and an FGD approach is required

  16. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  17. Thickness measurement instrument with memory storage of multiple calibrations

    International Nuclear Information System (INIS)

    Lieber, S.; Schlesinger, J.; Lieber, D.; Baker, A.

    1979-01-01

    An improved backscatter instrument for the nondestructive measurement of coatings on a substrate is described. A memory having selectable memory areas, each area having stored intelligence available which is determinative of the shape of a functional plot of coating thickness versus backscatter counts per minute unique for each particular combination of emitting isotope, substrate material, coating material and physical characteristics of the measuring instrument. A memory selector switch connects a selected area of memory to a microprocessor operating under program control whereby the microprocessor reads the intelligence stored at the selected area and converts the backscattered count of the coating being measured into indicia of coating thickness

  18. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  19. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  20. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  1. An Instrument to Prepare for Acute Care of the Individual with Autism Spectrum Disorder in the Emergency Department

    Science.gov (United States)

    Venkat, Arvind; Migyanka, Joann M.; Cramer, Ryan; McGonigle, John J.

    2016-01-01

    We present an instrument to allow individuals with autism spectrum disorder, their families and/or their caregivers to prepare emergency department staff for the care needs of this patient population ahead of acute presentation.

  2. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  3. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments.

    Science.gov (United States)

    Joshi, Ashwini; Watts, Christopher R

    2017-03-01

    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Towards an Enterprise Architecture Benefits Measurement Instrument

    NARCIS (Netherlands)

    Dr.ir. Raymond Slot; Henk Plessius; Marlies Steenbergen, van

    2015-01-01

    Author supplied: Based on the Enterprise Architecture Value Framework (EAVF) - a generic framework to classify benefits of Enterprise Architecture (EA) - a measurement instrument for EA benefits has been developed and tested in a survey with 287 respondents. In this paper we present the results of

  5. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  6. Systematic review of measurement properties of self-reported instruments for evaluating self-care in adults.

    Science.gov (United States)

    Matarese, Maria; Lommi, Marzia; De Marinis, Maria Grazia

    2017-06-01

    The aims of this study were as follows: to identify instruments developed to assess self-care in healthy adults; to determine the theory on which they were based; their validity and reliability properties and to synthesize the evidence on their measurement properties. Many instruments have been developed to assess self-care in many different populations and conditions. Clinicians and researchers should select the most appropriate self-care instrument based on the knowledge of their measurement properties. Systematic review of measurement instruments according to the protocol recommended by the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. PubMed, Embase, PsycINFO, Scopus and CINAHL databases were searched from inception to December 2015. Studies testing measurement properties of self-report instruments assessing self-care in healthy adults, published in the English language and in peer review journals were selected. Two reviewers independently appraised the methodological quality of the studies with the COSMIN checklist and the quality of results using specific quality criteria. Twenty-six articles were included in the review testing the measurement properties of nine instruments. Seven instruments were based on Orem's Self-care theory. Not all the measurement properties were evaluated for the identified instruments. No self-care instrument showed strong evidence supporting the evaluated measurement properties. Despite the development of several instruments to assess self-care in the adult population, no instrument can be fully recommended to clinical nurses and researchers. Further studies of high methodological quality are needed to confirm the measurement properties of these instruments. © 2016 John Wiley & Sons Ltd.

  7. Development of Real-Time Coal Monitoring Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  8. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  9. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  10. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  11. Field measurements and interpretation of TMI-2 instrumentation: IC-10-dPT

    International Nuclear Information System (INIS)

    Jones, J.E.; Smith, J.T.; Mathis, M.V.

    1982-01-01

    This report describes the measurements and results of the Control Rod Drive Bypass Flow IC-10-dPT. This instrument consists of a Bailey Type BY Process Computer Transmitter connected to a readout module by approximately 500 feet of cable through a penetration junction and an instrument mounting junction. The status of this instrument is uncertain, but it was producing a reasonable output reading of zero flow which could indicate it had not failed. As a result, measurements on this instrument were designed to determine if it were properly functioning

  12. Assessing medical professionalism: A systematic review of instruments and their measurement properties

    Science.gov (United States)

    Li, Honghe; Liu, Yang; Wen, Deliang

    2017-01-01

    Background Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments’ measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. Methods A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument’s usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee’s criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. Results After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, Nurse Practitioners’ Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Conclusion Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing

  13. Design and construction of an instrument for measuring thermistor electrical characteristic

    International Nuclear Information System (INIS)

    Budiono; Yudi Herdiana

    2007-01-01

    In this work an instrument for measuring the electrical characteristic of thermistor has been designed and constructed. The instrument was constructed from main components i.e. a micro controller AT89C51, 3 ADC-0804, a LM35 temperature sensor and IC MAX 232. The IC MAX 232 component is used to connect the micro controller to the personal computer serially by using RS-232 standard. While ADC-0804 was used to convert the analog data (DC voltage) to the digital one so that the data was readable by the micro controller. Digital data from 3 ADC-0804 circuit which have been read by the micro controller was sent directly to the personal computer. The data from the measurement which have been stored in the personal computer was then processed to know the value of temperature and measured thermistor resistance. The processed data could be either stored in a data base or displayed in a monitor or printed in the form of table data and in the form a graph of thermistor resistance as the function of temperature. The result of measurement from measuring instrument of the characteristic of thermistor electric's had been made, being compared by measuring calibrated instrument, the deviation is about 0.33 %. (author)

  14. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yin Peili

    2017-08-01

    Full Text Available Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI. The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  15. Measuring teamwork in health care settings: a review of survey instruments.

    Science.gov (United States)

    Valentine, Melissa A; Nembhard, Ingrid M; Edmondson, Amy C

    2015-04-01

    Teamwork in health care settings is widely recognized as an important factor in providing high-quality patient care. However, the behaviors that comprise effective teamwork, the organizational factors that support teamwork, and the relationship between teamwork and patient outcomes remain empirical questions in need of rigorous study. To identify and review survey instruments used to assess dimensions of teamwork so as to facilitate high-quality research on this topic. We conducted a systematic review of articles published before September 2012 to identify survey instruments used to measure teamwork and to assess their conceptual content, psychometric validity, and relationships to outcomes of interest. We searched the ISI Web of Knowledge database, and identified relevant articles using the search terms team, teamwork, or collaboration in combination with survey, scale, measure, or questionnaire. We found 39 surveys that measured teamwork. Surveys assessed different dimensions of teamwork. The most commonly assessed dimensions were communication, coordination, and respect. Of the 39 surveys, 10 met all of the criteria for psychometric validity, and 14 showed significant relationships to nonself-report outcomes. Evidence of psychometric validity is lacking for many teamwork survey instruments. However, several psychometrically valid instruments are available. Researchers aiming to advance research on teamwork in health care should consider using or adapting one of these instruments before creating a new one. Because instruments vary considerably in the behavioral processes and emergent states of teamwork that they capture, researchers must carefully evaluate the conceptual consistency between instrument, research question, and context.

  16. Legal control scenario applied to embedded software in measuring instruments

    International Nuclear Information System (INIS)

    Castro, C.G. de; Brandao, P.C.; Leitao, F.O.

    2013-01-01

    This paper presents a scenario of legal control of software in measuring instruments. Such control is hampered by intrinsic problems related to software analysis and verification. To circumvent these difficulties, several projects are being developed to attack different stages of legal control, such as the model type approval, periodic verifications and metrological expertise. The proposals that will arise from these projects will be discussed among the parts and may be incorporated into the measuring instruments. (author)

  17. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  18. Instruments measuring family or caregiver burden in severe mental illness

    NARCIS (Netherlands)

    Schene, A. H.; Tessler, R. C.; Gamache, G. M.

    1994-01-01

    The consequences of psychiatric disorders for family members, usually called family or caregiver burden, have been studied during the last 4 decades. During this period a variety of instruments have been developed to measure the impact of mental illness on family members, but not all instruments

  19. Informal caregiving in COPD: A systematic review of instruments and their measurement properties.

    Science.gov (United States)

    Cruz, Joana; Marques, Alda; Machado, Ana; O'Hoski, Sachi; Goldstein, Roger; Brooks, Dina

    2017-07-01

    Increasing symptoms and activity restriction associated with COPD progression greatly impact on the lives of their informal caregivers, who play a vital role in maintaining their health. An understanding of this impact is important for clinicians to support caregivers and maintain a viable patient environment at home. This systematic review aimed to identify the instruments commonly used to assess informal caregiving in COPD and describe their measurement properties in this population. Searches were conducted in PubMed, Scopus, Web of Science, CINAHL and PsycINFO and in references of key articles, until November 2016 (PROSPERO: CRD42016041401). Instruments used to assess the impact of COPD on caregivers were identified and their properties described. Quality of studies was rated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the measurement properties of instruments was rated as 'positive', 'negative' or 'indeterminate'. Patients cared for, had moderate to very severe COPD and the sample of caregivers ranged from 24 to 406. Thirty-five instruments were used in fifty studies to assess caregivers' psychological status and mood (9 instruments), burden/distress (12 instruments), quality of life (5 instruments) or other (9 instruments). Eighteen studies assessed the measurement properties of 21 instruments, most commonly hypothesis testing (known validity) and internal consistency. Study quality varied from 'poor' to 'fair' and with many properties rated as 'indeterminate'. Although several instruments have been used to assess the impact of COPD on caregivers, an increased understanding of their properties is needed before their widespread implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  1. Development of the instrument IMAQE-Food to measure effectiveness of quality management

    NARCIS (Netherlands)

    Spiegel, van der M.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2005-01-01

    Purpose - Manufacturers use several quality assurance systems to assure quality. However, their effectiveness cannot be assessed because an instrument does not exist. This article is based on a study that was set up to identify performance measurement indicators of an instrument that measures

  2. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  3. Self-administered health literacy instruments for people with diabetes: systematic review of measurement properties.

    Science.gov (United States)

    Lee, Eun-Hyun; Kim, Chun-Ja; Lee, Jiyeon; Moon, Seung Hei

    2017-09-01

    The aims of this study were to identify all available self-administered instruments measuring health literacy in people with diabetes and to determine the current instrument that is the most appropriate for applying to this population in both practice and research. A systematic review of measurement properties. MEDLINE, EMBASE and CINAHL electronic databases from their inception up to 28 March 2016. The methodological quality of each included study was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The reported results for measurement properties in the studies were assessed according to Terwee's quality criteria. Thirteen self-administered instruments measuring health literacy in people with diabetes were identified, of which six (44%) were diabetes-specific instruments. The instruments that covered the broadest contents of health literacy were the Health Literacy Scale and Health Literacy Questionnaire. The (test-retest) reliability, measurement error and responsiveness were not evaluated for any instrument, while internal consistency and hypothesis testing validity were the most frequently assessed measurement properties. With the current evidence, the Health Literacy Scale may be the most appropriate instrument for patients with diabetes in practice and research. However, the structural validity of this scale needs to be further established, particularly in other language versions. It is also recommended to use the Diabetes Numeracy Test-15 along with the Health Literacy Scale to complement the lack of numeracy measures in the Health Literacy Scale. © 2017 John Wiley & Sons Ltd.

  4. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  5. QNOTE: an instrument for measuring the quality of EHR clinical notes.

    Science.gov (United States)

    Burke, Harry B; Hoang, Albert; Becher, Dorothy; Fontelo, Paul; Liu, Fang; Stephens, Mark; Pangaro, Louis N; Sessums, Laura L; O'Malley, Patrick; Baxi, Nancy S; Bunt, Christopher W; Capaldi, Vincent F; Chen, Julie M; Cooper, Barbara A; Djuric, David A; Hodge, Joshua A; Kane, Shawn; Magee, Charles; Makary, Zizette R; Mallory, Renee M; Miller, Thomas; Saperstein, Adam; Servey, Jessica; Gimbel, Ronald W

    2014-01-01

    The outpatient clinical note documents the clinician's information collection, problem assessment, and patient management, yet there is currently no validated instrument to measure the quality of the electronic clinical note. This study evaluated the validity of the QNOTE instrument, which assesses 12 elements in the clinical note, for measuring the quality of clinical notes. It also compared its performance with a global instrument that assesses the clinical note as a whole. Retrospective multicenter blinded study of the clinical notes of 100 outpatients with type 2 diabetes mellitus who had been seen in clinic on at least three occasions. The 300 notes were rated by eight general internal medicine and eight family medicine practicing physicians. The QNOTE instrument scored the quality of the note as the sum of a set of 12 note element scores, and its inter-rater agreement was measured by the intraclass correlation coefficient. The Global instrument scored the note in its entirety, and its inter-rater agreement was measured by the Fleiss κ. The overall QNOTE inter-rater agreement was 0.82 (CI 0.80 to 0.84), and its note quality score was 65 (CI 64 to 66). The Global inter-rater agreement was 0.24 (CI 0.19 to 0.29), and its note quality score was 52 (CI 49 to 55). The QNOTE quality scores were consistent, and the overall QNOTE score was significantly higher than the overall Global score (p=0.04). We found the QNOTE to be a valid instrument for evaluating the quality of electronic clinical notes, and its performance was superior to that of the Global instrument. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Measuring participants' immersion in healthcare simulation: the development of an instrument.

    Science.gov (United States)

    Hagiwara, Magnus Andersson; Backlund, Per; Söderholm, Hanna Maurin; Lundberg, Lars; Lebram, Mikael; Engström, Henrik

    2016-01-01

    Immersion is important for simulation-based education; however, questionnaire-based instruments to measure immersion have some limitations. The aim of the present work is to develop a new instrument to measure immersion among participants in healthcare simulation scenarios. The instrument was developed in four phases: trigger identification, content validity scores, inter-rater reliability analysis and comparison with an existing immersion measure instrument. A modified Delphi process was used to develop the instrument and to establish validity and reliability. The expert panel consisted of 10 researchers. All the researchers in the team had previous experience of simulation in the health and/or fire and rescue services as researchers and/or educators and simulation designers. To identify triggers, the panel members independently screened video recordings from simulation scenarios. Here, a trigger is an event in a simulation that is considered a sign of reduced or enhanced immersion among simulation participants. The result consists of the Immersion Score Rating Instrument (ISRI). It contains 10 triggers, of which seven indicate reduced and three enhanced immersion. When using ISRI, a rater identifies trigger occurrences and assigns them strength between 1 and 3. The content validity analysis shows that all the 10 triggers meet an acceptable content validity index for items (I-CVI) standard. The inter-rater reliability (IRR) among raters was assessed using a two-way mixed, consistency, average-measures intra-class correlation (ICC). The ICC for the difference between weighted positive and negative triggers was 0.92, which indicates that the raters are in agreement. Comparison with results from an immersion questionnaire mirrors the ISRI results. In conclusion, we present a novel and non-intrusive instrument for identifying and rating the level of immersion among participants in healthcare simulation scenarios.

  7. Instrumentation for Structure Measurements on Highly Non-equilibrium Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Argonne National Laboratory (ANL); Benmore, Chris J [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Wilding, Martin C [ORNL

    2011-01-01

    Containerless techniques (levitation) completely eliminate contact with the sample. This unique sample environment allows deep supercooling of many liquids and avoids contamination of high temperature melts. Recent experiments at the APS high energy beamline 11 ID-C used aerodynamic levitation with laser beam heating and acoustic levitation with cryogenic cooling. By using these two methods, liquids were studied over much of the temperature range from -40 to +2500 C. This paper briefly describes the instrumentation and its use with an -Si area detector that allows fast, in-situ measurements. Use of the instruments is illustrated with examples of measurements on molten oxides and aqueous materials.

  8. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  9. Measurement properties of quality of life measurement instruments for infants, children and adolescents with eczema: protocol for a systematic review.

    Science.gov (United States)

    Heinl, Daniel; Prinsen, Cecilia A C; Drucker, Aaron M; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Flohr, Carsten; Apfelbacher, Christian

    2016-02-09

    Eczema is a common chronic or chronically relapsing, inflammatory skin disease that exerts a substantial negative impact on quality of life (QoL). The Harmonising Outcome Measures for Eczema (HOME) initiative has used a consensus-based process which identified QoL as one of the four core outcome domains to be assessed in all eczema clinical trials. A number of measurement instruments exist to measure QoL in infants, children, and adolescents with eczema, and there is a great variability in both content and quality of the instruments used. Therefore, the objective of the proposed research is to comprehensively and systematically assess the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in infants, children, and adolescents with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for infants, children, and adolescents with eczema. A systematic literature search will be carried out in MEDLINE via PubMed and EMBASE using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for infants, children, and adolescents with eczema. Two reviewers will independently perform eligibility assessment and data abstraction. Evidence tables will be used to record study characteristics, instrument characteristics, measurement properties, and interpretability. The adequacy of the measurement properties will be assessed using predefined criteria. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist will be used to evaluate the methodological quality of included studies. A best evidence synthesis will be undertaken if more than one study has examined a particular measurement property. The proposed systematic review will yield a comprehensive assessment

  10. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  11. Instruments to assess self-care among healthy children: A systematic review of measurement properties.

    Science.gov (United States)

    Urpí-Fernández, Ana-María; Zabaleta-Del-Olmo, Edurne; Montes-Hidalgo, Javier; Tomás-Sábado, Joaquín; Roldán-Merino, Juan-Francisco; Lluch-Canut, María-Teresa

    2017-12-01

    To identify, critically appraise and summarize the measurement properties of instruments to assess self-care in healthy children. Assessing self-care is a proper consideration for nursing practice and nursing research. No systematic review summarizes instruments of measurement validated in healthy children. Psychometric review in accordance with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. MEDLINE, CINAHL, PsycINFO, Web of Science and Open Grey were searched from their inception to December 2016. Validation studies with a healthy child population were included. Search was not restricted by language. Two reviewers independently assessed the methodological quality of included studies using the COSMIN checklist. Eleven studies were included in the review assessing the measurement properties of ten instruments. There was a maximum of two studies per instrument. None of the studies evaluated the properties of test-retest reliability, measurement error, criterion validity and responsiveness. Internal consistency and structural validity were rated as "excellent" or "good" in four studies. Four studies were rated as "excellent" in content validity. Cross-cultural validity was rated as "poor" in the two studies (three instruments) which cultural adaptation was carried out. The evidence available does not allow firm conclusions about the instruments identified in terms of reliability and validity. Future research should focus on generate evidence about a wider range of measurement properties of these instruments using a rigorous methodology, as well as instrument testing on different countries and child population. © 2017 John Wiley & Sons Ltd.

  12. Metrological Array of Cyber-Physical Systems. Part 7. Additive Error Correction for Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-06-01

    Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.

  13. Instruments for measuring mental health recovery: a systematic review.

    Science.gov (United States)

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide. © 2013.

  14. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  15. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  16. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  17. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    Science.gov (United States)

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population

  18. A measuring instrument for evaluation of quality systems.

    NARCIS (Netherlands)

    Wagner, C.; Bakker, D.H. de; Groenewegen, P.P.

    1999-01-01

    Objective: To develop an instrument for provider organizations, consumers, purchasers, and policy makers to measure and compare the development of quality systems in provider organizations. Design: Cross-sectional study of provider organizations using a structured questionnaire to survey managers.

  19. Developing an instrument to measure effective factors on Clinical Learning.

    Science.gov (United States)

    Dadgaran, Ideh; Shirazi, Mandana; Mohammadi, Aeen; Ravari, Ali

    2016-07-01

    Although nursing students spend a large part of their learning period in the clinical environment, clinical learning has not been perceived by its nature yet. To develop an instrument to measure effective factors on clinical learning in nursing students. This is a mixed methods study performed in 2 steps. First, the researchers defined "clinical learning" in nursing students through qualitative content analysis and designed items of the questionnaire based on semi-structured individual interviews with nursing students. Then, as the second step, psychometric properties of the questionnaire were evaluated using the face validity, content validity, construct validity, and internal consistency evaluated on 227 students from fourth or higher semesters. All the interviews were recorded and transcribed, and then, they were analyzed using Max Qualitative Data Analysis and all of qualitative data were analyzed using SPSS 14. To do the study, we constructed the preliminary questionnaire containing 102 expressions. After determination of face and content validities by qualitative and quantitative approaches, the expressions of the questionnaire were reduced to 45. To determine the construct validity, exploratory factor analysis was applied. The results indicated that the maximum variance percentage (40.55%) was defined by the first 3 factors while the rest of the total variance percentage (59.45%) was determined by the other 42 factors. Results of exploratory factor analysis of this questionnaire indicated the presence of 3 instructor-staff, students, and educational related factors. Finally, 41 expressions were kept in 3 factor groups. The α-Cronbach coefficient (0.93) confirmed the high internal consistency of the questionnaire. Results indicated that the prepared questionnaire was an efficient instrument in the study of the effective factors on clinical learning as viewed by nursing students since it involves 41 expressions and properties such as instrument design based

  20. Developing an instrument to measure effective factors on clinical learning

    Directory of Open Access Journals (Sweden)

    IDEH DADGARAN

    2016-07-01

    Full Text Available Introduction: Although nursing students spend a large part of their learning period in the clinical environment, clinical learning has not been perceived by its nature yet. To develop an instrument to measure effective factors on clinical learning in nursing students. Methods: This is a mixed methods study performed in 2 steps. First, the researchers defined “clinical learning” in nursing students through qualitative content analysis and designed items of the questionnaire based on semi-structured individual interviews with nursing students. Then, as the second step, psychometric properties of the questionnaire were evaluated using the face validity, content validity, construct validity, and internal consistency evaluated on 227 students from fourth or higher semesters. All the interviews were recorded and transcribed, and then, they were analyzed using Max Qualitative Data Analysis and all of qualitative data were analyzed using SPSS 14. Results: To do the study, we constructed the preliminary questionnaire containing 102 expressions. After determination of face and content validities by qualitative and quantitative approaches, the expressions of the questionnaire were reduced to 45. To determine the construct validity, exploratory factor analysis was applied. The results indicated that the maximum variance percentage (40.55% was defined by the first 3 factors while the rest of the total variance percentage (59.45% was determined by the other 42 factors. Results of exploratory factor analysis of this questionnaire indicated the presence of 3 instructor-staff, students, and educational related factors. Finally, 41 expressions were kept in 3 factor groups. The α-Cronbach coefficient (0.93 confirmed the high internal consistency of the questionnaire. Conclusion: Results indicated that the prepared questionnaire was an efficient instrument in the study of the effective factors on clinical learning as viewed by nursing students since it

  1. [German version of a validated instrument to measure the quality of life in patients with hypertension].

    Science.gov (United States)

    Chrubasik, C; Himmelberger, D; Kohlmann, T; Chrubasik, S

    2012-08-01

    The aim of this study was to prepare according to standardised criteria a German version of the validated short instrument for the quality of life in patients suffering from hypertension. This instrument is appropriate for clinical trials investigating the effectiveness of antihypertensive treatments. But also in the daily routine this instrument enables one to identify any impairment of life quality due to antihypertensive treatment as early as possible, especially sexual dysfunction, and to react appropriately with treatment adaptations. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  3. Instrumentation for chemical and radiochemical monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Nordmann, F.; Ballard, G.

    2009-01-01

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion

  4. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  5. The Preparation of an Electron Beam Machine 500 keV/10 mA Instrumentation

    International Nuclear Information System (INIS)

    Sudiyanto; Prayitno; Dewita; Bambang-Supardiyono; Widi-Setyawan

    2000-01-01

    The preparation of an Electron Beam Machine 500 keV/10 mA instrumentation by using a Distributed Instrumentation System have been done. The system consisting of industrial interfaces PCL-718 ADC 12 bit, PCLD-889 Mux/Prog Gain Amp PCLD-786 Driver Relay with solid state relays, PCL 745 serial com, DC motor 12-24 V/8.6 A with reduction gear 10:1 and a pair of PC's connected with twisted cable and an isolated amplifier AD-210 equipped with high voltage divider. The operation can be done using animation Pascal program on the remote mode using twisted cable and a pair of RS-485 interfaces, some operation sequences such as switch on/off blower unit, water pump cooling unit, filament voltage, anode voltage and some timer's have already been adapted on the computer program. Non intercepting beam monitoring technique have been discussed in this paper. (author)

  6. An instrumentation for control and measurement of activated mineral samples

    International Nuclear Information System (INIS)

    Skaarup, P.

    1976-01-01

    A description is given of an instrumentation for control of a pneumatic tube system used to transport mineral samples for activation in a reactor and from there to a detector arrangement. A possible content of uranium in the samples can be seen from the radiation measured. The instrumentation includes a PDP-11 computer and a CAMAC crate

  7. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    Directory of Open Access Journals (Sweden)

    Radovanović Slobodan D.

    2015-01-01

    Full Text Available The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. Processing the results of real inclination measurements on the dam 'Đerdap 2' with and without temperature correction showed the significant difference. Statistical analysis of measurement data consisted of performed regression analysis and forming of corresponding series with the expected measurement values depending on environmental conditions. At the end we give a summary conclusion on the instrument, the influence of temperature on the measurement and statistical model.

  8. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  9. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  10. Towards a measurement instrument for determinants of innovations

    NARCIS (Netherlands)

    Fleuren, M.A.H.; Paulussen, T.G.W.M.; van Dommelen, P.; van Buuren, S.

    2014-01-01

    Objective. To develop a short instrument to measure determinants of innovations that may affect its implementation. Design. We pooled the original data from eight empirical studies of the implementation of evidence-based innovations. The studies used a list of 60 potentially relevant determinants

  11. Process Skill Assessment Instrument: Innovation to measure student’s learning result holistically

    Science.gov (United States)

    Azizah, K. N.; Ibrahim, M.; Widodo, W.

    2018-01-01

    Science process skills (SPS) are very important skills for students. However, the fact that SPS is not being main concern in the primary school learning is undeniable. This research aimed to develop a valid, practical, and effective assessment instrument to measure student’s SPS. Assessment instruments comprise of worksheet and test. This development research used one group pre-test post-test design. Data were obtained with validation, observation, and test method to investigate validity, practicality, and the effectivenss of the instruments. Results showed that the validity of assessment instruments is very valid, the reliability is categorized as reliable, student SPS activities have a high percentage, and there is significant improvement on student’s SPS score. It can be concluded that assessment instruments of SPS are valid, practical, and effective to be used to measure student’s SPS result.

