WorldWideScience

Sample records for prenatal auditory stimulation

  1. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention.

    Science.gov (United States)

    Jacobsen, Leslie K; Slotkin, Theodore A; Mencl, W Einar; Frost, Stephen J; Pugh, Kenneth R

    2007-12-01

    Prenatal exposure to active maternal tobacco smoking elevates risk of cognitive and auditory processing deficits, and of smoking in offspring. Recent preclinical work has demonstrated a sex-specific pattern of reduction in cortical cholinergic markers following prenatal, adolescent, or combined prenatal and adolescent exposure to nicotine, the primary psychoactive component of tobacco smoke. Given the importance of cortical cholinergic neurotransmission to attentional function, we examined auditory and visual selective and divided attention in 181 male and female adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. Groups did not differ in age, educational attainment, symptoms of inattention, or years of parent education. A subset of 63 subjects also underwent functional magnetic resonance imaging while performing an auditory and visual selective and divided attention task. Among females, exposure to tobacco smoke during prenatal or adolescent development was associated with reductions in auditory and visual attention performance accuracy that were greatest in female smokers with prenatal exposure (combined exposure). Among males, combined exposure was associated with marked deficits in auditory attention, suggesting greater vulnerability of neurocircuitry supporting auditory attention to insult stemming from developmental exposure to tobacco smoke in males. Activation of brain regions that support auditory attention was greater in adolescents with prenatal or adolescent exposure to tobacco smoke relative to adolescents with neither prenatal nor adolescent exposure to tobacco smoke. These findings extend earlier preclinical work and suggest that, in humans, prenatal and adolescent exposure to nicotine exerts gender-specific deleterious effects on auditory and visual attention, with concomitant alterations in the efficiency of neurocircuitry supporting auditory attention.

  2. Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus.

    Science.gov (United States)

    Chaudhury, Sraboni; Nag, Tapas Chandra; Wadhwa, Shashi

    2006-12-01

    Prenatal auditory enrichment by species-specific sounds and sitar music enhances the expression of immediate early genes, synaptic proteins and calcium binding proteins (CaBPs) as well as modifies the structural components of the brainstem auditory nuclei and auditory imprinting area in chicks. There is also facilitation of postnatal auditory preference of the chicks to maternal calls following both types of sound stimulation indicating prenatal perceptual learning. To examine whether the sound enrichment protocol also affects the areas related to learning and memory, we assessed morphological changes in the hippocampus at post-hatch day 1 of control and prenatally sound-stimulated chicks. Additionally, the proportions of neurons containing calbindin D-28K and parvalbumin immunoreactivity as well as their protein levels were determined. Fertilized eggs of domestic chick were incubated under normal conditions of temperature, humidity, forced draft of air as well as light and dark (12:12h) photoperiods. They were exposed to patterned sounds of species-specific and sitar music at 65 dB for 15 min per hour over a day/night cycle from day 10 of incubation till hatching. The hippocampal volume, neuronal nuclear size and total number of neurons showed a significant increase in the music-stimulated group as compared to the species-specific sound-stimulated and control groups. However, in both the auditory-stimulated groups the protein levels of calbindin and parvalbumin as well as the percentage of the immunopositive neurons were increased. The enhanced proportion of CaBPs in the sound-enriched groups suggests greater Ca(2+) influx, which may influence long-term potentiation and short-term memory.

  3. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  4. Role of sound stimulation in reprogramming brain connectivity.

    Science.gov (United States)

    Chaudhury, Sraboni; Nag, Tapas C; Jain, Suman; Wadhwa, Shashi

    2013-09-01

    Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.

