WorldWideScience

Sample records for preoperative dynamic x-rays

  1. Preoperative chest x-ray findings in peptic ulcer perforation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Kim, S. W.; Lim, J. S.; Kim, Y. J. [Kyungpook National University School of Medicine, Taegu (Korea, Republic of)

    1981-12-15

    This study was carried out to analyze the distribution of age, sex, chief complaint, physical examination and findings of chest x-ray films before operation in 59 cases of peptic ulcer perforation. The ratio of male to female was 1.7 : 1 and incidence of the ulcer perforation was most common in 5th decades. Thirty five among 59 cases showed pleural effusion, segmental atelectasis and pneumonic infiltration on chest x-ray film. Twenty nine among 50 cases of duodenal ulcer perforation and 6 of 9 cases of stomach ulcer perforation showed positive chest x-ray findings. No relationship was found between fever and preoperative chest x-ray findings.

  2. Preoperative chest x-ray findings in peptic ulcer perforation

    International Nuclear Information System (INIS)

    Kim, T. H.; Kim, S. W.; Lim, J. S.; Kim, Y. J.

    1981-01-01

    This study was carried out to analyze the distribution of age, sex, chief complaint, physical examination and findings of chest x-ray films before operation in 59 cases of peptic ulcer perforation. The ratio of male to female was 1.7 : 1 and incidence of the ulcer perforation was most common in 5th decades. Thirty five among 59 cases showed pleural effusion, segmental atelectasis and pneumonic infiltration on chest x-ray film. Twenty nine among 50 cases of duodenal ulcer perforation and 6 of 9 cases of stomach ulcer perforation showed positive chest x-ray findings. No relationship was found between fever and preoperative chest x-ray findings

  3. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  4. Is Routine Preoperative Chest X-ray Indicated in Elderly Patients ...

    African Journals Online (AJOL)

    Background: In our hospital pre-operative chest x-ray (CXR) are routinely requested without prior establishment of any medical indication for patients of 70 or more years of age who are undergoing elective surgery. The aim of this study was to determine if routine preoperative chest x-rays are justifiably indicated for elderly ...

  5. Assessing the registration of CT-scan data to intraoperative x rays by fusing x rays and preoperative information

    Science.gov (United States)

    Gueziec, Andre P.

    1999-05-01

    This paper addresses a key issue of providing clinicians with visual feedback to validate a computer-generated registration of pre-operative and intra-operative data. With this feedback information, the clinician may decide to proceed with a computer-assisted intervention, revert to a manual intervention, or potentially provide information to the computer system to improve the registration. The paper focuses on total hip replacement (THR) surgery, but similar techniques could be applied to other types of interventions or therapy, including orthopedics, neurosurgery, and radiation therapy. Pre-operative CT data is used to plane the surgery (select an implant type, size and precise position), and is registered to intra-operative X-ray images, allowing to execute the plan: mill a cavity with the implant's shape. (Intra-operative X-ray images must be calibrated with respect to the surgical device executing the plan). One novel technique presented in this paper consists of simulating a post-operative X-ray image of the tissue of interest before doing the procedure, by projecting the registered implant onto an intra-operative X- ray image (corrected for distortion or not), providing clinicians with familiar and easy to interpret images. As an additional benefit, this method provides new means for comparing various strategies for registering pre-operative data to the physical space of the operating room.

  6. X-ray transmission movies of spontaneous dynamic events

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-01-01

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion

  7. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  8. Comparison of the efficacy of preoperative X-ray and thermoradiotherapy used for the treatment of breast cancer

    International Nuclear Information System (INIS)

    Muravskaya, G.V.; Pantyushenko, T.A.; Fradkin, S.Z.; Zhavrid, Eh.A.; Moiseenko, V.V.

    1984-01-01

    An experience of the first randomatized clinical investigation on the usage of different variants of preoperative X-ray (with simultaneous local UHF hyperthepmia and without it) action in the case of combined treatment of patients with breast cancer has been summarized. It has been shown that conventional values of preoperative X-ray therapy (about 30-45 G.) are optimum ones. An increase of complex thermoradiotherapy efficacy in the case of considered cancer forms may be achieved at the expense of a stre gthening of preoperative X-ray action by means of dose increase up to the cancerogenic level or preoperative irradiation under the conditions of local UHF-hyperthermia

  9. Dynamic X-ray computed tomography

    International Nuclear Information System (INIS)

    Grangeat, P.

    2003-01-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  10. X-ray testing for short-time dynamic applications

    International Nuclear Information System (INIS)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried

    2017-01-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  11. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Franck, C.

    1990-01-01

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  12. Ultrafast x-ray scattering on nanoparticle dynamics

    International Nuclear Information System (INIS)

    Plech, A; Ibrahimkutty, S; Issenmann, D; Kotaidis, V; Siems, A

    2013-01-01

    Pulsed X-ray scattering is used for the determination of structural dynamics of laser-irradiated gold particles. By combining several scattering methods such as powder scattering, small angle scattering and diffuse wide angle scattering it is possible to reconstruct the kinetics of structure evolution on several lengths scales and derive complementary information on the particles and their local environment. A generic structural phase diagram for the reaction as function of delay time after laser excitation and laser fluence can be constructed.

  13. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  14. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  15. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  16. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  17. Dynamical X-ray scattering from the relaxed structures

    International Nuclear Information System (INIS)

    Benediktovitch, A.; Feranchuk, I.; Ulyanenkov, A.

    2009-01-01

    High-resolution X-ray diffraction is now widely used analytical tool for investigation of nano scale multilayered structures in semiconductor and optical technologies. The HRXRD method delivers unique information on the crystallographic lattice of the samples, concentration of solid solutions, lattice mismatches, layer thicknesses, defect distribution, and relaxation degree of the epitaxial layers. The evaluation of the experimental results, however, requires a robust and precise theory due to complex dynamical scattering of X-rays from near perfect crystallographic structure of the samples. Usually, the Takagi-Taupin approach [1] or the recurrent matrix methods [2] are used for the simulation of the X-ray diffraction profiles from the epitaxial multilayered structures. The use of these theories, however, becomes essentially difficult, when the lateral lattice mismatches are present in multilayers, for example, in the case of partially or fully relaxed epitaxially grown samples. In the present work, the general solution of this problem is found analytically. The angular divergence of the incident beam is also considered and the algorithm for the diffracted profile mapping in the reciprocal space is developed. The experimental reciprocal space mapping of typical AlGaN/GaN/AlN samples with partially relaxed layers is compared to the simulated maps, which describe well the location and character of the diffraction spots caused by different layers. (author)

  18. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    Science.gov (United States)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  19. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  20. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  1. Dynamic angle selection in X-ray computed tomography

    International Nuclear Information System (INIS)

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes

  2. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  3. X-ray lasers for structural and dynamic biology

    International Nuclear Information System (INIS)

    Spence, J C H; Weierstall, U; Chapman, H N

    2012-01-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump–probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a ‘diffract-and-destroy’ mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes. (key issues reviews)

  4. High-speed videography combined with an x-ray image intensifier for dynamic radiography

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1983-01-01

    The Spin Physics SP-2000 high-speed video system can be combined with an x-ray source, a dynamic event having internal (not directly visible) movement and an x-ray image intensifier to perform dynamic radiography. The cesium iodide input fluor and P-20 output fluor of the image intensifier have rapid decay to allow x-ray imaging up to 12,000 pictures per second. Applications of this technique include internal functioning of a compressor, turbulent-water action, and other mechanical actions

  5. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  6. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    Directory of Open Access Journals (Sweden)

    Li Fang

    2017-05-01

    Full Text Available Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. We present our investigation of photoionization and nuclear dynamics in methyl iodine (CH3I molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up to 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.

  7. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  8. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  9. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  10. Dynamic MR defecography of the posterior compartment: Comparison with conventional X-ray defecography.

    Science.gov (United States)

    Poncelet, E; Rock, A; Quinton, J-F; Cosson, M; Ramdane, N; Nicolas, L; Feldmann, A; Salleron, J

    2017-04-01

    The goal of this study was to compare conventional X-ray defecography and dynamic magnetic resonance (MR) defecography in the diagnosis of pelvic floor prolapse of the posterior compartment. Fifty women with a mean age of 65.5 years (range: 53-72 years) who underwent X-ray defecography and MR defecography for clinical suspicion of posterior compartment dysfunction, were included in this retrospective study. X-ray defecography and dynamic MR defecography were reviewed separately for the presence of pelvic organ prolapse. The results of the combination of X-ray defecography and MR defecography were used as the standard of reference. Differences in sensitivities between X-ray defecography and MR defecography were compared using the McNemar test. With the gold standard, we evidenced a total of 22 cases of peritoneocele (17 elytroceles, 3 hedroceles and 2 elytroceles+hedroceles), including 15 cases of enterocele, 28 patients with rectocele including 16 that retained contrast, 37 cases of rectal prolapse, and 11 cases of anismus. The sensitivities of X-ray defecography were 90.9% for the diagnosis of peritoneocele, 71.4% for rectocele, 81.1% for rectal prolapse and 63.6% for anismus. The sensitivities of MR defecography for the same diagnoses were 86.4%, 78.6%, 62.2% and 63.6%, respectively. For all these pathologies, no significant differences between X-ray defecography and MR defecography were found. Dynamic MR defecography is equivalent to X-ray defecography for the diagnosis of abnormalities of the posterior compartment of the pelvic floor. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  11. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    Science.gov (United States)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  12. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography

    International Nuclear Information System (INIS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-01-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented. - Highlights: • A material discrimination algorithm for dual MV energy X-ray digital radiography is proposed. • To solve the materials overlapping problem of the current dual energy algorithm. • The experimental results with the 4/7 MV container inspection system are shown.

  13. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  14. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy

    CERN Document Server

    Vavrik, D; Visschers, J; Pospísil, S; Ponchut, C; Zemankova, J

    2002-01-01

    Recent theoretical damage material models describe the dynamic development of voids and microcracks in materials under plastic deformation. For these models, experimental verification is needed. We propose direct and non-destructive observation of the propagation of material damage by measuring changes in transmission of X-rays penetrating a stressed material, using a photon-counting X-ray imager. The present contribution aims to demonstrate the applicability of silicon and gallium-arsenide devices for X-ray transmission measurements with a specimen of high-ductile aluminium alloy under study. The first experiments to determine the resolution and the sensitivity of the proposed method with the Medipix-1 pixel detector are presented.

  15. Dynamical behavior of X-ray spectra from Markarian 766

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, A. C.; Tsuruta, S. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Haba, Y.; Kunieda, H. [Department of Physics, Nagoya University, Furo-co, Chikusa-Ku, Nagoya 464-8602 (Japan); Takahashi, M. [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8543 (Japan); Takahashi, R., E-mail: liebmann@physics.montana.edu, E-mail: uphst@gemini.oscs.montana.edu, E-mail: haba@u.phys.nagoya-u.ac.jp, E-mail: kunieda@u.phys.nagoya-u.ac.jp, E-mail: takahasi@phyas.aichi-edu.ac.jp, E-mail: rohta@riken.jp [Department of Natural and Physical Sciences, Tomakomai National College of Technology, Tomakomai 0591-1257 (Japan)

    2014-01-01

    Mrk 766, a bright narrow-line Seyfert 1, has been observed eight times by the XMM-Newton satellite. We carried out the analysis of the composite data from all of these observations together by applying a dynamical method. Through this analysis, we noted a longer timescale variability in addition to rapid short-time variability. This longer term variability is manifested by the presence of two distinct branches in flux-flux plots. Moreover, the data show the presence of absorbing material whose average thickness decreases gradually from ∼2 × 10{sup 23} cm{sup –2} during the dim state to ∼10{sup 22} cm{sup –2} as the source brightens to brighter states. To explain this longer timescale behavior and others already found self-consistently, we offer a promising model. In this model, the source is dim when a small emission region is covered by a small, denser portion of a partial-covering cloud; the source brightens as it becomes larger and covered predominantly by a less dense, larger region of the covering cloud. The short rapid variability, in contrast, is consistent with the highly variable power-law component from the coronal primary emission region, which is superimposed onto a less variable, ionized relativistic reflection component. Last, a possible presence of some unique soft flares is suggested. Unlike many other flares seen in the light curves, these flares occur only in the 0.3-2.0 keV soft band. These soft flares may be attributed to 'hot spots' on the accretion disk.

  16. Dynamical behavior of X-ray spectra from Markarian 766

    International Nuclear Information System (INIS)

    Liebmann, A. C.; Tsuruta, S.; Haba, Y.; Kunieda, H.; Takahashi, M.; Takahashi, R.

    2014-01-01

    Mrk 766, a bright narrow-line Seyfert 1, has been observed eight times by the XMM-Newton satellite. We carried out the analysis of the composite data from all of these observations together by applying a dynamical method. Through this analysis, we noted a longer timescale variability in addition to rapid short-time variability. This longer term variability is manifested by the presence of two distinct branches in flux-flux plots. Moreover, the data show the presence of absorbing material whose average thickness decreases gradually from ∼2 × 10 23 cm –2 during the dim state to ∼10 22 cm –2 as the source brightens to brighter states. To explain this longer timescale behavior and others already found self-consistently, we offer a promising model. In this model, the source is dim when a small emission region is covered by a small, denser portion of a partial-covering cloud; the source brightens as it becomes larger and covered predominantly by a less dense, larger region of the covering cloud. The short rapid variability, in contrast, is consistent with the highly variable power-law component from the coronal primary emission region, which is superimposed onto a less variable, ionized relativistic reflection component. Last, a possible presence of some unique soft flares is suggested. Unlike many other flares seen in the light curves, these flares occur only in the 0.3-2.0 keV soft band. These soft flares may be attributed to 'hot spots' on the accretion disk.

  17. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Bonetti, Stefano

    2017-01-01

    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers. (topical review)

  18. X-ray testing for short-time dynamic applications; Roentgenuntersuchungen fuer kurzzeitdynamische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried [Fraunhofer-Institut fuer Kurzzeitdynamik, Efringen-Kirchen (Germany). Ernst-Mach-Inst. (EMI)

    2017-08-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  19. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  20. Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses

    Science.gov (United States)

    Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi

    2018-06-01

    We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

  1. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  2. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    Science.gov (United States)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  3. Ultrafast lattice dynamics in photoexcited nanostructures. Femtosecond X-ray diffraction with optimized evaluation schemes

    International Nuclear Information System (INIS)

    Schick, Daniel

    2013-01-01

    Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO 3 . Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO 3 . This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO 3 . In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the

  4. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  5. Some imaging characteristics of the dynamic spatial reconstructor X-ray scanner system

    International Nuclear Information System (INIS)

    Behrenbeck, T.; Sinak, L.J.; Robb, R.A.; Kinsey, J.H.; Ritman, E.L.

    1984-01-01

    In late 1979, the Dynamic Spatial Reconstructor (DSR), a multiple X-ray source, stop action, volume scanning imaging device was installed. At present, the operational characteristics and biomedical utility of the DSR are being evaluated. This research project involves scanning experimental animals and carefully selected patients with cardiovascular and pulmonary pathology. The DSR scanner utilizes a computerized transaxial tomography principle to generate images of transverse slices of the body. (Auth.)

  6. Automated x-ray television complex for inspecting standard-size dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, E.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1993-01-01

    An automated x-ray television complex based on a matrix gas-discharge converter having a large area (2.1 x 1.0 m) for inspecting standard-size freight and containers and for diagnosing industrial articles is presented. The pulsed operating mode of the complex with a 512K digital television storage makes it possible to inspect dynamic objects with a minimum dose load (20--100 μR). 6 refs., 5 figs

  7. Drug design based on x-ray diffraction and steered molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Skálová, Tereza; Dohnálek, Jan; Dušková, Jarmila; Petroková, Hana; Vondráčková, Eva; Zimmermann, K.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 208-210 ISSN 1211-5894. [VUFB Conference on Modern Methods in Synthesis and Analysis of Active Pharmaceutical Substances /5./. Praha, 23.11.2005-24.11.2005] R&D Projects: GA AV ČR KJB4050312 Institutional research plan: CEZ:AV0Z40500505 Keywords : drug design * X-ray diffraction * steered molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Automated X-ray television complex for testing large dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, Eh.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1992-01-01

    An automated X-ray television complex on the base of matrix gas-dischage large-area (2.1x1.0 m) converter for testing large cargoes and containers, as well as for inductrial article diagnostics is described. The complex pulsed operation with the 512 kbytes television digital memory unit provides for testing dynamic objects under minimal doses (20-100 μR)

  9. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States)

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  10. The Scherrer equation and the dynamical theory of X-ray diffraction.

    Science.gov (United States)

    Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos

    2016-05-01

    The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.