  12. Precision and accuracy of blood glucose measurements using three different instruments.

    Science.gov (United States)

    Nowotny, B; Nowotny, P J; Strassburger, K; Roden, M

    2012-02-01

    Assessment of insulin sensitivity by dynamic metabolic tests such as the hyperinsulinemic euglycemic clamp critically relies on the reproducible and fast measurement of blood glucose concentrations. Although various instruments have been developed over the last decades, little is known as to the accuracy and comparability. We therefore compared the best new instrument with the former gold standard instruments to measure glucose concentrations in metabolic tests. Fasting blood samples of 15 diabetic and 10 healthy subjects were collected into sodium-fluoride tubes, spiked with glucose (0, 2.8, 6.9 and 11.1 mmol/l) and measured either as whole blood (range 3.3-26.3 mmol/l) or following centrifugation as plasma (range 3.9-32.0 mmol/l). Plasma samples were analyzed in the YSI-2300 STAT plus (YSI), EKF Biosen C-Line (EKF) and the reference method, Beckman Glucose analyzer-II (BMG), whole blood samples in EKF instruments with YSI as reference method. The average deviation of the EKF from the reference, BMG, was 3.0 ± 3.5% without any concentration-dependent variability. Glucose measurements by YSI were in good agreement with that by BMG (plasma) and EKF (plasma and whole blood) up to concentrations of 13.13 mmol/l (0.5 ± 3.7%), but deviation increased to -6.2 ± 3.8% at higher concentrations. Precision (n = 6) was ±2.2% (YSI), ±3.9% (EKF) and ±5.2% (BMG). The EKF instrument is comparable regarding accuracy and precision to the reference method BMG and can be used in metabolic tests, while the YSI showed a systematic shift at higher glucose concentrations. Based on these results we decided to replace BMG with EKF instrument in metabolic tests. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  13. Measurement of non-invasive X-ray measuring instruments

    International Nuclear Information System (INIS)

    Abe, Shinji

    2013-01-01

    Described are the history, measuring system, characteristics and present state of the instruments in the title (NXMI). NXMI, non-invasive to the inner circuit of X-ray generator, is now essential for the quality control of generator with reference to definitions by International Electrotechnical Commission (IEC) and Japan Industrial Standards (JIS). Non-invasive measurement of the generator's tube voltage in 1944 is the first report where the absorption difference of Cu plates with different thickness is used. At present, NXMI, being compact, can measure multiple properties of X-ray generated, such as the tube voltage (TV), current (TC), imaging time, dose/dose rate, total filtration, half value layer, and TV/output waveform. TV is measurable by the penetration difference of X-rays through Cu filters of different thickness, which is a linear function of TV; TC, with the clamp-type ammeter placed at the generator high voltage cable; and the dose, with the semiconductor detector. Characteristics can be evaluable within the upper trigger level of the detector (radiation time, dose measured here), in which measured are the irradiation (imaging) time, delay time, and TV (within the window width). Authors' practical quality control of the generator is conducted through calibration for which data are obtained by invasive (direct) precise measurement of TV, TC, imaging time and dose with reference to JIS. Periodical calibration and consequent quality control of NXMI are essential for the maintenance of precision of the generator. (T.T.)

  14. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  15. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  16. An intelligent instrument for measuring the dynamic parameters of groundwater

    International Nuclear Information System (INIS)

    Du Guoping

    2002-01-01

    An intelligent instrument was developed for measuring direction and velocity of the groundwater, permeability coefficient, hydraulic transmitting coefficient, static level, hydraulic gradient and flow direction of each layer. The instrument can be widely applied for detecting seepage of abutment and river bank, exploitation of groundwater, conservation of water and soil, water surging in mine, survey of groundwater resource and environment protection etc

  17. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  18. Clinical tooth preparations and associated measuring methods: a systematic review.

    Science.gov (United States)

    Tiu, Janine; Al-Amleh, Basil; Waddell, J Neil; Duncan, Warwick J

    2015-03-01

    The geometries of tooth preparations are important features that aid in the retention and resistance of cemented complete crowns. The clinically relevant values and the methods used to measure these are not clear. The purpose of this systematic review was to retrieve, organize, and critically appraise studies measuring clinical tooth preparation parameters, specifically the methodology used to measure the preparation geometry. A database search was performed in Scopus, PubMed, and ScienceDirect with an additional hand search on December 5, 2013. The articles were screened for inclusion and exclusion criteria and information regarding the total occlusal convergence (TOC) angle, margin design, and associated measuring methods were extracted. The values and associated measuring methods were tabulated. A total of 1006 publications were initially retrieved. After removing duplicates and filtering by using exclusion and inclusion criteria, 983 articles were excluded. Twenty-three articles reported clinical tooth preparation values. Twenty articles reported the TOC, 4 articles reported margin designs, 4 articles reported margin angles, and 3 articles reported the abutment height of preparations. A variety of methods were used to measure these parameters. TOC values seem to be the most important preparation parameter. Recommended TOC values have increased over the past 4 decades from an unachievable 2- to 5-degree taper to a more realistic 10 to 22 degrees. Recommended values are more likely to be achieved under experimental conditions if crown preparations are performed outside of the mouth. We recommend that a standardized measurement method based on the cross sections of crown preparations and standardized reporting be developed for future studies analyzing preparation geometry. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  20. Digital instrument for reactivity measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S [Institute of Nuclear Research, Warsaw (Poland)

    1979-07-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given.

  1. Micro-computed Tomographic Analysis of Apical Microcracks before and after Root Canal Preparation by Hand, Rotary, and Reciprocating Instruments at Different Working Lengths.

    Science.gov (United States)

    de Oliveira, Bruna Paloma; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes

    2017-07-01

    This study aimed to compare apical microcrack formation after root canal shaping by hand, rotary, and reciprocating files at different working lengths using micro-computed tomographic analysis. Sixty mandibular incisors were randomly divided into 6 experimental groups (n = 10) according to the systems and working lengths used for the root canal preparation: ProTaper Universal for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), HyFlex CM (Coltene-Whaledent, Allstetten, Switzerland), and Reciproc (VDW, Munich, Germany) files working at the apical foramen (AF) and 1 mm short of the AF (AF - 1 mm). The teeth were imaged with micro-computed tomographic scanning at an isotropic resolution of 14 μm before and after root canal preparation, and the cross-sectional images generated were assessed to detect microcracks in the apical portion of the roots. Overall, 17 (28.3%) specimens presented microcracks before instrumentation. Apical microcracks were present in 1 (ProTaper Universal for Hand Use), 3 (Hyflex CM), and 2 (Reciproc) specimens when the instrumentation terminated at the AF. When instrumentation was terminated at AF - 1 mm, apical microcracks were detected in 3 (ProTaper Universal for Hand Use) and 4 (Hyflex CM and Reciproc) specimens. All these microcracks detected after root canal preparation were already present before instrumentation, and no new apical microcrack was visualized. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal shaping with ProTaper Universal for Hand Use, HyFlex CM, and Reciproc systems, regardless of the working length, did not produce apical microcracks. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  3. 27 CFR 19.277 - Measuring devices and proofing instruments.

    Science.gov (United States)

    2010-04-01

    ... proof or volume. (b) Instruments. Hydrometers and thermometers used by proprietors to gauge spirits... made in conjunction with the volumetric measurement of spirits by meter. If a meter does not have a...

  4. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  5. A new approach to preparation of standard LEDs for luminous intensity and flux measurement of LEDs

    Science.gov (United States)

    Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2006-09-01

    This work presents an alternative approach for preparing photometric standard LEDs, which is based on a novel functional seasoning method. The main idea of our seasoning method is simultaneously monitoring the light output and the junction voltage to obtain quantitative information on the temperature dependence and the aging effect of the LED emission. We suggested a general model describing the seasoning process by taking junction temperature variation and aging effect into account and implemented a fully automated seasoning facility, which is capable of seasoning 12 LEDs at the same time. By independent measurements of the temperature dependence, we confirmed the discrepancy of the theoretical model to be less than 0.5 % and evaluate the uncertainty contribution of the functional seasoning to be less than 0.5 % for all the seasoned samples. To demonstrate assigning the reference value to a standard LED, the CIE averaged LED intensity (ALI) of the seasoned LEDs was measured with a spectroradiometer-based instrument and the measurement uncertainty was analyzed. The expanded uncertainty of the standard LED prepared by the new approach amounts to be 4 % ~ 5 % (k=2) depending on color without correction of spectral stray light in the spectroradiometer.

  6. An in vitro assessment of the physical properties of novel Hyflex nickel-titanium rotary instruments.

    Science.gov (United States)

    Peters, O A; Gluskin, A K; Weiss, R A; Han, J T

    2012-11-01

    To determine several properties including torsional and fatigue limits, as well as torque during canal preparation, of Hyflex, a rotary instrument manufactured from so-called controlled memory nickel-titanium alloy. The instruments were tested in vitro using a special torque bench that permits both stationary torque tests according to ISO3630-1 and fatigue limit determination, as well as measurement of torque (in Ncm) and apical force (in N) during canal preparation. Fatigue limit (in numbers of cycles to failure) was determined in a 90°, 5 mm radius block-and-rod assembly. Simulated canals in plastic blocks were prepared using both a manufacturer-recommended single-length technique as well as a generic crown-down approach. anova with Bonferroni post hoc procedures was used for statistical analysis. Torque at failure ranged from 0.47 to 1.38 Ncm, with significant differences between instrument sizes (P instruments size 20, .04 taper and size 25, .08 taper, respectively. Torque during canal preparation was significantly higher for small instruments used in the single-length technique but lower for the size 40, .04 taper, compared to a crown-down approach. No instrument fractured; 82% of the instruments used were plastically deformed; however, only 37% of these remained deformed after a sterilization cycle. Hyflex rotary instruments are bendable and flexible and have similar torsional resistance compared to instruments made of conventional NiTi. Fatigue resistance is much higher, and torque during preparation is less, compared to other rotary instruments tested previously under similar conditions. © 2012 International Endodontic Journal.

  7. Instrumentation for two-phase flow measurements in code verification experiments

    International Nuclear Information System (INIS)

    Fincke, J.R.; Anderson, J.L.; Arave, A.E.; Deason, V.A.; Lassahn, G.D.; Goodrich, L.D.; Colson, J.B.; Fickas, E.T.

    1981-01-01

    The development of instrumentation and techniques for the measurement of mass flow rate in two-phase flows conducted at the Idaho National Engineering Laboratory during the past year is briefly described. Instruments discussed are the modular drag-disc turbine transducer, the gamma densitometers, the ultrasonic densitometer, Pitot tubes, and full-flow drag screens. Steady state air-water and transient steam-water data are presented

  8. Models and error analyses of measuring instruments in accountability systems in safeguards control

    International Nuclear Information System (INIS)

    Dattatreya, E.S.

    1977-05-01

    Essentially three types of measuring instruments are used in plutonium accountability systems: (1) the bubblers, for measuring the total volume of liquid in the holding tanks, (2) coulometers, titration apparatus and calorimeters, for measuring the concentration of plutonium; and (3) spectrometers, for measuring isotopic composition. These three classes of instruments are modeled and analyzed. Finally, the uncertainty in the estimation of total plutonium in the holding tank is determined

  9. Toward Development of a Generalized Instrument to Measure Andragogy

    Science.gov (United States)

    Holton, Elwood F., III; Wilson, Lynda Swanson; Bates, Reid A.

    2009-01-01

    Andragogy has emerged as one of the dominant frameworks for teaching adults during the past 40 years. A major and glaring gap in andragogy research is the lack of a measurement instrument that adequately measures both andragogical principles and process design elements. As a result, no definitive empirical test of the theory has been possible. The…

  10. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  11. The Measurement of Sexual Harassment: Comparison of the Results of Three Different Instruments

    NARCIS (Netherlands)

    Junger, Marianne

    1990-01-01

    This study examines the results of three instruments developed to measure sexual harassment. Two instruments were used in the Dutch national victimization survey: an oral interview and a written questionnaire. Three issues will be discussed: (1) do both instruments produce the same victimization

  12. A ball diameter-measuring instrument in a gauge block interferometer

    NARCIS (Netherlands)

    Kotte, G.J.W.L.; Haitjema, H.; Decker, J.E.; Brown, N.

    1998-01-01

    An instrument for the measurement of ball diameters in the 0.5-20 mm range in a gauge block interferometer is realized. The measurement principle is that the ball is positioned between an optical flat and a calibrated gauge block. The total length is measured in a gauge block relative to the optical

  13. Developing a TPACK measurement instrument for 21st century pre-service teachers

    Directory of Open Access Journals (Sweden)

    Teemu Valtonen

    2015-11-01

    Full Text Available  Future skills, so-called 21st century skills, emphasise collaboration, creativity, critical thinking, problem-solving and especially ICT skills (Voogt & Roblin, 2012. Teachers have to be able to use various pedagogical approaches and ICT in order to support the development of their students’ 21st century skills (Voogt & Roblin, 2012. These skills, particularly ICT skills, pose challenges for teachers and teacher education. This paper focuses on developing an instrument for measuring pre-service teachers’ knowledge related to ICT in the context of 21st century skills.Technological Pedagogical Content Knowledge (TPACK; Mishra & Kohler, 2006 was used as a theoretical framework for designing the instrument. While the TPACK framework is actively used, the instruments used to measure it have proven challenging. This paper outlines the results of the development process of the TPACK-21 instrument. A new assessment instrument was compiled and tested on pre-service teachers in Study1 (N=94. Based on these results, the instrument was further developed and tested in Study2 (N=267. The data of both studies were analysed using multiple quantitative methods in order to evaluate the psychometric properties of the instruments. The results provide insight into the challenges of the development process itself and also suggest new solutions to overcome these difficulties.

  14. Instruments to measure anxiety in children, adolescents, and young adults with cancer: a systematic review.

    Science.gov (United States)

    Lazor, Tanya; Tigelaar, Leonie; Pole, Jason D; De Souza, Claire; Tomlinson, Deborah; Sung, Lillian

    2017-09-01

    The primary objective was to describe anxiety measurement instruments used in children and adolescents with cancer or undergoing hematopoietic stem cell transplantation (HSCT) and summarize their content and psychometric properties. We conducted searches of MEDLINE, Embase, PsycINFO, HAPI, and CINAHL. We included studies that used at least one instrument to measure anxiety quantitatively in children or adolescents with cancer or undergoing HSCT. Two authors independently identified studies and abstracted study demographics and instrument characteristics. Twenty-seven instruments, 14 multi-item and 13 single-item, were used between 78 studies. The most commonly used instrument was the State-Trait Anxiety Inventory in 46 studies. Three multi-item instruments (Children's Manifest Anxiety Scale-Mandarin version, PROMIS Pediatric Anxiety Short Form, and the State-Trait Anxiety Inventory) and two single-item instruments (Faces Pain Scale-Revised and 10-cm Visual Analogue Scale, both adapted for anxiety) were found to be reliable and valid in children with cancer. We identified 14 different multi-item and 13 different single-item anxiety measurement instruments that have been used in pediatric cancer or HSCT. Only three multi-item and two single-item instruments were identified as being reliable and valid among pediatric cancer or HSCT patients and would therefore be appropriate to measure anxiety in this population.

  15. Core outcome measurement instruments for clinical trials in nonspecific low back pain

    Science.gov (United States)

    Chiarotto, Alessandro; Boers, Maarten; Deyo, Richard A.; Buchbinder, Rachelle; Corbin, Terry P.; Costa, Leonardo O.P.; Foster, Nadine E.; Grotle, Margreth; Koes, Bart W.; Kovacs, Francisco M.; Lin, C.-W. Christine; Maher, Chris G.; Pearson, Adam M.; Peul, Wilco C.; Schoene, Mark L.; Turk, Dennis C.; van Tulder, Maurits W.; Terwee, Caroline B.; Ostelo, Raymond W.

    2018-01-01

    Abstract To standardize outcome reporting in clinical trials of patients with nonspecific low back pain, an international multidisciplinary panel recommended physical functioning, pain intensity, and health-related quality of life (HRQoL) as core outcome domains. Given the lack of a consensus on measurement instruments for these 3 domains in patients with low back pain, this study aimed to generate such consensus. The measurement properties of 17 patient-reported outcome measures for physical functioning, 3 for pain intensity, and 5 for HRQoL were appraised in 3 systematic reviews following the COSMIN methodology. Researchers, clinicians, and patients (n = 207) were invited in a 2-round Delphi survey to generate consensus (≥67% agreement among participants) on which instruments to endorse. Response rates were 44% and 41%, respectively. In round 1, consensus was achieved on the Oswestry Disability Index version 2.1a for physical functioning (78% agreement) and the Numeric Rating Scale (NRS) for pain intensity (75% agreement). No consensus was achieved on any HRQoL instrument, although the Short Form 12 (SF12) approached the consensus threshold (64% agreement). In round 2, a consensus was reached on an NRS version with a 1-week recall period (96% agreement). Various participants requested 1 free-to-use instrument per domain. Considering all issues together, recommendations on core instruments were formulated: Oswestry Disability Index version 2.1a or 24-item Roland-Morris Disability Questionnaire for physical functioning, NRS for pain intensity, and SF12 or 10-item PROMIS Global Health form for HRQoL. Further studies need to fill the evidence gaps on the measurement properties of these and other instruments. PMID:29194127

  16. A pilot study to measure levels of selected elements in Thai foods by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.; Busamongkol, A.; Permnamtip, V.; Judprasong, K.; Chatt, A.

    2012-01-01

    A pilot study was carried out to evaluate the scope of instrumental neutron activation analysis (INAA) for measuring the levels of selected elements in a few commonly consumed food items in Thailand. Several varieties of rice, beans, aquatic food items, vegetables and soybean products were bought from major distribution centers in Bangkok, Thailand. Samples were prepared according to the protocols prescribed by the nutritionist for food compositional analysis. Levels of As, Br, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, and Zn were measured by INAA using the irradiation and counting facilities available at the Thai Research Reactor with the maximum in-core thermal neutron flux of 3 x 10 13 cm -2 s -1 of the Thailand Institute of Nuclear Technology in Bangkok. Selenium was determined by cyclic INAA using the Dalhousie University SLOWPOKE-2 Reactor facilities in Halifax, Canada at a thermal neutron flux of 2.5 x 10 11 cm -2 s -1 . Both cooked and uncooked foods were analyzed. The elemental composition of food products was found to depend significantly on the raw material as well as the preparation technique. (author)

  17. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  18. A measurement instrument for bone mineral content of adult and children

    International Nuclear Information System (INIS)

    Liu Shaofang

    1996-01-01

    The γ radiation source was used in bone mineral content measurement analysis of adult and children and a new instrument is developed successfully. It's precision is +2%. The advantage of this instrument is light, cheap and reliable. It can be used widely in medical science and clinic for diagnosis on certain diseases and research work

  19. Inflammatory bowel disease-specific health-related quality of life instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin

    2017-09-15

    This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.

  20. Quality appraisal of generic self-reported instruments measuring health-related productivity changes: a systematic review

    Science.gov (United States)

    2014-01-01

    Background Health impairments can result in disability and changed work productivity imposing considerable costs for the employee, employer and society as a whole. A large number of instruments exist to measure health-related productivity changes; however their methodological quality remains unclear. This systematic review critically appraised the measurement properties in generic self-reported instruments that measure health-related productivity changes to recommend appropriate instruments for use in occupational and economic health practice. Methods PubMed, PsycINFO, Econlit and Embase were systematically searched for studies whereof: (i) instruments measured health-related productivity changes; (ii) the aim was to evaluate instrument measurement properties; (iii) instruments were generic; (iv) ratings were self-reported; (v) full-texts were available. Next, methodological quality appraisal was based on COSMIN elements: (i) internal consistency; (ii) reliability; (iii) measurement error; (iv) content validity; (v) structural validity; (vi) hypotheses testing; (vii) cross-cultural validity; (viii) criterion validity; and (ix) responsiveness. Recommendations are based on evidence syntheses. Results This review included 25 articles assessing the reliability, validity and responsiveness of 15 different generic self-reported instruments measuring health-related productivity changes. Most studies evaluated criterion validity, none evaluated cross-cultural validity and information on measurement error is lacking. The Work Limitation Questionnaire (WLQ) was most frequently evaluated with moderate respectively strong positive evidence for content and structural validity and negative evidence for reliability, hypothesis testing and responsiveness. Less frequently evaluated, the Stanford Presenteeism Scale (SPS) showed strong positive evidence for internal consistency and structural validity, and moderate positive evidence for hypotheses testing and criterion validity. The

  1. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  2. Overview: Field instrumentation - A Mikado's dream

    International Nuclear Information System (INIS)

    Spittler, T.M.

    1992-01-01

    The Mikado of Gilbert ampersand Sullivan fame held out as an open-quotes object all sublimeclose quotes which he hoped to open-quotes achieve in timeclose quotes the fitting of the punishment to the crime. Like that potentate, I too have long held the hope of finding instrumentation which is ideally suited to measurement of environmental contaminants in the field. Today, at least one of us has had that dream fulfilled. For years, those of us interested in field analysis have had to apply time consuming and cumbersome methods to relatively simple and often short-term environmental measurement problems. Meanwhile, we watched the literature and perused the product blurbs in hopes of finding the ideal tools for on-site, real time analysis. Of course, that search will always go forward as better instruments are developed. Today we can finally point to many pieces of equipment that are on the market and which provide high quality data in real time for a number of the most important environmental contaminants. Furthermore, the sensitivity of some of these field instruments exceeds that of conventional lab instrumentation. Coupled with innovative techniques for sample preparation and proper quality control, field instrumentation can often go a long way to solving problems in rapid detection, quantitation, and positive identification

  3. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    OpenAIRE

    Radovanović Slobodan D.; Brajović Ljiljana M.; Pavić Maja L.; Đurić Srđan S.; Ranđelović Sanja D.; Milivojević Vladimir J.

    2015-01-01

    The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. P...

  4. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    International Nuclear Information System (INIS)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug

  5. Post endodontic pain following single-visit root canal preparation with rotary vs reciprocating instruments: a meta-analysis of randomized clinical trials.

    Science.gov (United States)

    Hou, Xiao-Mei; Su, Zheng; Hou, Ben-Xiang

    2017-05-25

    In endodontic therapy, continuous rotary instrumentation reduced debris compared to reciprocal instrumentation, which might affect the incidence of post-endodontic pain (PP). The aim of our study was to assess whether PP incidence and levels were influenced by the choice of rotary or reciprocal instruments. In this meta-analysis the Pubmed and EM databases were searched for prospective clinical randomized trials published before April 20, 2016, using combinations of the keywords: root canal preparation/instrumentation/treatment/therapy; post-operative/endodontic pain; reciprocal and rotary instruments. Three studies were included, involving a total of 1,317 patients, 659 treated with reciprocating instruments and 658 treated with rotary instruments. PP was reported in 139 patients in the reciprocating group and 172 in the rotary group. The PP incidence odds ratio was 1.27 with 95% confidence interval (CI) (0.25, 6.52) favoring rotary instruments. The mild, moderate and severe PP levels odds ratios were 0.31 (0.11, 0.84), 2.24 (0.66, 7.59) and 11.71 (0.63, 218.15), respectively. No evidence of publication bias was found. Rotary instrument choice in endodontic therapy is associated with a lower incidence of PP than reciprocating instruments, while reciprocating instruments are associated with less mild PP incidence.

  6. Complex Susceptibility Measurement Using Multi-frequency Slingram EMI Instrument

    OpenAIRE

    Simon , François Xavier; Tabbagh , Alain; Thiesson , Julien; Donati , J.C.; Sarris , A.

    2014-01-01

    International audience; Complex magnetic susceptibility is a well-known property both theoretically and experimentally. To achieve this measurement, different ways have been tested, like TDEM or multi-frequential measurement on soil sample. In this study we carry out the measurements by the use of a multi-frequential EMI Slingram instrument to collect data quickly and in-situ. The use of multi-frequency data is also a way to correct effects of the conductivity on the in-phase component and ef...

  7. A New Instrument for the Measurement of the Waveform in X-Ray Units

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, Francisco J.; Martinez-Hernandez, Marco A.

    2004-01-01

    The experience gained in the quality control in X-ray units used in Radiology has demonstrated that the measurement of the waveform of the X-ray beam, measured as the response of a radiation detector is very helpful to decide if the unit fulfills the quality control requirements and also has been useful to define some kind of faults in the unit. Several instruments are available on the market to make this measurement but they need in general a storage or digital oscilloscope to see the waveform. In this work a stand alone new instrument is proposed in which the waveform is seen in a Liquid Crystal Display (LCD). The instrument is based in the X-ray response of a photo diode. The analog response depending on time is converted to digital numbers that are stored sequentially in a memory. The stored information is recovered with a microcontroller and reconstructed in the screen of the LCD. The instrument is able to measure in the mammographic range from 22 kV to 35 kV and in the conventional range from 40 kV to 120 kV in the different settings of current encountered on practical applications, the time range for the measurement of the X-ray shot is from 100 ms to 3 s. The instrument can be useful in quality control practices and in the verification and maintenance of X-ray units

  8. The Development of a Tactical-Level Full Range Leadership Measurement Instrument

    Science.gov (United States)

    2010-03-01

    full range leadership theory has become established as the predominant and most widely researched theory on leadership . The most commonly used survey...instrument to assess full range leadership theory is the Multifactor Leadership Questionnaire, originally developed by Bass in 1985. Although much...existing literature to develop a new full range leadership theory measurement instrument that effectively targets low- to mid-level supervisors, or

  9. Comparison of the Effect of Canal Preparation by Step Back Technique Using Hand Instruments and Gates Glidden Drills with ProTaper Universal Rotary System on the Root Resistance to Vertical Fracture

    Directory of Open Access Journals (Sweden)

    A Abbaszadegan

    2013-06-01

    Full Text Available Introduction: Cleaning and shaping of the root canal system with an efficient and safe technique are the major goals of root canal treatment. The aim of this study was to compare the conventional root canal preparation technique by hand instruments and Gates Glidden drills with ProTaper Universal Rotary system on the root susceptibility to vertical fracture. Methods: Thirty extracted human mandibular premolars were randomly assigned to two groups. In group I, apical preparation was performed with k-files up to #40 utilizing step back technique and coronal flaring was done with Gates Glidden drills. In group II, ProTaper Universal Rotary instruments were used up to the file F4. All teeth were obturated with lateral compaction technique using gutta-percha and AH26 sealer. A simulated periodontal ligament was fabricated, and the teeth were mounted. A stainless steel finger spreader #35 was mounted in an Instron testing machine and the necessary load to cause a root fracture was inserted and recorded. The obtained data were analyzed statistically using T-test. Results: The force required to fracture was significantly lower for the roots prepared by ProTaper instruments in comparison with the specimens prepared by hand instruments and Gates Glidden drills (P< 0.001. Conclusion: Canal preparation with ProTaper rotary instruments can make the roots more susceptible to vertical fracture than traditional instrumentation with k-files and Gates Glidden drills.