  5. Prenatal IV Cocaine: Alterations in Auditory Information Processing

    Directory of Open Access Journals (Sweden)

    Charles F. Mactutus

    2011-06-01

    Full Text Available One clue regarding the basis of cocaine-induced deficits in attentional processing is provided by the clinical findings of changes in the infants’ startle response; observations buttressed by neurophysiological evidence of alterations in brainstem transmission time. Using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, the present study examined the effects of prenatal cocaine on auditory information processing via tests of the acoustic startle response (ASR, habituation, and prepulse inhibition (PPI in the offspring. Nulliparous Long-Evans female rats, implanted with an IV access port prior to breeding, were administered saline, 0.5, 1.0, or 3.0 mg/kg/injection of cocaine HCL (COC from gestation day (GD8-20 (1x/day-GD8-14, 2x/day-GD15-20. COC had no significant effects on maternal/litter parameters or growth of the offspring. At 18-20 days of age, one male and one female, randomly selected from each litter displayed an increased ASR (>30% for males at 1.0 mg/kg and >30% for females at 3.0 mg/kg. When reassessed in adulthood (D90-100, a linear dose-response increase was noted on response amplitude. At both test ages, within-session habituation was retarded by prenatal cocaine treatment. Testing the females in diestrus vs. estrus did not alter the results. Prenatal cocaine altered the PPI response function across interstimulus interval (ISI and induced significant sex-dependent changes in response latency. Idazoxan, an alpha2-adrenergic receptor antagonist, significantly enhanced the ASR, but less enhancement was noted with increasing doses of prenatal cocaine. Thus, in utero exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, causes persistent, if not permanent, alterations in auditory information processing, and suggests dysfunction of the central noradrenergic circuitry modulating, if not mediating, these responses.

  6. Auditory beat stimulation and its effects on cognition and mood states

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-05-01

    Full Text Available Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood-states. Here we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation. We have summarized relevant studies investigating the neurophysiological changes related to auditory beat stimulation and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural beat stimulation, we then discuss the role of monaural and binaural beat frequencies in cognition and mood-states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of auditory beat stimulation.

  7. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  8. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  9. Auditory beat stimulation and its effects on cognition and mood States.

    Science.gov (United States)

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS.

  10. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  11. Amount of prenatal visual stimulation alters incubation times and postnatal preferences in leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Sleigh, M J; Birchard, G F

    2001-09-01

    The authors exposed gecko (Eublepharis macularius) embryos to patterned visual stimulation beginning at either 1 week or 2 weeks prior to hatching. Embryos exposed to the substantially augmented amount of prenatal visual stimulation hatched significantly earlier than the embryos either exposed to the moderately augmented prenatal visual stimulation or not exposed to any prenatal visual stimulation (p geckos in all conditions failed to exhibit a preference for either stimulus.

  12. Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness.

    Directory of Open Access Journals (Sweden)

    Behrang Keshavarz

    Full Text Available Auditory cues can create the illusion of self-motion (vection in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity, vection (latency, strength, duration, and postural steadiness (center of pressure were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as "auditorily induced motion sickness".

  13. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase to neutral......Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  14. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  15. Functional MR imaging of cerebral auditory cortex with linguistic and non-linguistic stimulation: preliminary study

    International Nuclear Information System (INIS)

    Kang, Su Jin; Kim, Jae Hyoung; Shin, Tae Min

    1999-01-01

    To obtain preliminary data for understanding the central auditory neural pathway by means of functional MR imaging (fMRI) of the cerebral auditory cortex during linguistic and non-linguistic auditory stimulation. In three right-handed volunteers we conducted fMRI of auditory cortex stimulation at 1.5 T using a conventional gradient-echo technique (TR/TE/flip angle: 80/60/40 deg). Using a pulsed tone of 1000 Hz and speech as non-linguistic and linguistic auditory stimuli, respectively, images-including those of the superior temporal gyrus of both hemispheres-were obtained in sagittal plases. Both stimuli were separately delivered binaurally or monoaurally through a plastic earphone. Images were activated by processing with homemade software. In order to analyze patterns of auditory cortex activation according to type of stimulus and which side of the ear was stimulated, the number and extent of activated pixels were compared between both temporal lobes. Biaural stimulation led to bilateral activation of the superior temporal gyrus, while monoaural stimulation led to more activation in the contralateral temporal lobe than in the ipsilateral. A trend toward slight activation of the left (dominant) temporal lobe in ipsilateral stimulation, particularly with a linguistic stimulus, was observed. During both biaural and monoaural stimulation, a linguistic stimulus produced more widespread activation than did a non-linguistic one. The superior temporal gyri of both temporal lobes are associated with acoustic-phonetic analysis, and the left (dominant) superior temporal gyrus is likely to play a dominant role in this processing. For better understanding of physiological and pathological central auditory pathways, further investigation is needed

  16. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  17. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  18. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.