  11. X-ray and neutron diffraction and molecular dynamics simulation of molten lithium and rubidium nitrates

    International Nuclear Information System (INIS)

    Yamaguchi, Toshio; Okada, Isao; Ohtaki, Hitoshi; Mikami, Masuhiro; Kawamura, Kazutaka

    1986-01-01

    Molecular dynamics simulations have been performed for lithium and rubidium nitrate melts at 550 and 600K, respectively, together with X-ray and neutron diffraction experiments. Simple Coulomb pair potentials with Born-type repulsions have been adopted in the simulations with a rigid body model for the nitrate ion. Structure functions derived from the X-ray and neutron experiments are well reproduced by the simulations, from which the three-dimensional cation distribution around the nitrate ion has been revealed. The self-diffusion coefficients, the velocity autocorrelation functions and the self-exchange velocities of lithium, rubidium and nitrate ions have been calculated. Anisotropic motion of nitrate ions has been found and is discussed on the basis of the structure of the melts. (author)

  12. Lasers and laser applications. Imaging implosion dynamics: The x-ray pinhole/streak camera

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    A Livermore-developed x-ray-sensitive streak camera was combined with a unique x-ray pinhole camera to make dynamic photographs of laser-irradiated fusion target implosions. These photographs show x radiation emitted from the imploding shell during its 100-ps implosion; they are the first continuous observations of an imploding laser-driven fusion capsule. The diagnostic system has a time resolution of 15 ps and a spatial resolution of about 6 μm. Results agree very well with those predicted by our LASNEX calculations, confirming that the essential physics are correctly described in the code and providing further confidence in the soundness of this approach to inertial confinement fusion

  13. Investigation of mosaicity of epitaxic multilayers by the statistical theory of X-ray dynamical diffraction

    International Nuclear Information System (INIS)

    Li Ming; Mai Zhenhong; Li Jianhua; Li Chaorong; Cui Shufan

    1995-01-01

    Based on the statistical theory of X-ray dynamical diffraction for thin films, the mosaicity of three types of semiconductor epitaxic layers has been investigated by analyzing their rocking curves by the X-ray double-crystal diffraction method. It is shown that the statistical theory can provide quantitative information on the mosaicity of the epitaxic layers such as the mean size and the mean disorientation of mosaic blocks in the layers. Some misunderstandings in interpreting experimental data are cleared up by taking into account the effect of diffuse scattering. It is emphasized that attempts to obtain structural parameters of specimens from their rocking curves by means of the Takagi-Taupin equations for coherent fields only are not strictly correct since diffuse scattering causes additional changes in the tails of the rocking curves. (orig.)

  14. PREFACE: Structure and dynamics determined by neutron and x-ray scattering Structure and dynamics determined by neutron and x-ray scattering

    Science.gov (United States)

    Müller-Buschbaum, Peter

    2011-06-01

    Neutron and x-ray scattering have emerged as powerful methods for the determination of structure and dynamics. Driven by emerging new, powerful neutron and synchrotron radiation sources, the continuous development of new instrumentation and novel scattering techniques gives rise to exciting possibilities. For example, in situ observations become possible via a high neutron or x-ray flux at the sample and, as a consequence, morphological transitions with small time constants can be detected. This special issue covers a broad range of different materials from soft to hard condensed matter. Hence, different material classes such as colloids, polymers, alloys, oxides and metals are addressed. The issue is dedicated to the 60th birthday of Professor Winfried Petry, scientific director of the Research Neutron Source Heinz Maier-Leibnitz (FRM-II), Germany, advisor at the physics department for the Bayerische Elite-Akademie, chair person of the Arbeitsgemeinschaft Metall- und Materialphysik of the German Physical Society (DPG) and a member of the professional council of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). We would like to acknowledge and thank all contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Valeria Lauter for the beautiful cover artwork. Finally, to the readers, we hope that you find this special issue a valuable resource that provides insights into the present possibilities of neutron and x-ray scattering as powerful tools for the investigation of structure and dynamics. Structure and dynamics determined by neutron and x-ray scattering contents In situ studies of mass transport in liquid alloys by means of neutron radiography F Kargl, M Engelhardt, F Yang, H Weis, P Schmakat, B Schillinger, A Griesche and A Meyer Magnetic spin

  15. Heavy particle dynamics in liquid Se. Inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Hosokawa, Shinya; Matsuda, Kazuhiro; Tsutsui, Satoshi; Baron, A. Q. R.

    2007-01-01

    The dynamic structure factor of liquid Se was measured at 523 K using high-resolution inelastic X-ray scattering. Anomalous narrowing of the spectrum was observed at 15 nm -1 , where the static structure factor S(Q) exhibits a weak shoulder, but the elastic part of the dynamic structure factor S(Q, E=0) exhibited a strong maximum. The second frequency moment, which is estimated from only the quasielastic peak, is consistent with the motion of rigid six-atom clusters, while a formal agreement with the first-moment sum rule is preserved by the appearance of a weak intramolecular mode at 30 meV. (author)

  16. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  17. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  18. Food structure and dynamics - what are the opportunities for x-ray and neutron scattering?

    International Nuclear Information System (INIS)

    Gilbert, Elliot Paul

    2010-01-01

    In the latter part of the 20th century, it became evident that major advances in understanding could be achieved by gathering together scientists from unique, diverse but nonetheless complementary disciplines. To what extent can this be achieved in materials science, food science, food technology and nutrition? In Australia, we have developed a programme of research in which we seek to investigate fundamental and industrial problems of national significance in food science. This presentation will illustrate some of the opportunities now available through strategic alliances with materials scientists in the application of methods such as X-ray and neutron scattering to gain a critical understanding of food microstructure, nanostructure and dynamics

  19. Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol.

    Science.gov (United States)

    Ljungberg, M P; Zhovtobriukh, I; Takahashi, O; Pettersson, L G M

    2017-04-07

    We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

  20. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  1. Atomic dynamics in fluids studied by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Kajihara, Yukio; Matsuda, Kazuhiro; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q.

    2010-01-01

    Studies on atomic dynamics in supercritical fluids at high temperature and high pressure have remarkably been advanced by using an inelastic x-ray scattering technique that achieved a meV-energy resolution in the middle of 1990's. In this article, we describe a brief review of the theoretical background on liquid dynamics, our own high-temperature high-pressure technique and recent results of atomic dynamics in supercritical fluids. In particular, we report the results of inelastic x-ray scattering measurements for expanding fluid Hg at high temperature and high pressure, which were conduced at BL35XU/SPring-8. We found that in the metal-nonmetal transition in fluid Hg, the excitation energy of the acoustic mode disperses three times faster than the adiabatic sound velocity obtained by ultrasonic measurements. This phenomenon must be crucial to understand how a metallic state is formed during atomic condensation accurately. Finally we put a future development of this field in perspective. (author)

  2. The reflected amplitude ratio of multilayers and superlattice describe the dynamical diffraction of x-rays

    International Nuclear Information System (INIS)

    Bhatti, Q.A.; Mangi, F.A.

    2006-01-01

    Calculating the rocking curves of complicated layered structures, such as non-ideal super lattices on perfect crystals are clearly exposed with observed diffraction profile. Recursion formulas for calculating reflected amplitude ratio of multilayer and super lattices have been involved from the Takagi-Taupin differential equation, which describes the dynamical diffraction of X-rays in deformed crystal. The Kinematical theory can computing time only in case of ideal superlattice for which geometric series can be used but the reflectivity must be below 10 % so that multiple reflections can be neglected for a perfect crystal of arbitrary thickness the absorption at the centre of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter- deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-rays diffraction calculations give the result very similar to those of macroscopic optical description in terms of the complex index of refraction and Frensnel relation coefficient. (author)

  3. 4D rotational x-ray imaging of wrist joint dynamic motion

    International Nuclear Information System (INIS)

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-01-01

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints

  4. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  5. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  6. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  7. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    Science.gov (United States)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  8. A biplanar X-ray approach for studying the 3D dynamics of human track formation.

    Science.gov (United States)

    Hatala, Kevin G; Perry, David A; Gatesy, Stephen M

    2018-05-09

    Recent discoveries have made hominin tracks an increasingly prevalent component of the human fossil record, and these data have the capacity to inform long-standing debates regarding the biomechanics of hominin locomotion. However, there is currently no consensus on how to decipher biomechanical variables from hominin tracks. These debates can be linked to our generally limited understanding of the complex interactions between anatomy, motion, and substrate that give rise to track morphology. These interactions are difficult to study because direct visualization of the track formation process is impeded by foot and substrate opacity. To address these obstacles, we developed biplanar X-ray and computer animation methods, derived from X-ray Reconstruction of Moving Morphology (XROMM), to analyze the 3D dynamics of three human subjects' feet as they walked across four substrates (three deformable muds and rigid composite panel). By imaging and reconstructing 3D positions of external markers, we quantified the 3D dynamics at the foot-substrate interface. Foot shape, specifically heel and medial longitudinal arch deformation, was significantly affected by substrate rigidity. In deformable muds, we found that depths measured across tracks did not directly reflect the motions of the corresponding regions of the foot, and that track outlines were not perfectly representative of foot size. These results highlight the complex, dynamic nature of track formation, and the experimental methods presented here offer a promising avenue for developing and refining methods for accurately inferring foot anatomy and gait biomechanics from fossil hominin tracks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of an MRI/x-ray/ultrasound compatible marker for pre-operative breast tumour localization

    International Nuclear Information System (INIS)

    Li Yangmei; Wang, Jianxiong; Holloway, Claire; Plewes, Donald B

    2005-01-01

    This paper describes an in vitro investigation into the composition, structure and development of an magnetic resonance imaging (MRI), ultrasound (US) and x-ray imaging compatible marker for breast tumour localization. The marker is composed of 0.4-0.6 mm glass and iron-containing aluminium microspheres suspended in a gelatin matrix. The final form of the marker is a cylindrical shape 7 mm long with 2.05 mm diameter to facilitate delivery through a 12 gauge biopsy needle. To get optimal reflectivity for the US contrast, the glass microsphere concentration was found to be 40% by weight. US contrast is independent of marker orientation and the cylindrical shape made its US signal appearance distinctive thus ensuring confident identification. To control the MRI contrast, iron content was varied to generate a clear and local susceptibility signal void to reflect the marker position. Optimal iron content was found to be 52 μg iron which produced a clear signal void in spoiled gradient recalled MR images. The appearance of the susceptibility artefact is determined by the marker's shape, orientation and echo time. The final marker produces a dark artefact in MRI while appears as a clear hyperintense structure with acoustic shadowing in US images. The x-ray image showed the marker as a radio-opaque structure. This in vitro study demonstrates that the marker forms an alternative to traditional wire localization currently used for breast surgical procedures and creates new opportunities for US guided surgical procedures

  10. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    Science.gov (United States)

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  11. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... undergoes two phase transitions occurring at 38.3 and 39.8 Angstrom(2)/molecule. Simulation indicates that the first transition involves a reorientation of the headgroups while simulation and XRD show that in the second transition the order parameter is the tilt angle of the alkyl chains. A methodology......; At the lowest pressure the tilt angle reaches approximate to 14 degrees in a direction close to a nearest neighbor direction. Both arrangements of the alkyl chains are confirmed by XRD. For higher order and fractional order Bragg peaks, simulations predict higher intensities than observed with XRD. This may...

  12. X-ray Laue diffraction with allowance for second derivatives of amplitudes in dynamical diffraction equations

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2014-01-01

    Asymmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The second derivatives of amplitudes in the direction, perpendicular to diffraction plane in the dynamical diffraction equations are taken into account. Using the corresponding Green function a general form for the amplitude of diffracted wave in the crystal is derived. The sizes of the source in both directions as well as the source of crystal distance and non-monochromaticity of the radiation incident on the crystal are taken into account. On the basis of obtained expression the coherent properties of the field depending on the sizes of the source and on the width of the spectrum of the incident radiation are analyzed. Taking into account the second derivatives of amplitudes with respect to the direction, perpendicular to the diffraction plane, the time dependent propagation equations for an X-ray pulse in a perfect crystal are given

  13. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    International Nuclear Information System (INIS)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-01-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP

  14. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, Ryan; Singharoy, Abhishek [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Qufei [The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jingfen; Xu, Dong [University of Missouri, Columbia, MO 65211 (United States); Perozo, Eduardo [The University of Chicago, Chicago, IL 60637 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  15. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  16. Theory and Modelling of Ultrafast X-ray Imaging of Dynamical Non-equilibrium Systems

    DEFF Research Database (Denmark)

    Lorenz, Ulf

    Over the next few years, a new generation of x-ray sources is going online. These freeelectron lasers will provide extremely bright subpicosecond x-ray pulses. Traditionally, x-ray diraction has the advantage of directly determining the atomic positions within a sample. With these new machines......, it becomes feasible to exploit this concept for ultrafast processes; in eect, we can study chemical reactions as they occur. This thesis deals with theoretical aspect of ultrafast time-resolved x-ray diraction (TRXD).We derive general formulas for calculating the diraction signal that are closely related...

  17. Structural elucidation of dendritic host-guest complexes by X-ray crystallography and molecular dynamics simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, P.A.J.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The

  18. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography.

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-01-01

    Capillary processes greatly influence vapor mediated transport dynamics and associated changes in liquid phase content of porous media. Rapid x-ray synchrotron tomography measurements were used to resolve liquid-vapor interfacial dynamics during evaporation and condensation within submillimetric pores forming between sintered glass bead samples subjected to controlled ambient temperature and relative humidity. Evolution of gas-liquid interfacial shapes were in agreement with predictions based on our analytical model for interfacial dynamics in confined wedge-shaped pores. We also compared literature experimental data at the nanoscale to illustrate the capability of our model to describe early stages of condensation giving rise to the onset of capillary forces between rough surfaces. The study provides high resolution, synchrotron-based observations of capillary evaporation-condensation dynamics at the pore scale as the confirmation of the pore scale analytical model for capillary condensation in a pore and enables direct links with evolution of macroscopic vapor gradients within a sintered glass bead sample through their effect on configuration and evolution of the local interfaces. Rapid condensation processes play a critical role in the onset of capillary-induced friction affecting mechanical behavior of physical systems and industrial applications.

  19. Collective chain dynamics in lipid bilayers by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Weiss, T.M.; Chen, P.-J.; Sinn, H.; Alp, E.E.; Chen, S.-H.; Hwang, H.W.

    2003-01-01

    We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,ω) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,ω) is usually complicated. But for multiple bilayers of lipid, S(q,ω) is dominated by chain-chain correlations within individual bilayers. Thus IXS provides a unique probe for the collective dynamics of lipid chains in a bilayer that cannot be obtained by any other method. IXS of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylcholine + cholesterol at two different concentrations were measured. S(q,ω) was analyzed by three-mode hydrodynamic equations, including a thermal diffusive mode and two propagating acoustic modes. We obtained the dispersion curves for the phonons that represent the collective in-plane excitations of lipid chains. The effect of cholesterol on chain dynamics was detected. Our analysis shows the importance of having a high instrument resolution as well as the requirement of sufficient signal-to-noise ratio to obtain meaningful results from such an IXS experiment. The requirement on signal-to-noise also applies to molecular dynamics simulations.

  20. Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture

    International Nuclear Information System (INIS)

    Yan Hanfei; Maser, Joerg; Macrander, Albert; Shen Qun; Vogt, Stefan; Stephenson, G. Brian; Kang, Hyon Chol

    2007-01-01

    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations [Acta Crystallogr. 15, 1311 (1962); Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964)] for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely, flat, tilted, and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy both the Bragg condition everywhere and phase requirement for point focusing and effectively focus hard x rays to a scale close to the wavelength. Our calculations were made for an x-ray wavelength of 0.064 nm (19.5 keV)

  1. X-RAY EMISSION AND DYNAMICS FROM LARGE DIAMETER SUPERBUBBLES: THE CASE OF THE N70 SUPERBUBBLE

    International Nuclear Information System (INIS)

    Rodriguez-Gonzalez, A.; Velazquez, P. F.; Esquivel, A.; Toledo-Roy, J. C.; Rosado, M.; Reyes-Iturbide, J.

    2011-01-01

    The morphology, dynamics, and thermal X-ray emission of the superbubble N70 are studied by means of three-dimensional hydrodynamic simulations carried out with the YGUAZU-A code. We consider three possible scenarios: the superbubble being the product of a single supernova remnant, of the stellar winds from an OB association, or of the joint action of stellar winds and a supernova (SN) event. Our results show that, in spite of the fact that all scenarios produce bubbles with the observed physical size, only those in which the bubble is driven by stellar winds and an SN event successfully explain the general morphology, dynamics, and X-ray luminosity of N70. Our models predict temperatures in excess of 10 8 K at the interior of the superbubble; however, the density is too low and thermal X-ray emission above 2 keV is too faint to be detected.

  2. X-ray streak-camera study of the dynamics of laser-imploded microballoons

    International Nuclear Information System (INIS)

    Key, M.H.; Lamb, M.J.; Lewis, C.L.S.; Moore, A.; Evans, R.G.

    1979-01-01

    The time and space development of the x-ray emission from the irradiated target surface and the implosion core in laser-compressed glass microballoons is recorded by x-ray streak photography. The experimental variation of implosion time with target mass and laser energy is considered and compared with computer modeling of the implosion

  3. Time-Resolved X-Ray Diffraction: The Dynamics of the Chemical Bond

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2012-01-01

    We review the basic theoretical formulation for pulsed X-ray scattering on nonstationary molecular states. Relevant time scales are discussed for coherent as well as incpherent X-ray pulses. The general formalism is applied to a nonstationary diatomic molecule in order to highlight the relation b...

  4. Material density measurements from dynamic flash x-ray radiographs using axisymmetric tomography

    International Nuclear Information System (INIS)

    Fugelso, E.

    1981-03-01

    The axisymmetric version of the tomographic x-ray reconstruction procedures has been utilized to determine the material density for the impact of a cylinder on a steel plate. Derivations of the reconstruction algorithms relating x-ray radiographic intensities to the material densities are presented. Effects of noise, point spread functions, and motion blur are minimized

  5. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  6. Dynamics of a multiple-pulse-driven x-ray laser plasma

    International Nuclear Information System (INIS)

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.; Cauble, R.; Celliers, P.; Dalhed, H.E. Jr.; Koch, J.A.; Nilsen, J.