  10. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  11. "Dentinal microcracks after root canal preparation" a comparative evaluation with hand, rotary and reciprocating instrumentation.

    Science.gov (United States)

    Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E

    2014-12-01

    The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (pProtaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.

  12. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  13. Measurement of proton momentum distributions using a direct geometry instrument

    International Nuclear Information System (INIS)

    Senesi, R; Andreani, C; Kolesnikov, A I

    2014-01-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy E i = 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO

  14. Scanning Electron Microscopic Evaluation of Residual Smear Layer Following Preparation of Curved Root Canals Using Hand Instrumentation or Two Engine-Driven Systems.

    Science.gov (United States)

    Khademi, Abbasali; Saatchi, Masoud; Shokouhi, Mohammad Mehdi; Baghaei, Badri

    2015-01-01

    In this experimental study, the amount of smear layer (SL) remnants in curved root canals after chemomechanical instrumentation with two engine-driven systems or hand instrumentation was evaluated. Forty-eight mesiobuccal roots of mandibular first molars with curvatures ranging between 25 and 35 degrees (according to Schneider's method) were divided into three groups (n=16) which were prepared by either the ProTaper Universal file series, Reciproc single file system or hand instrumentation. The canals were intermittently irrigated with 5.25% NaOCl and 17% (ethylenediaminetetraacetic acid) EDTA, followed by distilled water as the final rinse. The roots were split longitudinally and the apical third of the specimens were evaluated under 2500× magnification with a scanning electron microscope (SEM). The mean scores of the SL were calculated and analyzed using the non-parametric Kruskal-Wallis and Mann-Whitney U tests. The mean scores of the SL were 2.00±0.73, 1.94±0.68 and 1.44±0.63 µm for the ProTaper Universal, Reciproc and hand instrumentation, respectively. Mean score of SL was significantly less in the hand instrumentation group than the ProTaper (P=0.027) and Reciproc (P=0.035) groups. The difference between the two engine-driven systems, however, was not significant (P=0.803). The amount of smear layer in the apical third of curved root canals prepared with both engine-driven systems was similar and greater than the hand instrumentation technique. Complete cleanliness was not attained.

  15. Validating an instrument for measuring brand equity of CSR driven organizations in Malaysia

    Directory of Open Access Journals (Sweden)

    Singh Dara Singh Karpal

    2017-06-01

    Full Text Available The objective of this study is to develop and propose a valid and reliable instrument to measure brand equity of CSR driven organizations in Malaysia. An instrument to measure brand equity was constructed with adaptations from two key sources, namely Yew Leh and Lee (2011 and Yoo and Donthu (2001. As such the study only focuses on the development and validation of an instrument to measure brand equity of CSR driven organizations. The usable sample population included 909 respondents from 12 states of West Malaysia which were selected using a quota sampling plan. Confirmatory factor analysis (CFA and reliability analysis were carried out to test and validate the proposed brand equity instrument containing four components (brand awareness, brand association, perceived quality and brand loyalty with a total of 13 items. Results from the CFA and reliability analysis indicated that all the items representing the four components were valid and can be used to measure the brand equity of organizations that are practicing CSR. The study tried to set an empirical basis for brand equity and CSR related research which could be used by future researchers in different industries and geographical locations. The study also implies the need for organizations to assess the success of their CSR efforts through the use of the proposed instrument in order to gauge whether all their CSR efforts translate to improved brand equity.

  16. A digital instrument for reactivity measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1979-01-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given. (author)

  17. Measurement of shared decision making - a review of instruments

    NARCIS (Netherlands)

    Scholl, I.; Koelewijn-van Loon, M.; Sepucha, K.; Elwyn, G.; Legare, F.; Harter, M.; Dirmaier, J.

    2011-01-01

    The last years have seen a clear move towards shared decision making (SDM) and increased patient involvement in many countries. However, as the field of SDM research is still relatively young, new instruments for the measurement of (shared) decision making (process, outcome and surrounding elements)

  18. A review of instruments developed to measure food neophobia

    DEFF Research Database (Denmark)

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-01-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measur...

  19. Measuring stakeholder participation in evaluation: an empirical validation of the Participatory Evaluation Measurement Instrument (PEMI).

    Science.gov (United States)

    Daigneault, Pierre-Marc; Jacob, Steve; Tremblay, Joël

    2012-08-01

    Stakeholder participation is an important trend in the field of program evaluation. Although a few measurement instruments have been proposed, they either have not been empirically validated or do not cover the full content of the concept. This study consists of a first empirical validation of a measurement instrument that fully covers the content of participation, namely the Participatory Evaluation Measurement Instrument (PEMI). It specifically examines (1) the intercoder reliability of scores derived by two research assistants on published evaluation cases; (2) the convergence between the scores of coders and those of key respondents (i.e., authors); and (3) the convergence between the authors' scores on the PEMI and the Evaluation Involvement Scale (EIS). A purposive sample of 40 cases drawn from the evaluation literature was used to assess reliability. One author per case in this sample was then invited to participate in a survey; 25 fully usable questionnaires were received. Stakeholder participation was measured on nominal and ordinal scales. Cohen's κ, the intraclass correlation coefficient, and Spearman's ρ were used to assess reliability and convergence. Reliability results ranged from fair to excellent. Convergence between coders' and authors' scores ranged from poor to good. Scores derived from the PEMI and the EIS were moderately associated. Evidence from this study is strong in the case of intercoder reliability and ranges from weak to strong in the case of convergent validation. Globally, this suggests that the PEMI can produce scores that are both reliable and valid.

  20. Instrumented measurements on radioactive waste disposal containers during experimental drop testing - 59142

    International Nuclear Information System (INIS)

    Quercetti, Thomas; Musolff, Andre; Mueller, Karsten

    2012-01-01

    In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing. (authors)

  1. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  2. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  3. Cone-beam Computed Tomographic Assessment of Canal Centering Ability and Transportation after Preparation with Twisted File and Bio RaCe Instrumentation.

    Directory of Open Access Journals (Sweden)

    Kiamars Honardar

    2014-08-01

    Full Text Available Use of rotary Nickel-Titanium (NiTi instruments for endodontic preparation has introduced a new era in endodontic practice, but this issue has undergone dramatic modifications in order to achieve improved shaping abilities. Cone-beam computed tomography (CBCT has made it possible to accurately evaluate geometrical changes following canal preparation. This study was carried out to compare canal centering ability and transportation of Twisted File and BioRaCe rotary systems by means of cone-beam computed tomography.Thirty root canals from freshly extracted mandibular and maxillary teeth were selected. Teeth were mounted and scanned before and after preparation by CBCT at different apical levels. Specimens were divided into 2 groups of 15. In the first group Twisted File and in the second, BioRaCe was used for canal preparation. Canal transportation and centering ability after preparation were assessed by NNT Viewer and Photoshop CS4 software. Statistical analysis was performed using t-test and two-way ANOVA.All samples showed deviations from the original axes of the canals. No significant differences were detected between the two rotary NiTi instruments for canal centering ability in all sections. Regarding canal transportation however, a significant difference was seen in the BioRaCe group at 7.5mm from the apex.Under the conditions of this in vitro study, Twisted File and BioRaCe rotary NiTi files retained original canal geometry.

  4. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    International Nuclear Information System (INIS)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a 241 Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long term storage

  5. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review.

    Science.gov (United States)

    Lima, Elaine; Teixeira-Salmela, Luci F; Simões, Luan; Guerra, Ana C C; Lemos, Andrea

    2016-03-15

    While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  6. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Elaine Lima

    2016-01-01

    Full Text Available Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  7. DESIGN AND TEST OF AN INSTRUMENT FOR MEASURING MICROTHERMAL SEEING ON THE MAGDALENA RIDGE

    International Nuclear Information System (INIS)

    Jorgensen, A. M.; Klinglesmith, D. A.; Speights, J.; Clements, A.; Patel, J.

    2009-01-01

    We have constructed and operated an automated instrument for measuring ground-level microthermal seeing at the Magdalena Ridge Observatory (MRO). The MRO is located at an altitude of 10500' in the Cibola National Forest in New Mexico, USA. It is the planned site for the MRO Optical Interferometer (MROI) planned for up to 10 collecting elements, each with a diameter of 1.4 m, and baselines eventually up to approximately 400 m. As part of the preparation for construction we deployed a system to characterize the ground-level seeing across the observatory site. The instrument is built largely of off-the-shelf components, with only the sensor head and power supply requiring electronic board assembly. Even in those cases the board architecture is very simple. The first proof-of-concept system was deployed for several weeks in the autumn of 2004, and has since undergone several iterations. The latest configuration operates entirely off batteries, incorporates wireless data acquisition, and is thus able to operate in an area with no shelter, power, or communications. In this paper we present the design of the instrument, and show initial data. The microthermal tower has four sensor pairs at heights from 0.8 to 4.41 m, significantly lower than other microthermal experiments, because of the need to characterize the seeing near the ground. We find significant variation in the contribution of this range of heights to the seeing, contributing up to 0.''3 of the seeing at some times and only 0.''02 at other times. The individual sensor power spectra have a slope in the range of 1.4--1.5, which is lower than the 1.67 slope predicted by Kolmogorov turbulence theory. We measure the well known effect of improved seeing immediately around sunset. While we find significant variation in the microthermal seeing, we did not find a pattern of corresponding variations in weather conditions, suggesting that a complicated set of factors control microthermal turbulence.

  8. Design and Test of an Instrument for Measuring Microthermal Seeing on the Magdalena Ridge

    Science.gov (United States)

    Jorgensen, A. M.; Klinglesmith, D. A., III; Speights, J.; Clements, A.; Patel, J.

    2009-05-01

    We have constructed and operated an automated instrument for measuring ground-level microthermal seeing at the Magdalena Ridge Observatory (MRO). The MRO is located at an altitude of 10500' in the Cibola National Forest in New Mexico, USA. It is the planned site for the MRO Optical Interferometer (MROI) planned for up to 10 collecting elements, each with a diameter of 1.4 m, and baselines eventually up to approximately 400 m. As part of the preparation for construction we deployed a system to characterize the ground-level seeing across the observatory site. The instrument is built largely of off-the-shelf components, with only the sensor head and power supply requiring electronic board assembly. Even in those cases the board architecture is very simple. The first proof-of-concept system was deployed for several weeks in the autumn of 2004, and has since undergone several iterations. The latest configuration operates entirely off batteries, incorporates wireless data acquisition, and is thus able to operate in an area with no shelter, power, or communications. In this paper we present the design of the instrument, and show initial data. The microthermal tower has four sensor pairs at heights from 0.8 to 4.41 m, significantly lower than other microthermal experiments, because of the need to characterize the seeing near the ground. We find significant variation in the contribution of this range of heights to the seeing, contributing up to 0farcs3 of the seeing at some times and only 0farcs02 at other times. The individual sensor power spectra have a slope in the range of 1.4--1.5, which is lower than the 1.67 slope predicted by Kolmogorov turbulence theory. We measure the well known effect of improved seeing immediately around sunset. While we find significant variation in the microthermal seeing, we did not find a pattern of corresponding variations in weather conditions, suggesting that a complicated set of factors control microthermal turbulence.

  9. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  10. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  11. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  12. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  13. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    Science.gov (United States)

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  14. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    Science.gov (United States)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  15. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  16. The Development, Validity, and Reliability of a Psychometric Instrument Measuring Competencies in Student Affairs

    Science.gov (United States)

    Sriram, Rishi

    2014-01-01

    The study of competencies in student affairs began more than 4 decades ago, but no instrument currently exists to measure competencies broadly. This study builds upon previous research by developing an instrument to measure student affairs competencies. Results not only validate the competencies espoused by NASPA and ACPA, but also suggest adding…

  17. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths

    NARCIS (Netherlands)

    Liu, R.; Kaiwar, A.; Shemesh, H.; Wesselink, P.R.; Hou, B.; Wu, M.K.

    2013-01-01

    Introduction The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Methods Two hundred forty mandibular incisors were mounted in resin blocks with simulated

  18. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth.

    Science.gov (United States)

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg

    2017-09-01

    Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (pProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary

  19. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Teixeira Ribeiro Vidigal

    2012-06-01

    Full Text Available It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (% and were evaluated using the texture profile analysis (TPA and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA. Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

  20. Reliability of Instruments Measuring At-Risk and Problem Gambling Among Young Individuals

    DEFF Research Database (Denmark)

    Edgren, Robert; Castrén, Sari; Mäkelä, Marjukka

    2016-01-01

    This review aims to clarify which instruments measuring at-risk and problem gambling (ARPG) among youth are reliable and valid in light of reported estimates of internal consistency, classification accuracy, and psychometric properties. A systematic search was conducted in PubMed, Medline, and Psyc......Info covering the years 2009–2015. In total, 50 original research articles fulfilled the inclusion criteria: target age under 29 years, using an instrument designed for youth, and reporting a reliability estimate. Articles were evaluated with the revised Quality Assessment of Diagnostic Accuracy Studies tool....... Reliability estimates were reported for five ARPG instruments. Most studies (66%) evaluated the South Oaks Gambling Screen Revised for Adolescents. The Gambling Addictive Behavior Scale for Adolescents was the only novel instrument. In general, the evaluation of instrument reliability was superficial. Despite...

  1. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  2. Engagement in Games: Developing an Instrument to Measure Consumer Videogame Engagement and Its Validation

    Directory of Open Access Journals (Sweden)

    Amir Zaib Abbasi

    2017-01-01

    Full Text Available The aim of the study is to develop a new instrument to measure engagement in videogame play termed as consumer videogame engagement. The study followed the scale development procedure to develop an instrument to measure the construct of consumer videogame engagement. In this study, we collected the data in two different phases comprising study 1 (n=136 and study 2 (n=270. We employed SPSS 22.0 for exploratory factor analysis using study 1 respondents to explore the factors for consumer videogame engagement and reliability analysis. Results of EFA resulted with six-factor solution. We further used SmartPLS 3.0 software on study 2 respondents to further confirm the six-factor solution as reflective measurement model on the first-order level, and three second-order formative constructs on the second-order or higher-order level as formative measurement model. Results of the reflective measurement model and formative measurement model evidenced that consumer videogame engagement has strong psychometric properties and is a valid instrument to measure engagement in videogame play. Results also confirmed that consumer videogame engagement is a multidimensional construct as well as a reflective-formative construct. The study is unique in its investigation as it develops an instrument to measure engagement in videogame play which comprises the cognitive, affective, and behavioral dimensions.

  3. Systematic Review of Measurement Property Evidence for 8 Financial Management Instruments in Populations With Acquired Cognitive Impairment.

    Science.gov (United States)

    Engel, Lisa; Chui, Adora; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2018-03-07

    To critically appraise the measurement property evidence (ie, psychometric) for 8 observation-based financial management assessment instruments. Seven databases were searched in May 2015. Two reviewers used an independent decision-agreement process to select studies of measurement property evidence relevant to populations with adulthood acquired cognitive impairment, appraise the quality of the evidence, and extract data. Twenty-one articles were selected. This review used the COnsensus-based Standards for the selection of health Measurement Instruments review guidelines and 4-point tool to appraise evidence. After appraising the methodologic quality, the adequacy of results and volume of evidence per instrument were synthesized. Measurement property evidence with high risk of bias was excluded from the synthesis. The volume of measurement property evidence per instrument is low; most instruments had 1 to 3 included studies. Many included studies had poor methodologic quality per measurement property evidence area examined. Six of the 8 instruments reviewed had supporting construct validity/hypothesis-testing evidence of fair methodologic quality. There is a dearth of acceptable quality content validity, reliability, and responsiveness evidence for all 8 instruments. Rehabilitation practitioners assess financial management functions in adults with acquired cognitive impairments. However, there is limited published evidence to support using any of the reviewed instruments. Practitioners should exercise caution when interpreting the results of these instruments. This review highlights the importance of appraising the quality of measurement property evidence before examining the adequacy of the results and synthesizing the evidence. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. An intelligent instrument for measuring exhaust temperature of marine engine

    Science.gov (United States)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  5. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  6. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  7. Measurement equivalence of the food related lifestyle instrument (FRL) in Ireland and Great Britain

    DEFF Research Database (Denmark)

    O´Sullivan, C.; Scholderer, Joachim; Cowan, Cathal

    2005-01-01

    The food-related lifestyle instrument (FRL) is tested for cross-cultural validity. Representative consumer samples from the UK 1998 ( N = 1000) and Ireland 2001 (N = 1024) are compared using multi-sample confirmatory factor analysis with structured means. The results suggest that, in all five FRL...... domains, the measurement characteristics of the survey instrument were completely invariant across the two cultures. No indication was found of any bias. Regarding future applications of the FRL, it can be concluded that the instrument has identical measurement characteristics when applied to consumer...

  8. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  9. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  10. Remote state preparation using positive operator-valued measures

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Siendong, E-mail: sdhuang@mail.ndhu.edu.tw [Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan (China)

    2013-02-04

    We consider the process of remote state preparation using a pure state |ψ〉 with the maximal Schmidt number n. For any given state σ, pure or mixed, a construction of a positive operator-valued measure {M_j}{sub j=0}{sup n} is provided. The classical outcome j=0 indicates the failure of a remote preparation of σ. All other classical outcomes j>0 correspond to unitary transformations of the receiver system such that σ can be prepared. The total probability of successful remote preparation depends on the state σ. Our protocol is a variation of conclusive teleportation and the classical bits required for this protocol are given by log{sub 2}(n+1), which is nearly half that of conclusive teleportation.

  11. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  12. Developing and validating an instrument for measuring mobile computing self-efficacy.

    Science.gov (United States)

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  13. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  14. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    Science.gov (United States)

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current

  15. Proposal for a Universal Test Mirror for Characterization of Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll, Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-01-01

    The development of third generation light sources like the Advanced Light Source (ALS) or BESSY II brought to a focus the need for high performance synchrotron optics with unprecedented tolerances for slope error and micro roughness. Proposed beam lines at Free Electron Lasers (FEL) require optical elements up to a length of one meter, characterized by a residual slope error in the range of 0.1mu rad (rms),and rms values of 0.1 nm for micro roughness. These optical elements must be inspected by highly accurate measuring instruments, providing a measurement uncertainty lower than the specified accuracy of the surface under test. It is essential that metrology devices in use at synchrotron laboratories be precisely characterized and calibrated to achieve this target. In this paper we discuss a proposal for a Universal Test Mirror (UTM) as a realization of a high performance calibration instrument. The instrument would provide an ideal calibration surface to replicate a redundant surface under test of redundant figure. The application of a sophisticated calibration instrument will allow the elimination of the majority of the systematic error from the error budget of an individual measurement of a particular optical element. We present the limitations of existing methods, initial UTM design considerations, possible calibration algorithms, and an estimation of the expected accuracy

  16. Automation by microcomputer of a geodetic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1985-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 μm and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  17. Automation by microprocessor of an geodesic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1984-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 micrometers and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  18. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  19. State of the art in sample preparation for trace element analysis (M1)

    International Nuclear Information System (INIS)

    Barnes, R.M.

    2002-01-01

    Full text: The accelerated capabilities of modern trace element analysis techniques, especially inductively coupled plasma mass spectrometry (ICP-MS), have challenged the sample preparation competence of most laboratories. Exceptional analytical sensitivity, remarkable analysis speed, automated sample presentation, and intelligent sample sequencing of modern spectroscopic instrumentation have lead to demanding requirements for appropriate sample preparation steps needed for ultra trace concentration and speciation measurements. Contamination control, reliable digestion and extraction techniques, presentation of chemical forms, sample matrix management, and intelligent sample processing available today are often inadequate for the most demanding measurements. Some commercial instrumentation provides convenient implementation of well-established contamination control measures, and reagent and container purity are steadily being improved. Direct sample introduction approaches offer alternatives to conventional solution samples, but achieving calibration reliability is difficult. Developing new sample preparation chemistry is especially arduous and rare, yet progress exists in characterizing microwave-assisted reactions. This presentation will describe contemporary targets for modern sample preparation approaches for ultra trace elemental analysis and the likelihood that they can be reasonably achieved. (author)

  20. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.

    Science.gov (United States)

    Rymszewicz, A; O'Sullivan, J J; Bruen, M; Turner, J N; Lawler, D M; Conroy, E; Kelly-Quinn, M

    2017-09-01

    The use of turbidity for indicating environmentally detrimental levels of suspended and colloidal matter in freshwater systems, and for defining acceptable water quality standards in national and European drinking water regulations, is well established. Turbidity is therefore frequently adopted as a surrogate for suspended sediment concentrations (SSC), or as a relative and objective measure of water clarity in monitoring programmes. Through systematic, controlled experimentation, we tested the response of 12 commercially available turbidity sensors, of various designs, to gauge their measurement consistency when benchmarked against pre-prepared sediment suspensions of known SSC. Results showed that despite calibration to a Formazin standard, sensor responses to identical SSC solutions (in the range of 20-1000 mg L -1 ) varied considerably. For a given SSC, up to five-fold differences in recorded turbidity were recorded across the tested instruments. Furthermore, inconsistent measurements were identified across instruments, regardless of whether they operated using backscatter or side-scatter optical principles. While the findings may have implications for compliance with turbidity-based water quality standards, they are less likely to be an issue when turbidity is being used as a surrogate for SSC, provided that instrument use remains constant and that instrument drift is not an issue. In this study, a field comparison of a subset of four study sensors showed that despite very different absolute turbidity readings for a given SSC, well correlated and reliable turbidity - SSC ratings were established (as evidenced by r 2 coefficients from 0.92 to 0.98). This led to reasonably consistent suspended sediment load estimates of between 64.7 and 70.8 tonnes for a rainfall event analysed. This study highlights the potential for issues to arise when interpreting water turbidity datasets that are often assumed to be comparable, in that measurement inconsistency of the

  1. A Practitioner's Instrument for Measuring Secondary Mathematics Teachers' Beliefs Surrounding Learner-Centered Classroom Practice.

    Science.gov (United States)

    Lischka, Alyson E; Garner, Mary

    In this paper we present the development and validation of a Mathematics Teaching Pedagogical and Discourse Beliefs Instrument (MTPDBI), a 20 item partial-credit survey designed and analyzed using Rasch measurement theory. Items on the MTPDBI address beliefs about the nature of mathematics, teaching and learning mathematics, and classroom discourse practices. A Rasch partial credit model (Masters, 1982) was estimated from the pilot study data. Results show that item separation reliability is .96 and person separation reliability is .71. Other analyses indicate the instrument is a viable measure of secondary teachers' beliefs about reform-oriented mathematics teaching and learning. This instrument is proposed as a useful measure of teacher beliefs for those working with pre-service and in-service teacher development.

  2. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  3. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    Science.gov (United States)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among

  4. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  5. Instruments assessing attitudes toward or capability regarding self-management of osteoarthritis: a systematic review of measurement properties.

    Science.gov (United States)

    Eyles, J P; Hunter, D J; Meneses, S R F; Collins, N J; Dobson, F; Lucas, B R; Mills, K

    2017-08-01

    To make a recommendation on the "best" instrument to assess attitudes toward and/or capabilities regarding self-management of osteoarthritis (OA) based on available measurement property evidence. Electronic searches were performed in MEDLINE, EMBASE, CINAHL and PsychINFO (inception to 27 December 2016). Two reviewers independently rated measurement properties using the Consensus-based Standards for the selection of Health Measurement Instruments (COSMIN) 4-point scale. Best evidence synthesis was determined by considering COSMIN ratings for measurement property results and the level of evidence available for each measurement property of each instrument. Eight studies out of 5653 publications met the inclusion criteria, with eight instruments identified for evaluation: Multidimensional Health Locus of Control (MHLC), Perceived Behavioural Control (PBC), Patient Activation Measure (PAM), Educational Needs Assessment (ENAT), Stages of Change Questionnaire in Osteoarthritis (SCQOA), Effective Consumer Scale (EC-17) and Perceived Efficacy in Patient-Physician Interactions five item (PEPPI-5) and ten item scales. Measurement properties assessed for these instruments included internal consistency (k = 8), structural validity (k = 8), test-retest reliability (k = 2), measurement error (k = 1), hypothesis testing (k = 3) and cross-cultural validity (k = 3). No information was available for content validity, responsiveness or minimal important change (MIC)/minimal important difference (MID). The Dutch PEPPI-5 demonstrated the best measurement property evidence; strong evidence for internal consistency and structural validity but limited evidence for reliability and construct validity. Although PEPPI-5 was identified as having the best measurement properties, overall there is a poor level of evidence currently available concerning measurement properties of instruments to assess attitudes toward and/or capabilities regarding osteoarthritis self-management. Further

  6. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  7. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  8. Psychometric testing of an instrument to measure the experience of home.

    Science.gov (United States)

    Molony, Sheila L; McDonald, Deborah Dillon; Palmisano-Mills, Christine

    2007-10-01

    Research related to quality of life in long-term care has been hampered by a paucity of measurement tools sensitive to environmental interventions. The primary aim of this study was to test the psychometric properties of a new instrument, the Experience of Home (EOH) Scale, designed to measure the strength of the experience of meaningful person-environment transaction. The instrument was administered to 200 older adults in diverse dwelling types. Principal components analysis provided support for construct validity, eliciting a three-factor solution accounting for 63.18% of variance in scores. Internal consistency reliability was supported with Cronbach's alpha of .96 for the entire scale. The EOH Scale is a unique research tool to evaluate interventions to improve quality of living in residential environments.

  9. Acoustic emission measurement during instrumented impact tests

    International Nuclear Information System (INIS)

    Crostack, H.A.; Engelhardt, A.H.

    1983-01-01

    Results of instrumented impact tests are discussed. On the one hand the development of the loading process at the hammer tup was recorded by means of a piezoelectric transducer. This instrumentation supplied a better representation of the load versus time than the conventional strain gauges. On the other hand the different types of acoustic emission occurring during a test could be separated. The acoustic emission released at the impact of the hammer onto the specimen is of lower frequency and its spectrum is strongly decreasing with increasing frequency. Plastic deformation also emits signals of lower frequency that are of quasi-continuous character. Both signal types can be discriminated by filtering. As a consequence typical burst signal were received afterwards that can be correlated with crack propagation. Their spectra exhibit considerable portions up to about 1.9 MHz. The development in time of the burst signals points to the kind of crack propagation resp. its sequence of appearance. However, definitive comparison between load and acoustic emission should become possible, only when the disadvantages of the common load measurement can be reduced, e.g. by determining the load directly at the specimen instead of the hammer tup

  10. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  11. How is the instrumental color of meat measured?