    Directory of Open Access Journals (Sweden)

    Michael J Hove

    Full Text Available Parkinson's disease (PD and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times--rather than the 1/f structure observed in healthy gait--and this randomness of stride times (low fractal scaling predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a no auditory stimulation, b fixed-tempo RAS, and c interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (reemergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

  19. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Subthalamic deep brain stimulation improves auditory sensory gating deficit in Parkinson's disease.

    Science.gov (United States)

    Gulberti, A; Hamel, W; Buhmann, C; Boelmans, K; Zittel, S; Gerloff, C; Westphal, M; Engel, A K; Schneider, T R; Moll, C K E

    2015-03-01

    While motor effects of dopaminergic medication and subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients are well explored, their effects on sensory processing are less well understood. Here, we studied the impact of levodopa and STN-DBS on auditory processing. Rhythmic auditory stimulation (RAS) was presented at frequencies between 1 and 6Hz in a passive listening paradigm. High-density EEG-recordings were obtained before (levodopa ON/OFF) and 5months following STN-surgery (ON/OFF STN-DBS). We compared auditory evoked potentials (AEPs) elicited by RAS in 12 PD patients to those in age-matched controls. Tempo-dependent amplitude suppression of the auditory P1/N1-complex was used as an indicator of auditory gating. Parkinsonian patients showed significantly larger AEP-amplitudes (P1, N1) and longer AEP-latencies (N1) compared to controls. Neither interruption of dopaminergic medication nor of STN-DBS had an immediate effect on these AEPs. However, chronic STN-DBS had a significant effect on abnormal auditory gating characteristics of parkinsonian patients and restored a physiological P1/N1-amplitude attenuation profile in response to RAS with increasing stimulus rates. This differential treatment effect suggests a divergent mode of action of levodopa and STN-DBS on auditory processing. STN-DBS may improve early attentive filtering processes of redundant auditory stimuli, possibly at the level of the frontal cortex. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  2. Prenatal Cigarette Exposure and Infant Learning Stimulation as Predictors of Cognitive Control in Childhood

    Science.gov (United States)

    Mezzacappa, Enrico; Buckner, John C.; Earls, Felton

    2011-01-01

    Prenatal exposures to neurotoxins and postnatal parenting practices have been shown to independently predict variations in the cognitive development and emotional-behavioral well-being of infants and children. We examined the independent contributions of prenatal cigarette exposure and infant learning stimulation, as well as their…

  3. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks.

    Science.gov (United States)

    Sanyal, Tania; Kumar, Vivek; Nag, Tapas Chandra; Jain, Suman; Sreenivas, Vishnu; Wadhwa, Shashi

    2013-01-01

    Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.

  4. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks.

    Directory of Open Access Journals (Sweden)

    Tania Sanyal

    Full Text Available Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.

  5. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.

    Science.gov (United States)

    Marks, Kendra L; Martel, David T; Wu, Calvin; Basura, Gregory J; Roberts, Larry E; Schvartz-Leyzac, Kara C; Shore, Susan E

    2018-01-03

    The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P rhythmic auditory stimulation (P rhythmic auditory stimulation (P rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  7. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  8. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation

    Science.gov (United States)

    Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr

    2017-12-01

    Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the

  9. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  10. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, PtDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable...

  12. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  13. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.

    Science.gov (United States)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-10-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads.

  14. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  15. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    International Nuclear Information System (INIS)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-01-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  16. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  17. The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Marco Hirnstein

    Full Text Available It is well known that the planum temporale (PT area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., "ba" and "da" are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans had been stimulated with repetitive transcranial magnetic stimulation (rTMS, which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control. After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven, auditory attention.

  18. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner

    2017-05-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.

  19. The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception - A Randomized Pilot Study.

    Science.gov (United States)

    Henin, Simon; Fein, Dovid; Smouha, Eric; Parra, Lucas C

    2016-01-01

    Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.