    1996-01-01

    In this paper we describe experimental and computational studies of multiple-pulse-driven laser plasma, which is the gain medium for a neon-like yttrium x-ray laser. Near-field emission profiles have been measured both with and without reinjection of the x-ray laser photons to couple with the amplifying medium created by later pulses using an external multilayer mirror. From the temporal and spatial evolution of the near-field emission profiles we can examine the pulse-to-pulse variation of the x-ray laser plasma due to changes in the hydrodynamics, laser deposition, and the injecting of x-ray laser photons back into an amplifying x-ray laser plasma. Using a combination of radiation hydrodynamics, atomic kinetics, and ray propagation codes, reasonable agreement has been obtained between simulations and the experimental results. copyright 1996 American Institute of Physics

  7. Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Orsi, D.; Fluerasu, A.; Cristofolini, L.; Fontana, M.P.; Pontecorvo, E.; Caronna, C.; Zontone, F.; Madsen, A.

    2010-01-01

    We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q -1 . The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τ C which scales with q -1 and with the ageing time, in a similar fashion as previously reported in colloidal suspensions (O. Dauchot et al. Phys. Rev. Lett. 95 265701 (2005)). From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.

  8. To the theory of X-ray and electron dynamic scattering in defect-containing crystals

    International Nuclear Information System (INIS)

    Chukhovskij, F.N.

    1982-01-01

    The novel approach to the X-ray and electron dynamic scattering theory based on the dynamic equations ''in the dispersion surface representation'' is formulated. The formally exact solution of two-wave diffraction scattering problem is obtained using the scattering matrix, the obvious expression for which is found. The general formulae describing the plane wave diffraction scattering in absorbing crystals in the weak distortion range has been obtained. The formulae allows one to determine the total change sign of the displacement function Δα(x,y)=2πg vectorx(R vector (r vector) 1 -R vector(r vector) 2 ) on the base of the known sign of the mean deflection magnitude in a crystal as a whole from the exact Bragg position (g vector - the inverse lattice vector, R vector - the displacement field vector, t - the crystal thickness, R vector(r vector) 1 =R vector (r) ar z=t, R vector(r vector) 2 =R(r) at z=0). In the quasiclassical approximation the formation of the diffraction image of a dislocation positioned in such a way that the dislocation axis is parallel to the diffraction reflection vector is considered for the incident plane and spherical waves

  9. High speed imaging of dynamic processes with a switched source x-ray CT system

    International Nuclear Information System (INIS)

    Thompson, William M; Lionheart, William R B; Morton, Edward J; Cunningham, Mike; Luggar, Russell D

    2015-01-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data. (paper)

  10. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  11. Slow Aging Dynamics and Avalanches in a Gold-Cadmium Alloy Investigated by X-Ray Photon Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Mueller, L.; Waldorf, M.; Klemradt, U.; Gutt, C.; Gruebel, G.; Madsen, A.; Finlayson, T. R.

    2011-01-01

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au 50.5 Cd 49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  12. Slow aging dynamics and avalanches in a gold-cadmium alloy investigated by x-ray photon correlation spectroscopy.

    Science.gov (United States)

    Müller, L; Waldorf, M; Gutt, C; Grübel, G; Madsen, A; Finlayson, T R; Klemradt, U

    2011-09-02

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  13. Atoms in Action: Observing Atomic Motion with Dynamic in situ X-ray Diffraction

    Science.gov (United States)

    Cox, Jordan Michael

    environment is left static or data is not collected until after the material has equilibrated to its new environment. First, a unique ECC has been designed and constructed which allows continuous access to the local chemical environment of a single-crystal sample while maintaining ease of use, minimizing size, and which is easily adaptable to a wide variety of gaseous and liquid chemical stimuli. Novel methods have been developed and are herein described for utilizing this ECC and in situ X-ray diffraction methods in a dynamic manner for monitoring the structural responses of single crystals to changes in their local chemical environment. These methods provide the opportunity for the determination of changes in unit cell parameters and even complete crystal structures during adsorption, desorption, and exchange processes in MOF materials. The application of these methods to the determination of the dehydration process of a previously reported cobalt-based MOF have revealed surprising structural and dynamics data. Several new intermediate structures have been determined in this process, including one metastable species and several actively transitioning species during the dehydration process. Applying these methods to the ethanol solvation process in the same material again yielded results which were richer in structural information than the previously reported ex situ structures. A computational study of rotational potential energy surfaces in a family of photochromic MOF linkers revealed the important role rotational stereoisomers can play in maintaining light-activated functionality when these linkers are incorporated into next-generation functional MOF materials. Finally, the application of novel photocrystallography techniques were used in conjunction with spectroscopic methods to determine the nature of the anomalous behavior of a photochromic diarylethene single-crystal.

  14. Preoperative and postoperative agreement in fat free mass (FFM) between bioelectrical impedance spectroscopy (BIS) and dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery.

    Science.gov (United States)

    van Venrooij, Lenny M W; Verberne, Hein J; de Vos, Rien; Borgmeijer-Hoelen, Mieke M M J; van Leeuwen, Paul A M; de Mol, Bas A J M

    2010-12-01

    To measure undernutrition in terms of fat free mass (FFM), there are several options. The aim of this study was to assess agreement in FFM between the portable, bedside bioelectrical impedance spectrometry (BIS) and relatively expensive, non-portable dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery. In a prospective study, body composition measurements by BIS and DXA were performed two weeks prior and two months after cardiac surgery. Preoperative and postoperative agreement in FFM between BIS and DXA were analyzed with Bland and Altman plots. Twenty-six patients were analyzed. BIS overestimated preoperative and postoperative FFM by 2 kg compared to DXA (2.3 kg (95%CI: -3.5-8.1 kg) and 2.1 kg (95%CI: -4.5-8.7 kg), respectively). BIS underestimated FFM change by -0.5% (95%CI: -8.4-7.5%). There is a large inter-individual variation between BIS and DXA. This hinders the interchange-ability of BIS and DXA in routine clinical practice and may lead to misclassifications and thereby inappropriate nutritional treatment and possible postoperative complications. To evaluate nutritional therapy in patients undergoing cardiac surgery, we advocate the use of DXA assessed FFM in parallel to BIS assessed extracellular and intracellular water and FFM. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Digital correction of magnification in pelvic x rays for preoperative planning of hip joint replacements: Theoretical development and clinical results of a new protocol

    International Nuclear Information System (INIS)

    The, B.; Diercks, R.L.; Stewart, R.E.; Ooijen, P.M.A. van; Horn, J.R. van

    2005-01-01

    The introduction of digital radiological facilities leads to the necessity of digital preoperative planning, which is an essential part of joint replacement surgery. To avoid errors in the preparation and execution of hip surgery, reliable correction of the magnification of the projected hip is a prerequisite. So far, no validated method exists to accomplish this. We present validated geometrical models of the x-ray projection of spheres, relevant for the calibration procedure to correct for the radiographic magnification. With help of these models a new calibration protocol was developed. The validity and precision of this procedure was determined in clinical practice. Magnification factors could be predicted with a maximal margin of error of 1.5%. The new calibration protocol is valid and reliable. The clinical tests revealed that correction of magnification has a 95% margin of error of -3% to +3%. Future research might clarify if a strict calibration protocol, as presented in this study, results in more accurate preoperative planning of hip joint replacements

  16. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    Science.gov (United States)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  17. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction

    International Nuclear Information System (INIS)

    Drnec, Jakub; Ruge, Martin; Reikowski, Finn; Rahn, Björn; Carlà, Francesco; Felici, Roberto; Stettner, Jochim; Magnussen, Olaf M.; Harrington, David A.

    2017-01-01

    In-situ surface X-ray diffraction is used to characterize the surface oxides on a Pt(111) surface in 0.1 M HClO 4 . Detailed analysis at two potentials confirms that the surface restructuring in the initial oxidation stages is consistent with a place exchange process between Pt and O atoms, and the exchanged Pt atoms are located above their original positions in the Pt(111) lattice. The (1,1,1.5) reflection is used to dynamically study the surface during cyclic voltammetry. The restructuring associated with the place exchange initiates with the CV peak at 1.05 V, even though multiple cycles to 1.17 V lead to no changes in the CV. The restructuring is reversible below a critical coverage of place exchanged Pt atoms, which we estimate to be between 0.07 and 0.15 ML. Extensive cycling to potentials higher or equal to 1.17 V leads to progressive disordering of the surface.

  18. Plasma dynamics above solar flare soft x-ray loop tops

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); McKenzie, D. E. [Montana State University, Bozeman, MT 59717 (United States)

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase with height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.

  19. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    Science.gov (United States)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  20. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    Science.gov (United States)

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the V V mode with the polarizer and analyzer parallel to each other and the H V mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the H V mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the V V mode appeared to be overestimated.

  1. Modifications to 8x8 dynamical theory: Polarizations redefined according to x-ray diffraction convention

    International Nuclear Information System (INIS)

    Macrander, A.T.; Blasdell, R.C.

    1993-09-01

    Dynamical x-ray diffraction theory can be cast in matrix form. In recent years, an 8x8 matrix theory was developed that treated asymmetric reflections from strained crystals. The polarization of the incident, specularly reflected, reflected diffracted, transmitted diffracted, and transmitted electromagnetic wave fields were all defined as s or p. That is, polarizations were defined with respect to the plane containing the incident beam direction and the surface normal. The authors present modifications of the theory to treat σ and π polarizations for Bragg diffraction from asymmetric planes, that is, for polarizations defined with respect to the plane containing the incident beam direction and the reciprocal lattice vector for Bragg diffraction. They present results of this theory for unstrained crystals in the inclined geometry. In this geometry the incident beam wavevector, the reciprocal lattice vector, and the surface normal are not coplanar. The inclined crystal geometry appears promising for use in a high-heat-load monochromator for undulator radiation at the Advanced Photon Source. As expected, they find a weak π-polarization component in the diffracted beam when the polarization of the incident beam is pure σ

  2. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering

    Science.gov (United States)

    Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  3. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray scattering

    International Nuclear Information System (INIS)

    Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.

    2000-01-01

    X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems

  4. Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

    Directory of Open Access Journals (Sweden)

    Hermann eStoll

    2015-04-01

    Full Text Available The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM, combining magnetic (XMCD contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.

  5. Dynamic of the morphologic and functional X-ray patterns following operation for pylorus consolidation

    International Nuclear Information System (INIS)

    Radev, D.; Ganchev, D.; Nakov, D.; Demirov, D.; Najdenov, N.

    1990-01-01

    Results are reported of X-ray study of 24 patients operated for pyloric insufficiency and reflux-gastritis. The operative technique was one of consolidation of the pylorus by circular invagination of the pyloric ring with formation of a valvular mechanism with two transversal folds. The X-ray pattern and the function of the consolidated pylorus were close to the normal. For a period of 7 years the effect was lasting; despite the combination with ligamentotomy, however, the duodenal stasis and the duodeno-gastric reflux were insufficiently affected. 2 figs., 14 refs

  6. Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography

    Science.gov (United States)

    Schlüter, S.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from

  7. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    Science.gov (United States)

    Eakins, D. E.; Chapman, D. J.

    2014-12-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  8. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    International Nuclear Information System (INIS)

    Eakins, D. E.; Chapman, D. J.

    2014-01-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology

  9. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)2]2+

    DEFF Research Database (Denmark)

    Biasin, Elisa; Brandt van Driel, Tim; Kjær, Kasper Skov

    2016-01-01

    We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitat......We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows...... find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps....

  10. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    NARCIS (Netherlands)

    Reitsma, Geert; Boschman, Leon; Deuzeman, Mart Johan; Gonzalez Magana, Olmo; Hoekstra, Steven; Cazaux, Stéphanie; Hoekstra, Ronnie; Schlathölter, Thomas

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an

  11. Ultra-fast x-ray tomography for multi-phase flow interface dynamic studies

    International Nuclear Information System (INIS)

    Misawa, M.; Ichikawa, N.; Akai, M.; Tiseanu, I.; Prasser, H.-M.

    2003-01-01

    The present paper describes the concept of a fast scanning X-ray tomograph, the hardware development, and measurement results of gas-liquid two-phase flow in a vertical pipe. The device uses 18 pulsed X-ray sources activated in a successive order. In this way, a complete set of 18 independent projections of the object is obtained within 38 ms, i.e. the measuring rate is about 250 frames per second. Finally, to evaluate the measurement capability of the fast X-ray CT, a wire-mesh sensor was installed in the flow loop and both systems were operated for the same two-phase flow simultaneously. Comparison of the time series of the cross section averaged void fraction from both systems showed sufficient agreement for slug flow at large void fractions, while the fast CT underestimated the void fraction of bubbly flow especially in low void fraction range. For the wire-mesh sensor, coerced deformation of slug bubble interface was found. Further hardware improvement is in progress to achieve better resolution with the fast X-ray CT scanner. (orig.)

  12. Preoperative planning of calcium deposit removal in calcifying tendinitis of the rotator cuff - possible contribution of computed tomography, ultrasound and conventional X-Ray.

    Science.gov (United States)

    Izadpanah, Kaywan; Jaeger, Martin; Maier, Dirk; Südkamp, Norbert P; Ogon, Peter

    2014-11-20

    The purpose of the present study was to investigate the accuracy of Ultrasound (US), conventional X-Ray (CX) and Computed Tomography (CT) to estimate the total count, localization, morphology and consistency of Calcium deposits (CDs) in the rotator cuff. US, CX and CT imaging was performed pre-operatively in 151 patients who underwent arthroscopic removal of CDs in the rotator cuff. In all procedures: (1) total CD counts were determined, (2) the CDs appearance in each image modality was correlated to the intraoperative consistency and (3) CDs were localized in their relation to the acromion using US, CX and CT. Using US158 CDs, using CT 188 CDs and using CX 164 CDs were identified. Reliable localization of the CDs was possible with all used diagnostic modalities. CT revealed 49% of the CDs to be septated, out of which 85% were uni- and 15% multiseptated. CX was not suitable for prediction of CDs consistency. US reliably predicted viscous-solid CDs consistency only when presenting with full sound extinction (PPV 84.6%) . CT had high positive and negative predictive values for detection of liquid-soft (PPV 92.9%) and viscous-solid (PPV 87.8%) CDs. US and CX are sufficient for preoperative planning of CD removal with regards to localization and prediction of consistency if the deposits present with full sound extinction. This is the case in the majority of the patients. However, in patients with missing sound extinction CT can be recommended if CDs consistency of the deposits should be determined. Satellite deposits or septations are regularly present, which is of importance if complete CD removal is aspired.

  13. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics.

    Science.gov (United States)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  14. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, L’Aquila I-67100 (Italy); Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it [Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, I-00185 Rome (Italy)

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  15. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    International Nuclear Information System (INIS)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-01-01

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features

  16. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  17. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  18. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  19. Study of the ultrafast polarization dynamics in lithium borohydride by means of femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Stingl, Johannes

    2013-01-01

    In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH 4 ) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short X-ray pulse. Using X-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatial resolution. Copper K-alpha X-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH 4 ) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

  20. X-ray Photon Correlation Spectroscopy Study on Dynamics of the Free Surface in Entangled Polystyrene Melt Films

    International Nuclear Information System (INIS)

    Koga, Tadanori; Li Chunhua; Endoh, Maya K; Narayanan, Suresh; Lurio, Laurence; Sinha, Sunil K

    2011-01-01

    The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. Recent studies show that the properties of the free surface region are crucial in determining the anomalous glass transition temperature (T g ) reduction of polymer thin films. In this study, by embedding 'dilute' gold nanoparticles in polystyrene (PS) thin films as 'markers', we could successfully probe the diffusive Brownian motion which tracks the local viscosity both at the free surface and within the rest of the single PS thin film far above bulk T g . The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-rays that allows us to independently measure the motion in the regions of interest at the nanometer scale. We found the presence of the surface reduced viscosity layer in entangled PS thin films at T>>T g .

  1. High-resolution inelastic X-ray scattering to study the high-frequency atomic dynamics of disordered systems

    International Nuclear Information System (INIS)

    Monaco, G.

    2008-01-01

    The use of momentum-resolved inelastic X-ray scattering with meV energy resolution to study the high-frequency atomic dynamics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems. With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results which are still open for discussion or controversial, and which will require further development of the technique to be fully solved. Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic X-ray scattering spectrometers. (author)

  2. Dynamic Characterizations of an 8-frame, Half-Strip, High-speed X-ray Microchannel Plate Imager

    International Nuclear Information System (INIS)

    Ken Moy; Ming Wu; Craig Kruschwitz; Aric Tibbits; Matt Griffin; Greg Rochau

    2008-01-01

    High-speed microchannel plate (MCP)-based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence

  3. Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-04-21

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  4. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    Science.gov (United States)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  5. Structural investigation of water-acetonitrile mixtures: An ab initio, molecular dynamics and X-ray diffraction study

    International Nuclear Information System (INIS)

    Bako, Imre; Megyes, Tuende; Palinkas, Gabor

    2005-01-01

    In this work, we present a study on water-acetonitrile (AN) mixtures by molecular dynamics ab initio and X-ray diffraction techniques. Comparison of the experimental total G(r) functions of the mixtures with the results of molecular dynamics simulation shows an overall good agreement. The properties of hydrogen bonded clusters (water clusters, and water-AN clusters) in these mixtures have been determined. Two different types of AN-water dimers were identified by ab initio quantum chemical calculation. One of these structures proved to be a true H-bonded dimer and the other a dipole bound dimer

  6. Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method

    Science.gov (United States)

    Kuuttila, J.; Kajava, J. J. E.; Nättilä, J.; Motta, S. E.; Sánchez-Fernández, C.; Kuulkers, E.; Cumming, A.; Poutanen, J.