    Science.gov (United States)

    Tapp, W N; Yancey, J W S; Apple, J K

    2011-09-01

    Peer-reviewed journal articles (n=1068) were used to gather instrumental color measurement information in meat science research. The majority of articles, published in 10 peer-reviewed journals, originated from European countries (44.8%) and North America (38.5%). The predominant species was pork (44.2%), and most researchers used Minolta (60.0%) over Hunter (31.6%) colorimeters. Much of the research was done using illuminant D65 (32.3%); nevertheless, almost half (48.9%) of the articles did not report the illuminant. Moreover, a majority of the articles did not report aperture size (73.6%) or the number of readings per sample (52.4%). Many factors influence meat color, and a considerable proportion of the peer-reviewed, published research articles failed to include information necessary to replicate and/or interpret instrumental color results; therefore, a standardized set of minimum reportable parameters for meat color evaluation should be identified. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  13. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  14. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The

  15. The "Intentionality Measurement Instrument" [or "IMI"]: A Comprehensive Psychometric Instrument Based upon the Dual Quadrant Scalar Model of Intentionality That Is Designed to Measure Intent, Motive Type, and Disposition

    Science.gov (United States)

    Osler, James Edward, II

    2016-01-01

    The overall aim of this paper is to provide an epistemological rational for the measurement of intentionality. The purpose of this narrative is to identify "Intentionality" as an arena of action in the dispositional learning domain can be measured using an "Intentionality Measurement Instrument" [also referred by the acronym…

  16. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  17. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  18. [Instrument to measure adherence in hypertensive patients: contribution of Item Response Theory].

    Science.gov (United States)

    Rodrigues, Malvina Thaís Pacheco; Moreira, Thereza Maria Magalhaes; Vasconcelos, Alexandre Meira de; Andrade, Dalton Francisco de; Silva, Daniele Braz da; Barbetta, Pedro Alberto

    2013-06-01

    To analyze, by means of "Item Response Theory", an instrument to measure adherence to t treatment for hypertension. Analytical study with 406 hypertensive patients with associated complications seen in primary care in Fortaleza, CE, Northeastern Brazil, 2011 using "Item Response Theory". The stages were: dimensionality test, calibrating the items, processing data and creating a scale, analyzed using the gradual response model. A study of the dimensionality of the instrument was conducted by analyzing the polychoric correlation matrix and factor analysis of complete information. Multilog software was used to calibrate items and estimate the scores. Items relating to drug therapy are the most directly related to adherence while those relating to drug-free therapy need to be reworked because they have less psychometric information and low discrimination. The independence of items, the small number of levels in the scale and low explained variance in the adjustment of the models show the main weaknesses of the instrument analyzed. The "Item Response Theory" proved to be a relevant analysis technique because it evaluated respondents for adherence to treatment for hypertension, the level of difficulty of the items and their ability to discriminate between individuals with different levels of adherence, which generates a greater amount of information. The instrument analyzed is limited in measuring adherence to hypertension treatment, by analyzing the "Item Response Theory" of the item, and needs adjustment. The proper formulation of the items is important in order to accurately measure the desired latent trait.

  19. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    International Nuclear Information System (INIS)

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site

  20. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  1. Development of an instrument for measuring moisture deep into solid materials

    International Nuclear Information System (INIS)

    Westin, R.; Walletun, H.

    1993-01-01

    It is of value in some applications to be able to detect humidity rather deep into a solid material, for example when determining the moisture content in the frame of buildings, in insulation or in biofuels. Common to these measurement problems is that it is difficult to measure moisture in the bulk of a solid, in contrast to the surface layers. In this report is described the principle and the functioning of an instrument to measure moisture at larger depths than other instruments that are available today. It is intended for use primarily on solid materials, not on gases or liquids. Field experience is also reported here. The principle of the measuring technique is nuclear: we have utilized the ability of hydrogen atoms to moderate (or brake) high energy neutrons. If there is hydrogen in the sample, fast neutrons will interact with the hydrogen atoms and one may detect and count low energy, so called thermal neutrons. The intensity of the slow neutron flux is proportional to the water content, if one assumes that hydrogen atoms are water, i.e. moisture

  2. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  3. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  4. IAEA-NPPCI specialists' meeting on new instrumentation of water cooled reactors, Dresden, German Democratic Republic, 23-25 April 1985. Proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The Meeting presentations were divided into 5 sessions devoted to the following topics: instrumentation systems (4 papers), in-core instrumentation (4 papers), two-phase and accident instrumentation (6 papers), neutron and gamma-ray spectrometry (3 papers), coolant flow and noise measurements (6 papers). A separate abstract was prepared for each of these papers

  5. Radiation monitoring and measuring instrument developed by Turkish Atomic Energy Authority

    International Nuclear Information System (INIS)

    Kuecuekarslan, N.; Gueven, A.

    2001-01-01

    Turkish Atomic Energy Authority (TAEA), Cekmece Nuclear Research and Training Center, Nuclear Electronics Department is working on research, development and production of radiation monitoring and measuring instruments in the aims of TAEA to serve our Country. Advanced micro controller technology is used to cover problems of radiation measurement. Control by micro controller enables reliable, stable measurement and display of low level dose rate fields. It makes possible the simultaneous measurement of both dose and dose rate values

  6. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  7. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  8. Development of an instrument to measure organisational culture in community pharmacies in Great Britain.

    Science.gov (United States)

    Marques, Iuri; Willis, Sarah Caroline; Schafheutle, Ellen Ingrid; Hassell, Karen

    2018-04-09

    Purpose Organisational culture (OC) shapes individuals' perceptions and experiences of work. However, no instrument capable of measuring specific aspects of OC in community pharmacy exists. The purpose of this paper is to report the development and validation of an instrument to measure OC in community pharmacy in Great Britain (GB), and conduct a preliminary analysis of data collected using it. Design/methodology/approach Instrument development comprised three stages: Stage I: 12 qualitative interviews and relevant literature informed instrument design; Stage II: 30 cognitive interviews assessed content validity; and Stage III: a cross-sectional survey mailed to 1,000 community pharmacists in GB, with factor analysis for instrument validation. Statistical analysis investigated how community pharmacists perceived OC in their place of work. Findings Factor analysis produced an instrument containing 60 items across five OC dimensions - business and work configuration, social relationships, personal and professional development, skills utilisation, and environment and structures. Internal reliability for the dimensions was high (0.84 to 0.95); item-total correlations were adequate ( r=0.46 to r=0.76). Based on 209 responses, analysis suggests different OCs in community pharmacy, with some community pharmacists viewing the environment in which they worked as having a higher frequency of aspects related to patient contact and safety than others. Since these aspects are important for providing high healthcare standards, it is likely that differences in OC may be linked to different healthcare outcomes. Originality/value This newly developed and validated instrument to measure OC in community pharmacy can be used to benchmark existing OC across different pharmacies and design interventions for triggering change to improve outcomes for community pharmacists and patients.

  9. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two

  10. Quantification and handling of sampling errors in instrumental measurements: a case study

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.

    2004-01-01

    in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...

  11. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  12. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    Directory of Open Access Journals (Sweden)

    Beloica Miloš

    2014-01-01

    Full Text Available Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient’s adjustment to dental intervention which is of importance, especially in pediatric dentistry. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  13. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  14. Evaluation of the measurement properties of self-reported health-related work-functioning instruments among workers with common mental disorders.

    Science.gov (United States)

    Abma, Femke I; van der Klink, Jac J L; Terwee, Caroline B; Amick, Benjamin C; Bültmann, Ute

    2012-01-01

    During the past decade, common mental disorders (CMD) have emerged as a major public and occupational health problem in many countries. Several instruments have been developed to measure the influence of health on functioning at work. To select appropriate instruments for use in occupational health practice and research, the measurement properties (eg, reliability, validity, responsiveness) must be evaluated. The objective of this study is to appraise critically and compare the measurement properties of self-reported health-related work-functioning instruments among workers with CMD. A systematic review was performed searching three electronic databases. Papers were included that: (i) mainly focused on the development and/or evaluation of the measurement properties of a self-reported health-related work-functioning instrument; (ii) were conducted in a CMD population; and (iii) were fulltext original papers. Quality appraisal was performed using the consensus-based standards for the selection of health status measurement instruments (COSMIN) checklist. Five papers evaluating measurement properties of five self-reported health-related work-functioning instruments in CMD populations were included. There is little evidence available for the measurement properties of the identified instruments in this population, mainly due to low methodological quality of the included studies. The available evidence on measurement properties is based on studies of poor-to-fair methodological quality. Information on a number of measurement properties, such as measurement error, content validity, and cross-cultural validity is still lacking. Therefore, no evidence-based decisions and recommendations can be made for the use of health-related work functioning instruments. Studies of high methodological quality are needed to properly assess the existing instruments' measurement properties.

  15. Measuring Lagrangian accelerations using an instrumented particle

    International Nuclear Information System (INIS)

    Zimmermann, R; Fiabane, L; Volk, R; Pinton, J-F; Gasteuil, Y

    2013-01-01

    Accessing and characterizing a flow imposes a number of constraints on the employed measurement techniques; in particular, optical methods require transparent fluids and windows in the vessel. Whereas one can adapt the apparatus, fluid and methods in the laboratory to these constraints, this is hardly possible for industrial mixers. In this paper, we present a novel measurement technique which is suitable for opaque or granular flows: consider an instrumented particle, which continuously transmits the force/acceleration acting on it as it is advected in a flow. Its density is adjustable for a wide range of fluids and because of its small size and its wireless data transmission, the system can be used both in industrial and in scientific mixers, allowing for a better understanding of the flow within. We demonstrate the capabilities and precision of the particle by comparing its transmitted acceleration to alternative measurements, in particular in the case of a turbulent von Kármán flow. Our technique proves to be an efficient and fast tool to characterize flows. (paper)

  16. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization.

    Science.gov (United States)

    Alfoqom Alazemi, M; Bryant, S T; Dummer, P M H

    2015-06-01

    To assess the deformation of HyFlex CM instruments (Coltene Whaledent) when used in two instrumentation sequences and to assess their shape recovery after heat sterilization. Simulated root canals with four different shapes were prepared with HyFlex CM instruments using a single-length technique (n = 40) or a crown down technique (n = 40). Pre-preparation, post-preparation and post-sterilization standardized images of each instrument were recorded. Assessment of instrument deformation and their subsequent shape recovery was carried out visually and by comparing the digitised images. Data analysis was carried out using chi-square tests. None of the 400 instruments fractured. Visual assessment of instruments post-preparation revealed that 30.5% had unwound and 0.5% had reverse winding. Following sterilization 8.5% remained unwound and 0.5% remained with reverse winding. When assessing instrument shape using digital images, 35.25% were unwound post-preparation, which reduced to 11% post-sterilization. Nine size 25, 0.08 instruments deformed, but none fully regained their original shape after sterilization; however, other sizes of deformed instruments did regain their shape (P recovery. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Guide to nondestructive assay standards: Preparation criteria, availability, and practical considerations

    International Nuclear Information System (INIS)

    Stewart, J.E.; Hsue, S.T.; Sampson, T.E.

    1997-01-01

    For certification and measurement control, nondestructive assay (NDA) instruments and methods used for verification measurement of special nuclear materials (SNMs) require calibrations based on certified reference materials (CRMs), or working reference materials (WRMs), traceable to the national system of measurements, and adequately characteristic of the unknowns. The Department of Energy Office of Safeguards and Security is sponsoring production of a comprehensive guide to preparation of NDA standards. The scope of the report includes preparation criteria, current availability of CRMs and WRMs, practical considerations for preparation and characterization, and an extensive bibliography. In preparing the report, based primarily on experience at Los Alamos, we have found that standards preparation is highly dependent on the particular NDA method being applied. We therefore include sections that contain information specific to commonly used neutron and gamma-ray NDA techniques. 16 refs., 4 figs., 2 tabs

  18. INSTRUMENTS MEASURING PERCEIVED RACISM/RACIAL DISCRIMINATION: REVIEW AND CRITIQUE OF FACTOR ANALYTIC TECHNIQUES

    Science.gov (United States)

    Atkins, Rahshida

    2015-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis. PMID:25626225

  19. Pulse Wave Velocity Measuring System using Virtual Instrumentation on Mobile Device

    Directory of Open Access Journals (Sweden)

    Razvan Alin Ciobotariu

    2013-03-01

    Full Text Available Virtual instrumentation is a concept that permits customizable modular software measurement and the development of the user-defined tools for control, process and visualization of data, creating versatile systems, using modular programming, intuitive and easy to use. In this paper we investigate a possibility of using virtual instrumentation in the development of two physiological parameters monitoring system, in order to assess a cardiovascular parameter, the Pulse Wave Velocity (PWV. We choose to monitor this parameter due to major incidence and impact of cardiovascular diseases (CVD.

  20. The Karen instruments for measuring quality of nursing care: construct validity and internal consistency.

    Science.gov (United States)

    Lindgren, Margareta; Andersson, Inger S

    2011-06-01

    Valid and reliable instruments for measuring the quality of care are needed for evaluation and improvement of nursing care. Previously developed and evaluated instruments, the Karen-patient and the Karen-personnel based on Donabedian's Structure-Process-Outcome triad (S-P-O triad) had promising content validity, discriminative power and internal consistency. The objective of this study was to further develop the instruments with regard to construct validity and internal consistency. This prospective study was carried out in medical and surgical wards at a hospital in Sweden. A total of 95 patients and 120 personnel were included. The instruments were tested for construct validity by performing factor analyses in two steps and for internal consistency using Cronbach's alpha coefficient. The first confirmatory factor analyses, with a pre-determined three-factor solution did not load well according to the S-P-O triad, but the second exploratory factor analysis with a six-factor solution appeared to be more coherent and the distribution of variables seemed to be logical. The reliability, i.e. internal consistency, was good in both factor analyses. The Karen-patient and the Karen-personnel instruments have achieved acceptable levels of construct validity. The internal consistency of the instruments is good. This indicates that the instruments may be suitable to use in clinical practice for measuring the quality of nursing care.

  1. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments.

    Science.gov (United States)

    Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit

    2015-01-01

    Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (PProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems.

  2. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  3. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  4. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  5. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  6. Non-invasive measuring instrument of kVp, R/M and exposure time

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alwin W.

    1996-01-01

    The development of an instrument for fast measurement of essential parameters related to quality control of X-ray equipment is described. The unit is designed with a 80 C31 micro controller, a function keyboard, an αnumeric display and a probe with PV diodes. Testing and calibration in this non-invasive instrument has been done at the X-rays equipment for the Santa Rita Hospital in Porto Alegre, Rio Grande do Sul State, Brazil

  7. The Construct Validity of an Instrument for Measuring Type 2 ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop an instrument (DSCKQ-30) for measuring type 2 diabetic patients' knowledge of self-care practices. Methods: A 30-item questionnaire (DSCKQ-30) consisting of close ended questions was developed for this study. DSCKQ-30 was self administered to a cross-section of randomly selected 400 ...

  8. The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis

    Directory of Open Access Journals (Sweden)

    Francisco J. Casas

    2015-08-01

    Full Text Available This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.

  9. Measurements of the Ice Water Content of Cirrus in the Tropics and Subtropics. I; Instrument Details and Validation

    Science.gov (United States)

    Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.

    2003-01-01

    We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.

  10. Measuring Financial Literacy: Developing and Testing a Measurement Instrument with a Selected Group of South African Military Officers

    Science.gov (United States)

    Schwella, E.; van Nieuwenhuyzen, Bernard J.

    2014-01-01

    Are South Africans financially literate, and how can this be measured? Until 2009 there was no South African financial literacy measure and, therefore, the aim was to develop a South African measurement instrument that is scientific, socially acceptable, valid and reliable. To achieve this aim a contextual and conceptual analysis of financial…

  11. Construction and Validation of a Measurement Instrument for Attitudes towards Teamwork

    Science.gov (United States)

    Mendo-Lázaro, Santiago; Polo-del-Río, María I.; Iglesias-Gallego, Damián; Felipe-Castaño, Elena; León-del-Barco, Benito

    2017-01-01

    Cooperative, collaborative learning and other forms of group learning methods are increasingly used in classrooms. Knowing students’ attitudes toward teamwork has great value since they influence the students’ learning results as well as their social development. So it is necessary to have robust instruments to provide a better understanding of these attitudes and preferences concerning teamwork. Such instruments also help to identify the factors that promote positive or negative attitudes within the context of group activities. Using a sample of 750 first and second year university students studying a degree in Kindergarten, Primary and Social Education, an instrument measuring attitudes toward team learning has been developed. Two distinct factors were obtained through various factorial analyses and structural equations: Academic attitudes and Social and emotional attitudes. Our study reveals that the instrument is both valid and reliable. Its application is both simple and fast and it has important implications for planning teaching and learning activities that contribute to an improvement in attitudes as well as the practice of teaching in the context of learning through teamwork. PMID:28676775

  12. Construction and Validation of a Measurement Instrument for Attitudes towards Teamwork

    Directory of Open Access Journals (Sweden)

    Santiago Mendo-Lázaro

    2017-06-01

    Full Text Available Cooperative, collaborative learning and other forms of group learning methods are increasingly used in classrooms. Knowing students’ attitudes toward teamwork has great value since they influence the students’ learning results as well as their social development. So it is necessary to have robust instruments to provide a better understanding of these attitudes and preferences concerning teamwork. Such instruments also help to identify the factors that promote positive or negative attitudes within the context of group activities. Using a sample of 750 first and second year university students studying a degree in Kindergarten, Primary and Social Education, an instrument measuring attitudes toward team learning has been developed. Two distinct factors were obtained through various factorial analyses and structural equations: Academic attitudes and Social and emotional attitudes. Our study reveals that the instrument is both valid and reliable. Its application is both simple and fast and it has important implications for planning teaching and learning activities that contribute to an improvement in attitudes as well as the practice of teaching in the context of learning through teamwork.

  13. Determination of acid ionization constants for weak acids by osmometry and the instrumental analysis self-evaluation feedback approach to student preparation of solutions

    Science.gov (United States)

    Kakolesha, Nyanguila

    One focus of this work was to develop of an alternative method to conductivity for determining the acid ionization constants. Computer-controlled osmometry is one of the emerging analytical tools in industrial research and clinical laboratories. It is slowly finding its way into chemistry laboratories. The instrument's microprocessor control ensures shortened data collection time, repeatability, accuracy, and automatic calibration. The equilibrium constants of acetic acid, chloroacetic acid, bromoacetic acid, cyanoacetic acid, and iodoacetic acid have been measured using osmometry and their values compared with the existing literature values obtained, usually, from conductometric measurements. Ionization constant determined by osmometry for the moderately strong weak acids were in reasonably good agreement with literature values. The results showed that two factors, the ionic strength and the osmotic coefficient, exert opposite effects in solutions of such weak acids. Another focus of the work was analytical chemistry students solution preparation skills. The prevailing teacher-structured experiments leave little room for students' ingenuity in quantitative volumetric analysis. The purpose of this part of the study was to improve students' skills in making solutions using instrument feedback in a constructivist-learning model. After making some solutions by weighing and dissolving solutes or by serial dilution, students used the spectrophotometer and the osmometer to compare their solutions with standard solutions. Students perceived the instrument feedback as a nonthreatening approach to monitoring the development of their skill levels and liked to clarify their understanding through interacting with an instructor-observer. An assessment of the instrument feedback and the constructivist model indicated that students would assume responsibility for their own learning if given the opportunity. This study involved 167 students enrolled in Quantitative Chemical

  14. Analysis and protective measures of sharp instrument injury causes of sterilization and supply center

    Directory of Open Access Journals (Sweden)

    Hua YANG

    2014-11-01

    Full Text Available Objective: To analyze the causes of sharp injury in the sterilization and supply center, take protective measures, effectively avoid sharp instrument injury, and guarantee staff safety. Methods: Adopt a retrospective survey method, summarize sharp instrument injury data of sterilization and supply center in 2013, analyze the reasons of the occurrence of sharp instrument injury, and make protective countermeasures. Results: Sharp instrument injuries occurred mainly in the device classification, manual cleaning and device packaging process. Conclusion: Poor consciousness of occupational protection of the staff in the sterilization and supply center, nonstandard operation, and lack of training and supervision in place are the main reasons of occurrence of sharp instrument injury.

  15. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    International Nuclear Information System (INIS)

    Thorseth, Trond Morten

    2000-01-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe

  16. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  17. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    Science.gov (United States)

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  18. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  19. Fault tolerance with noisy and slow measurements and preparation.

    Science.gov (United States)

    Paz-Silva, Gerardo A; Brennen, Gavin K; Twamley, Jason

    2010-09-03

    It is not so well known that measurement-free quantum error correction protocols can be designed to achieve fault-tolerant quantum computing. Despite their potential advantages in terms of the relaxation of accuracy, speed, and addressing requirements, they have usually been overlooked since they are expected to yield a very bad threshold. We show that this is not the case. We design fault-tolerant circuits for the 9-qubit Bacon-Shor code and find an error threshold for unitary gates and preparation of p((p,g)thresh)=3.76×10(-5) (30% of the best known result for the same code using measurement) while admitting up to 1/3 error rates for measurements and allocating no constraints on measurement speed. We further show that demanding gate error rates sufficiently below the threshold pushes the preparation threshold up to p((p)thresh)=1/3.

  20. Corporate Entrepreneurship Assessment Instrument (CEAI): Refinement and Validation of a Survey Measure

    National Research Council Canada - National Science Library

    Cates, Michael S

    2007-01-01

    .... The measurement instrument known as the Corporate Entrepreneurship Assessment Index (CEAI) has been designed to tap the climate-related organizational factors that represent and potentially encourage corporate entrepreneurship...

  1. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  2. Using the Rasch measurement model to design a report writing assessment instrument.

    Science.gov (United States)

    Carlson, Wayne R

    2013-01-01

    This paper describes how the Rasch measurement model was used to develop an assessment instrument designed to measure student ability to write law enforcement incident and investigative reports. The ability to write reports is a requirement of all law enforcement recruits in the state of Michigan and is a part of the state's mandatory basic training curriculum, which is promulgated by the Michigan Commission on Law Enforcement Standards (MCOLES). Recently, MCOLES conducted research to modernize its training and testing in the area of report writing. A structured validation process was used, which included: a) an examination of the job tasks of a patrol officer, b) input from content experts, c) a review of the professional research, and d) the creation of an instrument to measure student competency. The Rasch model addressed several measurement principles that were central to construct validity, which were particularly useful for assessing student performances. Based on the results of the report writing validation project, the state established a legitimate connectivity between the report writing standard and the essential job functions of a patrol officer in Michigan. The project also produced an authentic instrument for measuring minimum levels of report writing competency, which generated results that are valid for inferences of student ability. Ultimately, the state of Michigan must ensure the safety of its citizens by licensing only those patrol officers who possess a minimum level of core competency. Maintaining the validity and reliability of both the training and testing processes can ensure that the system for producing such candidates functions as intended.

  3. The quantitative measurement of organizational culture in health care: a review of the available instruments.

    Science.gov (United States)

    Scott, Tim; Mannion, Russell; Davies, Huw; Marshall, Martin

    2003-06-01

    To review the quantitative instruments available to health service researchers who want to measure culture and cultural change. A literature search was conducted using Medline, Cinahl, Helmis, Psychlit, Dhdata, and the database of the King's Fund in London for articles published up to June 2001, using the phrase "organizational culture." In addition, all citations and the gray literature were reviewed and advice was sought from experts in the field to identify instruments not found on the electronic databases. The search focused on instruments used to quantify culture with a track record, or potential for use, in health care settings. For each instrument we examined the cultural dimensions addressed, the number of items for each questionnaire, the measurement scale adopted, examples of studies that had used the tool, the scientific properties of the instrument, and its strengths and limitations. Thirteen instruments were found that satisfied our inclusion criteria, of which nine have a track record in studies involving health care organizations. The instruments varied considerably in terms of their grounding in theory, format, length, scope, and scientific properties. A range of instruments with differing characteristics are available to researchers interested in organizational culture, all of which have limitations in terms of their scope, ease of use, or scientific properties. The choice of instrument should be determined by how organizational culture is conceptualized by the research team, the purpose of the investigation, intended use of the results, and availability of resources.

  4. Comparative study of 6 rotary nickel-titanium systems and hand instrumentation for root canal preparation in severely curved root canals of extracted teeth.

    Science.gov (United States)

    Celik, Davut; Taşdemir, Tamer; Er, Kürşat

    2013-02-01

    Some improvements have been developed with new generations of nickel-titanium (NiTi) rotary instruments that led to their successful and extensive application in clinical practice. The purpose of this in vitro study was to compare the root canal preparations performed by using GT Series X and Twisted File systems produced by innovative manufacturing process with Revo-S, RaCe, Mtwo, and ProTaper Universal systems manufactured directly from conventional nitinol and with stainless steel K-Flexofile instruments. The mesiobuccal root canals of 140 maxillary first permanent molars that had between 30°-40° curvature angle and 4- to 9-mm curvature radius of the root canal were used. After root canal preparations made by using GT Series X, Twisted File, Revo-S, RaCe, Mtwo, and ProTaper Universal NiTi rotary systems and stainless steel K-Flexofile instruments, transportation occurred in the root canal, and alteration of working length (WL) was assessed by using a modified double-digital radiographic technique. The data were compared by the post hoc Tukey honestly significant difference test. NiTi rotary systems caused less canal transportation and alteration of WL than K-Flexofile instruments (P .05) except 2.5 mm from the WL. At this level ProTaper Universal system caused significant canal transportation (P ProTaper Universal rotary systems manufactured by traditional methods. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  6. Estimating pushrim temporal and kinetic measures using an instrumented treadmill during wheelchair propulsion: A concurrent validity study.