  20. Further evidence for a fluid pathway during bone conduction auditory stimulation.

    Science.gov (United States)

    Sohmer, Haim; Freeman, Sharon

    2004-07-01

    This study was designed to evaluate the suggestion that during bone vibrator stimulation on skull bone (bone conduction auditory stimulation), a major connection between the site of the bone vibrator and the inner ear is a fluid pathway. A series of experiments were conducted on pairs of animals (rats or guinea pigs). The cranial cavities of each pair of animals were coupled by means of a saline filled plastic tube sealed into a craniotomy in the skull of each animal. In response to bone conduction click stimulation to the skull bone of animal I, auditory nerve-brainstem evoked responses could be recorded in animal II. Various procedures showed that these responses were initiated in animal II in response to audio-frequency sound pressures generated within the cranial cavity of animal I by the bone conduction stimulation and transferred to the cranial cavity of animal II through the fluid in the plastic tube: they were not responses to air conducted sounds generated by the bone vibrator, were not induced in animal II by vibrations conveyed to it by the plastic tube and were not electrically conducted activity from animal I. Exposing the fluid in the tube to air was not accompanied by any change in threshold. These experiments confirm that during bone conduction stimulation on the skull, audio-frequency sound pressures (alternating condensations and rarefactions) can be conveyed by a fluid pathway to the cochlea and stimulate it.

  1. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  2. Effects of emotionally charged auditory stimulation on gait performance in the elderly: a preliminary study.

    Science.gov (United States)

    Rizzo, John-Ross; Raghavan, Preeti; McCrery, J R; Oh-Park, Mooyeon; Verghese, Joe

    2015-04-01

    To evaluate the effect of a novel divided attention task-walking under auditory constraints-on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Validation cohort. General community. Ambulatory older adults without dementia (N=104). Not applicable. In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; Pactivities of daily living accounted for these differences. Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait performance in older individuals with minimal cognitive impairment compared with those without minimal cognitive impairment. A divided attention task using emotionally charged auditory stimuli might be able to elicit compensatory improvement in gait performance in cognitively intact older individuals, but lead to decompensation in those with minimal cognitive impairment. Further investigation is needed to compare gait performance under this task to gait on other dual-task paradigms and to separately examine the

  3. Effects of auditory stimulation with music of different intensities on heart period

    Directory of Open Access Journals (Sweden)

    Joice A.T. do Amaral

    2016-01-01

    Full Text Available Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV. There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24 healthy women between 18 and 25 years of age. We analyzed HRV in the time [standard deviation of normal-to-normal RR intervals (SDNN, percentage of adjacent RR intervals with a difference of duration >50 ms (pNN50, and root-mean square of differences between adjacent normal RR intervals in a time interval (RMSSD] and frequency [low frequency (LF, high frequency (HF, and LF/HF ratio] domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to baroque or heavy-metal music for 5 minutes through an earphone. The volunteers were exposed to three equivalent sound levels (60–70, 70–80, and 80–90 dB. After the first baroque or heavy-metal music, they remained at rest for 5 minutes and then they were exposed to the other music. The sequence of songs was randomized for each individual. Heavy-metal musical auditory stimulation at 80–90 dB reduced the SDNN index compared with control (44.39 ± 14.40 ms vs. 34.88 ± 8.69 ms, and stimulation at 60–70 dB decreased the LF (ms2 index compared with control (668.83 ± 648.74 ms2 vs. 392.5 ± 179.94 ms2. Baroque music at 60–70 dB reduced the LF (ms2 index (587.75 ± 318.44 ms2 vs. 376.21 ± 178.85 ms2. In conclusion, heavy-metal and baroque musical auditory stimulation at lower intensities acutely reduced global modulation of the heart and only heavy-metal music reduced HRV at higher intensities.