    2017-08-01

    The cooling of type-I X-ray bursts can be used to probe the nuclear burning conditions in neutron star envelopes. The flux decay of the bursts has been traditionally modelled with an exponential, even if theoretical considerations predict power-law-like decays. We have analysed a total of 540 type-I X-ray bursts from five low-mass X-ray binaries observed with the Rossi X-ray Timing Explorer. We grouped the bursts according to the source spectral state during which they were observed (hard or soft), flagging those bursts that showed signs of photospheric radius expansion (PRE). The decay phase of all the bursts were then fitted with a dynamic power-law index method. This method provides a new way of probing the chemical composition of the accreted material. Our results show that in the hydrogen-rich sources the power-law decay index is variable during the burst tails and that simple cooling models qualitatively describe the cooling of presumably helium-rich sources 4U 1728-34 and 3A 1820-303. The cooling in the hydrogen-rich sources 4U 1608-52, 4U 1636-536, and GS 1826-24, instead, is clearly different and depends on the spectral states and whether PRE occurred or not. Especially the hard state bursts behave differently than the models predict, exhibiting a peculiar rise in the cooling index at low burst fluxes, which suggests that the cooling in the tail is much faster than expected. Our results indicate that the drivers of the bursting behaviour are not only the accretion rate and chemical composition of the accreted material, but also the cooling that is somehow linked to the spectral states. The latter suggests that the properties of the burning layers deep in the neutron star envelope might be impacted differently depending on the spectral state.

  7. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  8. Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations.

    Science.gov (United States)

    Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo

    2016-02-21

    We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.

  9. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  10. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  11. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  12. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    Science.gov (United States)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  13. Investigation of plasma dynamics and x-ray emission in'ATON'plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1995-01-01

    The experimental studies on 20 kJ 'Aton' plasma focus device are presented in this paper. The plasma sheath structure has been investigated by means of the measurements of the axial and azimuthal magnetic fields along the coaxial electrodes. The operating gas was hydrogen with pressures in the range of 0.62 torr to 6 torr. The intensity of visible radiation emitted by the plasma sheath was measured as a function of axial distances along the coaxial electrodes. The results showed that the visible radiation intensity is increased with axial distances until a position near the muzzle, then it decreased and has a minimum value at the coaxial electrode muzzle. The main parameters contributing to the behavior of the distribution are the plasma sheath density and the impurities from the eroded materials of the discharge electrodes. An x-ray pulse has been detected along the coaxial electrodes and extended up to the expansion chamber. At a distance near the muzzle two x-ray pulses have been detected, the second one has intensity relative to the first one with time lag of 11μs. 8 fig

  14. Structure of the X-ray photoelectron spectra of fluorides and oxides of lanthanides connected with the dynamic effect

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Lebedev, A.M.; Utkin, I.O.; Nikitin, A.S.

    1998-01-01

    Impact of dynamic effect on the fine structure of the X-ray electron spectra of the lanthanide oxides and fluorides is considered. Significant complication of the Ln4p-electrons occurs due to interaction of configurations of the basic single-hole and additional two-hole finite states of the 4p 5 4d 10 4f n ↔ 4p 6 4d 8 4f n+1 type. Impact of the atoms nature of the nearest surrounding of the lanthanides ions on the parameters of such fine structure is evaluated [ru

  15. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Dymoke-Bradshaw, A. K. L.; Hares, J. D. [Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD (United Kingdom); Hassett, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Meadowcroft, A. L. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  16. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  17. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Kung, Y.F.; Moritz, B.; Coslovich, G.; Kaindl, R.A.; Chuang, Y.D.; Moore, R.G.; Lu, D.H.; Kirchmann, P.S.; Robinson, J.S.; Minitti, M.P.; Dakovski, G.; Schlotter, W.F.; Turner, J.J.; Gerber, S.; Sasagawa, T.; Hussain, Z.; Shen, Z.X.; Devereaux, T.P.

    2017-03-13

    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  18. Electron dynamics in the core-excited CS2 molecule revealed through resonant inelastic x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Marchenko, T; Carniato, S; Journel, L; Guillemin, R; Kawerk, E; Simon, M; Žitnik, M; Kavčič, M; Bučar, K; Bohinc, R; Petric, M; Da Cruz, V Vaz; Gel'mukhanov, F

    2015-01-01

    We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the CS 2 molecule near the S 1s edge. We show that localization of the S 1s core-hole occurs in CS 2 during the RIXS process due to the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Strong evolution of the RIXS profile with the excitation energy far below the first absorption resonance reflects the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. (paper)

  19. Electron dynamics in the core-excited CS 2 molecule revealed through resonant inelastic x-ray scattering spectroscopy

    OpenAIRE

    Marchenko , T; Carniato , S; Journel , L; Guillemin , R; Kawerk , E; Žitnik , M; Kavčič , M; Bučar , K; Bohinc , R; Petric , M; da Cruz , V Vaz; Gel'mukhanov , F; Simon , Marielle

    2015-01-01

    International audience; We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the CS2 molecule near the S 1s edge. We show that localization of the S 1s core-hole occurs in CS2 during the RIXS process due to the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Strong evolution of the RIXS profile with the excitation energy far below the first absorption resonance reflects the onset of electron dynamics tr...

  20. Time resolved resonant inelastic X-ray scattering: A supreme tool to understand dynamics in solids and molecules

    International Nuclear Information System (INIS)

    Beye, M.; Wernet, Ph.; Schüßler-Langeheine, C.; Föhlisch, A.

    2013-01-01

    Highlights: •The high specificity of RIXS ideally suits time-resolved measurements. •Methods relating to the core hole lifetime cover the low femtosecond regime. •Pump-probe methods are used starting at sub-ps time scales. •FELs and synchrotrons are useful for pump-probe studies. •Examples from solid state dynamics and molecules are discussed. -- Abstract: Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems

  1. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  2. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  4. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    Science.gov (United States)

    Reitsma, G.; Boschman, L.; Deuzeman, M. J.; González-Magaña, O.; Hoekstra, S.; Cazaux, S.; Hoekstra, R.; Schlathölter, T.

    2014-08-01

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an Auger electron. Predominantly highly excited dications are thus formed, which cool down by hydrogen emission. In superhydrogenated systems, the additional H atoms act as a buffer, quenching loss of native H atoms and molecular fragmentation. Dissociation and transition state energies for several H loss channels were computed by means of density functional theory. Using these energies as input into an Arrhenius-type cascade model, very good agreement with the experimental data is found. The results have important implications for the survival of polyaromatic hydrocarbons in the interstellar medium and reflect key aspects of graphene hydrogenation.

  5. Temporal dynamics for soil aggregates determined using X-ray CT scanning

    DEFF Research Database (Denmark)

    Garbout, Amin; Munkholm, Lars Juhl; Hansen, Søren Baarsgaard

    2013-01-01

    Soil structure plays a key role in the ability of soil to fulfil essential soil functions and services in relation to e.g. root growth, gas and water transport and organic matter turnover. However, soils are not a very easy object to study as they are highly complex and opaque to the human eye...... aggregate properties such as volume, surface area and sphericity based on 3D images. We tested the methods on aggregates from different treatments and quantified changes over time. A total of 32 collections of aggregates, enclosed in mesocosms, were incubated in soil to follow the structural changes over....... Traditionally, they have been studied using invasive or destructive techniques. The advantage of using X-ray computed tomography (CT) in soil morphology is that it enables non-destructive quantification of soil structure in three dimensions (3D). The prime objective of the present study was to characterize soil...

  6. Applications of the X-ray fluorescence technique to medical dynamic studies

    International Nuclear Information System (INIS)

    Magrini, A.; Cesareo, R.; Salmi, M.; Gigante, G.E.

    1978-01-01

    The energy dispersive X ray fluorescence technique (XRF) was employed to follow the evolution of the concentration of stable tracers for diagnostic purposes. A simple and relatively inexpensive XRF system, based on the use of a small sealed-off radioisotopic source and a proportional gas counter, was utilized in the study of human blood platelet survival 'in vitro', rabbit platelet survival 'in vivo' and in clearance studies of the human knee joint 'in vivo'. The survival curves of human and rabbit platelets were determined employing stable Rubidium as a tracer. The clearance rate of a stable Iodinate compound from the synovial cavity was measured in normal and pathological conditions. Results obtained suggest that the method can be usefully employed to monitor the course of disease and to establish the efficacy of treatment

  7. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  8. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  9. X-ray film calibration

    International Nuclear Information System (INIS)

    Stone, G.F.; Dittmore, C.H.; Henke, B.L.

    1986-01-01

    This paper discusses the use of silver halide x-ray films for imaging and spectroscopy which is limited by the range of intensities that can be recorded and densitometered. Using the manufacturers processing techniques can result in 10 2-3 range in intensity recorded over 0-5 density range. By modifying the chemistry and processing times, ranges of 10 5-6 can be recorded in the same density range. The authors report on x-ray film calibration work and dynamic range improvements. Changes to the processing chemistry and the resulting changes in dynamic range and x-ray sensitivity are discussed

  10. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography

    International Nuclear Information System (INIS)

    Cowen, A.R.; Davies, A.G.; Sivananthan, M.U.

    2008-01-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design

  11. DYNAMICS INSIDE THE RADIO AND X-RAY CLUSTER CAVITIES OF CYGNUS A AND SIMILAR FRII SOURCES

    International Nuclear Information System (INIS)

    Mathews, William G.; Guo Fulai

    2012-01-01

    We describe approximate axisymmetric computations of the dynamical evolution of material inside radio lobes and X-ray cluster gas cavities in Fanaroff-Riley II (FRII) sources such as Cygnus A. All energy is delivered by a jet to the lobe/cavity via a moving hotspot where jet energy dissipates in a reverse shock. Our calculations describe the evolution of hot plasma, cosmic rays (CRs), and toroidal magnetic fields flowing from the hotspot into the cavity. Many important observational features are explained. Gas, CRs, and field flow back along the cavity surface in a 'boundary backflow' consistent with detailed FRII observations. Computed ages of backflowing CRs are consistent with observed radio-synchrotron age variations only if shear instabilities in the boundary backflow are damped and we assume this is done with viscosity of unknown origin. We compute a faint thermal jet along the symmetry axis and suggest that it is responsible for redirecting the Cygnus A nonthermal jet. Magnetic fields estimated from synchrotron self-Compton (SSC) X-radiation observed near the hotspot evolve into radio lobe fields. Computed profiles of radio-synchrotron lobe emission perpendicular to the jet reveal dramatically limb-brightened emission in excellent agreement with FRII observation, although computed lobe fields exceed those observed. Strong winds flowing from hotspots naturally create kiloparsec-sized spatial offsets between hotspot nonthermal X-ray inverse Compton (IC-CMB) emission and radio-synchrotron emission that peaks 1-2 kpc ahead where the field increases due to wind compression. In our computed version of Cygnus A, nonthermal X-ray emission increases from the hotspot (some IC-CMB, mostly SSC) toward the offset radio-synchrotron peak (mostly SSC).

  12. X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source. Final report

    International Nuclear Information System (INIS)

    Roy Clarke

    2006-01-01

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02-11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials

  13. Structural relaxation in the dynamics of glycerol: a joint visible, UV and x-ray inelastic scattering study

    International Nuclear Information System (INIS)

    Giugni, A; Cunsolo, A

    2006-01-01

    We describe an experimental study of the dynamic structure factor of liquid glycerol performed by complementary inelastic techniques such as Brillouin visible, ultraviolet and x-ray scattering. The spectra have been collected as a function of both temperature and momentum transfer. The relevant hypersonic parameters are evaluated from the spectral lineshape analysis modelling the data with a simple hydrodynamic profile. The study of their frequency dependence allows us to observe the occurrence of an active structural relaxation and to measure the related timescale. We also find signatures of further relaxation processes occurring below the accessible frequency window. As a result, the dynamic window traditionally probed in spectroscopic experiments is greatly extended and partially bridges the gap between MHz and THz techniques

  14. Development of a Dynamic Spot Size Diagnostic for Flash Radiographic X-Ray Sources

    International Nuclear Information System (INIS)

    Droemer, D. W.; Lutz, S.; Devore, D.; Rovang, D.; Portillo, S.; Maenchen, J.

    2003-01-01

    There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained FR-om the Sand ia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented

  15. Soft X-ray measurements for investigating the plasma focus dynamics

    International Nuclear Information System (INIS)

    Nahrath, B.

    In a Mather-type plasma focus short time soft x-ray pictures are taken by means of a double pinhole camera equipped with a pulsed channel plate and two different filters to study the local development of electron temperatures Tsub(e) with time resolution of 3 ns. Up to the maximum compression the measured Tsub(e) are roughly in accordance with the results of MHD-calculations. During a later phase, characterized by the occurence of m=O-instabilities, localized plasma regions with high densities and high electron temperatures Tsub(e) of about 600 eV (up to 1000 eV) are observed. Using the channel plate technique with increased sensivity a slowly decaying plasma with local Tsub(e)-values of about 300 eV and large diffuse structures is identified for several hundred nanoseconds. During this 'late phase' of the focus most of the neutron emission takes place. There is no correlation between the value of Tsub(e) and the rate of neutron emission. (orig.) [de

  16. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pabit, Suzette A.; Katz, Andrea M.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Baker, Nathan [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-28

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  17. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown.

  18. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  19. Electron Dynamics in the Core-Excited CS_{2} Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Marchenko

    2015-08-01

    Full Text Available We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS in the carbon disulphide CS_{2} molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppression of the LUMO contribution with respect to the emission signal from the higher unoccupied molecular orbitals, which results in the modulation of the total RIXS profile. At even larger negative photon-energy detuning from the resonance, the excitation-energy dependence of the RIXS profile is dominated by the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. Furthermore, our study demonstrates that in the hard x-ray regime, localization of the S 1s core hole occurs in CS_{2} during the RIXS process because of the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Core-hole localization leads to violation of the symmetry selection rules for the electron transitions observed in the spectra.

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  1. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  2. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  3. Preoperative and postoperative agreement in fat free mass (FFM) between bioelectrical impedance spectroscopy (BIS) and dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery

    NARCIS (Netherlands)

    van Venrooij, Lenny M. W.; Verberne, Hein J.; de Vos, Rien; Borgmeijer-Hoelen, Mieke M. M. J.; van Leeuwen, Paul A. M.; de Mol, Bas A. J. M.

    2010-01-01

    Background & aims: To measure undernutrition in terms of fat free mass (FFM), there are several options. The aim of this study was to assess agreement in FFM between the portable, bedside bioelectrical impedance spectrometry (BIS) and relatively expensive, non-portable dual-energy X-ray

  4. Dynamic light scattering and X-ray photoelectron spectroscopy characterization of PEGylated polymer nanocarriers: internal structure and surface properties.

    Science.gov (United States)

    Celasco, Edvige; Valente, Ilaria; Marchisio, Daniele L; Barresi, Antonello A

    2014-07-22

    In this work, nanospheres and nanocapsules are precipitated in confined impinging jet mixers through solvent displacement and characterized. Acetone and water are used as the solvent and antisolvent, respectively, together with polymethoxypolyethylene glycol cyanoacrylate-co-hexadecylcyanoacrylate and Miglyol as the copolymer and oil, respectively. Characterization is performed with dynamic light scattering, with electrophoretic measurements, and for the first time with X-ray photoelectron spectroscopy. Results show that the presence of polyethylene glycol chains seems to be more pronounced on the surface of nanospheres than on that of nanocapsules. The thickness of the copolymer layer in nanocapsules ranges from 1 to 10 nm, depending on the value of the oil:copolymer mass ratio. Fast dilution is confirmed to have a positive effect in suppressing aggregation but can induce further copolymer precipitation.

  5. A theoretical approach to dynamical diffraction of X-rays in the Bragg case with the Green's function method

    International Nuclear Information System (INIS)

    Ishida, Hidenobu

    2015-01-01

    The dynamical diffraction theory of X-rays for a distorted crystal with the Green's function method is applied to the Bragg case. The transmitted and diffracted crystal waves are represented as the solutions of the integral equations using the Green's function. For a perfect crystal, the most exact form of the solution of the equations is given by the Green's function and its derivatives, and the waves are analytically expressed by using them. The results can be applied in a general case where the amplitude modulation of the incident wave is not negligibly small compared with the wave vector. If the amplitude modulation is small, those results are reduced essentially to the same as those given by Takagi's theory. (author)

  6. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: Observation by inelastic x-ray scattering

    Science.gov (United States)

    Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.

    2018-05-01

    Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.

  7. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  8. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  9. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    Science.gov (United States)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  10. Dynamical correlation effects in a weakly correlated material: Inelastic x-ray scattering and photoemission spectra of beryllium

    Science.gov (United States)

    Seidu, Azimatu; Marini, Andrea; Gatti, Matteo

    2018-03-01

    Beryllium is a weakly correlated simple metal. Still we find that dynamical correlation effects, beyond the independent-particle picture, are necessary to successfully interpret the electronic spectra measured by inelastic x-ray scattering (IXS) and photoemission spectroscopies (PES). By combining ab initio time-dependent density-functional theory (TDDFT) and many-body Green's function theory in the G W approximation (G W A ), we calculate the dynamic structure factor, the quasiparticle (QP) properties and PES spectra of bulk Be. We show that band-structure effects (i.e., due to interaction with the crystal potential) and QP lifetimes (LT) are both needed in order to explain the origin of the measured double-peak features in the IXS spectra. A quantitative agreement with experiment is obtained only when LT are supplemented to the adiabatic local-density approximation (ALDA) of TDDFT. Besides the valence band, PES spectra display a satellite, a signature of dynamical correlation due to the coupling of QPs and plasmons, which we are able to reproduce thanks to the combination of the G W A for the self-energy with the cumulant expansion of the Green's function.