    Science.gov (United States)

    Gagnon, Dany H; Jouval, Camille; Chénier, Félix

    2016-06-14

    Using ground reaction forces recorded while propelling a manual wheelchair on an instrumented treadmill may represent a valuable alternative to using an instrumented pushrim to calculate temporal and kinetic parameters during propulsion. Sixteen manual wheelchair users propelled their wheelchair equipped with instrumented pushrims (i.e., SMARTWheel) on an instrumented dual-belt treadmill set a 1m/s during a 1-minute period. Spatio-temporal (i.e., duration of the push and recovery phase) and kinetic measures (i.e. propulsive moments) were calculated for 20 consecutive strokes for each participant. Strong associations were confirmed between the treadmill and the instrumented pushrim for the mean duration of the push phase (r=0.98) and of the recovery phase (r=0.99). Good agreement between these two measurement instruments was also confirmed with mean differences of only 0.028s for the push phase and 0.012s for the recovery phase. Strong associations were confirmed between the instrumented wheelchair pushrim and treadmill for mean (r=0.97) and peak (r=0.96) propulsive moments. Good agreement between these two measurement instruments was also confirmed with mean differences of 0.50Nm (mean moment) and 0.71Nm (peak moment). The use of a dual-belt instrumented treadmill represents an alternative to characterizing temporal parameters and propulsive moments during manual wheelchair propulsion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Guide to nondestructive assay standards: Preparation criteria, availability, and practical considerations

    International Nuclear Information System (INIS)

    Hsue, S.T.; Stewart, J.E.; Sampson, T.E.; Butler, G.W.; Rudy, C.R.; Rinard, P.M.

    1997-10-01

    For certification and measurement control, nondestructive assay (NDA) instruments and methods used for verification measurements of special nuclear materials (SNMs) require calibrations based on certified reference materials (CRMs), or working reference materials (WRMs), traceable to the national system of measurements, and adequately characteristic of the unknowns. The Department of Energy Office of Safeguards and Security is sponsoring production of a comprehensive guide to preparation of NDA standards. The scope of the report includes preparation criteria, current availability of CRMs and WRMs, practical considerations for preparation and characterization, and an extensive bibliography. In preparing the report, based primarily on experience at Los Alamos, they have found that standards preparation is highly dependent on the particular NDA method being applied. They therefore include sections that contain information specific to commonly used neutron and gamma-ray NDA techniques. They also present approaches that are alternatives to, or minimize requirements for physical standards

  8. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  9. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  10. An instrument for measurement of 125I with automatic efficiency correction

    International Nuclear Information System (INIS)

    Holford, R.M.

    1979-10-01

    Counting efficiencies for 125 I are often uncertain because of self-absorption of the low-energy radiation. A special purpose instrument, AEP-5285, has been designed to simplify the measurement of 125 I activities using a known technique in which the observed counting rate is compensated for self-absorption and any other uncertainties in the counting efficiency by making use of the coicidence properties of the radiation. The instrument contains pulse amplifiers, discriminators to define the energy regions of interest, and operational amplifier circuits to perform the necessary calculations automatically, and it displays an estimate of the source activity in becquerels. (auth)

  11. Designing an Instrument to Measure the QoS of a Spanish Virtual Store

    Science.gov (United States)

    de Abajo, Beatriz Sainz; de La Torre Díez, Isabel; Salcines, Enrique García; Fernández, Javier Burón; Pernas, Francisco Díaz; Coronado, Miguel López; de Castro Lozano, Carlos

    This article describes the development of an instrument, in the form of a survey, which is distributed to users of a B2C website selling electronic books in order to ascertain their satisfaction. The opinions compiled from a pilot sample and the exploratory factor analysis carried out point to factors that best summarise the quality of the application analysed here. Analysis of the initial survey, with a total of 40 items, shaped the final instrument, encompassing 18 items divided into 6 dimensions, which measure the perceptions of users of the application in order to improve the contents of the website. Subsequently, a confirmatory factorial analysis is performed, ensuring the reliability of the study and which confirms that the structure of the instrument developed truly measures service quality in accordance with the requirements of the website in terms of offering a space that fulfils consumer expectations in the Information Society.

  12. Engagement in Games: Developing an Instrument to Measure Consumer Videogame Engagement and Its Validation

    OpenAIRE

    Abbasi, Amir Zaib; Ting, Ding Hooi; Hlavacs, Helmut

    2017-01-01

    The aim of the study is to develop a new instrument to measure engagement in videogame play termed as consumer videogame engagement. The study followed the scale development procedure to develop an instrument to measure the construct of consumer videogame engagement. In this study, we collected the data in two different phases comprising study 1 (n=136) and study 2 (n=270). We employed SPSS 22.0 for exploratory factor analysis using study 1 respondents to explore the factors for consumer vide...

  13. ISOMAX: a balloon-borne instrument to measure cosmic ray isotopes

    International Nuclear Information System (INIS)

    Hof, M.; Bremerich, M.; Goebel, H.; Hams, T.; Menn, W.; Simon, M.; Barbier, L.M.; Christian, E.R.; Geier, S.; Gupta, S.K.; Krizmanic, J.F.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Davis, A.J.; Nolfo, G.A. de; Mewaldt, R.A.; Schindler, S.M.

    2000-01-01

    The Isotope Magnet Experiment (ISOMAX) is a new balloon-borne instrument developed to measure the isotopic composition of the light elements in the cosmic radiation, in particular to obtain the ratio of the radioactive 10 Be to stable 9 Be. ISOMAX was first flown in August 4-5, 1998, from Lynn Lake, Manitoba, Canada. ISOMAX has a geometry factor of 450 cm 2 sr and was configured for this flight with a large, Helmholtz-like, superconducting magnet in combination with a drift-chamber tracking system, a state-of-the-art time-of-flight system and two aerogel Cherenkov detectors to measure light isotopes with a mass resolution of better than 0.25 amu. In the 1998 flight the obtained maximum detectable rigidity of the magnetic spectrometer was 970 GeV/c for helium at 60% of the full magnetic field. ISOMAX took data for more than 16 h at float altitudes above 36 km. We here present the performance of the individual detectors and initial isotopic results of the instrument

  14. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    International Nuclear Information System (INIS)

    Wang, X.; Kamenev, K.V.

    2015-01-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed

  15. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results. PMID:29201011

  16. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load.

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 ( N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study ( N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  17. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Directory of Open Access Journals (Sweden)

    Melina Klepsch

    2017-11-01

    Full Text Available Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97, we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1 Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2 Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task, we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  18. Development of an instrument to measure self-efficacy in caregivers of people with advanced cancer.

    Science.gov (United States)

    Ugalde, Anna; Krishnasamy, Meinir; Schofield, Penelope

    2013-06-01

    Informal caregivers of people with advanced cancer experience many negative impacts as a result of their role. There is a lack of suitable measures specifically designed to assess their experience. This study aimed to develop a new measure to assess self-efficacy in caregivers of people with advanced cancer. The development and testing of the new measure consisted of four separate, sequential phases: generation of issues, development of issues into items, pilot testing and field testing. In the generation of issues, 17 caregivers were interviewed to generate data. These data were analysed to generate codes, which were then systematically developed into items to construct the instrument. The instrument was pilot tested with 14 health professionals and five caregivers. It was then administered to a large sample for field testing to establish the psychometric properties, with established measures including the Brief Cope and the Family Appraisals for Caregiving Questionnaire for Palliative Care. Ninety-four caregivers completed the questionnaire booklet to establish the factor structure, reliability and validity. The factor analysis resulted in a 21-item, four-factor instrument, with the subscales being termed Resilience, Self-Maintenance, Emotional Connectivity and Instrumental Caregiving. The test-retest reliability and internal consistency were both excellent, ranging from 0.73 to 0.85 and 0.81 to 0.94, respectively. Six convergent and divergent hypotheses were made, and five were supported. This study has developed a new instrument to assess self-efficacy in caregivers of people with advanced cancer. The result is a four-factor, 21-item instrument with demonstrated reliability and validity. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Instrument for measuring moisture in wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1980-06-01

    A method to determine the moisture content in wood chips, in batch and on-line, has been investigated. The method can be used for frozen and non frozen chips. Samples of wood chips are thawn and dryed with microwaves. During the drying the sample is weighed continously and the rate of drying is measured. The sample is dried t 10 percent moisture content. The result is extrapolated to the drying rate zero. The acccuracy at the method is 1.6 to 1.7 percent for both frozen and non frozen chips. The accuracy of the method is considered acceptable, but sofisticated sampling equipment is necessary. This makes the method too complex to make the instrument marketable.

  20. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Goldman, A.S.

    1985-05-01

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs

  1. Influence of instrument design on neutron lifetime measurements

    International Nuclear Information System (INIS)

    Youmans, A.H.; Hopkinson, E.C.

    1975-01-01

    Commercially available logging services provide a measurement of the lifetime of thermal neutrons in formations adjacent to a borehole. This lifetime provides a measure of the macroscopic thermal neutron-capture cross-section Σ of the formation, which in turn is functionally related to the abundance and constituency of the rock matrix and contained fluids. Because the measurement is extremely sensitive to an abundance of trace elements like boron and gadolinium, it is very difficult to find rock formations with an accurately known value of Σ, which is required for the accuracy of the measuring system to be experimentally tested. Various theoretical studies published suggest that errors in the determination of Σ may occur because of the influence of borehole parameters and the effects of neutron diffusion. Experimental results are reported that demonstrate that the design of the instrument is crucial to the validity of any theoretical treatment of the subject. The influence of neutron diffusion and borehole effects can be overcome by optimal selection of spacing and shielding parameters

  2. Present status of ambient dose equivalent rate and radioactive substance concentration measurements in working environment. (3) Measuring instruments for ionizing radiation in working environments

    International Nuclear Information System (INIS)

    Matsubara, Shohei

    2006-01-01

    In order to measure the airborne radioactive substance concentration in working environments, some kinds of sampler such as dust sampler and iodine sampler, measuring instruments (alpha and beta spectrometer, and liquid scintillation counter), monitor (dust-, iodine- and gas-monitor), survey meter for measuring gamma ray dose rate are stated. The measurement method of α, β and γ-ray nuclides and ambient dose-equivalent at 10 mm was explained. Some examples of the list of dust sampler, filter, tritium sampler, dust monitor, iodine monitor, gas monitor, and survey meter on the market are shown. There are so many kinds of measuring instruments for ionizing radiation in working environment that the best instrument for measurement should be selected. The environment conditions such as sample form, temperature and humidity have to be considered in order to evaluate the measurement values. (S.Y.)

  3. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments

    Directory of Open Access Journals (Sweden)

    Sonal Soi

    2015-09-01

    Full Text Available Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no peri-apical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical fo-ramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal prepa-ration using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30. The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calcu-lated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001. The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg. Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a sig-nificantly higher amount of debris than GT and RaCe systems.

  4. In Vitro Comparison of Apically Extruded Debris during Root Canal Preparation of Mandibular Premolars with Manual and Rotary Instruments

    Science.gov (United States)

    Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit

    2015-01-01

    Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001). The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems. PMID:26697144

  5. Evaluation of surface preparation and maintenance of canal curvature following instrumentation with hand ′K′ file and three different Ni-Ti rotary systems: A radiographic and SEM study

    Directory of Open Access Journals (Sweden)

    Namrata Bhatti

    2010-01-01

    Full Text Available Aim: To determine the shaping ability and cleaning efficiency of hand K-flexofiles, ProTaper, LightSpeed and Mtwo instruments during the preparation of curved root canals in extracted human teeth. Materials and Methods: A total of 120 root canals of mandibular and maxillary molars with curvature more than 20° were divided into four groups of 30 each. In group A, canals were prepared using hand K-flexofiles following the crown down technique. In group B LightSpeed, in group C ProTaper, and in group D Mtwo rotary instruments were used to prepare the root canals. Using pre- and post-instrumentation radiographs, straightening of the canal curvature was determined with Corel Draw 9.0 software tools. The amount of debris and smear layer were quantified at three different areas (coronal, middle, and apical thirds of root canal using SEM. The collected data were analyzed statistically using Student′s paired ′t′ test. Results: The mean change in curvature for hand K-files was 7.71°, for ProTaper files 6.03°, for Mtwo 5.43°, and for LightSpeed instruments were found to be 4.57°. The percentage change in the curvature for all the four groups was statistically highly significant (P< 0.01. LightSpeed instruments maintained the original canal curvature significantly (P< 0.01 better than the other instruments. For leftover debris, the minimum percentage was found to be associated with ProTaper (65.48% followed by Mtwo (66.22%, LightSpeed (71.67% and the maximum with hand K-files (74.16%. However, the difference in mean leftover debris between ProTaper and Mtwo was not significant. Conclusion: ProTaper and Mtwo resulted in good cleaning, and LightSpeed maintained the original canal curvature better than the ProTaper, Mtwo, or Hand K-files.

  6. Progress in the specification of optical instruments for the measurement of surface form and texture

    Science.gov (United States)

    de Groot, Peter J.

    2014-05-01

    Specifications for confocal microscopes, optical interferometers and other methods of measuring areal surface topography can be confusing and misleading. The emerging ISO 25178 standards, together with the established international vocabulary of metrology, provide a foundation for improved specifications for 3D surface metrology instrumentation. The approach in this paper links instrument specifications to metrological characteristics that can influence a measurement, using consistent definitions of terms, and reference to verification procedures.

  7. Measurement properties of instruments that assess participation in young people with autism spectrum disorder: a systematic review.

    Science.gov (United States)

    Lami, Francesca; Egberts, Kristine; Ure, Alexandra; Conroy, Rowena; Williams, Katrina

    2018-03-01

    To systematically review the measurement properties of instruments assessing participation in young people with autism spectrum disorder (ASD). A search was performed in MEDLINE, PsycINFO, and PubMed combining three constructs ('ASD', 'test of participation', 'measurement properties'). Results were restricted to articles including people aged 6 to 29 years. The 2539 identified articles were independently screened by two reviewers. For the included articles, data were extracted using standard forms and their risk of bias was assessed. Nine studies (8 cross-sectional) met the inclusion criteria, providing information on seven different instruments. The total sample included 634 participants, with sex available for 600 (males=494; females=106) and age available for 570, with mean age for these participants 140.58 months (SD=9.11; range=36-624). Included instruments were the school function assessment, vocational index, children's assessment of participation and enjoyment/preferences for activities of children, experience sampling method, Pediatric Evaluation of Disability Inventory, Computer Adaptive Test, adolescent and young adult activity card sort, and Patient-Reported Outcomes Measurement Information System parent-proxy peer relationships. Seven studies assessed reliability and validity; good properties were reported for half of the instruments considered. Most studies (n=6) had high risk of bias. Overall the quality of the evidence for each tool was limited. Validation of these instruments, or others that comprehensively assess participation, is needed. Future studies should follow recommended methodological standards. Seven instruments have been used to assess participation in young people with autism. One instrument, with excellent measurement properties in one study, does not comprehensively assess participation. Studies of three instruments that incorporate a more comprehensive assessment of participation have methodological limitations. Overall, limited

  8. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.

    Science.gov (United States)

    Wang, Zuocheng; Calderón, Leonardo; Patton, Allison P; Sorensen Allacci, MaryAnn; Senick, Jennifer; Wener, Richard; Andrews, Clinton J; Mainelis, Gediminas

    2016-11-01

    This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM 2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM 2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM 2.5 mass concentration compared to the PMI 2.5 filter. The pDR-1500 direct reading and PMI 2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R 2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R 2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R 2 = 0.936 for OPC versus pDR-1500 reading and R 2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real

  9. Effects of four instruments on coronal pre-enlargement by using cone beam computed tomography.

    Science.gov (United States)

    Sanfelice, Cintia Mussoline; da Costa, Fernanda Botega; Reis Só, Marcus Vinícius; Vier-Pelisser, Fabiana; Souza Bier, Carlos Alexandre; Grecca, Fabiana Soares

    2010-05-01

    This ex vivo study used cone beam computed tomography to evaluate the amount of dentin removal from the distal wall of the mesial canal of human mandibular first molars caused by 4 instruments used to flare the cervical third. Thirty-two mesial roots were divided into 4 groups prepared by using ProTaper, K3, Gates-Glidden, or LA Axxess. The dentin thickness of the distal cervical wall of mesial canals was measured before and after the preparation by using computed tomography and Adobe Photoshop software. There was no statistically significant difference between the study groups (P > 05). All the instruments used for cervical preparation seemed to be safe and did not damage the dentin structure of the distal wall of mesial root canals of mandibular molars. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Preparation of gaseous CRMs from the primary system for "2"2"2Rn activity measurement

    International Nuclear Information System (INIS)

    Kim, B.J.; Kim, B.C.; Lee, K.B.; Lee, J.M.; Park, T.S.

    2016-01-01

    For disseminating the gaseous radon standard traceable to the KRISS primary system based on the defined solid angle counting method, two kinds of radon CRM (a glass ampule type and a stainless steel cylinder type) were developed. The activity of the CRM was certified by subtracting a residual activity from the measured activity by the primary system. After certification, the ampule CRM was used to calibrate a radon-monitoring instrument and the cylinder CRM to calibrate an HPGe system. We also improved the measurement procedure of the radon primary system. In a typical radon energy spectrum, the radon peak overlaps with the polonium peak. For more reliable and accurate measurement of radon activity, a fitting method was adopted for the evaluation of radon area in the alpha energy spectrum. The result of radon activity evaluated by using the fitting method is in good agreement with that by the previous integration method. - Highlights: • Preparation of gaseous Rn-222 CRMs from primary measurement system. • Convolution of 3 left-handed exponentials with a Gaussian function to count radon. • Calibration of continuous radon monitor using glass ampoule CRM. • Calibration of HPGe system as secondary standard for stainless steel cylinder CRM.

  11. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    NARCIS (Netherlands)

    van den Noort, J.C.; van den Noort, Josien C.; van der Esch, Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Petrus H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  12. Traceability and measurement uncertainty in sample preparation (W5)

    International Nuclear Information System (INIS)

    Wegscheider, W.; Walner, U.; Moser, J.

    2002-01-01

    Full text: Very few chemical measurements are being made directly on the object of interest and sample preparation is thus the rule rather than the exception in daily practice. Unfortunately the operations undertaken in the course of sample preparation are prone to rendering a sample useless for the purpose of interpreting a measurement performed on it, as it might not represent the original and relevant status any longer. Sample preparation along with sampling itself constitutes therefore a procedure that leads to a loss of representation of the original specimen or population. On the other hand it is also not sufficient to confine aspects of traceability and measurement uncertainty to the ultimate measurement, as the key purpose of measuring is to supply adequate data for some kind of decision, be it in production, in health, in the environment, or indeed in any other circumstance. These considerations have led to severe confusion in the community as to what traceability really means in chemistry. CITAC and EURACHEM have only recently issued a preliminary document that clarifies these issues and gives a firm handle on the future development of quality assurance in analytical chemistry. In this talk it will be attempted to outline the general ideas and procedures that lead to traceability of analytical chemical results accompanied by valid statements of their uncertainty. It will be argued that the central element in achieving these goals is a well-designed validation study that frequently goes beyond those requirements currently laid out in official documents. (author)

  13. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  14. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI: design, execution, and early results

    Directory of Open Access Journals (Sweden)

    A. J. M. Piters

    2012-02-01

    Full Text Available From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI. The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands. Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing, and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent

  15. Multi-instrument comparisons of D-region plasma measurements

    Directory of Open Access Journals (Sweden)

    M. Friedrich

    2013-01-01

    Full Text Available The ECOMA (Existence and Charge state Of Meteoric dust grains in the middle Atmosphere series of sounding rocket flights consisted of nine flights with almost identical payload design and flight characteristics. All flights carried a radio wave propagation experiment together with a variety of plasma probes. Three of these measured electron densities, two ion densities. The rockets were all launched from the Andøya Rocket Range, Norway, in four campaigns between 2006 and 2010. Emphasis is on the final three flights from 2010 where the payloads were equipped with four instruments capable of measuring plasma densities in situ, among them a novel probe flown for the first time in conjunction with a wave propagation experiment. Deviation factors of all probe data relative to the wave propagation results were derived and revealed that none of the probe data were close to the wave propagation results at all heights, but – more importantly – the instruments showed very different behaviour at different altitudes. The novel multi-needle Langmuir probe exhibits the best correlation to the wave propagation data, as there is minimal influence of the payload potential, but it is still subject to aerodynamics, especially at its location at the rear of the payload. For all other probe types, the deviation factor comes closer to unity with increasing plasma density. No systematic difference of the empirical deviation factor between day and night can be found. The large negative payload potential in the last three flights may be the cause for discrepancies between electron and ion probe data below 85 km.

  16. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  17. Performance of Food Safety Management Systems in Poultry Meat Preparation Processing Plants in Relation to Campylobacter spp. Contamination.

    NARCIS (Netherlands)

    Sampers, I.; Jacxsens, L.; Luning, P.A.; Marcelis, W.J.; Dumoulin, F.H.J.N.

    2010-01-01

    A diagnostic instrument comprising a combined assessment of core control and assurance activities and a microbial assessment instrument were used to measure the performance of current food safety management systems (FSMSs) of two poultry meat preparation companies. The high risk status of the

  18. Effectiveness of supplementary irrigant agitation with the Finisher GF Brush on the debridement of oval root canals instrumented with the Gentlefile or nickel titanium rotary instruments.

    Science.gov (United States)

    Neelakantan, P; Khan, K; Li, K Y; Shetty, H; Xi, W

    2018-07-01

    To examine the efficacy of a novel supplementary irrigant agitating brush (Finisher GF Brush, MedicNRG, Kibbutz Afikim, Israel) on the debridement of root canals prepared with a novel stainless steel rotary instrumentation system (Gentlefile; MedicNRG), or nickel titanium rotary instruments in oval root canals. Mandibular premolars (n = 72) were selected and divided randomly into three experimental groups (n = 24) after microCT scanning: group 1, canal preparation to rotary NiTi size 20, .04 taper (R20); group 2, rotary NiTi to size 25, .04 taper (R25) and group 3, Gentlefile size 23, .04 taper (GF). Specimens were subdivided into two subgroups: subgroup A, syringe-and-needle irrigation (SNI); subgroup B, Finisher GF Brush (GB). Ten untreated canals served as controls. Specimens were processed for histological evaluation, and the remaining pulp tissue (RPT) was measured. Data were analysed using Mann-Whitney and Kruskal-Wallis tests (P = 0.05). All experimental groups had significantly less RPT than the control (P  0.05). When instrumented with R20, there was no significant difference between SNI and GF (P rotary NiTi. Root canal debridement did not significantly differ between the instruments when syringe irrigation was used. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Seed drill instrumentation for spatial coulter depth measurements

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2017-01-01

    coulter depth varied up to ±5 mm between the blocks. In addition, significant depth variations between the individual coulters were found. The mean depths varied between −14.2 and −25.9 mm for the eleven coulters. The mean shallowest coulter depth (−14.2 mm) was measured for the coulter running...... in the wheel track of the tractor. The power spectral densities (distribution) of the coulter depth oscillation frequencies showed that the majority of oscillations occurred below 0.5 Hz without any natural vibration frequency. The study concluded that the instrumentation concept was functional for on...

  20. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  1. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  2. A review of instruments to measure interprofessional collaboration for chronic disease management for community-living older adults.

    Science.gov (United States)

    Bookey-Bassett, Sue; Markle-Reid, Maureen; McKey, Colleen; Akhtar-Danesh, Noori

    2016-01-01

    It is acknowledged internationally that chronic disease management (CDM) for community-living older adults (CLOA) is an increasingly complex process. CDM for older adults, who are often living with multiple chronic conditions, requires coordination of various health and social services. Coordination is enabled through interprofessional collaboration (IPC) among individual providers, community organizations, and health sectors. Measuring IPC is complicated given there are multiple conceptualisations and measures of IPC. A literature review of several healthcare, psychological, and social science electronic databases was conducted to locate instruments that measure IPC at the team level and have published evidence of their reliability and validity. Five instruments met the criteria and were critically reviewed to determine their strengths and limitations as they relate to CDM for CLOA. A comparison of the characteristics, psychometric properties, and overall concordance of each instrument with salient attributes of IPC found the Collaborative Practice Assessment Tool to be the most appropriate instrument for measuring IPC for CDM in CLOA.

  3. Assessment of the wish to hasten death in patients with advanced disease: A systematic review of measurement instruments.

    Science.gov (United States)

    Bellido-Pérez, Mercedes; Monforte-Royo, Cristina; Tomás-Sábado, Joaquín; Porta-Sales, Josep; Balaguer, Albert

    2017-06-01

    Patients with advanced conditions may present a wish to hasten death. Assessing this wish is complex due to the nature of the phenomenon and the difficulty of conceptualising it. To identify and analyse existing instruments for assessing the wish to hasten death and to rate their reported psychometric properties. Systematic review based on PRISMA guidelines. The COnsensus-based Standards for the selection of health Measurement INstruments checklist was used to evaluate the methodological quality of validation studies and the measurement properties of the instrument described. The CINAHL, PsycINFO, Pubmed and Web of Science databases were searched from inception to November 2015. A total of 50 articles involving assessment of the wish to hasten death were included. Eight concerned instrument validation and were evaluated using COnsensus-based Standards for the selection of health Measurement INstruments criteria. They reported data for between two and seven measurement properties, with ratings between fair and excellent. Of the seven instruments identified, the Desire for Death Rating Scale or the Schedule of Attitudes toward Hastened Death feature in 48 of the 50 articles. The Schedule of Attitudes toward Hastened Death is the most widely used and is the instrument whose psychometric properties have been most often analysed. Versions of the Schedule of Attitudes toward Hastened Death are available in five languages other than the original English. This systematic review has analysed existing instruments for assessing the wish to hasten death. It has also explored the methodological quality of studies that have examined the measurement properties of these instruments and offers ratings of the reported properties. These results will be useful to clinicians and researchers with an interest in a phenomenon of considerable relevance to advanced patients.

  4. An Automated Sample Preparation Instrument to Accelerate Positive Blood Cultures Microbial Identification by MALDI-TOF Mass Spectrometry (Vitek®MS

    Directory of Open Access Journals (Sweden)

    Patrick Broyer

    2018-05-01

    Full Text Available Sepsis is the leading cause of death among patients in intensive care units (ICUs requiring an early diagnosis to introduce efficient therapeutic intervention. Rapid identification (ID of a causative pathogen is key to guide directed antimicrobial selection and was recently shown to reduce hospitalization length in ICUs. Direct processing of positive blood cultures by MALDI-TOF MS technology is one of the several currently available tools used to generate rapid microbial ID. However, all recently published protocols are still manual and time consuming, requiring dedicated technician availability and specific strategies for batch processing. We present here a new prototype instrument for automated preparation of Vitek®MS slides directly from positive blood culture broth based on an “all-in-one” extraction strip. This bench top instrument was evaluated on 111 and 22 organisms processed using artificially inoculated blood culture bottles in the BacT/ALERT® 3D (SA/SN blood culture bottles or the BacT/ALERT VirtuoTM system (FA/FN Plus bottles, respectively. Overall, this new preparation station provided reliable and accurate Vitek MS species-level identification of 87% (Gram-negative bacteria = 85%, Gram-positive bacteria = 88%, and yeast = 100% when used with BacT/ALERT® 3D and of 84% (Gram-negative bacteria = 86%, Gram-positive bacteria = 86%, and yeast = 75% with Virtuo® instruments, respectively. The prototype was then evaluated in a clinical microbiology laboratory on 102 clinical blood culture bottles and compared to routine laboratory ID procedures. Overall, the correlation of ID on monomicrobial bottles was 83% (Gram-negative bacteria = 89%, Gram-positive bacteria = 79%, and yeast = 78%, demonstrating roughly equivalent performance between manual and automatized extraction methods. This prototype instrument exhibited a high level of performance regardless of bottle type or BacT/ALERT system. Furthermore, blood culture workflow could

  5. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    International Nuclear Information System (INIS)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15 0 . Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, and produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity

  6. Evaluation of surface preparation and maintenance of canal curvature following instrumentation with hand 'K' file and three different Ni-Ti rotary systems: A radiographic and SEM study.