  4. Symbolic Analysis of Heart Rate Variability During Exposure to Musical Auditory Stimulation.

    Science.gov (United States)

    Vanderlei, Franciele Marques; de Abreu, Luiz Carlos; Garner, David Matthew; Valenti, Vitor Engrácia

    2016-01-01

    In recent years, the application of nonlinear methods for analysis of heart rate variability (HRV) has increased. However, studies on the influence of music on cardiac autonomic modulation in those circumstances are rare. The research team aimed to evaluate the acute effects on HRV of selected auditory stimulation by 2 musical styles, measuring the results using nonlinear methods of analysis: Shannon entropy, symbolic analysis, and correlation-dimension analysis. Prospective control study in which the volunteers were exposed to music and variables were compared between control (no auditory stimulation) and during exposure to music. All procedures were performed in a sound-proofed room at the Faculty of Science and Technology at São Paulo State University (UNESP), São Paulo, Brazil. Participants were 22 healthy female students, aged between 18 and 30 y. Prior to the actual intervention, the participants remained at rest for 20 min, and then they were exposed to one of the selected types of music, either classical baroque (64-84 dB) or heavy-metal (75-84 dB). Each musical session lasted a total of 5 min and 15 s. At a point occurring up to 1 wk after that day, the participants listened to the second type of music. The 2 types of music were delivered in a random sequence that depended on the group to which the participant was assigned. The study analyzed the following HRV indices through Shannon entropy; symbolic analysis-0V%, 1V%, 2LV%, and 2ULV%; and correlation-dimension analysis. During exposure to auditory stimulation by heavy-metal or classical baroque music, the study established no statistically significant variations regarding the indices for the Shannon entropy; the symbolic analysis-0V%, 1V%, and 2ULV%; and the correlation-dimension analysis. However, during heavy-metal music, the 2LV% index in the symbolic analysis was reduced compared with the controls. Auditory stimulation with the heavy-metal music reduced the parasympathetic modulation of HRV

  5. Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target

    Science.gov (United States)

    Schmidt, Christian; Wagner, Sven; Burger, Martin; van Rienen, Ursula; Wolters, Carsten H.

    2015-08-01

    Objective. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modify neural excitability. Using multi-array tDCS, we investigate the influence of inter-individually varying head tissue conductivity profiles on optimal electrode configurations for an auditory cortex stimulation. Approach. In order to quantify the uncertainty of the optimal electrode configurations, multi-variate generalized polynomial chaos expansions of the model solutions are used based on uncertain conductivity profiles of the compartments skin, skull, gray matter, and white matter. Stochastic measures, probability density functions, and sensitivity of the quantities of interest are investigated for each electrode and the current density at the target with the resulting stimulation protocols visualized on the head surface. Main results. We demonstrate that the optimized stimulation protocols are only comprised of a few active electrodes, with tolerable deviations in the stimulation amplitude of the anode. However, large deviations in the order of the uncertainty in the conductivity profiles could be noted in the stimulation protocol of the compensating cathodes. Regarding these main stimulation electrodes, the stimulation protocol was most sensitive to uncertainty in skull conductivity. Finally, the probability that the current density amplitude in the auditory cortex target region is supra-threshold was below 50%. Significance. The results suggest that an uncertain conductivity profile in computational models of tDCS can have a substantial influence on the prediction of optimal stimulation protocols for stimulation of the auditory cortex. The investigations carried out in this study present a possibility to predict the probability of providing a therapeutic effect with an optimized electrode system for future auditory clinical and experimental procedures of tDCS applications.

  6. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  7. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  9. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  10. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.

    Science.gov (United States)

    Abikoff, H; Courtney, M E; Szeibel, P J; Koplewicz, H S

    1996-05-01

    This study evaluated the impact of extra-task stimulation on the academic task performance of children with attention-deficit/hyperactivity disorder (ADHD). Twenty boys with ADHD and 20 nondisabled boys worked on an arithmetic task during high stimulation (music), low stimulation (speech), and no stimulation (silence). The music "distractors" were individualized for each child, and the arithmetic problems were at each child's ability level. A significant Group x Condition interaction was found for number of correct answers. Specifically, the nondisabled youngsters performed similarly under all three auditory conditions. In contrast, the children with ADHD did significantly better under the music condition than speech or silence conditions. However, a significant Group x Order interaction indicated that arithmetic performance was enhanced only for those children with ADHD who received music as the first condition. The facilitative effects of salient auditory stimulation on the arithmetic performance of the children with ADHD provide some support for the underarousal/optimal stimulation theory of ADHD.