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  13. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  14. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  15. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  16. Dynamic X-ray computed tomography; Tomographie dynamique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Grangeat, P

    2003-07-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  17. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steven C. [George Washington Univ., Washington, DC (United States)

    2016-01-31

    We set out to determine quantitative information regarding the dynamic conformation of nucleosome arrays in solution using experimental SAXS. Toward this end, we developed a CG simulation algorithm for dsDNA which rapidly generates ensembles of structures through Metropolis MC sampling of a Markov chain.

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  20. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    International Nuclear Information System (INIS)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi

    2016-01-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  1. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  2. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok

    2014-01-01

    We report a theoretical and experimental study of the high resolution resonant K α X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K α emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state

  3. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-01

    We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  4. Resonant inelastic x-ray scattering on iso-C₂H₂Cl₂ around the chlorine K-edge: structural and dynamical aspects.

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  5. The Structure and Dynamics of An Active Galactic Nucleus Torus : CO Line Predictions for ALMA from Three-dimensional Hydrodynamical Simulations with X-ray-driven Chemistry

    NARCIS (Netherlands)

    Perez Beaupuits, J.P.; Wada, K.; Spaans, M.

    2011-01-01

    Several attempts have been made to model the mass distribution and dynamical evolution of the circumnuclear gas in active galactic nuclei (AGNs). However, chemical evolution is not included in detail in three-dimensional (3D) hydrodynamic simulations. The X-ray radiation from the AGN can drive the

  6. Investigation of dynamics of soft X-ray radiation of mixed-material wire-arrays on S-300 pulsed power generator

    NARCIS (Netherlands)

    Cai, HC; Chernenko, AC; Korolev, VD; Ustroev, GI; Ivanov, MI

    2004-01-01

    The dynamics of radiation spectra of fast Z-pinch plasmas was studied. The experiments were carried out on the S-300 pulsed power machine (4 MA, 0.15 Omega, 100 ns). By means of the polychromator, X-ray spectra of imploding wire arrays were measured in the range of 60 divided by 1500 eV, where the

  7. Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Yang, Huan; Ortiz, Néstor [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2017-05-20

    This paper considers the yielding response of a neutron star crust to smooth, unbalanced Maxwell stresses imposed at the core–crust boundary, and the coupling of the dynamic crust to the external magnetic field. Stress buildup and yielding in a magnetar crust are global phenomena: an elastic distortion radiating from one plastically deforming zone is shown to dramatically increase the creep rate in distant zones. Runaway creep to dynamical rates is shown to be possible, being enhanced by in situ heating and suppressed by thermal conduction and shearing of an embedded magnetic field. A global and time-dependent model of elastic, plastic, magnetic, and thermal evolution is developed. Fault-like structures develop naturally, and a range of outburst timescales is observed. Transient events with time profiles similar to giant magnetar flares (millisecond rise, ∼0.1 s duration, and decaying power-law tails) result from runaway creep that starts in localized sub-kilometer-sized patches and spreads across the crust. A one-dimensional model of stress relaxation in the vertically stratified crust shows that a modest increase in applied stress allows embedded magnetic shear to escape the star over ∼3–10 ms, dissipating greater energy if the exterior field is already sheared. Several such zones coupled to each other naturally yield a burst of duration ∼0.1 s, as is observed over a wide range of burst energies. The collective interaction of many plastic zones forces an overstability of global elastic modes of the crust, consistent with quasi-periodic oscillation (QPO) activity extending over ∼100 s. Giant flares probably involve sudden meltdown in localized zones, with high-frequency (≫100 Hz) QPOs corresponding to standing Alfvén waves within these zones.

  8. Relaxation processes in aqueous solutions upon X-ray exposure. Entanglement of electronic and nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Isaak

    2017-07-01

    About a decade ago new types of electronic non-radiative relaxation processes, involving the environment of an electronically excited or ionized monomer, have been predicted for van der Waals clusters and these were also the first systems where such processes have been detected experimentally. These new autoionization channels encompass the recombination of an electron and a hole, and the energy transfer to a neighboring atom or molecule. Two processes can be distinguished here. In the intermolecular Coulombic decay (ICD) the hole created upon ionization of a monomer is filled by a valence electron of the same species, and the energy released in this electron-hole recombination is used to ionize a neighboring species. In the electron transfer mediated decay (ETMD) the initial hole is filled by an electron from a neighboring species, and the energy released by this recombination is either used to ionize the same neighbor species, or to ionize a third monomer. In more recent experiments on liquid water it has been discovered that these non- local autoionization processes are strongly coupled with ultrafast nuclear dynamics. The core ionization initiates proton motion along a hydrogen donor-bond of the electronically excited water cation. This nuclear dynamics leads to the formation of transient cationic species where a proton is shared by two neighboring water molecules. Subsequent autoionization, either via Auger decay, ICD or ETMD, then occurs from any of such structure transients. This relaxation process is termed proton transfer mediated charge separation, PTM-CS. It has been found in a number of experiments that the probability of PTM-CS to occur depends on the hydrogen-bond strength between the core-ionized molecule and solvent molecules.

  9. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  10. Protection against UV and X-ray cataracts using dynamic light scattering

    Science.gov (United States)

    Giblin, Frank J.

    2005-01-01

    Static and dynamic light scattering (SLS and DLS) analysis was used to investigate the aggregation of lens proteins in a hyperbaric oxygen (HBO)/guinea pig in vivo model for nuclear cataract. Nuclear cataract, an opacity which occurs in the center of the lens, is a major type of human maturity-onset cataract for which the cause is not well-understood. HBO is commonly used in major hospitals for treating complications such as poor wound healing due to impaired blood circulation. It is known that treatment of human patients with HBO for extended periods of time can produce nuclear cataract. Guinea pigs, initially 18 months old, were treated with HBO (2.5 atm of 100% O2 for 2.5 hr) 3x per week for 7 months to increase tie level of lens nuclear light scattering. Age-matched animals were used for controls. The eyes of the animals were analyzed in vivo using an integrated static and DLS fiber optic probe in collaboration with the NASA group. DLS in vivo was used to measure the size of lens proteins at 50 different locations across the optical axis of the guinea pig lens.

  11. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    Science.gov (United States)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  12. Dynamics of water intercalation fronts in a nano-layered synthetic silicate: A synchrotron X-ray scattering study

    International Nuclear Information System (INIS)

    Lovoll, G.; Sandnes, B.; Meheust, Y.; Maloy, K.J.; Fossum, J.O.; Silva, G.J. da; Mundim, M.S.P.; Droppa, R. Jr.; Fonseca, D.M.

    2005-01-01

    We performed synchrotron X-ray scattering studies of the dynamics of the water intercalation front in a Na-Fluorohectorite clay. Like other smectite clays, fluorohectorite particles can swell due to intercalation of successive water layers. Monitoring the intensities of Bragg peaks of the known 1- and 2-water-layer hydration states at different positions in the sample enabled spatial and temporal measurement of the proportions of the different hydration states. From experiments with controlled temperature and an imposed humidity gradient on a quasi one-dimensional powder sample, we were able to localize the intercalation front and demonstrate that the width of this front was smaller than 2 mm after penetrating 9 mm into the sample. The speed at which the intercalation front advanced through the sample during the diffusion process was shown to decrease with time. The diffraction signature of random water intercalation in the vicinity of the intercalation front also provided information on the changes in the water content of the mesopores around clay particles

  13. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  14. Dynamic re-weighted total variation technique and statistic Iterative reconstruction method for x-ray CT metal artifact reduction

    Science.gov (United States)

    Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming

    2017-07-01

    Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.

  15. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    International Nuclear Information System (INIS)

    Dodds, J.N.; UNOCAL, Brea, CA

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na 2 NiFe(CN) 6 , and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300 degrees C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ''hot spot'' show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions

  16. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    Science.gov (United States)

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  18. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  19. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study

    Science.gov (United States)

    Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.

    2016-03-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  20. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  1. Physics Of, and Science With, the X-Ray Free-Electron Laser: 19th Advanced ICFA Beam Dynamics Workshop

    International Nuclear Information System (INIS)

    Sutton, M.

    2003-01-01

    The workshop brought together scientists working on the development of x-ray free-electron lasers, and its applications. X-ray free-electron lasers produce high intensity, subpicosecond long, coherent, X-ray pulses, and will open a new frontier to study the structure of matter at the molecular and atomic levels. Some fields of interest are structural changes in chemical reactions, single biological molecule, warm plasmas, nanosystems. Summary of discussions and conclusions of Group 1: Physics and Technology of the XFEL - The main issues that were discussed by the 50 participants in this group were the photo-injector, the production of ultra-short pulses, the effects of wake-fields induced by the electron bunch, the operation at lower charge and emittance, the possibility of harmonic generation and the diagnostics in the undulator. The following is a short summary of the discussions and their conclusions. Summary of discussions and conclusions of Group 2: Science with the XFEL - About 25 people attended sessions to discuss the possible scientific applications of a x-ray FEL. Because of the recent focus on the first experiments with the proposed Linac Coherent Light Source at Stanford, the discussions were mainly focussed on these proposals. The extension of the characteristics beyond the initial stage and the further developments of the source were also part of the program. Six scientific areas were discussed: Atomic Physics, Warm Dense Matter, Femtosecond Chemistry, Imaging/Holography, Bio-molecular Structures and X-Ray Fluctuations Spectroscopy.

  2. From the X-rays to a reliable “low cost” computational structure of caffeic acid: DFT, MP2, HF and integrated molecular dynamics-X-ray diffraction approach to condensed phases

    Science.gov (United States)

    Lombardo, Giuseppe M.; Portalone, Gustavo; Colapietro, Marcello; Rescifina, Antonio; Punzo, Francesco

    2011-05-01

    The ability of caffeic acid to act as antioxidant against hyperoxo-radicals as well as its recently found therapeutic properties in the treatment of hepatocarcinoma, still make this compound, more than 20 years later the refinement of its crystal structure, object of study. It belongs to the vast family of humic substances, which play a key role in the biodegradation processes and easily form complexes with ions widely diffused in the environment. This class of compounds is therefore interesting for potential environmental chemistry applications concerning the possible complexation of heavy metals. Our study focused on the characterization of caffeic acid as a starting necessary step, which will be followed in the future by the application of our findings on the study of the properties of caffeate anion interaction with heavy metal ions. To reach this goal, we applied a low cost approach - in terms of computational time and resources - aimed at the achievement of a high resolution, robust and trustable structure using the X-ray single crystal data, recollected with a higher resolution, as touchstone for a detailed check. A comparison between the calculations carried out with density functional theory (DFT), Hartree-Fock (HF) method and post SCF second order Møller-Plesset perturbation method (MP2), at the 6-31G ** level of the theory, molecular mechanics (MM) and molecular dynamics (MD) was performed. As a consequence we explained on one hand the possible reasons for the pitfalls of the DFT approach and on the other the benefits of using a good and robust force field developed for condensed phases, as AMBER, with MM and MD. The reliability of the latter, highlighted by the overall agreement extended up to the anisotropic displacement parameters calculated by means of MD and the ones gathered by X-ray measurements, makes it very promising for the above-mentioned goals.

  3. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  4. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    Science.gov (United States)

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).

  5. The 2011 Outburst of Recurrent Nova T Pyx: X-Ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Science.gov (United States)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam; hide

    2014-01-01

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  6. Numerical simulation of SPH for dynamics effect of multilayer discontinuous structure irradiated by impulse X-ray

    International Nuclear Information System (INIS)

    Xu Binbin; Tang Wenhui; Ran Xianwen; Xu Zhihong; Chen Hua

    2012-01-01

    When high energy X-ray irradiates material, it will cause energy deposition in materials, and generates thermal shock wave. At present, finite difference method is used to the numerical simulation of thermal shock usually, but if considering the inter-space between the multilayer materials, the difference method will be more difficult. This paper used the SPH method to simulate multilayer discontinuous structure irradiated by high energy X-ray, and the results show that the gap between the materials of each layer has a certain influence on the thermal shock wave intensity, but doesn't have any affect to gasification impulse. (authors)

  7. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Fauler, A.; Fiederle, M.; Jandejsek, Ivan; Jakůbek, J.; Tureček, D.; Zwerger, A.

    2013-01-01

    Roč. 8, April (2013), C04009 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : X-ray digital radiography * fracture mechanics * crack path * X-ray defectoscopy Subject RIV: JM - Building Engineering Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/C04009/

  8. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  9. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  10. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  12. Interfaces and strain in InGaAsP/InP heterostructures assessed with dynamical simulations of high-resolution x-ray diffraction curves

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1995-01-01

    The interfacial structure of a lattice-matched InGaAs/InP/(100)InP superlattice with a long period of ∼630 Angstrom has been studied by fully dynamical simulations of high-resolution x-ray diffraction curves. This structure exhibits a very symmetrical x-ray pattern enveloping a large number of closely spaced satellite intensities with pronounced maxima and minima. It appears in the dynamical analysis that the position and shape of these maxima and minima is extremely sensitive to the number N of molecular layers and atomic spacing d of the InGaAs and InP layer and in particular the presence of strained interfacial layers. The structural model of strained interfaces was also applied to an epitaxial lattice-matched 700 Angstrom InP/400 Angstrom InGaAsP/(100)InP beterostructure. 9 refs., 3 figs

  13. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  14. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  15. Dynamics of hot spots in the DPF-78 plasma focus from x-ray spectra and REB emission

    International Nuclear Information System (INIS)

    Schmidt, H.; Wang, X.X.

    1995-01-01

    The X-ray emission from hot spots in the plasma focus DPF-78 was investigated with the help of two X-ray quartz crystal spectrometers of the Johann type and a 4 fold magnifying X-ray pinhole camera. In the experiments the working gas was chosen to be 300 Pa deuterium with 20 Pa argon admixture. X-ray spectra in the wavelength range from 3.55 angstrom to 4.0 angstrom, including H-like and He-like Argon lines, were recorded on Kodak DEF-2 film. From the spatially resolved spectra recorded side-on, a relative spectral shift between different hot spots of the same shot was often observed. The shift could be attributed to the Doppler shift. From spectral characteristics such as intensities and FWHM of Ar resonant and intercombination lines electron densities of up to 3 x 10 27 m -3 were determined. Radial dimensions of the hot spots ranging from about 140 microm to 300 microm were found from pinhole pictures applying the penumbra method. Usually two pulses of relativistic electron beams were observed using Cherenkov detectors in a magnetic spectrometer. The energy of the first pulse, which was emitted at the time of maximum compression, was higher than that of the second pulse. The measured FWHM of the REB pulses ranges from 3 ns to about 10 ns. The characteristics of the time-integrated X-ray spectra and the time resolved REB spectra and their dependence on the composition of the filling gas are discussed

  16. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  17. The predictive value of preoperative perfusion/ventilation scintigraphy, spirometry and x-ray of the lungs on postoperative pulmonary complications. A prospective study

    International Nuclear Information System (INIS)

    Fogh, J.; Wille-Joergensen, P.; Brynjolf, I.; Thorup, J.; Joergensen, T.; Bording, L.; Kjaergaard, J.

    1987-01-01

    Prospectively, 125 patients were examined with 99m Tc-perfusion scintigraphy, 89m Kr- or 127 Xe-ventilation scintigraphy and chest radiogram prior to major surgery. Postoperative therapy-demanding pulmonary complications occurred in 18% of the patients. A statistical association could be demonstrated between all the preoperative tests except ventilation scintigraphy and the frequency of complications. However, the predictive values of each of the tests, or even the combined results, were not significantly different from the frequency of complications among all the patients. It is concluded that the predictive values of perfusion-and ventilation scintigraphy, spirometry and radiogram of the chest are too low to be of any practical use. (author)

  18. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  19. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  20. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering

    Science.gov (United States)

    Vorberger, J.; Chapman, D. A.

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  1. Improvements of visual X-ray inspection with optimized digital detector technology. Faster and more reliable inspection with High Dynamic Radiology (HDR)

    International Nuclear Information System (INIS)

    Bavendiek, Klaus

    2010-01-01

    Improvements in speed and contrast resolution of Digital Detector Arrays (DDA) and significant higher power of X-Ray tubes in combination with a small focal spot open the door to an improved visual inspection of castings for automotive and aerospace applications. The result is a film-like image quality of castings in a live view. For the new image quality the x-ray parameter have to be optimized in energy and the subject contrast has to be increased to avoid that flaws are covered by the noise in the image. HDR - high dynamic radiology - expands the local contrast in the image and transfers the grey values to the range the human inspector can separate. Due to the movement in the image the inspector gets a glas-like impression of the object and the flaws allowing him to do a decision about the 3D position of a flaw in the object. (orig.)

  2. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering.

    Science.gov (United States)

    Vorberger, J; Chapman, D A

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  3. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  4. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.

    1976-01-01

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  5. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  6. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  9. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  11. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  14. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    Science.gov (United States)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  15. Effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Haynie, J L; Bryant, P J [California Univ., Irvine (USA). Dept. of Developmental and Cell Biology; California Univ., Irvine (USA). Center for Pathobiology)

    1977-01-01

    The size distribution of clones marked by mitotic recombination induced by several different doses of X-rays applied to 72 h old Drosophila larvae is studied. The results indicate that irradiation significantly reduces the number of cells which undergo normal proliferation in the imaginal wing disc. It is estimated that 1000R reduces by 40-60% the number of cells capable of making a normal contribution to the development of the adult wing. Part of this reduction is due to severe curtailment in the proliferative ability of cells which nevertheless remain capable of adult differentiation: this effect is possibly due to radiation-induced aneuploidy. Cytological evidence suggests that immediate cell death also occurs as a result of radiation doses as low as 100R. The surviving cells are stimulated to undergo additional proliferation in response to the X-ray damage so that the result is the differentiation of a normal wing.