    Science.gov (United States)

    Bhatti, Namrata; Sroa, Renu; Sikri, Vimal K

    2010-04-01

    To determine the shaping ability and cleaning efficiency of hand K-flexofiles, ProTaper, LightSpeed and Mtwo instruments during the preparation of curved root canals in extracted human teeth. A total of 120 root canals of mandibular and maxillary molars with curvature more than 20° were divided into four groups of 30 each. In group A, canals were prepared using hand K-flexofiles following the crown down technique. In group B LightSpeed, in group C ProTaper, and in group D Mtwo rotary instruments were used to prepare the root canals. Using pre- and post-instrumentation radiographs, straightening of the canal curvature was determined with Corel Draw 9.0 software tools. The amount of debris and smear layer were quantified at three different areas (coronal, middle, and apical thirds) of root canal using SEM. The collected data were analyzed statistically using Student's paired 't' test. The mean change in curvature for hand K-files was 7.71°, for ProTaper files 6.03°, for Mtwo 5.43°, and for LightSpeed instruments were found to be 4.57°. The percentage change in the curvature for all the four groups was statistically highly significant (PProTaper (65.48%) followed by Mtwo (66.22%), LightSpeed (71.67%) and the maximum with hand K-files (74.16%). However, the difference in mean leftover debris between ProTaper and Mtwo was not significant. ProTaper and Mtwo resulted in good cleaning, and LightSpeed maintained the original canal curvature better than the ProTaper, Mtwo, or Hand K-files.

  7. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  8. Unexpected but Most Welcome: Mixed Methods for the Validation and Revision of the Participatory Evaluation Measurement Instrument

    Science.gov (United States)

    Daigneault, Pierre-Marc; Jacob, Steve

    2014-01-01

    Although combining methods is nothing new, more contributions about why and how to mix methods for validation purposes are needed. This article presents a case of validating the inferences drawn from the Participatory Evaluation Measurement Instrument, an instrument that purports to measure stakeholder participation in evaluation. Although the…

  9. The manometric sorptomat—an innovative volumetric instrument for sorption measurements performed under isobaric conditions

    International Nuclear Information System (INIS)

    Kudasik, Mateusz

    2016-01-01

    The present paper discusses the concept of measuring the process of sorption by means of the volumetric method, developed in such a way as to allow measurements performed under isobaric conditions. On the basis of the concept in question, a prototype of a sorption instrument was built: the manometric sorptomat. The paper provides a detailed description of the idea of the instrument, and of the way it works. In order to evaluate the usefulness of the device in sorption measurements carried out under laboratory conditions, comparative studies were conducted, during which the results of sorption measurements obtained with the developed instrument were compared with the results Mateusz obtained with a reference device. The objects of comparison were the sorption capacities of hard coal samples, calculated on the basis of the established courses of the methane sorption process. The results were regarded as compatible if the compared values fell within the range of the measurement uncertainty of the two devices. For the sake of the comparative studies, fifteen granular samples of hard coal—representing the 0.20–0.25 mm grain fraction and coming from various mines of the Upper Silesian Coal Basin—were used. After comparing the results obtained with the original manometric sorptomat with the results obtained with the gravimetric reference device, it was observed that the compatibility of measurements of sorption capacities was over 90%, based on the defined criterion of the measurement compatibility. (paper)

  10. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  11. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  12. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  13. The iMTA Productivity Cost Questionnaire: A Standardized Instrument for Measuring and Valuing Health-Related Productivity Losses.

    Science.gov (United States)

    Bouwmans, Clazien; Krol, Marieke; Severens, Hans; Koopmanschap, Marc; Brouwer, Werner; Hakkaart-van Roijen, Leona

    2015-09-01

    Productivity losses often contribute significantly to the total costs in economic evaluations adopting a societal perspective. Currently, no consensus exists on the measurement and valuation of productivity losses. We aimed to develop a standardized instrument for measuring and valuing productivity losses. A group of researchers with extensive experience in measuring and valuing productivity losses designed an instrument suitable for self-completion, building on preknowledge and evidence on validity. The instrument was designed to cover all domains of productivity losses, thus allowing quantification and valuation of all productivity losses. A feasibility study was performed to check the questionnaire's consistency and intelligibility. The iMTA Productivity Cost Questionnaire (iPCQ) includes three modules measuring productivity losses of paid work due to 1) absenteeism and 2) presenteeism and productivity losses related to 3) unpaid work. Questions for measuring absenteeism and presenteeism were derived from existing validated questionnaires. Because validated measures of losses of unpaid work are scarce, the questions of this module were newly developed. To enhance the instrument's feasibility, simple language was used. The feasibility study included 195 respondents (response rate 80%) older than 18 years. Seven percent (n = 13) identified problems while filling in the iPCQ, including problems with the questionnaire's instructions and routing (n = 6) and wording (n = 2). Five respondents experienced difficulties in estimating the time that would be needed for other people to make up for lost unpaid work. Most modules of the iPCQ are based on validated questions derived from previously available instruments. The instrument is understandable for most of the general public. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Work measurement for estimating food preparation time of a bioregenerative diet

    Science.gov (United States)

    Olabi, Ammar; Hunter, Jean; Jackson, Peter; Segal, Michele; Spies, Rupert; Wang, Carolyn; Lau, Christina; Ong, Christopher; Alexander, Conor; Raskob, Evan; hide

    2003-01-01

    During space missions, such as the prospective Mars mission, crew labor time is a strictly limited resource. The diet for such a mission (based on crops grown in a bioregenerative life support system) will require astronauts to prepare their meals essentially from raw ingredients. Time spent on food processing and preparation is time lost for other purposes. Recipe design and diet planning for a space mission should therefore incorporate the time required to prepare the recipes as a critical factor. In this study, videotape analysis of an experienced chef was used to develop a database of recipe preparation time. The measurements were highly consistent among different measurement teams. Data analysis revealed a wide variation between the active times of different recipes, underscoring the need for optimization of diet planning. Potential uses of the database developed in this study are discussed and illustrated in this work.

  15. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths.

    Science.gov (United States)

    Liu, Rui; Kaiwar, Anjali; Shemesh, Hagay; Wesselink, Paul R; Hou, Benxiang; Wu, Min-Kai

    2013-01-01

    The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Two hundred forty mandibular incisors were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. The root canals were instrumented with rotary and hand files, namely K3, ProTaper, and nickel-titanium Flex K files to the major apical foramen (AF), short AF, or beyond AF. Digital images of the apical surface of every tooth were taken during the apical enlargement at each file change. Development of dentinal defects was determined by comparing these images with the baseline image. Multinomial logistic regression test was performed to identify influencing factors. Apical crack developed in 1 of 80 teeth (1.3%) with hand files and 31 of 160 teeth (19.4%) with rotary files. Apical dentinal detachment developed in 2 of 80 teeth (2.5%) with hand files and 35 of 160 teeth (21.9%) with rotary files. Instrumentation with rotary files terminated 2 mm short of AF and did not cause any cracks. Significantly less cracks and detachments occurred when instrumentation with rotary files was terminated short of AF, as compared with that terminated at or beyond AF (P hand instruments; instrumentation short of AF reduced the risk of dentinal defects. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Witness sample preparation for measuring antireflection coatings.

    Science.gov (United States)

    Willey, Ronald R

    2014-02-01

    Measurement of antireflection coating of witness samples from across the worldwide industry has been shown to have excess variability from a sampling taken for the OSA Topical Meeting on Optical Interference Coatings: Measurement Problem. Various sample preparation techniques have been discussed with their limitations, and a preferred technique is recommended with its justification, calibration procedures, and limitations. The common practice of grinding the second side to reduce its reflection is less than satisfactory. One recommended practice is to paint the polished second side, which reduces its reflection to almost zero. A method to evaluate the suitability of given paints is also described.

  17. Measurements of radiation exposure on commercial aircraft with the LIULIN-3M instrument

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.; Stauffer, C.A.; Dachev, T.P.; Tomov, B.T.; Dimitrov, P.G.; Brucker, G.J.

    1999-01-01

    The LIULIN-3M evolved from an international cooperative project by a group of Bulgarian, Russian, German, and American scientists. The radiometer is a low power, small size, light weight, and low cost instrument composed of a solid state detector (SSD) with supporting electronics that enable it to operate as a pulse height analyzer of energy deposited in the detector, and to obtain from these measurements the total dose or the dose rate produced by charged particles. The instrument has also been used as a low-LET radiation spectrometer for measuring biological doses of potential human exposures. A flash memory allows self-storage of data during flights and post flight retrieval. Results will be presented and discussed. (author)

  18. An Integrative Review of Self-Efficacy Measurement Instruments in Youth with Type 1 Diabetes (T1DM)

    Science.gov (United States)

    Rasbach, Lisa; Jenkins, Carolyn; Laffel, Lori

    2014-01-01

    Purpose The purpose of this study is to assess the extant literature on instruments used to measure self-efficacy in youth with type 1 diabetes (T1DM) and their caregivers and to critically evaluate these measurements. Methods An integrative review (2003–2013) was conducted searching PsycINFO, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and U.S. National Library of Medicine PubMed service (PubMed) databases using key words diabetes, type 1 diabetes, and self-efficacy. The authors reviewed the resulting294 references for inclusion criteria of (a) sample of youth with T1DM or sample of caregivers of youth with T1DM, (b) description of the self-efficacy instrument as primary research, and (c) the instrument measured self-efficacy specifically related to diabetes management. Forty-five articles out of the initial 294 met criteria. Results Of the 45 articles, 10 different self-efficacy instruments were identified. The primary theoretical framework used was Bandura’s social cognitive theory and model of self-efficacy. Most participants were white middle class T1DM youth. Evaluations to assess validity often were not reported; however, a majority of studies reported high internal consistency of the instruments. Conclusions Sample homogeneity could limit the applicability of results to certain patient populations. Further psychometric analysis, including validity assessments, should be conducted in more diverse samples. Development of valid and reliable instruments for measuring self-efficacy that are sensitive to change across a wider caregiver base over time is necessary. While this review examined reliable and valid instruments used in research, future opportunities include evaluation of measuring self-efficacy in T1DM youth exposed to recent advances in diabetes management technologies. PMID:25216655

  19. Improved Instrument for Detecting Water and Ice in Soil

    Science.gov (United States)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  20. Understanding and Measuring Evaluation Capacity: A Model and Instrument Validation Study

    Science.gov (United States)

    Taylor-Ritzler, Tina; Suarez-Balcazar, Yolanda; Garcia-Iriarte, Edurne; Henry, David B.; Balcazar, Fabricio E.

    2013-01-01

    This study describes the development and validation of the Evaluation Capacity Assessment Instrument (ECAI), a measure designed to assess evaluation capacity among staff of nonprofit organizations that is based on a synthesis model of evaluation capacity. One hundred and sixty-nine staff of nonprofit organizations completed the ECAI. The 68-item…

  1. Patient perspective workshop: moving towards OMERACT guidelines for choosing or developing instruments to measure patient-reported outcomes.

    Science.gov (United States)

    Kirwan, John R; Fries, James F; Hewlett, Sarah E; Osborne, Richard H; Newman, Stanton; Ciciriello, Sabina; van de Laar, Mart A; Dures, Emma; Minnock, Patricia; Heiberg, Turid; Sanderson, Tessa C; Flurey, Caroline A; Leong, Amy L; Montie, Pamela; Richards, Pam

    2011-08-01

    The workshop Choosing or Developing Instruments held at the Outcome Measures in Rheumatology (OMERACT) 10 meeting was designed to help participants think about the underlying methods of instrument development. Conference pre-reading material and 3 brief introductory presentations elaborated the issues, and participants broke into discussion groups before reconvening to share insights, engage in a more general discussion of the issues, and vote on recommendations. Tradeoffs between using current imperfect measures and the long and complex process of developing new instruments were considered, together with the need for rigor in patient-reported outcome (PRO) instrument development. The main considerations for PRO instrument development were listed and a research agenda for action produced. As part of the agenda for action, it is recommended that researchers and patient partners work together to tackle these issues, and that OMERACT bring forward proposals for acceptable instrument development protocols that would meet an enhanced "Truth" statement in the OMERACT Filter.

  2. Assessing the validity of measures of an instrument designed to measure employees' perceptions of workplace breastfeeding support.

    Science.gov (United States)

    Greene, Sally W; Wolfe, Edward W; Olson, Beth H

    2008-09-01

    Breastfeeding rates among working mothers are lower than among mothers who are not employed. An ecological framework suggests that health behaviors, such as breastfeeding, are influenced by intrapersonal and environmental factors. There is no existing instrument to measure women's perception of the workplace environment in providing breastfeeding support. The objective of this study was to pilot an instrument measuring perceptions of the work climate for breastfeeding support among working women. Data were collected from self-administered mailed questionnaires filled out by 104 pregnant women or women who had recently given birth and were employed and breastfeeding. Dimensionally analyses supported the two-dimensional model suggested by the literature. Internal consistency reliability coefficients were high (near 0.90), and the correlation between the subscales was moderately strong (0.68). Only a single item exhibited misfit to the scaling model, and that item was revised after review.

  3. Measurement of activity limitations and participation restrictions: examination of ICF-linked content and scale properties of the FIM and PC-PART instruments.

    Science.gov (United States)

    Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn

    2017-05-01

    To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of

  4. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rooney, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  5. Assessment of Customer Service in Academic Health Care Libraries (ACSAHL): an instrument for measuring customer service.

    Science.gov (United States)

    Crossno, J E; Berkins, B; Gotcher, N; Hill, J L; McConoughey, M; Walters, M

    2001-04-01

    In a pilot study, the library had good results using SERVQUAL, a respected and often-used instrument for measuring customer satisfaction. The SERVQUAL instrument itself, however, received some serious and well-founded criticism from the respondents to our survey. The purpose of this study was to test the comparability of the results of SERVQUAL with a revised and shortened instrument modeled on SERVQUAL. The revised instrument, the Assessment of Customer Service in Academic Health Care Libraries (ACSAHL), was designed to better assess customer service in academic health care libraries. Surveys were sent to clients who had used the document delivery services at three academic medical libraries in Texas over the previous twelve to eighteen months. ACSAHL surveys were sent exclusively to clients at University of Texas (UT) Southwestern, while the client pools at the two other institutions were randomly divided and provided either SERVQUAL or ACSAHL surveys. Results indicated that more respondents preferred the shorter ACSAHL instrument to the longer and more complex SERVQUAL instrument. Also, comparing the scores from both surveys indicated that ACSAHL elicited comparable results. ACSAHL appears to measure the same type of data in similar settings, but additional testing is recommended both to confirm the survey's results through data replication and to investigate whether the instrument applies to different service areas.

  6. Development and validation of an instrument to measure nurse educator perceived confidence in clinical teaching.

    Science.gov (United States)

    Nguyen, Van N B; Forbes, Helen; Mohebbi, Mohammadreza; Duke, Maxine

    2017-12-01

    Teaching nursing in clinical environments is considered complex and multi-faceted. Little is known about the role of the clinical nurse educator, specifically the challenges related to transition from clinician, or in some cases, from newly-graduated nurse to that of clinical nurse educator, as occurs in developing countries. Confidence in the clinical educator role has been associated with successful transition and the development of role competence. There is currently no valid and reliable instrument to measure clinical nurse educator confidence. This study was conducted to develop and psychometrically test an instrument to measure perceived confidence among clinical nurse educators. A multi-phase, multi-setting survey design was used. A total of 468 surveys were distributed, and 363 were returned. Data were analyzed using exploratory and confirmatory factor analyses. The instrument was successfully tested and modified in phase 1, and factorial validity was subsequently confirmed in phase 2. There was strong evidence of internal consistency, reliability, content, and convergent validity of the Clinical Nurse Educator Skill Acquisition Assessment instrument. The resulting instrument is applicable in similar contexts due to its rigorous development and validation process. © 2017 The Authors. Nursing & Health Sciences published by John Wiley & Sons Australia, Ltd.

  7. Actinide, Elemental, and Fission Product Measurements by ICPMS at the Savannah River Site

    International Nuclear Information System (INIS)

    Tovo, L.L.; Waller, P.R.; Clymire, J.; Jones, V.D.; Boyce, W.T.

    1998-03-01

    VG Elemental Inductively coupled plasma-mass spectrometer (ICPMS), PlasmaQuad 1 (PQ1) Model No. 4, installed in a radiohood, is used by the Savannah River Technology Center to provide non-routine mass measurements for environmental monitoring, waste tank characterization studies, isotope ratios for criticality determinations, and the measurement of elemental, fission product, and actinide mass distributions of the glass product from the Defense Waste Processing Facility (DWPF). Modifications to improve instrument reliability, sample preparation, and data handling, as well as modifications to the laboratory that permit measurements in a radioactive environment will be discussed. Based on our operating experience, two laboratory facilities are being prepared for additional instruments to operate in a radioactive environment. A separate instrument is being installed for non-radioactive measurements and method development

  8. 2nd International Conference on Measurement Instrumentation and Electronics

    International Nuclear Information System (INIS)

    2017-01-01

    Preface It is our great pleasure to welcome you to 2017 2nd International Conference on Measurement Instrumentation and Electronics which has been held in Prague, Czech Republic during June 9-11, 2017. ICMIE 2017 is dedicated to issues related to measurement instrumentation and electronics. The major goal and feature of the conference is to bring academic scientists, engineers, industry researchers together to exchange and share their experiences and research results, and discuss the practical challenges encountered and the solutions adopted. Professors from Czech Republic, Germany and Italy are invited to deliver keynote speeches regarding latest information in their respective expertise areas. It is a golden opportunity for the students, researchers and engineers to interact with the experts and specialists to get their advice or consultation on technical matters, teaching methods and strategies. These proceedings present a selection from papers submitted to the conference from universities, research institutes and industries. All of the papers were subjected to peer-review by conference committee members and international reviewers. The papers selected depended on their quality and their relevancy to the conference. The volume tends to present to the readers the recent advances in the field of computer and communication system, system design and measurement and control technology, power electronics and electrical engineering, materials science and engineering, power machinery and equipment maintenance, architectural design and project management, environmental analysis and detection etc. We would like to thank all the authors who have contributed to this volume and also to the organizing committee, reviewers, speakers, chairpersons, and all the conference participants for their support to ICMIE 2017. ICMIE 2017 Organizing Committee June 20th, 2017 (paper)

  9. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts. 236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled “amount” and “difficulty”. After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test–retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity. Daily and clinical visit “PROactive physical activity in COPD” instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. PMID:26022965

  10. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    Science.gov (United States)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  11. Instrumental neutron activation analysis of phosphorus in biological materials by Bremsstrahlung measurement

    International Nuclear Information System (INIS)

    Bajo, S.; Wyttenbach, A.

    1986-12-01

    The determination of phosphorus in biological materials by instrumental neutron activation via the reaction 31 P (n,γ) 32 P is described. The Bremsstrahlung produced by 32 P is measured in a well-type NaI(Tl) detector. The samples are measured within the polyethylene irradiation container with no changes between irradiation and measurement. The sources of error were studied and the proposed method was applied to the determination of phosphorus in ten internationally certified materials. (author)

  12. Assessment of sexual difficulties associated with multi-modal treatment for cervical or endometrial cancer: A systematic review of measurement instruments.

    Science.gov (United States)

    White, Isabella D; Sangha, Amrit; Lucas, Grace; Wiseman, Theresa

    2016-12-01

    Practitioners and researchers require an outcome measure that accurately identifies the range of common treatment-induced changes in sexual function and well-being experienced by women after cervical or endometrial cancer. This systematic review critically appraised the measurement properties and clinical utility of instruments validated for the measurement of female sexual dysfunction (FSD) in this clinical population. A bibliographic database search for questionnaire development or validation papers was completed and methodological quality and measurement properties of selected studies rated using the Consensus-based Standards for the selection of health Measurement Instrument (COSMIN) checklist. 738 articles were screened, 13 articles retrieved for full text assessment and 7 studies excluded, resulting in evaluation of 6 papers; 2 QoL and 4 female sexual morbidity measures. Five of the six instruments omitted one or more dimension of female sexual function and only one instrument explicitly measured distress associated with sexual changes as per DSM V (APA 2013) diagnostic criteria. None of the papers reported measurement error, responsiveness data was available for only two instruments, three papers failed to report on criterion validity, and test-retest reliability reporting was inconsistent. Heterosexual penile-vaginal intercourse remains the dominant sexual activity focus for sexual morbidity PROMS terminology and instruments lack explicit reference to solo or non-coital sexual expression or validation in a non-heterosexual sample. Four out of six instruments included mediating treatment or illness items such as vaginal changes, menopause or altered body image. Findings suggest that the Female Sexual Function Index (FSFI) remains the most robust sexual morbidity outcome measure, for research or clinical use, in sexually active women treated for cervical or endometrial cancer. Development of an instrument that measures sexual dysfunction in women who are

  13. Measuring Environmental Factors: Unique and Overlapping International Classification of Functioning, Disability and Health Coverage of 5 Instruments.

    Science.gov (United States)

    Heinemann, Allen W; Miskovic, Ana; Semik, Patrick; Wong, Alex; Dashner, Jessica; Baum, Carolyn; Magasi, Susan; Hammel, Joy; Tulsky, David S; Garcia, Sofia F; Jerousek, Sara; Lai, Jin-Shei; Carlozzi, Noelle E; Gray, David B

    2016-12-01

    To describe the unique and overlapping content of the newly developed Environmental Factors Item Banks (EFIB) and 7 legacy environmental factor instruments, and to evaluate the EFIB's construct validity by examining associations with legacy instruments. Cross-sectional, observational cohort. Community. A sample of community-dwelling adults with stroke, spinal cord injury, and traumatic brain injury (N=568). None. EFIB covering domains of the built and natural environment; systems, services, and policies; social environment; and access to information and technology; the Craig Hospital Inventory of Environmental Factors (CHIEF) short form; the Facilitators and Barriers Survey/Mobility (FABS/M) short form; the Home and Community Environment Instrument (HACE); the Measure of the Quality of the Environment (MQE) short form; and 3 of the Patient Reported Outcomes Measurement Information System's (PROMIS) Quality of Social Support measures. The EFIB and legacy instruments assess most of the International Classification of Functioning, Disability and Health (ICF) environmental factors chapters, including chapter 1 (products and technology; 75 items corresponding to 11 codes), chapter 2 (natural environment and human-made changes; 31 items corresponding to 7 codes), chapter 3 (support and relationships; 74 items corresponding to 7 codes), chapter 4 (attitudes; 83 items corresponding to 8 codes), and chapter 5 (services, systems, and policies; 72 items corresponding to 16 codes). Construct validity is provided by moderate correlations between EFIB measures and the CHIEF, MQE barriers, HACE technology mobility, FABS/M community built features, and PROMIS item banks and by small correlations with other legacy instruments. Only 5 of the 66 legacy instrument correlation coefficients are moderate, suggesting they measure unique aspects of the environment, whereas all intra-EFIB correlations were at least moderate. The EFIB measures provide a brief and focused assessment of ICF

  14. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle.

    Science.gov (United States)

    Bielmann, V; Gillan, J; Perkins, N R; Skidmore, A L; Godden, S; Leslie, K E

    2010-08-01

    Acquisition of high quality colostrum is an important factor influencing neonatal calf health. Many methods have been used to assess the Ig concentration of colostrum; however, improved, validated evaluation tools are needed. The aims of this study were to evaluate both optical and digital Brix refractometer instruments for the measurement of Ig concentration of colostrum as compared with the gold standard radial immunodiffusion assay laboratory assessment and to determine the correlation between Ig measurements taken from fresh and frozen colostrum samples for both Brix refractometer instruments. This research was completed using 288 colostrum samples from 3 different farms. It was concluded that the optical and digital Brix refractometers were highly correlated for both fresh and frozen samples (r=0.98 and r=0.97, respectively). Correlation between both refractometer instruments for fresh and frozen samples and the gold standard radial immunodiffusion assay were determined to be very similar, with a correlation coefficient between 0.71 and 0.74. Both instruments exhibited excellent test characteristics, indicating an appropriate cut-off point of 22% Brix score for the identification of good quality colostrum. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  16. Developing an Instrument to Measure Autonomous Adaptive Capacity to Climate Change among Urban Households

    Directory of Open Access Journals (Sweden)

    Kathryn R. Selm

    2018-02-01

    Full Text Available The capacity of households in urban environments to adapt and react to climate change can affect the resilience of the whole community, and instruments for systematically measuring that capacity are needed. We used Raleigh, NC as a case study to explore the dimensions of autonomous adaptive capacity of urban households and to create a scale and associated survey instrument to measure them. Our approach was guided by four capitals that support human livelihoods: social, human, physical, and financial. We surveyed 200 households in Raleigh, NC, and used a principal components analysis to test the scale and survey instrument. Results suggest the scale is a useful and concise tool. Three major dimensions were present among the scale items: financial capital, political awareness, and access to resources. Together, these three dimensions can be used to measure adaptive capacity among different households. These findings are supported by similar work illustrating the value of income inequality and political awareness as indicators of adaptive capacity. Our results also demonstrate that complex relationships among the livelihood capitals may confound our ability to measure financial, physical, and human capitals separately. This framework for assessing adaptive capacity of households, with further refinement and testing, may be used in urban areas to evaluate programs designed to impact resilience to climate change.

  17. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  18. Consumers' convenience orientation towards meal preparation: conceptualization and measurement.