  11. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Milana Drumond Ramos Santana

    2017-01-01

    Full Text Available We aimed to evaluate the acute effect of musical auditory stimulation on heart rate autonomic regulation during endodontic treatment. The study included 50 subjects from either gender between 18 and 40 years old, diagnosed with irreversible pulpitis or pulp necrosis of the upper front teeth and endodontic treatment indication. HRV was recorded 10 minutes before (T1, during (T2, and immediately (T3 and T4 after endodontic treatment. The volunteers were randomly divided into two equal groups: exposed to music (during T2, T3, and T4 or not. We found no difference regarding salivary cortisol and anxiety score. In the group with musical stimulation heart rate decreased in T3 compared to T1 and mean RR interval increased in T2 and T3 compared to T1. SDNN and TINN indices decreased in T3 compared to T4, the RMSSD and SD1 increased in T4 compared to T1, the SD2 increased compared to T3, and LF (low frequency band increased in T4 compared to T1 and T3. In the control group, only RMSSD and SD1 increased in T3 compared to T1. Musical auditory stimulation enhanced heart rate autonomic modulation during endodontic treatment.

  12. Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants

    International Nuclear Information System (INIS)

    Navaii, Mehdi Lotfi; Sadhedi, Hamed; Jalali, Mohsen

    2013-01-01

    Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations.

  13. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    Science.gov (United States)

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  14. Development of auditory event-related potentials in infants prenatally exposed to methadone.

    Science.gov (United States)

    Paul, Jonathan A; Logan, Beth A; Krishnan, Ramesh; Heller, Nicole A; Morrison, Deborah G; Pritham, Ursula A; Tisher, Paul W; Troese, Marcia; Brown, Mark S; Hayes, Marie J

    2014-07-01

    Developmental features of the P2 auditory ERP in a change detection paradigm were examined in infants prenatally exposed to methadone. Opiate dependent pregnant women maintained on methadone replacement therapy were recruited during pregnancy (N = 60). Current and historical alcohol and substance use, SES, and psychiatric status were assessed with a maternal interview during the third trimester. Medical records were used to collect information regarding maternal medications, monthly urinalysis, and breathalyzer to confirm comorbid drug and alcohol exposures. Between birth and 4 months infant ERP change detection performance was evaluated on one occasion with the oddball paradigm (.2 probability oddball) using pure-tone stimuli (standard = 1 kHz and oddball = 2 kHz frequency) at midline electrode sites, Fz, Cz, Pz. Infant groups were examined in the following developmental windows: 4-15, 16-32, or 33-120 days PNA. Older groups showed increased P2 amplitude at Fz and effective change detection performance at P2 not seen in the newborn group. Developmental maturation of amplitude and stimulus discrimination for P2 has been reported in developing infants at all of the ages tested and data reported here in the older infants are consistent with typical development. However, it has been previously reported that the P2 amplitude difference is detectable in neonates; therefore, absence of a difference in P2 amplitude between stimuli in the 4-15 days group may represent impaired ERP performance by neonatal abstinence syndrome or prenatal methadone exposure. © 2013 Wiley Periodicals, Inc.

  15. Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities.

    Science.gov (United States)

    Amaral, Joice A T; Nogueira, Marcela L; Roque, Adriano L; Guida, Heraldo L; De Abreu, Luiz Carlos; Raimundo, Rodrigo Daminello; Vanderlei, Luiz Carlos M; Ribeiro, Vivian L; Ferreira, Celso; Valenti, Vitor E

    2014-03-01

    The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulation. The study was performed in 16 healthy men aged 18-25 years. All procedures were performed in the same soundproof room. We analyzed heart rate variability (HRV) in time (standard deviation of normal-to-normal R-R intervals [SDNN], root-mean square of differences [RMSSD] and percentage of adjacent NN intervals with a difference of duration greater than 50 ms [pNN50]) and frequency (low frequency [LF], high frequency [HF] and LF/HF ratio) domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to one of the two musical styles (classical baroque or heavy metal music) for five minutes through an earphone, followed by a five-minute period of rest, and then they were exposed to the other style for another five minutes. The subjects were exposed to three equivalent sound levels (60-70dB, 70-80dB and 80-90dB). The sequence of songs was randomized for each individual. Auditory stimulation with heavy metal music did not influence HRV indices in the time and frequency domains in the three equivalent sound level ranges. The same was observed with classical baroque musical auditory stimulation with the three equivalent sound level ranges. Musical auditory stimulation of different intensities did not influence cardiac autonomic regulation in men.