  16. Laboratory based study of dynamical processes by 4D X-ray CT with sub-second temporal resolution

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, Jan; Kumpová, Ivana; Pichotka, M.

    2017-01-01

    Roč. 12, February (2017), č. článku C02010. ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /18./. Barcelona, 03.07.2016-07.07.2016] R&D Projects: GA ČR(CZ) GA15-07210S; GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * inspection with x-rays * pixelated detectors and associated VLSI electronics * X-ray radiography and digital radiography (DR) Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/02/C02010

  17. Structural and dynamical study about denatured states of yeast phosphoglycerate kinase by neutrons scattering and X-rays

    International Nuclear Information System (INIS)

    Receveur, V.

    1997-01-01

    During a long time, the neutron scattering and X-rays techniques have not been used for the studies bearing on the folding of proteins. The compactness and the globularness of a protein are two structural characteristics describing the denatured states and the intermediate states of folding, and the neutrons and x-rays scattering are probably the two techniques the most appropriate to give this kind of information; they are sensible to the spatial extent and to the molecules compactness, and to their general shape. For these three or four last years, the works using these techniques are increasing, giving precious knowledge on the different steps of folding and on the interactions stabilizing the denatured or intermediate states. This thesis falls into this category. (N.C.)

  18. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  19. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  20. X-rays and magnetism

    International Nuclear Information System (INIS)

    Fischer, Peter; Ohldag, Hendrik

    2015-01-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. (report on progress)

  1. Water structure as a function of temperature from X-ray scatteringexperiments and ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon,Teresa; Krack, Matthias; Parrinello, Michele

    2003-03-01

    We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here.

  2. Water structure as a function of temperature from X-ray scattering experiments and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon, Teresa; Krack, Matthias; Parrinello, Michele

    2003-01-01

    We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here

  3. X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen

    Czech Academy of Sciences Publication Activity Database

    Kumpová, Ivana; Fíla, Tomáš; Vavřík, Daniel; Keršner, Z.

    2015-01-01

    Roč. 10, č. 8 (2015), C08004 ISSN 1748-0221 R&D Projects: GA MK(CZ) DF11P01OVV001 Keywords : inspection with x-rays * detection of defects * fracture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.310, year: 2015 http://iopscience.iop.org/1748-0221/10/08/C08004/pdf/1748-0221_10_08_C08004.pdf

  4. Electron Dynamics in the Core-Excited CS 2 Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    OpenAIRE

    Marchenko , T; Carniato , S; Journel , L; Guillemin , R; Kawerk , E; Žitnik , M; Kavčič , M; Bučar , K; Bohinc , R; Petric , M; Vaz Da Cruz , V; Gel 'mukhanov , F; Simon , Marielle

    2015-01-01

    International audience; We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the carbon disulphide CS 2 molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO) absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppressi...

  5. The Reactivity and Structural Dynamics of Supported Metal Nanoclusters Using Electron Microscopy, in situ X-Ray Spectroscopy, Electronic Structure Theories, and Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Yang, Judith C.; Nuzzo, Ralph G.; Johnson, Duane; Frenkel, Anatoly

    2008-01-01

    The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalysts-the materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  8. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  16. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  17. Local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) studied by extended x-ray absorption fine structure and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia - Università di Padova, Padova (Italy); Mathon, O.; Pascarelli, S. [ESRF - European Synchrotron Radiation Facility, Grenoble (France)

    2014-06-14

    The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  4. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    Science.gov (United States)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  5. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  6. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    Science.gov (United States)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  7. Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas

    International Nuclear Information System (INIS)

    Balta, I.Z.; Pederzoli, S.; Iacob, E.; Bersani, M.

    2009-01-01

    To prevent the natural processes of decay and to develop and improve the treatments of conservation and restoration of artistic bronzes meaning statues and sculptures, it is important understanding the patination processes and the knowledge of artificially corroded surfaces. Chemical and physical characterization of artificial patinas obtained on artistic bronzes and coppers by using the 19th century Western traditional patination techniques and recipes by means of SEM-EDS, light microscopy and ATR/FT-IR has been done in previous studies [I.Z. Balta, L. Robbiola, Characterization of artificial black patinas on artistic cast bronze and pure copper by using SEM-EDS and light microscopy, in: Proceedings of the 13th European Microscopy Congress, 22-27 August 2004, Antwerp, Belgium, EMC 2004 CD-Rom Conference Preprints; I.Z. Balta, L. Robbiola, Traditional artificial artistic bronze and copper patinas-an investigation by SEM-EDS and ATR/FT-IR, in: Proceedings of the 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 15-19 May 2005, Lecce, Italy, ART'05 CD-Rom Conference Preprints]. Differences in morphology (structure, thickness, porosity, adherence, compactity, uniformity, homogeneity) and also in composition, on both artistic cast bronze and pure copper patinas, were clearly evidenced. Further in-depth investigation is required to be carried out in order to better understand the patinas mechanisms of formation and the layers kinetics of growth. The elemental and chemical analysis, either on a surface monolayer or in a depth profile, by using the Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) techniques, can provide this kind of information, unique at trace-level sensitivity. SIMS has proved to be a suitable analytical technique for analyzing small amounts of material with high atomic sensitivity (ppm or even ppb) and high

  8. Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics

    Science.gov (United States)

    Pokrovski, Gleb S.; Roux, Jacques; Ferlat, Guillaume; Jonchiere, Romain; Seitsonen, Ari P.; Vuilleumier, Rodolphe; Hazemann, Jean-Louis

    2013-04-01

    The molecular structure and stability of species formed by silver in aqueous saline solutions typical of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-bearing acidic solutions to at least 200 °C, silver speciation is dominated by the hydrated Ag+ cation surrounded by 4-6 water molecules in its nearest coordination shell with mean Ag-O distances of 2.32 ± 0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg H2O (m) at temperatures from 200 to 450 °C and pressures to 750 bar, the dominant species are the di-chloride complex AgCl2- with Ag-Cl distances of 2.40 ± 0.02 Å and Cl-Ag-Cl angle of 160 ± 10°, and the tri-chloride complex AgCl32- of a triangular structure and mean Ag-Cl distances of 2.60 ± 0.05 Å. With increasing temperature, the contribution of the tri-chloride species decreases from ˜50% of total dissolved Ag in the most concentrated solution (5.9m Cl) at 200 °C to less than 10-20% at supercritical temperatures for all investigated solutions, so that AgCl2- becomes by far the dominant Ag-bearing species at conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at distances of 3-4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2- and AgCl32- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive previous AgCl(s) solubility measurements. These data

  9. Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas

    Energy Technology Data Exchange (ETDEWEB)

    Balta, I.Z., E-mail: balta_z_i@yahoo.com [National Research Institute for Conservation and Restoration, Calea Victoriei 12, Sector 3, 030026 Bucharest (Romania); Pederzoli, S.; Iacob, E.; Bersani, M. [Fondazione Bruno Kessler - IRST, Centro per la Ricerca Scientifica e Tecnologica, Trento (Italy)

    2009-04-01

    To prevent the natural processes of decay and to develop and improve the treatments of conservation and restoration of artistic bronzes meaning statues and sculptures, it is important understanding the patination processes and the knowledge of artificially corroded surfaces. Chemical and physical characterization of artificial patinas obtained on artistic bronzes and coppers by using the 19th century Western traditional patination techniques and recipes by means of SEM-EDS, light microscopy and ATR/FT-IR has been done in previous studies [I.Z. Balta, L. Robbiola, Characterization of artificial black patinas on artistic cast bronze and pure copper by using SEM-EDS and light microscopy, in: Proceedings of the 13th European Microscopy Congress, 22-27 August 2004, Antwerp, Belgium, EMC 2004 CD-Rom Conference Preprints; I.Z. Balta, L. Robbiola, Traditional artificial artistic bronze and copper patinas-an investigation by SEM-EDS and ATR/FT-IR, in: Proceedings of the 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 15-19 May 2005, Lecce, Italy, ART'05 CD-Rom Conference Preprints]. Differences in morphology (structure, thickness, porosity, adherence, compactity, uniformity, homogeneity) and also in composition, on both artistic cast bronze and pure copper patinas, were clearly evidenced. Further in-depth investigation is required to be carried out in order to better understand the patinas mechanisms of formation and the layers kinetics of growth. The elemental and chemical analysis, either on a surface monolayer or in a depth profile, by using the Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) techniques, can provide this kind of information, unique at trace-level sensitivity. SIMS has proved to be a suitable analytical technique for analyzing small amounts of material with high atomic sensitivity (ppm or even ppb) and

  10. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  11. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  12. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.

    2000-07-10

    A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

  13. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    International Nuclear Information System (INIS)

    Sanford, Thomas W.L.; Olson, Richard E.; Mock, Raymond Cecil; Chandler, Gordon A.; Leeper, Ramon J.; Nash, Thomas J.; Ruggles, Laurence E.; Simpson, Walter W.; Struve, Kenneth W.; Peterson, D.L.; Bowers, R.L.; Matuska, W.

    2000-01-01

    A z-pinch radiation source has been developed that generates 60 ± 20 KJ of x-rays with a peak power of 13 ± 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 ± 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 ± 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm 3 CH 2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3--5% decrease in peak temperature, in agreement with measurements

  14. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    Science.gov (United States)

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  15. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    Science.gov (United States)

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  16. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  18. Prospects for supermirrors in hard x-ray spectroscopy

    DEFF Research Database (Denmark)

    Joensen, Karsten D.; Gorenstein, Paul; Christensen, Finn Erland

    1994-01-01

    . The measured x-ray reflectivities are well accounted for by the standard dynamical theories of multilayer reflection. Hard x ray applications that could benefit from x-ray supermirror coatings include focusing and imaging instrumentation for astrophysics, collimating and focusing devices for synchrotron...

  19. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  20. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  1. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  2. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  3. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  4. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  5. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  6. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  7. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  8. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  9. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  10. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  11. Dynamic Processes in Be Star Atmospheres. VI. Simultaneous X-Ray, Ultraviolet, and Optical Variations in λ Eridani

    Science.gov (United States)

    Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.

    1997-05-01

    We document the results of simultaneous wavelength monitoring of the B2e star λ Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in 1995 February-March a smaller follow-up was conducted in 1995 September. During the first of these intervals λ Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSPC observed in 1991. However, possible low-level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in Hα, He I λ6678, He II λ1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity discrete absorption component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind, while the strong C III (Voyager) and C IV (IUE) lines imply that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UV spectrometer (UVS) observed a ``ringing'' that decayed over three 3 hr cycles. The amplitude of these fluctuations was strong (50%) at 950-1100 Å, decreased rapidly with wavelength, and faded to nondetection longward of 1300 Å. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the 950-1250 Å region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce

  12. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  13. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  14. Selection of stationary phase particle geometry using X-ray computed tomography and computational fluid dynamics simulations.

    Science.gov (United States)

    Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang

    2012-02-17

    The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Measurement of intervertebral cervical motion by means of dynamic x-ray image processing and data interpolation.

    Science.gov (United States)

    Bifulco, Paolo; Cesarelli, Mario; Romano, Maria; Fratini, Antonio; Sansone, Mario

    2013-01-01

    Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements.

  16. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  17. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  18. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  19. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  20. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  2. On the polarization mixing of X-rays

    International Nuclear Information System (INIS)

    Ohkawa, T.; Hashimoto, H.

    1984-01-01

    Relativistic quantum field theory is applied to discuss the process of interference of white X-rays and the mechanism of rotation of the polarization of X-rays in crystals. A two-photon state is studied theoretically for analyzing the mechanism of the polarization mixing. Diffracted X-ray photons are produced by two successive stages of interaction between incident X-rays and electrons in a crystal. A dispersion relation of diffracted X-rays similar to Laue's dynamic theory is shown by use of the S-matrix. A dynamical structure factor is defined on the base of Dirac's γ-matrix. (author)

  3. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    Directory of Open Access Journals (Sweden)

    Scott G. Engle

    2012-06-01

    Full Text Available To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST / cosmic origins spectrograph (COS FUV-UV spectra of the bright, nearby Cepheids Polaris, δ Cep and β Dor. Previous studies made with the international ultraviolet explorer (IUE showed a limited number of UV emission lines in Cepheids. The wellknown problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating 104 K up to ~3 × 105 K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range φ ≈ 0.8-1.0 and vary by factors as large as 10×. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log LX ≈ 28.5-29.1 ergs/sec, and plasma temperatures in the 2–8 × 106 K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat the atmospheric plasmas surrounding the photosphere. A pulsation-driven α2 equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 φ favor the shock heating mechanism hypothesis.

  4. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    Science.gov (United States)

    Engle, Scott G.; Guinan, Edward F.

    2012-06-01

    To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, δ Cep and β Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating 10^4 K up to ~3 x 10^5 K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range φ ∼ 0.8-1.0 and vary by factors as large as 10x. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log Lx ~ 28.5-29.1 ergs/sec, and plasma temperatures in the 2-8 x 10^6 K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven α^2 equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 φ) favor the shock heating mechanism hypothesis.

  5. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  6. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  7. Measurement of Intervertebral Cervical Motion by Means of Dynamic X-Ray Image Processing and Data Interpolation

    Directory of Open Access Journals (Sweden)

    Paolo Bifulco

    2013-01-01

    Full Text Available Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient’s spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient’s fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements.

  8. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  9. Dynamics of 120 and 20 kV plasma focus devices with respect to density and current distribution, and neutron and X-ray emission

    International Nuclear Information System (INIS)

    Decker, G.; Nahrath, B.; Oppenlaender, T.; Pross, G.; Rueckle, B.; Schmidt, H.; Shakhatre, M.; Trunk, M.

    1977-01-01

    The experiments had two goals: (1) Better understanding of the dynamics and neutron production of the focus phase and (2) improved scaling of the neutron yield by operating a high-voltage focus. For the first goal, experiments with a 30-kJ/16-kV plasma focus of the Mather type (NESSI) were performed. The simultaneously applied diagnostics include interferometry, X-ray photography with channel plates, magnetic probes and scintillator/photomultiplier detectors for measuring hard X-ray and neutron emission. In the established chronology one can distinguish five phases in the development of the plasma focus: A compression phase is followed by a short (8 ns) very dense phase, where the density peaks at a minimum radius (t=0, authors' chronology). The plasma cylinder expands to a relatively long-lasting (30 to 70 ns) quiescent phase before instabilities occur. This short unstable phase is followed by a decay phase during which the neutron emission peaks. Important correlations between the plasma parameters and the neutron emission are discussed. Secondly, on the assumption that the neutron yield scales with a high power of the current, it was concluded that a high-voltage focus could result in higher neutron yield as compared with a lower voltage device of the same energy. The proper adjustments of the discharge parameters necessary due to the very short current risetime were investigated. (author)

  10. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  11. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  12. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  13. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  14. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  15. X-ray microtomography

    International Nuclear Information System (INIS)

    Dunsmuir, J.H.; Ferguson, S.R.; D'Amico, K.L.; Stokes, J.P.

    1991-01-01

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  16. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  17. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  18. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  19. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  4. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  12. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Daniel J., E-mail: dhigley@stanford.edu; Yuan, Edwin [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Lutman, Alberto A.; Coslovich, Giacomo; Hart, Philip; Hoffmann, Matthias C.; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Stöhr, Joachim; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Liu, Tianmin; MacArthur, James P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2016-03-15

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L{sub 3,2}-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  13. X-Ray Exam: Hip

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What It Is Why ... You Have Questions Print What It Is A hip X-ray is a safe and painless test ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  17. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  18. Quality regularities of dynamic X-ray diffraction in superlattices and films with variable gradient of deformation based on analysis of types of Takagi equation solutions

    International Nuclear Information System (INIS)

    Dyshekov, A.A.; Khapachev, Yu.P.

    1997-01-01

    It is proposed to use qualitative investigation methods of the differential Takagi equation solutions for the analysis of general properties of wave fields in deformed crystals. The physical interpretation of possible types of the Takagi equation solutions is considered briefly from the viewpoint of the stability theory. The type of solutions are defined by ratios between parameters involved in the equations set. For the Takagi equation these parameters are prescribed by the angular tuning from the precise Bragg angle as well as structural characteristics of the crystal and the deformation profile. The qualitative analysis for the problem of the dynamic X-ray diffraction is carried out for films with the variable deformation gradient and superlattices [ru

  19. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage; Benson, Cassidy A.; Mitchell, Travis; Sylvester, Eric; Chen, Yu-Sheng; Benedict, Jason B. (UC); (Buffalo)

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy)0.5(H2O)]·2H2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  20. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  1. Obstetric X-rays

    International Nuclear Information System (INIS)

    Mwachi, M.K.

    2006-01-01

    Radiography of the pelvis should never be taken to diagnose early pregnancy, because of potential hazards of radiation damage to the growing foetus. the only indication occurs in the last week of pregnancy (37 weeks). Obstetric X-ray will help you answer like confirmation of malposition,multiple pregnancies; fetal abnormalities e.g. hydrocephalus, foetal disposition. The choice of radiographic projection will help give foetal presentation, disposition as well as foetal maturity. The search pattern helps you determine maternal and spine deformity, foetal spine and head , foetal presentation and any other anomalies

  2. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  3. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  4. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    Science.gov (United States)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  5. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  6. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  7. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  8. Microfocal X-ray computed tomography post-processing operations for optimizing reconstruction volumes of stented arteries during 3D computational fluid dynamics modeling.