    Science.gov (United States)

    Candel, M

    2001-02-01

    Consumer researchers consider convenience orientation towards meal preparation to be a relevant construct for understanding consumer behavior towards foods. This study set out to conceptualize this construct and to develop a scale that measures it. As examined in two different samples of meal preparers, the resulting scale is reliable, satisfies a unifactorial structure and has satisfactory convergent validity. The scale's nomological validity is supported in that it conforms to expectations regarding various psychographic constructs and various food-related behaviors. Convenience orientation was found to be negatively related to cooking enjoyment, involvement with food products and variety seeking, and to be positively related to role overload. The analyses also suggest that the lack of relation between the meal preparer's working status and convenience food consumption, as found in many studies, is due to convenience food not offering enough preparation convenience. Consuming take-away meals and eating in restaurants appear to satisfy the consumer's need for convenience more adequately. Copyright 2001 Academic Press.

  19. Measuring spirituality and religiosity in clinical research: a systematic review of instruments available in the Portuguese language.

    Science.gov (United States)

    Lucchetti, Giancarlo; Lucchetti, Alessandra Lamas Granero; Vallada, Homero

    2013-01-01

    Despite numerous spirituality and/or religiosity (S/R) measurement tools for use in research worldwide, there is little information on S/R instruments in the Portuguese language. The aim of the present study was to map out the S/R scales available for research in the Portuguese language. Systematic review of studies found in databases. A systematic review was conducted in three phases. Phases 1 and 2: articles in Portuguese, Spanish and English, published up to November 2011, dealing with the Portuguese translation and/or validation of S/R measurement tools for clinical research, were selected from six databases. Phase 3: the instruments were grouped according to authorship, cross-cultural adaptation, internal consistency, concurrent and discriminative validity and test-retest procedures. Twenty instruments were found. Forty-five percent of these evaluated religiosity, 40% spirituality, 10% religious/spiritual coping and 5% S/R. Among these, 90% had been produced in (n = 3) or translated to (n = 15) Brazilian Portuguese and two (10%) solely to European Portuguese. Nevertheless, the majority of the instruments had not undergone in-depth psychometric analysis. Only 40% of the instruments presented concurrent validity, 45% discriminative validity and 15% a test-retest procedure. The characteristics of each instrument were analyzed separately, yielding advantages, disadvantages and psychometric properties. Currently, 20 instruments for measuring S/R are available in the Portuguese language. Most have been translated (n = 15) or developed (n = 3) in Brazil and present good internal consistency. Nevertheless, few instruments have been assessed regarding all their psychometric qualities.

  20. Measuring spirituality and religiosity in clinical research: a systematic review of instruments available in the Portuguese language

    Directory of Open Access Journals (Sweden)

    Giancarlo Lucchetti

    Full Text Available CONTEXT AND OBJECTIVES Despite numerous spirituality and/or religiosity (S/R measurement tools for use in research worldwide, there is little information on S/R instruments in the Portuguese language. The aim of the present study was to map out the S/R scales available for research in the Portuguese language. DESIGN AND SETTING Systematic review of studies found in databases. METHODS A systematic review was conducted in three phases. Phases 1 and 2: articles in Portuguese, Spanish and English, published up to November 2011, dealing with the Portuguese translation and/or validation of S/R measurement tools for clinical research, were selected from six databases. Phase 3: the instruments were grouped according to authorship, cross-cultural adaptation, internal consistency, concurrent and discriminative validity and test-retest procedures. RESULTS Twenty instruments were found. Forty-five percent of these evaluated religiosity, 40% spirituality, 10% religious/spiritual coping and 5% S/R. Among these, 90% had been produced in (n = 3 or translated to (n = 15 Brazilian Portuguese and two (10% solely to European Portuguese. Nevertheless, the majority of the instruments had not undergone in-depth psychometric analysis. Only 40% of the instruments presented concurrent validity, 45% discriminative validity and 15% a test-retest procedure. The characteristics of each instrument were analyzed separately, yielding advantages, disadvantages and psychometric properties. CONCLUSION Currently, 20 instruments for measuring S/R are available in the Portuguese language. Most have been translated (n = 15 or developed (n = 3 in Brazil and present good internal consistency. Nevertheless, few instruments have been assessed regarding all their psychometric qualities.

  1. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  2. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol

    Science.gov (United States)

    Trask, Catherine M; Boden, Catherine; Bath, Brenna; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-01

    Introduction Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Methods Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. Ethics and dissemination This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers’ compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. PROSPERO registration number CRD42017060390. PMID:29374671

  3. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Science.gov (United States)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  4. Measurement and quantification of fluorescent changes in ocular tissue using a novel confocal instrument

    Science.gov (United States)

    Buttenschoen, Kim K.; Girkin, John M.; Daly, Daniel J.

    2014-05-01

    Our sight is a major contributor to our quality of life. The treatment of diseases like macular degeneration and glaucoma, however, presents a challenge as the delivery of medication to ocular tissue is not well understood. The instrument described here will help quantify targeted delivery by non-invasively and simultaneously measuring light reflected from and fluorescence excited in the eye, used as position marker and to track compounds respectively. The measurement concept has been proven by monitoring the diffusion of fluorescein and a pharmaceutical compound for treating open angle glaucoma in vitro in a cuvette and in ex vivo porcine eyes. To obtain a baseline of natural fluorescence we measured the change in corneal and crystalline lens autofluorescence in volunteers over a week. We furthermore present data on 3D ocular autofluorescence. Our results demonstrate the capability to measure the location and concentration of the compound of interest with high axial and temporal resolution of 178 μm and 0.6 s respectively. The current detection limit is 2 nM for fluorescein, and compounds with a quantum yield as low as 0.01 were measured to concentrations below 1 μM. The instrument has many applications in assessing the diffusion of fluorescent compounds through the eye and skin in vitro and in vivo, measuring autofluorescence of ocular tissues and reducing the number of animals needed for research. The instrument has the capability of being used both in the clinical and home care environment opening up the possibility of measuring controlled drug release in a patient friendly manner.

  5. Application of expert system in measurement instrument instrumentation's maintenance on a acquisition system

    International Nuclear Information System (INIS)

    Pinastiko, W.S.

    1997-01-01

    Expert system is a part of the artificial intelligence, a solution software for complicated problems, which solving the problems need experiences and knowledge. This paper discussed about the research's result, that is a design of expert system to help instrumentation's maintenance on a data acquisition system. By using application of expert system, the system can do health monitoring, automatic trouble trouble tracing ang gives advise toward the trouble. this instrumentation's maintenance system is a tool which has an analytic and inference ability toward th trouble. This smart system is a very useful tool to get a good data acquisition system quality. the model system also can be developed to be a specific application as a remote instrumentation's management system

  6. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  7. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  8. Measurement properties of instruments evaluating self-care and related concepts in people with chronic obstructive pulmonary disease: A systematic review.

    Science.gov (United States)

    Clari, Marco; Matarese, Maria; Alvaro, Rosaria; Piredda, Michela; De Marinis, Maria Grazia

    2016-01-01

    The use of valid and reliable instruments for assessing self-care is crucial for the evaluation of chronic obstructive pulmonary disease (COPD) management programs. The aim of this review is to evaluate the measurement properties and theoretical foundations of instruments for assessing self-care and related concepts in people with COPD. A systematic review was conducted of articles describing the development and validation of self-care instruments. The methodological quality of the measurement properties was assessed using the COSMIN checklist. Ten studies were included evaluating five instruments: three for assessing self-care and self-management and two for assessing self-efficacy. The COPD Self-Efficacy Scale was the most studied instrument, but due to poor study methodological quality, evidence about its measurement properties is inconclusive. Evidence from the COPD Self-Management Scale is more promising, but only one study tested its properties. Due to inconclusive evidence of their measurement properties, no instrument can be recommended for clinical use. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  10. Aerosol preparation of intact lipoproteins

    Science.gov (United States)

    Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  11. Purity of targets prepared on Cu substrates

    Science.gov (United States)

    Méens, A.; Rossini, I.; Sens, J. C.

    1993-09-01

    The purity of several elemental self-supporting targets usually prepared by evaporation onto soluble Cu substrates has been studied. The targets were analysed by Rutherford backscattering and instrumental neutron activation analysis. Because of the high percentage of Cu observed in some Si targets, further measurements, including transmission electron microscopy, have been performed on Si targets deposited by e-gun bombardment onto Cu and ion-beam sputtering onto betaine.

  12. Preparation of reference material for the measurement of natural radioactivity

    International Nuclear Information System (INIS)

    Ben Tekaya, Malik

    2010-01-01

    The objective of this work is to prepare reference material for the calibration of gamma spectrometry, alpha and XRF .Many procedures of chemical preparation and radiological analysis of a reference material from Triple Superphosphate were tested. Several techniques and methods of measurement were used. In addition to a description and validation of these procedures, a study of repeatability was conducted which resulted in a positive characterization of this material.

  13. Health Physics Measurements Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2001-01-01

    SCK-CEN's programme on health physics measurements includes various activities in dosimetry, calibration , instrumentation , gamma-ray spectrometry, whole body counting , the preparation of standard sources, non-destructive assay and the maintenance of Euratom Fork detectors. Main achievements in these topical areas in 2000 are summarised

  14. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  15. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  16. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS

    International Nuclear Information System (INIS)

    Gaytan G, E.; Rivero G, T.; Cruz E, P.; Tovar M, V.M.; Vergara M, F.J.

    2007-01-01

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  17. PRISM, a Patient-Reported Outcome Instrument, Accurately Measures Symptom Change in Refractory Gastroesophageal Reflux Disease.

    Science.gov (United States)

    Fuller, Garth; Bolus, Roger; Whitman, Cynthia; Talley, Jennifer; Erder, M Haim; Joseph, Alain; Silberg, Debra G; Spiegel, Brennan

    2017-03-01

    Most patients with gastroesophageal reflux disease (GERD) experience relief following treatment with proton pump inhibitors (PPIs) (Vakil et al. in Am J Gastroenterol 101:1900-1920, 2006; Everhart and Ruhl in Gastroenterology 136:376-386, 2009). As many as 17-44% of patients, however, exhibit only partial response to therapy. Most extant GERD patient-reported outcome (PRO) instruments fail to meet development best practices as described by the FDA (Talley and Wiklund in Qual Life Res 14:21-33, 2005; Van Pinxteren et al. in Cochrane Database Syst Rev 18:CD002095, 2004; El-Serag et al. in Aliment Pharmacol Ther 32:720-737, 2010). To develop and validate a PRO instrument for clinical trials involving patients with GERD who are PPI partial responders. We prepared a systematic literature review, held patient focus groups, convened an expert panel, and conducted cognitive interviews to establish content validity. Eligible participants took PPI therapy for at least 8 weeks, had undergone an upper endoscopy, and scored at least 8 points on the GerdQ [6]. Qualitative data guided development of 26 draft items. Items were reviewed by expert panels and debriefed with patients. The resulting 21-item instrument underwent psychometric evaluation during a Phase IIB trial. During the trial, confirmatory factor analysis (n = 220) resulted in a four-factor model displaying the highest goodness of fit. All domains had a high inter-item correlation (Cronbach's α > 0.8). Test-retest reliability and convergent validity were strong, with highly significant (p < 0.01) correlations between average weekly PRISM scores and severity anchors and significant (p < 0.05) correlations with anchor subscales. Cumulative distribution functions revealed significant differences between responders and non-responders. Analysis in a clinical trial setting demonstrated strong psychometric properties suggesting validity of PRISM. Developed in line with FDA guidance on PROs, PRISM represents an

  18. Development of an instrument to measure internalized stigma in those with HIV/AIDS.

    Science.gov (United States)

    Phillips, Kenneth D; Moneyham, Linda; Tavakoli, Abbas

    2011-01-01

    Stigma has grave consequences for persons living with HIV/AIDS. Stigma hampers prevention of HIV transmission to sexual partners and to unborn babies, diagnosis, and early treatment, and negatively affects mental and physical health, quality of life, and life satisfaction. Internalized stigma of HIV/AIDS may have even more severe consequences than perceived or enacted stigma. The purpose of this study was to develop an instrument to measure internalized stigma in those with HIV/AIDS. Data were drawn from the Rural Women's Health Project. Research assistants administered structured interviews at baseline, 3 months, and 6 months. Instruments used in these analyses included a demographic data form, the Centers for Epidemiological Studies Depression Scale (CES-D), the Perceived Stigma Scale (PSS), and the Internalized Stigma of AIDS Tool (ISAT). Exploratory factor analysis confirmed that the ten items of the ISAT measure a single factor that explains 88% of the variance in the construct. Internal consistency was demonstrated by a Cronbach's alpha of .91 (Time 1), .92 (Time 2), and .92 (Time 3). Convergent validity was supported with significant positive correlations with the CES-D (rho = 0.33, p Stigma of AIDS Tool appears to be a reliable and valid instrument to measure internalization of the stigma of HIV/AIDS. It may be of value in research and clinical assessment.

  19. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  20. Instrumentation and operational plan for geokinetics retort No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Hommert, P.J.

    1980-04-01

    This report outlines the general plan for the instrumentation and technical direction of a horizontal in siti retorting experiment to be conducted at the Geokinetics, Inc. field site in Uintah County, Utah. Bed preparation has been accomplished by Geokinetics by blasting the retort zone with explosives emplaced in wells drilled from the surface. Downhole instrumentation will consist of approx. 300 thermocouples and 28 combustion gas sampling ports to monitor the movement of the reaction front during the retorting process. Surface instrumentation will provide measurements of flow rates, gas composition, liquid products and other process parameters to monitor the overall operation of the process. The operational plan includes provision for data interpretation and real time material balance calculations in the field, including an evaluation of the effect on processing rates and oil yield due to the use of recycled combusted off gases and changes in rate of injection of inlet gases.

  1. Instrument to measure psychological contract violation in pharmacy students.

    Science.gov (United States)

    Spies, Alan R; Wilkin, Noel E; Bentley, John P; Bouldin, Alicia S; Wilson, Marvin C; Holmes, Erin R

    2010-08-10

    To adapt and evaluate an instrument that measures perceived psychological contract violations in pharmacy students by schools and colleges of pharmacy. A psychological contract violations measure was developed from existing literature and the 1997 ACPE Guidelines and pilot-tested with second-year pharmacy students at 2 schools of pharmacy. A revised measure then was administered to second-year pharmacy students at 6 schools of pharmacy. Using a 5-point Likert-type scale, participants were asked to indicate the level of obligations they received compared to what was promised by the school of pharmacy. Exploratory factor analysis on the psychological contract violations measure was conducted using principal components analysis resulting in 7 factors, which led to a revised measure with 26 items. Using a sample of 339 students, the proposed 7-factor measurement model was tested using confirmatory factor analysis. In general, the results supported the hypothesized model. The final 23-item scale demonstrated both reliability and validity. Some students perceived certain aspects of the psychological contract that exists with their school of pharmacy were being violated. The psychological contract violations measure may serve as a valuable tool in helping to identify areas where their students believe that schools/colleges of pharmacy have not fulfilled promised obligations.

  2. Satisfaction measurement instruments for healthcare service users: a systematic review

    OpenAIRE

    Almeida, Renato Santos de; Bourliataux-Lajoinie, Stephane; Martins, Mônica

    2015-01-01

    Patient satisfaction surveys can be an interesting way to improve quality and discuss the concept of patient-centered care. This study aimed to conduct a systematic review of the validated patient satisfaction measurement instruments applied in healthcare. The systematic review searched the MEDLINE/PubMed, LILACS, SciELO, Scopus and Web of Knowledge. The search strategy used the terms: "Patient Satisfaction" AND "Patient centered care" AND "Healthcare survey OR Satisfaction questionnaire" AND...

  3. Development of a field measurement instrument for nuclear electromagnetic pulse (NEMP) based on signal transmission through fiber

    International Nuclear Information System (INIS)

    Song Wenwu; Zhang Chuandong; Liu Yi; Chen Jiuchun; Fan Youwen

    2007-01-01

    This paper deals with design principles, development and performance of a field measurement instrument for nuclear electromagnetic pulse (EMP) based on signal transmission through fiber. To determine the minimum band width this instrument needs, we analyze cutoff spectrum of a time domain double exponential signal, employing Fast Fourier Transform (FFT), and get its inverse transform signal. Then we design the circuit of laser device and the circuit of measuring device according to previous analysis. This instrument meets requirements of related regulations. Its specifications meet requirements of NEMP hazard protection research and can be of great significance to it. (authors)

  4. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Intrared Instrument mounting struts

    DEFF Research Database (Denmark)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.

    2007-01-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. T....... This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K....

  5. From theory to 'measurement' in complex interventions: Methodological lessons from the development of an e-health normalisation instrument

    Directory of Open Access Journals (Sweden)

    Finch Tracy L

    2012-05-01

    Full Text Available Abstract Background Although empirical and theoretical understanding of processes of implementation in health care is advancing, translation of theory into structured measures that capture the complex interplay between interventions, individuals and context remain limited. This paper aimed to (1 describe the process and outcome of a project to develop a theory-based instrument for measuring implementation processes relating to e-health interventions; and (2 identify key issues and methodological challenges for advancing work in this field. Methods A 30-item instrument (Technology Adoption Readiness Scale (TARS for measuring normalisation processes in the context of e-health service interventions was developed on the basis on Normalization Process Theory (NPT. NPT focuses on how new practices become routinely embedded within social contexts. The instrument was pre-tested in two health care settings in which e-health (electronic facilitation of healthcare decision-making and practice was used by health care professionals. Results The developed instrument was pre-tested in two professional samples (N = 46; N = 231. Ratings of items representing normalisation ‘processes’ were significantly related to staff members’ perceptions of whether or not e-health had become ‘routine’. Key methodological challenges are discussed in relation to: translating multi-component theoretical constructs into simple questions; developing and choosing appropriate outcome measures; conducting multiple-stakeholder assessments; instrument and question framing; and more general issues for instrument development in practice contexts. Conclusions To develop theory-derived measures of implementation process for progressing research in this field, four key recommendations are made relating to (1 greater attention to underlying theoretical assumptions and extent of translation work required; (2 the need for appropriate but flexible approaches to outcomes

  6. From theory to 'measurement' in complex interventions: methodological lessons from the development of an e-health normalisation instrument.

    Science.gov (United States)

    Finch, Tracy L; Mair, Frances S; O'Donnell, Catherine; Murray, Elizabeth; May, Carl R

    2012-05-17

    Although empirical and theoretical understanding of processes of implementation in health care is advancing, translation of theory into structured measures that capture the complex interplay between interventions, individuals and context remain limited. This paper aimed to (1) describe the process and outcome of a project to develop a theory-based instrument for measuring implementation processes relating to e-health interventions; and (2) identify key issues and methodological challenges for advancing work in this field. A 30-item instrument (Technology Adoption Readiness Scale (TARS)) for measuring normalisation processes in the context of e-health service interventions was developed on the basis on Normalization Process Theory (NPT). NPT focuses on how new practices become routinely embedded within social contexts. The instrument was pre-tested in two health care settings in which e-health (electronic facilitation of healthcare decision-making and practice) was used by health care professionals. The developed instrument was pre-tested in two professional samples (N=46; N=231). Ratings of items representing normalisation 'processes' were significantly related to staff members' perceptions of whether or not e-health had become 'routine'. Key methodological challenges are discussed in relation to: translating multi-component theoretical constructs into simple questions; developing and choosing appropriate outcome measures; conducting multiple-stakeholder assessments; instrument and question framing; and more general issues for instrument development in practice contexts. To develop theory-derived measures of implementation process for progressing research in this field, four key recommendations are made relating to (1) greater attention to underlying theoretical assumptions and extent of translation work required; (2) the need for appropriate but flexible approaches to outcomes measurement; (3) representation of multiple perspectives and collaborative nature of

  7. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol.

    Science.gov (United States)

    Goes, Suelen Meira; Trask, Catherine M; Boden, Catherine; Bath, Brenna; Ribeiro, Daniel Cury; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-27

    Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers' compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. CRD42017060390. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  8. Characterisation of an inlet pre-injector laser-induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals

    Science.gov (United States)

    Novelli, A.; Hens, K.; Tatum Ernest, C.; Kubistin, D.; Regelin, E.; Elste, T.; Plass-Dülmer, C.; Martinez, M.; Lelieveld, J.; Harder, H.

    2014-10-01

    Atmospheric measurements of hydroxyl radicals (OH) are challenging due to a high reactivity and consequently low concentration. The importance of OH as an atmospheric oxidant has motivated a sustained effort leading to the development of a number of highly sensitive analytical techniques. Recent work has indicated that the laser-induced fluorescence of the OH molecules method based on the fluorescence assay by gas expansion technique (LIF-FAGE) for the measurement of atmospheric OH in some environments may be influenced by artificial OH generated within the instrument, and a chemical method to remove this interference was implemented in a LIF-FAGE system by Mao et al. (2012). While it is not clear whether other LIF-FAGE instruments suffer from the same interference, we have applied this method to our LIF-FAGE HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy) system, and developed and deployed an inlet pre-injector (IPI) to determine the chemical zero level in the instrument via scavenging the ambient OH radical. We describe and characterise this technique in addition to its application at field sites in forested locations in Finland, Spain and Germany. Ambient measurements show that OH generated within the HORUS instrument is a non-negligible fraction of the total OH signal, which can comprise 30 to 80% during daytime and 60 to 100% during the night. The contribution of the background OH varied greatly between measurement sites and was likely related to the type and concentration of volatile organic compounds (VOCs) present at each particular location. Two inter-comparisons in contrasting environments between the HORUS instrument and two different chemical ionisation mass spectrometers (CIMS) are described to demonstrate the efficacy of IPI and the necessity of the chemical zeroing method for our LIF-FAGE instrument in such environments.

  9. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  10. The development of an instrument to measure teachers' use of fear appeals in the GCSE classroom.

    Science.gov (United States)

    Putwain, David W; Roberts, Christine M

    2009-12-01

    Previous work has suggested that teachers of General Certificate of Secondary Education classes may use fear appeals as a motivational device but these may have unwanted consequences by increasing examination-related anxiety in students. To facilitate future work in this area, an instrument was developed to measure teachers' use of fear appeals in the course of normal classroom instruction. Students in their final 2 years of compulsory schooling in England: 192 in Study 1 and 133 in Study 2. A construct validity approach was used in the development of this instrument. Study 1 reports the development and piloting of this measure. Study 2 reports refinement of this measure and relations with other constructs. A three-factor structure provided a reasonable model fit and all factors demonstrated acceptable reliability. Factors 1 and 2 described the perceived frequency of fear appeals made in relation to educational/occupational consequences and the third factor described the perceived threat of fear appeals. This instrument has demonstrated sufficient convergent and discriminant validity and reliability to be used in subsequent research, although the validation process should continue and it is hoped that the instrument will be adapted for use in other contexts.

  11. Instrument for thickness measuring of a workpiece with the help of ultrasonic waves

    International Nuclear Information System (INIS)

    Wells, F.H.; Martin, R.

    1978-01-01

    The proposed ultrasonic measuring instrument has a generator for pulsed ultrasonic signals, a detector as well as a contact arrangement that connects both with the work piece. The transportation lag of the signals through the contact arrangements amounts to at least five times the transportation lag of the signals due to the thickness of a work piece. Furthermore there is an arrangement for the measurement of the delay between two successive echos from the back of the work piece with the help of a zero passage detector for the generation of a time-reference value on each echo signal. This permits an exact time control of the pulses which range in the field around nano seconds. The instrument is explained with 8 drawings and a detailed description. (RW) [de

  12. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  13. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  14. ELABORATING A MEASUREMENT INSTRUMENT FOR THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Caraivan Luiza

    2012-12-01

    Full Text Available Flow is a construct imported in marketing research from social sciences in order to examine consumer behavior in the online medium. The construct describes a state of deep involvement in a challenging activity, most frequently characterized by high levels of enjoyment, control and concentration. Researchers found that the degree to which online experience is challenging can be defined, measured, and related well to important marketing variables. As shown by our extensive literature review, flow measurements include antecedents, dimensions and consequences of flow. The present paper represents a detailed description of the construct`s operationalization in the context of online information search. In this respect, our main goal is to produce a basic instrument to evaluate the flow experience of online search, in order to capitalize on the premises of an interactive, complex informational medium – the World Wide Web – and on the consequence of an exploratory informational behavior of users. The instrument is conceived to offer a primal possibility to collect data. The composition, source and significance of the 11 scales used to measure the multiple factors of the flow experience during online search are detailed in this study with the aim to ensure the compliance with scientific rigors and to facilitate correct reports of data related to the reliability and validity of measurements. For further research, we propose factor analysis to test the resulted instrument and to ensure that the measures employed are psychometrically sound. Factor analysis refers to a wide range of statistic techniques used to represent a set of variables in concordance with a reduced number of hypothetical variables called factors. Factorial analysis is used to solve two types of problems: reducing the number of variables to increase data processing speed and identifying hidden patterns in the existent data relations. However, we expect our scales to perform

  15. Health Physics Measurements Services

    Energy Technology Data Exchange (ETDEWEB)

    Carchon, R

    2001-04-01

    SCK-CEN's programme on health physics measurements includes various activities in dosimetry, calibration , instrumentation , gamma-ray spectrometry, whole body counting , the preparation of standard sources, non-destructive assay and the maintenance of Euratom Fork detectors. Main achievements in these topical areas in 2000 are summarised.

  16. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    International Nuclear Information System (INIS)

    Williams, David E; Henshaw, Geoff S; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A

    2013-01-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution. (paper)

  17. Contextuality for preparations, transformations, and unsharp measurements

    International Nuclear Information System (INIS)

    Spekkens, R.W.

    2005-01-01

    The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of contextuality is introduced which generalizes the standard notion in three ways: (i) it applies to arbitrary operational theories rather than just quantum theory (ii) it applies to arbitrary experimental procedures rather than just sharp measurements, and (iii) it applies to a broad class of ontological models of quantum theory rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality

  18. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  19. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  20. Instrument failure detection of flow measurement in the feedwater system of the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Racz, A.

    1990-12-01

    The applicability of two different methods for early detection of instrument failures of the flow measurement in feedwater systems are investigated. Both methods are based on Kalman filtering technique of stochastic processes. The reliability of the model for description of a feedwater system is checked by comparing calculated values with measured data. Possible instrument failures are simulated in order to show the capability of the proposed procedures. A practical measurement system arrangement is suggested. (author) 10 refs.; 16 figs.; 4 tabs

  1. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  2. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  3. Instrumental methods of analysis, 7th edition

    International Nuclear Information System (INIS)

    Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr.