  16. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Theta Burst Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations : Negative Findings From a Double-Blind-Randomized Trial

    NARCIS (Netherlands)

    Koops, Sanne; van Dellen, Edwin; Schutte, Maya J L; Nieuwdorp, Wendy; Neggers, Sebastiaan F W; Sommer, Iris E C

    BACKGROUND: Auditory verbal hallucinations (AVH) in schizophrenia are resistant to antipsychotic medication in approximately 25% of patients. Treatment with repetitive transcranial magnetic stimulation (rTMS) for refractory AVH has shown varying results. A stimulation protocol using continuous theta

  18. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study.

    Science.gov (United States)

    Rosenberg, Oded; Gersner, Roman; Klein, Limor Dinur; Kotler, Moshe; Zangen, Abraham; Dannon, Pinhas

    2012-05-06

    About 25% of schizophrenia patients with auditory hallucinations are refractory to pharmacotherapy and electroconvulsive therapy. We conducted a deep transcranial magnetic stimulation (TMS) pilot study in order to evaluate the potential clinical benefit of repeated left temporoparietal cortex stimulation in these patients. The results were encouraging, but a sham-controlled study was needed to rule out a placebo effect. A total of 18 schizophrenic patients with refractory auditory hallucinations were recruited, from Beer Yaakov MHC and other hospitals outpatient populations. Patients received 10 daily treatment sessions with low-frequency (1 Hz for 10 min) deep TMS applied over the left temporoparietal cortex, using the H1 coil at the intensity of 110% of the motor threshold. Procedure was either real or sham according to patient randomization. Patients were evaluated via the Auditory Hallucinations Rating Scale, Scale for the Assessment of Positive Symptoms-Negative Symptoms, Clinical Global Impressions, and Quality of Life Questionnaire. In all, 10 patients completed the treatment (10 TMS sessions). Auditory hallucination scores of both groups improved; however, there was no statistical difference in any of the scales between the active and the sham treated groups. Low-frequency deep TMS to the left temporoparietal cortex using the protocol mentioned above has no statistically significant effect on auditory hallucinations or the other clinical scales measured in schizophrenic patients. Clinicaltrials.gov identifier: NCT00564096.

  19. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    Science.gov (United States)

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  20. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver.

    Science.gov (United States)

    de Castro, Bianca C R; Guida, Heraldo L; Roque, Adriano L; de Abreu, Luiz Carlos; Ferreira, Celso; Marcomini, Renata S; Monteiro, Carlos B M; Adami, Fernando; Ribeiro, Viviane F; Fonseca, Fernando L A; Santos, Vilma N S; Valenti, Vitor E

    2014-01-01

    It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV) during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM). We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio). HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D) for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  1. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver

    Directory of Open Access Journals (Sweden)

    Bianca C. R. de Castro

    2014-01-01

    Full Text Available It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM. We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio. HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman′s followed by the Dunn′s posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  2. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  3. Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats

    Science.gov (United States)

    Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.

    2007-01-01

    The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…

  4. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study

    Directory of Open Access Journals (Sweden)

    Rosenberg Oded

    2012-05-01

    Full Text Available Abstract Background About 25% of schizophrenia patients with auditory hallucinations are refractory to pharmacotherapy and electroconvulsive therapy. We conducted a deep transcranial magnetic stimulation (TMS pilot study in order to evaluate the potential clinical benefit of repeated left temporoparietal cortex stimulation in these patients. The results were encouraging, but a sham-controlled study was needed to rule out a placebo effect. Methods A total of 18 schizophrenic patients with refractory auditory hallucinations were recruited, from Beer Yaakov MHC and other hospitals outpatient populations. Patients received 10 daily treatment sessions with low-frequency (1 Hz for 10 min deep TMS applied over the left temporoparietal cortex, using the H1 coil at the intensity of 110% of the motor threshold. Procedure was either real or sham according to patient randomization. Patients were evaluated via the Auditory Hallucinations Rating Scale, Scale for the Assessment of Positive Symptoms-Negative Symptoms, Clinical Global Impressions, and Quality of Life Questionnaire. Results In all, 10 patients completed the treatment (10 TMS sessions. Auditory hallucination scores of both groups improved; however, there was no statistical difference in any of the scales between the active and the sham treated groups. Conclusions Low-frequency deep TMS to the left temporoparietal cortex using the protocol mentioned above has no statistically significant effect on auditory hallucinations or the other clinical scales measured in schizophrenic patients. Trial Registration Clinicaltrials.gov identifier: NCT00564096.