    Science.gov (United States)

    Ladisa, John F; Olson, Lars E; Ropella, Kristina M; Molthen, Robert C; Haworth, Steven T; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-08-01

    Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 microm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region.

  9. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  10. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  11. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  12. X-ray analysis in lung leptospira disease

    International Nuclear Information System (INIS)

    Deng Shiyong; Peng Shi; He Guoman

    2006-01-01

    Objective: To analysis the X-ray signs and subtype of the lung leptospira disease, and improve the undersdand, reduce the error diagnosis of this diseases. Methods: 40 cases of lung leptospira disease were evaluated about the check X-ray sings and clinical data, the check X-ray sings were dynamic observated and typed, and 40 cases had a diagnostic treatment. Results: There were various X-ray changes of lung leptospira disease. in 40 cases, 12 cases (30%) pulmonary marking, 21 cases (52%) little lesions, and 7 cases(18%) lager lesions, respectively. The patients who were correctly diagnosed made a recovery after effective treatment, the patients who were error diagnosed died because of multiple system organ damage. Conclusion: The check X-ray signs in lung leptospira disease have some characteristics. It may play an important role in improving this disease' diagnosis combining the dynamic observation of check X-ray sings with clinical data. (authors)

  13. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  14. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  15. X-ray diagnosis of colorectal endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Runte, F.; Majewski, A.; Reichert, B.

    1987-05-01

    Preoperative diagnosis of symptomatic colorectal endometriosis is often difficult. Hence, the X-ray findings of eight woman patients with confirmed affection of the colon with endometriosis foci were evaluated together with the clinical, surgical and histological findings. In 50 % of the cases rectal haemorrhages were the most frequently occurring sign. In three-quarters of the cases the colon sigmoideum was involved. Radiologically it was possible to prove in 37,5 % each of the cases that there was a polypoid lesion and an irregular concentric stenosis of the intestinal lumen. In 25 % of the cases we found a complete stenosis of the intestinal lumen combined with ileus. X-ray sign pattern of colorectal endometriosis, however, is not pathognomonic.

  16. X-ray diagnosis of colorectal endometriosis

    International Nuclear Information System (INIS)

    Runte, F.; Majewski, A.; Reichert, B.

    1987-01-01

    Preoperative diagnosis of symptomatic colorectal endometriosis is often difficult. Hence, the X-ray findings of eight woman patients with confirmed affection of the colon with endometriosis foci were evaluated together with the clinical, surgical and histological findings. In 50 % of the cases rectal haemorrhages were the most frequently occurring sign. In three-quarters of the cases the colon sigmoideum was involved. Radiologically it was possible to prove in 37,5 % each of the cases that there was a polypoid lesion and an irregular concentric stenosis of the intestinal lumen. In 25 % of the cases we found a complete stenosis of the intestinal lumen combined with ileus. X-ray sign pattern of colorectal endometriosis, however, is not pathognomonic. (orig.) [de

  17. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  18. The one- and two-coordinate x-ray detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Baru, S.E.; Khabakhpashev, A.G.; Savinov, G.A.

    1992-01-01

    The Institute of Nuclear Physics has designed and fabricated one- and two-coordinate x-ray detectors since 1975. For photon detection multiwire proportional chambers that operate in direct pulse count mode are employed. The characteristics of the detectors allow successful use of them for a wide range of diffractive x-ray structure studies, including studies of dynamics of structure variation (x-ray diffractive movies) and measurements at synchrotron radiation channels

  19. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban (Libya); Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Piancastelli, Maria Novella [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); and others

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  20. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  1. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    Science.gov (United States)

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  2. Dynamical theoretical model of the high-resolution double-crystal x-ray diffractometry of imperfect single crystals with microdefects

    International Nuclear Information System (INIS)

    Molodkin, V. B.; Olikhovskii, S. I.; Kislovskii, E. N.; Vladimirova, T. P.; Skakunova, E. S.; Seredenko, R. F.; Sheludchenko, B. V.

    2008-01-01

    The dynamical diffraction model has been developed for the quantitative description of rocking curves (RCs) measured in the Bragg diffraction geometry from single crystals containing homogeneously distributed microdefects of several types and with arbitrary sizes. The analytical expressions for coherent and diffuse RC components, which take self-consistently multiple-scattering effects into account and depend explicitly on microdefect characteristics (radius, concentration, strength, etc.), have been derived with taking into account the instrumental factors. The developed model has been applied to determine the characteristics of oxygen precipitates and dislocation loops in silicon crystals grown by Czochralsky and float-zone methods using RCs measured by the high-resolution double-crystal x-ray diffractometer. It has been shown, particularly, that completely dynamical consideration of Huang as well as Stockes-Wilson diffuse scattering (DS) in both diffuse RC component and coefficient of extinction of coherent RC component due to DS, together with taking asymmetry and thermal DS effects into account, provides the possibility to distinguish contributions into RC from defects of different types, which have equal or commensurable effective radii

  3. Air ionizatio at X-ray departments

    International Nuclear Information System (INIS)

    Vesela, O.; Mosatova, A.; Kubova, Z.

    1987-01-01

    Changes in electroionic microclimate are dealt with at X-ray workplaces and their dynamics in the course of the day during normal operation. Following exposure to X-ray radiation the specific concentration of light air ions of both polarities increases due to increased input of ionization energy. Within the first minutes following the termination of exposure a sharp decline takes place in the specific concentration of light air ions with subsequent well of positive ions in the air. (author). 1 tab., 19 refs

  4. Elucidation of the structure of organic solutions in solvent extraction by combining molecular dynamics and X-ray scattering

    International Nuclear Information System (INIS)

    Ferru, G.; Gomes Rodrigues, D.; Berthon, L.; Guilbaud, P.; Diat, O.; Bauduin, P.

    2014-01-01

    Knowledge of the supramolecular structure of the organic phase containing amphiphilic ligand molecules is mandatory for full comprehension of ionic separation during solvent extraction. Existing structural models are based on simple geometric aggregates, but no consensus exists on the interaction potentials. Herein, we show that molecular dynamics crossed with scattering techniques offers key insight into the complex fluid involving weak interactions without any long range ordering. Two systems containing mono- or diamide extractants in heptane and contacted with an aqueous phase were selected as examples to demonstrate the advantages of coupling the two approaches for furthering fundamental studies on solvent extraction. (authors)

  5. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  6. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  7. Report of workshop on X-ray and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Keiichiro; Namikawa, Kazumichi [eds.

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.).

  8. Report of workshop on X-ray and nonlinear optics

    International Nuclear Information System (INIS)

    Nasu, Keiichiro; Namikawa, Kazumichi

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.)

  9. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  10. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  11. Formulation of dynamical theory of X-ray diffraction for perfect crystals in the Laue case using the Riemann surface.

    Science.gov (United States)

    Saka, Takashi

    2016-05-01

    The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.

  12. Acoustooptics of x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Balakhanov, M.V.; Pustovoyt, V.I.; Radzhabov, R.U.; Khabibullayev, P.K.

    Scattering of x-rays by acoustic phonons in crystals during excitation of a noise phonon flux thermodynamically at equilibrium is analyzed from the standpoint of the dynamic diffraction theory, emphasis being put on the differences with the conventional acoustooptic effect attributable to lower frequencies and smaller amplitudes. The structural peak and the diffusional peak are calculated from known relations for the intensity of scattering in each mode, assuming that the Laue condition is satisfied. Interaction of x-rays and an acoustic wave is considered, the conditions for a diffraction peak being determined by the relations between location of that peak and angular dimensions of the structural peak. Experiments were performed in crystals of photosensitive piezoelectric semiconductors with phonon generation. Rectangular or variable-shape voltage pulses with amplitudes up to 800 V were applied to 6-60 ..mu..m thick CdS crystals at repetition rates up to 800 Hz. The electron concentration was (1.3-4.5) x 10/sup 14/ cm/sup -3/ and the electron mobility, according to saturation of the current-voltage characteristics, was differentially in time. The results reveal sharp anisotropy of scattering, evident in the dependence of scattering intensity on the angle of crystal rotation and the resulting lobar scattering pattern. Structural scattering varies exponentially and diffusional scattering varies linearly with increasing amplitude of the applied voltage. According to the dependence of the spectral density of phonon generation on the concentration of charge carriers, the phase of the scattering effect changes upon transition from the structural range to the diffusional range. 8 references, 3 figures.

  13. Dynamics of 120 and 20 kV plasma focus devices with respect to density and current distribution, neutron and X-ray emission

    International Nuclear Information System (INIS)

    Decker, G.; Nahrath, B.; Oppenlaender, T.; Pross, G.; Rueckle, B.; Schmidt, H.; Shakhatre, M.; Trunk, M.

    1976-01-01

    Our experiments have aimed at two goals: 1) better understanding of the dynamics and neutron production of the focus phase and 2) improved scaling of the neutron yield by operating a high voltage focus. 1) For the first goal, experiments with a 30 kJ/ 16 kV plasma focus of the Mather type (NESSI) were performed. The simultaneously applied diagnostics include interferometry, X-ray photography with channel plates, magnetic probes and neutron emission. In the established chronology we can distinguish 5 phases in the development of the plasma focus: a compression phase is followed by a short (8 ns) very dense phase, where the density peaks at a minimum radius (t = 0 in our chronology). The plasma cylinder expands to a relatively long lasting (30 to 70 ns) quiescent phase before instabilities occur. This short unstable phase is followed by a decay phase during which the neutron emission peaks. Important correlations between the plasma parameters and the neutron emission are discussed. 2) Under the assumption that the neutron yield scales with a high power of the current, we concluded that a high voltage focus could result in higher neutron yield as compared with a lower voltage device of the same energy. The proper adjustments of the discharge parameters necessary due to the very short current risetime have been investigated. (orig.) [de

  14. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    International Nuclear Information System (INIS)

    Kruschwitz, Craig; Ming Wu; Moy, Ken; Rochau, Greg

    2008-01-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP-based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations

  15. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  16. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  19. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  5. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  6. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  7. Diffractive sub-picosecond manipulation of x-rays

    International Nuclear Information System (INIS)

    Adams, B.

    2004-01-01

    A class of X-ray optical elements for the sub-picosecond manipulation of X-rays is proposed. The design of these elements is based upon a time-dependent dynamical diffraction theory that synthesizes the eikonal theory with the Takagi-Taupin theory. A brief outline of the theory is given

  8. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  9. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  10. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  11. Development of variable-magnification X-ray Bragg optics.

    Science.gov (United States)

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  12. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  13. Women and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, P A; Stewart, J H

    1976-01-01

    When a woman comes to an X-Ray Department it is usually necessary to know the present stage of her menstrual cycle. X-Rays may have an adverse effect on the embryo, especially in early pregnancy. However, exposure to X-Rays at any stage may be associated with a slightly increased incidence of malignant disease in childhood. The International Commission on Radiological Protection recommends that in women of child-bearing age (in some cases as young as 11 years), non-urgent diagnostic radiography be confined to the preovulatory phase of the menstrual cycle: that is, 14 days following the first day of the last menstrual period.

  14. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  15. Molecular dynamics simulation and x-ray structural studies of mode-coupling in monoclinic K2ZnBr4

    International Nuclear Information System (INIS)

    Machida, Mitsuo; Itoh, Hideaki; Koyano, Nobumitsu

    2003-01-01

    The mode-coupling between the rotational and translational motions in the monoclinic K 2 ZnBr 4 was studied by the molecular dynamics simulation and X-ray structure analysis. In the structure analysis, the Fourier analysis indicates that, in the paraelectric phase, electron densities of the bromines Br1 and Br2 on the mirror plane are fairly elongated in the b direction, while the density of the bromine Br3 at the general position spreads more or less in the a direction. In the ferroelectric phase, the elongation is suppressed in particular for Br1 and Br2, and the densities of Br3 and Br4, which are equivalent each other in the paraelectric phase, are nearly isotropic. In addition, Br1 and Br2 displace in the b direction through the rotation of the ZnBr 4 2- ion about the a axis. In the simulation, the ZnBr 4 2- ions are treated as rigid-bodies. The trajectories of the bromines reproduce satisfactorily the characteristic feature of the Fourier maps. This means that the ZnBr 4 2- ions are approximately regarded as rigid-bodies even in the real K 2 ZnBr 4 . The mode-coupling analysis shows that, in the ZnBr 4 2- rigid-bodies, the rotational motion about the a axis and the translational motion in the b direction couple strongly. Moreover, the displacements of rotational and translational motions in the b direction are almost synchronous for Br1 and Br2, and almost asynchronous for Br3 and Br4. (author)

  16. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    Science.gov (United States)

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  17. Liquid Structure of CO 2 –Reactive Aprotic Heterocyclic Anion Ionic Liquids from X-ray Scattering and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, Quintin R.; Oh, Seungmin; Morales-Collazo, Oscar; Castner, Jr., Edward W.; Brennecke, Joan F.; Maginn, Edward J. (Rutgers); (Notre)

    2016-11-23

    A combination of X-ray scattering experiments and molecular dynamics simulations were conducted to investigate the structure of ionic liquids (ILs) which chemically bind CO2. The structure functions were measured and computed for four different ILs consisting of two different phosphonium cations, triethyloctylphosphonium ([P2228]+) and trihexyltetradecylphosphonium ([P66614]+), paired with two different aprotic heterocyclic anions which chemically react with CO2, 2-cyanopyrrolide, and 1,2,4-triazolide. Simulations were able to reproduce the experimental structure functions, and by deconstructing the simulated structure functions, further information on the liquid structure was obtained. All structure functions of the ILs studied had three primary features which have been seen before in other ILs: a prepeak near 0.3–0.4 Å–1 corresponding to polar/nonpolar domain alternation, a charge alternation peak near 0.8 Å–1, and a peak near 1.5 Å–1 due to interactions of adjacent molecules. The liquid structure functions were only mildly sensitive to the specific anion and whether or not they were reacted with CO2. Upon reacting with CO2, small changes were observed in the structure functions of the [P2228]+ ILs, whereas virtually no change was observed upon reacting with CO2 in the corresponding [P66614]+ ILs. When the [P2228]+ cation was replaced with the [P66614]+ cation, there was a significant increase in the intensities of the prepeak and adjacency interaction peak. While many of the liquid structure functions are similar, the actual liquid structures differ as demonstrated by computed spatial distribution functions.

  18. Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments.

    Science.gov (United States)

    Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina

    2013-10-23

    Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

  19. Mapping the dynamics of cortical neuroplasticity of skilled motor learning using micro X-ray fluorescence and histofluorescence imaging of zinc in the rat

    Science.gov (United States)

    Alaverdashvili, Mariam; Paterson, Phyllis G.

    2017-01-01

    Synchrotron-based X-ray fluorescence imaging (XFI) of zinc (Zn) has been recently implemented to understand the efficiency of various therapeutic interventions targeting post-stroke neuroprotection and neuroplasticity. However, it is uncertain if micro XFI can resolve neuroplasticity-induced changes. Thus, we explored if learning-associated behavioral changes would be accompanied by changes in cortical Zn concentration measured by XFI in healthy adult rats. Proficiency in a skilled reach-to-eat task during early and late stages of motor learning served as a functional measure of neuroplasticity. c-Fos protein and vesicular Zn expression were employed as indirect neuronal measures of brain plasticity. A total Zn map (20 × 20 × 30 μm3 resolution) generated by micro XFI failed to reflect increases in either c-Fos or vesicular Zn in the motor cortex contralateral to the trained forelimb or improved proficiency in the skilled reaching task. Remarkably, vesicular Zn increased in the late stage of motor learning along with a concurrent decrease in the number of c-fos-ip neurons relative to the early stage of motor learning. This inverse dynamics of c-fos and vesicular Zn level as the motor skill advances suggest that a qualitatively different neural population, comprised of fewer active but more efficiently connected neurons, supports a skilled action in the late versus early stage of motor learning. The lack of sensitivity of the XFI-generated Zn map to visualize the plasticity-associated changes in vesicular Zn suggests that the Zn level measured by micro XFI should not be used as a surrogate marker of neuroplasticity in response to the acquisition of skilled motor actions. Nanoscopic XFI could be explored in future as a means of imaging these subtle physiological changes. PMID:27840249

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is taken ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is repeated. Two or three images (from different angles) will typically be taken. An x-ray may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... no special preparation. Tell your doctor and the technologist if there is any possibility you are pregnant. ... should always inform their physician and x-ray technologist if there is any possibility that they are ...

  3. X-ray guided biopsy

    International Nuclear Information System (INIS)

    Casanova, R.; Lezana, A.H.; Pedrosa, C.S.

    1980-01-01

    Fine needle aspiration biopsy (FNAB) is now a routine procedure in many X-ray Departments. This paper presents the authors' experience with this technique in chest, abdominal and skeletal lesions. (Auth.)

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Radiography) - Bone Bone x-ray uses a very small dose of ionizing radiation to produce pictures of ... exposing a part of the body to a small dose of ionizing radiation to produce pictures of ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  6. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  8. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? A bone x-ray examination itself ... available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to X-ray (Radiography) - Bone Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  11. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  12. X-ray screening materials

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This invention relates to x-ray screening materials and especially to materials in sheet form for use in the production of, for example, protective clothing such as aprons and lower back shields, curtains, mobile screens and suspended shields. The invention is based on the observation that x-ray screening materials in sheet form having greater flexiblity than the hitherto known x-ray screening materials of the same x-ray absorber content can be produced if, instead of using a single sheet of filled sheet material of increased thickness, one uses a plurality of sheets of lesser thickness together forming a laminar material of the desired thickness and one bonds the individual sheets together at their edges and, optionally, at other spaced apart points away from the edges thereby allowing one sheet to move relative to another. (U.K.)