    1988-01-01

    The authors have prepared an organized and generally polished product. The book is fashioned to be used as a textbook for an undergraduate instrumental analysis course, a supporting textbook for graduate-level courses, and a general reference work on analytical instrumentation and techniques for professional chemists. Four major areas are emphasized: data collection and processing, spectroscopic instrumentation and methods, liquid and gas chromatographic methods, and electrochemical methods. Analytical instrumentation and methods have been updated, and a thorough citation of pertinent recent literature is included

  4. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  5. A strain-controlled RheoSANS instrument for the measurement of the microstructural, electrical, and mechanical properties of soft materials

    Science.gov (United States)

    Richards, Jeffrey J.; Wagner, Norman J.; Butler, Paul D.

    2017-10-01

    In situ measurements are an increasingly important tool to inform the complex relationship between nanoscale properties and macroscopic material measurements. Knowledge of these phenomena can be used to develop new materials to meet the performance demands of next generation technologies. Conductive complex fluids have emerged as an area of research where the electrical and mechanical properties are key design parameters. To study the relationship between microstructure, conductivity, and rheology, we have developed a small angle neutron scattering (SANS) compatible Couette rheological geometry capable of making impedance spectroscopy measurements under continuous shear. We have also mounted this geometry on a commercial strain controlled rheometer with a modified forced convection oven. In this manuscript, we introduce the simultaneous measurement of impedance spectroscopy, rheological properties and SANS data. We describe the validation of this dielectric RheoSANS instrument and demonstrate its operation using two systems—an ion gel comprising Pluronic® surfactant and ionic liquid, ethyl-ammonium nitrate, and poly(3-hexylthiophene) organogel prepared in a mixture of hexadecane and dichlorobenzene. In both systems, we use this new measurement capability to study the microstructural state of these materials under two different protocols. By monitoring their dielectric rheology at the same time as the SANS measurement, we demonstrate the capacity to directly probe structure-property relationships inherent to the macroscopic material response.

  6. Measuring Medical Housestaff Teamwork Performance Using Multiple Direct Observation Instruments: Comparing Apples and Apples.

    Science.gov (United States)

    Weingart, Saul N; Yaghi, Omar; Wetherell, Matthew; Sweeney, Megan

    2018-04-10

    To examine the composition and concordance of existing instruments used to assess medical teams' performance. A trained observer joined 20 internal medicine housestaff teams for morning work rounds at Tufts Medical Center, a 415-bed Boston teaching hospital, from October through December 2015. The observer rated each team's performance using 9 teamwork observation instruments that examined domains including team structure, leadership, situation monitoring, mutual support, and communication. Observations recorded on paper forms were stored electronically. Scores were normalized from 1 (low) to 5 (high) to account for different rating scales. Overall mean scores were calculated and graphed; weighted scores adjusted for the number of items in each teamwork domain. Teamwork scores were analyzed using t-tests, pair-wise correlations, and the Kruskal-Wallis statistic, and team performance was compared across instruments by domain. The 9 tools incorporated 5 major domains, with 5-35 items per instrument for a total of 161 items per observation session. In weighted and unweighted analyses, the overall teamwork performance score for a given team on a given day varied by instrument. While all of the tools identified the same low outlier, high performers on some instruments were low performers on others. Inconsistent scores for a given team across instruments persisted in domain-level analyses. There was substantial variation in the rating of individual teams assessed concurrently by a single observer using multiple instruments. Since existing teamwork observation tools do not yield concordant assessments, researchers should create better tools for measuring teamwork performance.

  7. An Instrument to Measure Maturity of Integrated Care: A First Validation Study

    Directory of Open Access Journals (Sweden)

    Liset Grooten

    2018-01-01

    Full Text Available Introduction: Lessons captured from interviews with 12 European regions are represented in a new instrument, the B3-Maturity Model (B3-MM. B3-MM aims to assess maturity along 12 dimensions reflecting the various aspects that need to be managed in order to deliver integrated care. The objective of the study was to test the content validity of B3-MM as part of SCIROCCO (Scaling Integrated Care into Context, a European Union funded project. Methods: A literature review was conducted to compare B3-MM’s 12 dimensions and their measurement scales with existing measures and instruments that focus on assessing the development of integrated care. Subsequently, a three-round survey conducted through a Delphi study with international experts in the field of integrated care was performed to test the relevance of: 1 the dimensions, 2 the maturity indicators and 3 the assessment scale used in B3-MM. Results: The 11 articles included in the literature review confirmed all the dimensions described in the original version of B3-MM. The Delphi study rounds resulted in various phrasing amendments of indicators and assessment scale. Full agreement among the experts on the relevance of the 12 B3-MM dimensions, their indicators, and assessment scale was reached after the third Delphi round. Conclusion and discussion: The B3-MM dimensions, maturity indicators and assessment scale showed satisfactory content validity. While the B3-MM is a unique instrument based on existing knowledge and experiences of regions in integrated care, further testing is needed to explore other measurement properties of B3-MM.

  8. An Instrument to Measure Maturity of Integrated Care: A First Validation Study

    Science.gov (United States)

    2018-01-01

    Introduction: Lessons captured from interviews with 12 European regions are represented in a new instrument, the B3-Maturity Model (B3-MM). B3-MM aims to assess maturity along 12 dimensions reflecting the various aspects that need to be managed in order to deliver integrated care. The objective of the study was to test the content validity of B3-MM as part of SCIROCCO (Scaling Integrated Care into Context), a European Union funded project. Methods: A literature review was conducted to compare B3-MM’s 12 dimensions and their measurement scales with existing measures and instruments that focus on assessing the development of integrated care. Subsequently, a three-round survey conducted through a Delphi study with international experts in the field of integrated care was performed to test the relevance of: 1) the dimensions, 2) the maturity indicators and 3) the assessment scale used in B3-MM. Results: The 11 articles included in the literature review confirmed all the dimensions described in the original version of B3-MM. The Delphi study rounds resulted in various phrasing amendments of indicators and assessment scale. Full agreement among the experts on the relevance of the 12 B3-MM dimensions, their indicators, and assessment scale was reached after the third Delphi round. Conclusion and discussion: The B3-MM dimensions, maturity indicators and assessment scale showed satisfactory content validity. While the B3-MM is a unique instrument based on existing knowledge and experiences of regions in integrated care, further testing is needed to explore other measurement properties of B3-MM. PMID:29588644

  9. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  11. In vitro investigation of the cleaning efficacy, shaping ability, preparation time and file deformation of continuous rotary, reciprocating rotary and manual instrumentations in primary molars

    Directory of Open Access Journals (Sweden)

    Nahid Ramazani

    2016-03-01

    Full Text Available Background. Efficient canal preparation is the key to successful root canal treatment. This study aimed to assess the cleaning and shaping ability, preparation time and file deformation of rotary, reciprocating and manual instrumentation in canal preparation of primary molars. Methods. The mesiobuccal canals of 64 extracted primary mandibular second molars were injected with India ink. The samples were randomly divided into one control and three experimental groups. Experimental groups were instrumented with K-file, Mtwo in continuous rotation and Reciproc in reciprocating motion, respectively. The control group received no treatment. The files were discarded after four applications. Shaping ability was evaluated using CBCT. After clearing, ink removal was scored. Preparation time and file fracture or deformation was also recorded. Data were analyzed with SPSS 19 using chi-squared, Fisher’s exact test, Kruskal-Wallis and post hoc tests at a significance level of 0.05. Results. Considering cleanliness, at coronal third Reciproc was better than K-file (P < 0.001, but not more effective than Mtwo (P = 0.080. Furthermore, Mtwo leaved the canal cleaner than K-file (P = 0.001. In the middle third, only Reciproc exhibited better cleaning efficacy than K-file (P = 0.005. In the apical third, no difference was detected between the groups (P = 0.794. Regarding shaping ability, no differences were found between Reciproc and Mtwo (P = 1.00. Meanwhile, both displayed better shaping efficacy than K-file (P < 0.05. Between each two groups, there were differences in preparation time (P < 0.05, with Reciproc being the fastest. No file failure occurred. Conclusion. Fast and sufficient cleaning and shaping could be achieved with Mtwo and especially with Reciproc.

  12. In vitro investigation of the cleaning efficacy, shaping ability, preparation time and file deformation of continuous rotary, reciprocating rotary and manual instrumentations in primary molars.

    Science.gov (United States)

    Ramazani, Nahid; Mohammadi, Abbas; Amirabadi, Foroogh; Ramazani, Mohsen; Ehsani, Farzane

    2016-01-01

    Background. Efficient canal preparation is the key to successful root canal treatment. This study aimed to assess the cleaning and shaping ability, preparation time and file deformation of rotary, reciprocating and manual instrumentation in canal preparation of primary molars. Methods. The mesiobuccal canals of 64 extracted primary mandibular second molars were injected with India ink. The samples were randomly divided into one control and three experimental groups. Experimental groups were instrumented with K-file, Mtwo in continuous rotation and Reciproc in reciprocating motion, respectively. The control group received no treatment. The files were discarded after four applications. Shaping ability was evaluated using CBCT. After clearing, ink removal was scored. Preparation time and file fracture or deformation was also recorded. Data were analyzed with SPSS 19 using chi-squared, Fisher's exact test, Kruskal-Wallis and post hoc tests at a significance level of 0.05. Results. Considering cleanliness, at coronal third Reciproc was better than K-file (P < 0.001), but not more effective than Mtwo (P = 0.080). Furthermore, Mtwo leaved the canal cleaner than K-file (P = 0.001). In the middle third, only Reciproc exhibited better cleaning efficacy than K-file (P = 0.005). In the apical third, no difference was detected between the groups (P = 0.794). Regarding shaping ability, no differences were found between Reciproc and Mtwo (P = 1.00). Meanwhile, both displayed better shaping efficacy than K-file (P < 0.05). Between each two groups, there were differences in preparation time (P < 0.05), with Reciproc being the fastest. No file failure occurred. Conclusion. Fast and sufficient cleaning and shaping could be achieved with Mtwo and especially with Reciproc.

  13. The Second Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments — CINDI-2 — Overview

    Science.gov (United States)

    Apituley, Arnoud; van Roozendael, Michel; Hendrick, Francois; Kreher, Karin; Richter, Andreas; Wagner, Thomas; Friess, Udo; Participants, Cindi-2

    2017-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. In both cases, retrievals take into account the light path of scattered sunlight though the entire atmosphere. Since MAXDOAS instruments are relatively low cost and can be operated autonomously almost anywhere, they are credible candidates to form a world-wide ground based reference network for satellite observations. To ensure proper traceability of the MAXDOAS observations, a thorough intercomparison is mandatory. The Cabauw Experimental Site for Atmospheric Research (CESAR) site in centre of The Netherlands was the stage of the Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI) in June-July 2009 and again for the second campaign, CINDI-2, in 2016. Cabauw was chosen because the flat terrain offered a free view of large parts of the horizon, needed to accommodate the viewing geometry of the MAXDOAS observations. The location is under influence of both clean as well as polluted airmasses. This gives a wide range of possible trace gas concentrations and mixtures. Furthermore, at CESAR a wide range of observations are routinely carried out that fulfil the requirement to provide the background necessary for unraveling the differences between the observations from different MAXDOAS instruments that can be quite diverse in design and data treatment. These observations include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, as well as vertical profiles of aerosol optical properties by (Raman) lidar. In addition, vertical profiles of NO2 could be measured during CINDI-2 using the unique NO2 sonde, and a NO2 lidar system. With the imminent launch of Sentinel-5 Precursor/TROPOMI, with a nadir pixelsize of 3.5 × 3

  14. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties.

    Science.gov (United States)

    Longo, Umile Giuseppe; Saris, Daniël; Poolman, Rudolf W; Berton, Alessandra; Denaro, Vincenzo

    2012-10-01

    The aims of this study were to obtain an overview of the methodological quality of studies on the measurement properties of rotator cuff questionnaires and to describe how well various aspects of the design and statistical analyses of studies on measurement properties are performed. A systematic review of published studies on the measurement properties of rotator cuff questionnaires was performed. Two investigators independently rated the quality of the studies using the Consensus-based Standards for the selection of health Measurement Instruments checklist. This checklist was developed in an international Delphi consensus study. Sixteen studies were included, in which two measurement instruments were evaluated, namely the Western Ontario Rotator Cuff Index and the Rotator Cuff Quality-of-Life Measure. The methodological quality of the included studies was adequate on some properties (construct validity, reliability, responsiveness, internal consistency, and translation) but need to be improved on other aspects. The most important methodological aspects that need to be developed are as follows: measurement error, content validity, structural validity, cross-cultural validity, criterion validity, and interpretability. Considering the importance of adequate measurement properties, it is concluded that, in the field of rotator cuff pathology, there is room for improvement in the methodological quality of studies measurement properties. II.

  15. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is -3

  16. Value-Personality Link Measured With Novel Instruments Developed With an Emic Perspective

    Directory of Open Access Journals (Sweden)

    Suna Tevrüz

    2017-05-01

    Full Text Available The first aim of this study is to investigate whether instruments developed with an emic approach in Turkey produce the same trait-value links obtained with studies using near universal instruments, and if emic traits and value concepts are composed under agency and communal conceptions. So, the first aim of this study is to inspect the conceptual similarities in the links between traits and values. The second aim is to examine the moderating effect of disposable income on the strength of the trait-value relationship. Undergraduate and graduate students (N = 595 from six universities in Istanbul responded to the Personality Profile Scale (PPS and the Life Goal Values (LGV questionnaire. Second order factor analysis indicated that indigenous value and trait items were representative of communal and agency conceptions. Furthermore, most of the value-trait links revealed with regression analysis, and the sinusoid relationships revealed with Pearson correlation coefficients were consistent with the findings measured with near universal instruments. Additionally found relationships between traits and especially conservation values can be interpreted as the instrumentality of agentic traits for personal as well for social focused values. Disposable income had a moderating effect on five trait-value relationships and three out of five were weaker in the low-income group.

  17. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lukac, Martin [Cirrus Sense LLC, Los Angeles, CA (United States); Ramanathan, Nithya [Cirrus Sense LLC, Los Angeles, CA (United States); Graham, Eric [Cirrus Sense LLC, Los Angeles, CA (United States)

    2013-09-10

    Black carbon (BC) emissions from traditional cooking fires and other sources are significant anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation requires techniques for measuring and verifying such cookstove performance. The overarching goal of the proposed program was to develop a low-cost, wireless instrument to provide a high-resolution profile of the cookstove BC emissions and usage in the field. We proposed transferring the complexity of analysis away from the sampling hardware at the measurement site and to software at a centrally located server to easily analyze data from thousands of sampling instruments. We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of cookstove usage, fuel estimates, and emission values with low variability. Emission values from our instrument were consistent with published ranges of emissions for similar stove and fuel types.

  18. Evaluation of apical canal shapes produced sequentially during instrumentation with stainless steel hand and Ni-Ti rotary instruments using Micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Woo-Jin Lee

    2011-05-01

    Full Text Available Objectives The purpose of this study was to determine the optimal master apical file size with minimal transportation and optimal efficiency in removing infected dentin. We evaluated the transportation of the canal center and the change in untouched areas after sequential preparation with a #25 to #40 file using 3 different instruments: stainless steel K-type (SS K-file hand file, ProFile and LightSpeed using microcomputed tomography (MCT. Materials and Methods Thirty extracted human mandibular molars with separated orifices and apical foramens on mesial canals were used. Teeth were randomly divided into three groups: SS K-file, Profile, LightSpeed and the root canals were instrumented using corresponding instruments from #20 to #40. All teeth were scanned with MCT before and after instrumentation. Cross section images were used to evaluate canal transportation and untouched area at 1- , 2- , 3- , and 5- mm level from the apex. Data were statistically analyzed according to' repeated nested design'and Mann-Whitney test (p = 0.05. Results In SS K-file group, canal transportation was significantly increased over #30 instrument. In the ProFile group, canal transportation was significantly increased after preparation with the #40 instrument at the 1- and 2- mm levels. LightSpeed group showed better centering ability than ProFile group after preparation with the #40 instrument at the 1 and 2 mm levels. Conclusions SS K-file, Profile, and LightSpeed showed differences in the degree of apical transportation depending on the size of the master apical file.

  19. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  20. Development of an Instrument to Measure Higher Order Thinking Skills in Senior High School Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus

    2016-01-01

    The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…

  1. Measuring Instrument Constructs of Return Factors for Green Office Building Investments Variables Using Rasch Measurement Model

    Directory of Open Access Journals (Sweden)

    Isa Mona

    2016-01-01

    Full Text Available This paper is a preliminary study on rationalising green office building investments in Malaysia. The aim of this paper is attempt to introduce the application of Rasch measurement model analysis to determine the validity and reliability of each construct in the questionnaire. In achieving this objective, a questionnaire survey was developed consists of 6 sections and a total of 106 responses were received from various investors who own and lease office buildings in Kuala Lumpur. The Rasch Measurement analysis is used to measure the quality control of item constructs in the instrument by measuring the specific objectivity within the same dimension, to reduce ambiguous measures, and a realistic estimation of precision and implicit quality. The Rasch analysis consists of the summary statistics, item unidimensionality and item measures. A result shows the items and respondent (person reliability is at 0.91 and 0.95 respectively.

  2. Psychometric Evaluation of the D-Catch, an Instrument to Measure the Accuracy of Nursing Documentation.

    Science.gov (United States)

    D'Agostino, Fabio; Barbaranelli, Claudio; Paans, Wolter; Belsito, Romina; Juarez Vela, Raul; Alvaro, Rosaria; Vellone, Ercole

    2017-07-01

    To evaluate the psychometric properties of the D-Catch instrument. A cross-sectional methodological study. Validity and reliability were estimated with confirmatory factor analysis (CFA) and internal consistency and inter-rater reliability, respectively. A sample of 250 nursing documentations was selected. CFA showed the adequacy of a 1-factor model (chronologically descriptive accuracy) with an outlier item (nursing diagnosis accuracy). Internal consistency and inter-rater reliability were adequate. The D-Catch is a valid and reliable instrument for measuring the accuracy of nursing documentation. Caution is needed when measuring diagnostic accuracy since only one item measures this dimension. The D-Catch can be used as an indicator of the accuracy of nursing documentation and the quality of nursing care. © 2015 NANDA International, Inc.

  3. Safeguards and physics measurements

    International Nuclear Information System (INIS)

    Carchon, R.

    2002-01-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'

  4. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  5. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  6. Spot measurements of radionuclides in air, water and solids with a single instrument

    International Nuclear Information System (INIS)

    Philipsborn, H. von

    1998-01-01

    A unique instrument for measuring environmental radionuclides and novel methods for their concentrative sampling are described here which meet high requirements of sensitivity, easy and reliable handling, and low cost for most applications in field screening, monitoring and training. (author)

  7. Comparison of methods and instruments for 222Rn/220Rn progeny measurement

    International Nuclear Information System (INIS)

    Liu Yanyang; Shang Bing; Wu Yunyun; Zhou Qingzhi

    2012-01-01

    In this paper, comparisons were made among three methods of measurement (grab measurement, continuous measurement and integrating measurement) and also measurement of different instruments for a radon/thoron mixed chamber. Taking the optimized five-segment method as a comparison criterion, for the equilibrium-equivalent concentration of 222 Rn, measured results of Balm and 24 h integrating detectors are 31% and 29% higher than the criterion, the results of Wl x, however, is 20% lower; and for 220 Rn progeny, the results of Fiji-142, Kf-602D, BWLM and 24 h integrating detector are 86%, 18%, 28% and 36% higher than the criterion respectively, except that of WLx, which is 5% lower. For the differences shown, further research is needed. (authors)

  8. An instrument to measure passenger satisfaction of a public transport system

    Directory of Open Access Journals (Sweden)

    Viviane Leite Dias de Mattos

    2017-03-01

    Full Text Available This study proposes an instrument, based on fuzzy logic, to measure the satisfaction with the public transport. It is based on previous studies, expert opinion and results of two surveys conducted among the data samples of the studied population: a university community. Qualitative techniques (questionaries and interviews were used for validating content, while the construct validation uses quantitative techniques (Factor Analysis and Reliability Analysis. An experiment is also performed to define some properties of fuzzy controllers: membership function and method of defuzzification. The final instrument consists of twenty items in four dimensions, namely: service, stops/terminals, vehicle and safety. It is considered valid and reliable by the present study. It can be used as a tool to understand the satisfaction of the passengers of public transport system investigated. It can also provide subsidies for managers to improve their work quality.

  9. Local density measurement of additive manufactured copper parts by instrumented indentation

    Science.gov (United States)

    Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego

    2018-05-01

    Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.

  10. An instrument for the high-statistics measurement of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Buontempo, S.; Ereditato, A.; Marchetti-Stasi, F.; Riccardi, F.; Strolin, P.

    1994-01-01

    There is today widespread use of plastic scintillating fibers in particle physics, mainly for calorimetric and tracking applications. In the case of calorimeters, we have to cope with very massive detectors and a large quantity of scintillating fibers. The CHORUS Collaboration has built a new detector to search for ν μ -ν τ oscillations in the CERN neutrino beam. A crucial task of the detector is ruled by the high-energy resolution calorimeter. For its construction more than 400 000 scintillating plastic fibers have been used. In this paper we report on the design and performance of a new instrument for the high-statistics measurement of the fiber properties, in terms of light yield and light attenuation length. The instrument has been successfully used to test about 3% of the total number of fibers before the construction of the calorimeter. ((orig.))

  11. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  12. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  13. Service quality in banking: developing and testing measurement instrument with Latvian sample data

    Directory of Open Access Journals (Sweden)

    Jelena Titko

    2013-01-01

    Full Text Available The paper highlights the importance of managing service quality in banking that can positively affect customer satisfaction. The goal of the given study is to develop an instrument for measuring service quality perceived by Latvian banks’ retail customers and to determine the most important contributors to customer satisfaction. To achieve this purpose, randomly selected customers of Latvian banks were surveyed, using the authors’ developed questionnaire. The proposed instrument was tested for reliability and validity, using techniques of confirmatory factor analysis. Exploratory factor analysis yielded five service quality dimensions (factors that allowed constructing customer satisfaction factor model EPICA: E – expenses, P – product, I – image, C – competence and emotional intellect, A – access. The subsequent correlation analysis revealed that the strongest relationship is between customer satisfaction and C factor. The results of the current research are crucially important for Latvian banks’ executives because the majority of previous studies in the related field offered measurement scales adequate for measuring service quality in other industries. Besides, the proposed questionnaire is exclusively developed for Latvia and considers Latvian banking sector specifics.

  14. Assessment of Customer Service in Academic Health Care Libraries (ACSAHL): an instrument for measuring customer service*†

    Science.gov (United States)

    Crossno, Jon E.; Berkins, Brenda; Gotcher, Nancy; Hill, Judith L.; McConoughey, Michelle; Walters, Mitchel

    2001-01-01

    Objectives: In a pilot study, the library had good results using SERVQUAL, a respected and often-used instrument for measuring customer satisfaction. The SERVQUAL instrument itself, however, received some serious and well-founded criticism from the respondents to our survey. The purpose of this study was to test the comparability of the results of SERVQUAL with a revised and shortened instrument modeled on SERVQUAL. The revised instrument, the Assessment of Customer Service in Academic Health Care Libraries (ACSAHL), was designed to better assess customer service in academic health care libraries. Methods: Surveys were sent to clients who had used the document delivery services at three academic medical libraries in Texas over the previous twelve to eighteen months. ACSAHL surveys were sent exclusively to clients at University of Texas (UT) Southwestern, while the client pools at the two other institutions were randomly divided and provided either SERVQUAL or ACSAHL surveys. Results: Results indicated that more respondents preferred the shorter ACSAHL instrument to the longer and more complex SERVQUAL instrument. Also, comparing the scores from both surveys indicated that ACSAHL elicited comparable results. Conclusions: ACSAHL appears to measure the same type of data in similar settings, but additional testing is recommended both to confirm the survey's results through data replication and to investigate whether the instrument applies to different service areas. PMID:11337948

  15. Evaluation of the Self-Adjusting File system (SAF) for the instrumentation of primary molar root canals: a micro-computed tomographic study.

    Science.gov (United States)

    Kaya, E; Elbay, M; Yiğit, D

    2017-06-01

    The Self-Adjusting File (SAF) system has been recommended for use in permanent teeth since it offers more conservative and effective root-canal preparation when compared to traditional rotary systems. However, no study had evaluated the usage of SAF in primary teeth. The aim of this study was to evaluate and compare the use of SAF, K file (manual instrumentation) and Profile (traditional rotary instrumentation) systems for primary-tooth root-canal preparation in terms of instrumentation time and amounts of dentin removed using micro-computed tomography (μCT) technology. Study Design: The study was conducted with 60 human primary mandibular second molar teeth divided into 3 groups according to instrumentation technique: Group I: SAF (n=20); Group II: K file (n=20); Group III; Profile (n=20). Teeth were embedded in acrylic blocks and scanned with a μCT scanner prior to instrumentation. All distal root canals were prepared up to size 30 for K file,.04/30 for Profile and 2 mm thickness, size 25 for SAF; instrumentation time was recorded for each tooth, and a second μCT scan was performed after instrumentation was complete. Amounts of dentin removed were measured using the three-dimensional images by calculating the difference in root-canal volume before and after preparation. Data was statistically analysed using the Kolmogorov-Smirnov and Kruskal-Wallis tests. Manual instrumentation (K file) resulted in significantly more dentin removal when compared to rotary instrumentation (Profile and SAF), while the SAF system generated significantly less dentin removal than both manual instrumentation (K file) and traditional rotary instrumentation (Profile) (psystems. Within the experimental conditions of the present study, the SAF seems as a useful system for root-canal instrumentation in primary molars because it removed less dentin than other systems, which is especially important for the relatively thin-walled canals of primary teeth, and because it involves less

  16. The evolution and development of an instrument to measure essential professional nursing practices.

    Science.gov (United States)

    Kramer, Marlene; Brewer, Barbara B; Halfer, Diana; Hnatiuk, Cynthia Nowicki; MacPhee, Maura; Schmalenberg, Claudia

    2014-11-01

    Nursing continues to evolve from a task-oriented occupation to a holistic professional practice. Increased professionalism requires accurate measurement of care processes and practice. Nursing studies often omit measurement of the relationship between structures in the work environment and processes of care or between processes of care and patient outcomes. Process measurement is integral to understanding and improving nursing practice. This article describes the development of an updated Essentials of Magnetism process measurement instrument for clinical nurses (CNs) practicing on inpatient units in hospitals. It has been renamed Essential Professional Nursing Practices: CN.

  17. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  18. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  19. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  20. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…