  13. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the ... of the body to a small dose of ionizing radiation to produce pictures of the inside of the ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  16. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  17. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    Scheppach, W.

    1982-01-01

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG) [de

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... carefully aimed at the part of the body being examined, an x-ray machine produces a small ... the table in the area of the body being imaged. When necessary, sandbags, pillows or other positioning ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  5. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  6. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  7. X-ray tube target

    International Nuclear Information System (INIS)

    Weber, R.G.

    1980-01-01

    A target with an improved heat emissive surface for use in a rotating anode type x-ray tube is described. The target consists of a body having a first surface portion made of x-ray emissive material and a second surface portion made of a heat emissive material comprising at least one of hafnium boride, hafnium oxide, hafnium nitride, hafnium silicide, and hafnium aluminide. (U.K.)

  8. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  9. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  10. Dynamic and structural study of neocarzinostatin native and denatured states, by differential microcalorimetry, optical spectroscopies and X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Russo, Daniela

    2000-01-01

    A structural and dynamic characterization of proteins denatured states is essential to the understanding of mechanisms which control proteins folding. It is in this framework that this study has been undertaken in taking as model the neocarzinostatin globular protein. It is formed with seven cell-layers which form a barrel pattern maintained by two bi-sulfur bonds. A full characterization of native and denatured states, both from structural and dynamic point of view, has been implemented with several techniques able to bring data at different levels. During the experiments, ncs has been stabilized by temperature and by the use of a chaotropic agent: the guanidinium chloride (gdmcl). Small angle x-ray and neutron scattering have allowed us to obtain data on the variation of the protein compactness in terms of gdmcl temperature and concentration. The diffusion spectra show that ncs loses completely its globular structure above 80 C or in presence of about 5 m of gdmcl. Temperature and concentration of half denaturation are tm= 70 C and cm=3.5 m (in heavy water), respectively. Spectra analysis of strongly denatured protein has allowed us to obtain values of its chain length and of its persistence length which are in agreement with those theoretically estimated. Experiments have been carried out too to measure the radius of gyration to zero concentration and the second virial coefficient of the solution in order to estimate the interactions between the molecules. A full characterization has been performed in terms of gdmcl temperature and concentration by fluorescence and circular dichroism. These two techniques reveal the variations of the local three-dimensional structure and secondary structure of the protein respectively. Microcalorimetry measurements have shown that thermal denaturation of ncs is completely reversible and has been used to measure the enthalpy variation during the transition. At last, it has been possible to study ncs intramolecular dynamics in

  11. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  12. Use of Fourier domain filtering and dynamic programming in finding a titanium coil implant in high voltage x-ray images

    DEFF Research Database (Denmark)

    Nielsen, Henning; Hansen, Jesper Carl

    2006-01-01

    This paper deals with the problem of finding precise position and orientation of a titanium coil implant in humans. Analysis of high voltage X-rays stereo images are used to determine the true 3D position. High voltage images inherently presents with poor contrast. Various image processing techni...

  13. Doped holes in edge-shared CuO.sub.2./sub. chains and the dynamic spectral weght transfer in X-ray absorption spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hu, Z.; Drechsler, S.L.; Málek, Jiří; Rosner, H.; Neudert, R.; Knupper, M.; Golden, M. S.; Fink, J.; Karpinski, J.; Kaindl, G.

    2002-01-01

    Roč. 59, č. 1 (2002), s. 135-141 ISSN 0295-5075 Institutional research plan: CEZ:AV0Z1010914 Keywords : X-ray absorption spectra * strongly correlated electron systems * heavy fermions * many-electron systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.360, year: 2002

  14. Solvation dynamics monitored by combined X-ray spectroscopies and scattering: photoinduced spin transition in aqueous [Fe(bpy)3]2+

    DEFF Research Database (Denmark)

    Bressler, C.; Gawelda, W.; Galler, A.

    2014-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay be...

  15. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  16. Influence of microfibril angle on the thermal and dynamic-mechanical properties of Acacia Mangium wood using X-ray diffraction and dynamics-mechanical test

    International Nuclear Information System (INIS)

    Tabet, T.A.; Julynnie Wajir; Fauziah Abdul Aziz

    2009-01-01

    The term microfibril angle, MFA in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall, S 2 layer of fibers and tracheids and the long axis of the cell. In this study, the mean MFA of the cell walls were determined for thin samples of thickness 200.0 μm from pith and outwards, for eight ages of Acacia Mangium wood. The determination of MFA was based on a diffraction pattern arising from cellulose crystal planes of the type 002 generated by x-ray diffraction and recorded using an electronic detector. The results show an inversely relationship between MFA and age of tree in Acacia mangium wood. MFA decreased from 26.13 degree at age 3 year-old to 0.20 degree at tree of age 15 year-old for the pith region. The most significant drop occurred from 16.14 degree at age 7 year-old to 11.30 degree at age 9 year-old. an inversely relationship between MFA and storage modulus E ' was evidence in Acacia mangium at age 10 year-old. The results showed that about 76.22 % variation of loss modulus E was attributed to the MFA, while about 66.4 % of the variation of glass transition T g was explained by MFA under the same experimental conditions. (author)

  17. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  18. X-ray varieties of acute lung abscess course

    International Nuclear Information System (INIS)

    Churilyin, R.Yu.

    2009-01-01

    Chest of x-ray films of 52 patients with lung abscess aged of 18-78 were analyzed. Eight patients were performed radiography in 2 projections, liner and computed tomography. All patients underwent dynamic investigation.

  19. Methods of X-ray examination of condylar knee replacement

    International Nuclear Information System (INIS)

    Vavrik, P.

    1988-01-01

    A detailed description is presented of the methodology of X-ray examination of patients with a condylar knee replacement. Preoperative examination includes standard anterio-posterior and lateral projections, axial projection of the patella in 30 deg flexion of the knee, examination of the mechanical axis of the extremity on a 90 x 30 format and the radioscopic assessment of the centre of the hip joint, essential for the correct centering of the knee implant. Immediately after surgery the position of the implant is checked in two standard projections. Another X-ray check is made after six weeks, before partial loading of the joint is permitted. A complete X-ray examination is made prior to the full loading of the knee joint. The methods are also discussed of the X-ray evaluation of complications such as aseptic loosening of the components, infection, instability, fractures. The general solution od these problems is described. The necessity is underlined of the deliberate and qualified indication of X-ray examinations. The basic prerequisites are listed for reducing the present considerable radiation burden of these patients in the course of the many X-ray examinations. (author). 7 figs., 3 tab., 6 refs

  20. Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering

    Directory of Open Access Journals (Sweden)

    Jong Goo Kim

    2016-03-01

    Full Text Available Homodimeric hemoglobin (HbI consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3 and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI.

  1. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  2. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  3. X-ray diffraction studies of structures of Be, Al, LiF, Fe+3%Si, Si, SiO2, KCl under dynamic pressures from 2 Gpa to 20 Gpa

    International Nuclear Information System (INIS)

    Egorov, L.A.; Barenboim, A.I.; Mokhova, V.V.; Dorohin, V.V.; Samoilov, A.I.

    1997-01-01

    Currently, the only direct method to study behaviour of solid crystal substance structures under dynamic compression is method to record X-rays diffraction pictures of crystal structures under shock compression. Thepaper presents results of X-rays diffraction measurements concerning structural parameters of shock compressed substances at pressures higher than Hugoniot elastic limit (Be, Al, LiF, Fe+3%Si), lower than Hugoniot elastic limit (Si, SiO 2 , LiF) and in the area of pressures of phase transformation beginning (KCl, Si). Recorded states of shock-compressed substance structures demonstrate identity of structural deformations at pressures higher and lower than Hugoniot elastic limit as well as at pressures above the phase transformation point, which can be characterized as single-axial deformations. (orig.)

  4. Polarisation resonance in X-ray diffraction

    International Nuclear Information System (INIS)

    Goodman, P.; Paterson, D.; Matheson, S.

    1994-01-01

    The study of crystal structures by means of dynamic X-ray diffraction has placed a challenge to theoreticians to revise the X-ray diffraction theory based on Maxwell's equation. In this paper the feasibility of using 'polarisation resonance' as a tool in the determination of absolute configuration for asymmetric structures is investigated. Two (left- and right-handed), σ + and σ- , circular polarization states for 3-beam conditions are considered. Moreover, extending interaction into the 3 rd. dimension (normal to the beam) opens the possibility of absolute configuration determination of asymmetric structures in 3 dimensions. The computational scheme used is shown in terms of scattering diagrams. 7 refs., 1 tab., 6 figs

  5. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yumiko; Iida, Atuso E-mail: atsuo.iida@kek.jp; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-07-21

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few {mu}m spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 {mu}s to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition.

  6. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Takahashi, Yumiko; Iida, Atuso; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-01-01

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few μm spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 μs to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition

  7. Transmission X-ray mirror

    International Nuclear Information System (INIS)

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  8. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  9. Exponential x-ray transform

    International Nuclear Information System (INIS)

    Hazou, I.A.

    1986-01-01

    In emission computed tomography one wants to determine the location and intensity of radiation emitted by sources in the presence of an attenuating medium. If the attenuation is known everywhere and equals a constant α in a convex neighborhood of the support of f, then the problem reduces to that of inverting the exponential x-ray transform P/sub α/. The exponential x-ray transform P/sub μ/ with the attenuation μ variable, is of interest mathematically. For the exponential x-ray transform in two dimensions, it is shown that for a large class of approximate δ functions E, convolution kernels K exist for use in the convolution backprojection algorithm. For the case where the attenuation is constant, exact formulas are derived for calculating the convolution kernels from radial point spread functions. From these an exact inversion formula for the constantly attenuated transform is obtained

  10. X-ray of osteopathies

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1980-01-01

    Osteoporosis, osteomalcia, fibro-osteoclasia and osteosclerosis are essential reactions to pathologicometabolic processes of the bone. The X-ray film shows precisely which changes have taken place in the bone structure, thus supplying the means for an analysis based on anatomic pathology. These phenomena are discussed in detail, special attention being paid to structural modifications. Attention is also focused on the problems connected with X-ray technology. The value of direct and indirect magnification of the skeleton of the hand for the identification and classification of esteopathies is explained. Phenomena observed in X-ray films, such as enosteal erosion, intracortical longitudinal stripes or tunnelisation, as well as subperiostal absorption, can be of pathognomonic importance for certain osteopathies. (orig.) [de

  11. Imaging X-ray astronomy

    International Nuclear Information System (INIS)

    Elvis, M.

    1990-01-01

    The launch of the High Energy Astrophysical Observatory, more appealingly called the Einstein Observatory, marked one of the most revolutionary steps taken in astrophysics this century. Its greater sensitivity compared with earlier satellites and its ability to make high spacial and spectral resolution observations transformed X-ray astronomy. This book is based on a Symposium held in Cambridge, Massachusetts, to celebrate a decade of Einstein Observatory's achievements. It discusses the contributions that this satellite has made to each area of modern astrophysics and the diversity of the ongoing work based on Einstein data. There is a guide to each of the main data bases now coming on-line to increase the availability and to preserve this valuable archive for the future. A review of NASA's next big X-ray mission, AXAF, and a visionary program for novel X-ray astronomy satellites by Riccardo Giacconi conclude this wide-ranging volume. (author)

  12. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  13. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  14. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  15. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    OpenAIRE

    Engle, Scott G.; Guinan, Edward F.

    2012-01-01

    To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, {\\delta} Cep and {\\beta} Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known ...

  16. Overutilization of x-rays

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1979-01-01

    In this article on the overutilization of x-rays the author defines the term overutilization as excessive irradiation per unit of diagnostic information, therapeutic impact, or health outcome. Three main factors are described which lead to overutilization of x-rays: excessive radiation per film; excessive films per examination; and excessive examinations per patient. Topics discussed which influence the excessive examinations per patient are: the physician's lack of knowledge; undue dependence; lack of screening by radiologists; the physician's need for action and certainty; patient demand; reimbursement policies; institutional requirements; preventive medicine; defensive medicine; and the practice of radiology by nonradiologists

  17. Multichannel X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Khabakhpashev, A

    1980-10-01

    A typical design is discussed of multiwire proportional counters and their characteristic feature is explained, ie., the possibility of showing one or two coordinates of the X-ray quantum absorption site. The advantages of such instruments are listed, such as increased sensitivity of determination, the possibility of recording radiations of a different intensity, the possibility of on-line data processing and of the digital display of results. The fields of application include X-ray structural analysis in solid state physics, crystallography, molecular biology, astronomy, materials testing, and medicine.

  18. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  19. Portable X-Ray Device

    Science.gov (United States)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  20. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  1. X-ray data processing.

    Science.gov (United States)

    Powell, Harold R

    2017-10-31

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most commonly used software in the field. © 2017 The Author(s).

  2. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    (and two computing hurdles that result from the corresponding increase in data volume) for the detector community to overcome in order to realize the full potential of BES neutron and X-ray facilities. Resolving these detector impediments will improve scientific productivity both by enabling new types of experiments, which will expand the scientific breadth at the X-ray and neutron facilities, and by potentially reducing the beam time required for a given experiment. These research priorities are summarized in the table below. Note that multiple, simultaneous detector improvements are often required to take full advantage of brighter sources. High-efficiency hard X-ray sensors: The fraction of incident particles that are actually detected defines detector efficiency. Silicon, the most common direct-detection X-ray sensor material, is (for typical sensor thicknesses) 100% efficient at 8 keV, 25%efficient at 20 keV, and only 3% efficient at 50 keV. Other materials are needed for hard X-rays. Replacement for 3He for neutron detectors: 3He has long been the neutron detection medium of choice because of its high cross section over a wide neutron energy range for the reaction 3He + n —> 3H + 1H + 0.764 MeV. 3He stockpiles are rapidly dwindling, and what is available can be had only at prohibitively high prices. Doped scintillators hold promise as ways to capture neutrons and convert them into light, although work is needed on brighter, more efficient scintillator solutions. Neutron detectors also require advances in speed and resolution. Fast-framing X-ray detectors: Today’s brighter X-ray sources make time-resolved studies possible. For example, hybrid X-ray pixel detectors, initially developed for particle physics, are becoming fairly mature X-ray detectors, with considerable development in Europe. To truly enable time-resolved studies, higher frame rates and dynamic range are required, and smaller pixel sizes are desirable. High-speed spectroscopic X-ray detectors

  3. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  4. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  5. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...

  6. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Cervical Spine KidsHealth / For Parents / X-Ray ... MRI): Lumbar Spine Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  7. X-Ray Exam: Neck (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Neck KidsHealth / For Parents / X-Ray Exam: ... Neck Enlarged Adenoids Croup Sinusitis Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  8. Shining X-rays on catalysts at work

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk

    2009-01-01

    excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS...... are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution....

  9. Novel spectroscopic techniques with using soft x-ray

    International Nuclear Information System (INIS)

    Gejo, Tatsuo

    2010-01-01

    Recent progress of experimental techniques related to synchrotron radiation makes possible of detail investigation of molecular dynamics after irradiation of soft X-ray. We introduce several novel spectroscopic techniques with using soft X-ray: Symmetry-resolved zero kinetic energy electron spectroscopy, symmetry-resolved metastable photofragment spectroscopy, soft X-ray emission spectroscopy, time-resolved fluorescence spectroscopy, and time-resolved-fluorescence mass-selected-ion coincidence spectroscopy. We also show new techniques performed by other groups at BL27SU in SPring-8. (author)

  10. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  11. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  12. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  13. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  14. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  16. X-ray Sensitive Material

    Science.gov (United States)

    2015-12-01

    TM 8772 5 Literature reports on BiI3/nylon composites used X-ray sources with a Mo target (Reference 18) or magnesium target (Reference 19). However...1981. Pp. D-155 to D-160. 22. G. Pretzsch, B. Dorschel, and T. Schonmuth. IEEE Transactions on Electrical Insulation, Vol. EI -21, No.3, June 1986

  17. X-ray system analysis

    International Nuclear Information System (INIS)

    Shapiro, J.S.

    1985-01-01

    An X-ray system tester for measuring anode voltage, cathode voltage, anode current, filament current and line voltage in an X-ray system has a selector which couples one of these analog signals or one of a plurality of processing control signals entered by an operator from a control panel to a digitizing section selectively in accordance with control signals provided to the selector by a computing section. The digitizing section converts the selected signal into a train of pulses having a frequency proportional to the value of the selected signal. These pulses are counted, the counts being used by the computing section to determine the value of the selected signal. This computed value is stored in a computing memory section of the computing section. The computing section is adapted to store a plurality of the sets of signals produced during a corresponding sequence of operational intervals of the X-ray system and determines a measure of the deviation of any selected one of the stored electrical signals over the sequence of operating intervals. Each signal produced during the sequential operational intervals can be recalled to aid analysis of the operation of the X-ray system. (author)

  18. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  19. X-ray simulation development

    International Nuclear Information System (INIS)

    Posey, L.D.; Tollefsrud, P.B.; Woodall, H.W.; McDaniel, D.H.; Allred, R.E.

    1975-01-01

    Design modifications are discussed for an electron beam accelerator used as a Bremsstrahlung x-ray source. The primary goal of the program, to obtain a reliable 5 cal/gm exposure capability, can be accomplished with beam compression by an external magnetic guide field. Initial operating characteristics and performance improvements are presented

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit of an accurate ...