  5. Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure.

    Science.gov (United States)

    Jacobsen, Leslie K; Picciotto, Marina R; Heath, Christopher J; Frost, Stephen J; Tsou, Kristen A; Dwan, Rita A; Jackowski, Marcel P; Constable, Robert T; Mencl, W Einar

    2007-12-05

    Prenatal exposure to maternal smoking has been linked to cognitive and auditory processing deficits in offspring. Preclinical studies have demonstrated that exposure to nicotine disrupts neurodevelopment during gestation and adolescence, possibly by disrupting the trophic effects of acetylcholine. Given recent clinical and preclinical work suggesting that neurocircuits that support auditory processing may be particularly vulnerable to developmental disruption by nicotine, we examined white matter microstructure in 67 adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. The groups did not differ in age, educational attainment, IQ, years of parent education, or symptoms of inattention. Diffusion tensor anisotropy and anatomical magnetic resonance images were acquired, and auditory attention was assessed, in all subjects. Both prenatal exposure and adolescent exposure to tobacco smoke was associated with increased fractional anisotropy (FA) in anterior cortical white matter. Adolescent smoking was also associated with increased FA of regions of the internal capsule that contain auditory thalamocortical and corticofugal fibers. FA of the posterior limb of the left internal capsule was positively correlated with reaction time during performance of an auditory attention task in smokers but not in nonsmokers. Development of anterior cortical and internal capsule fibers may be particularly vulnerable to disruption in cholinergic signaling induced by nicotine in tobacco smoke. Nicotine-induced disruption of the development of auditory corticofugal fibers may interfere with the ability of these fibers to modulate ascending auditory signals, leading to greater noise and reduced efficiency of neurocircuitry that supports auditory processing.

  6. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    Science.gov (United States)

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization.

    Science.gov (United States)

    Shen, Guannan; Meltzoff, Andrew N; Marshall, Peter J

    2018-01-01

    Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory-tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory-auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

  8. Linking prenatal experience to the emerging musical mind.

    Science.gov (United States)

    Ullal-Gupta, Sangeeta; Vanden Bosch der Nederlanden, Christina M; Tichko, Parker; Lahav, Amir; Hannon, Erin E

    2013-09-03

    The musical brain is built over time through experience with a multitude of sounds in the auditory environment. However, learning the melodies, timbres, and rhythms unique to the music and language of one's culture begins already within the mother's womb during the third trimester of human development. We review evidence that the intrauterine auditory environment plays a key role in shaping later auditory development and musical preferences. We describe evidence that externally and internally generated sounds influence the developing fetus, and argue that such prenatal auditory experience may set the trajectory for the development of the musical mind.

  9. Cardiac autonomic responses induced by mental tasks and the influence of musical auditory stimulation.

    Science.gov (United States)

    Barbosa, Juliana Cristina; Guida, Heraldo L; Fontes, Anne M G; Antonio, Ana M S; de Abreu, Luiz Carlos; Barnabé, Viviani; Marcomini, Renata S; Vanderlei, Luiz Carlos M; da Silva, Meire L; Valenti, Vitor E

    2014-08-01

    We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18-22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  12. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  13. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  14. Probing neural mechanisms underlying auditory stream segregation in humans by transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Deike, Susann; Deliano, Matthias; Brechmann, André

    2016-10-01

    One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations.

    Science.gov (United States)

    Kindler, Jochen; Homan, Philipp; Jann, Kay; Federspiel, Andrea; Flury, Richard; Hauf, Martinus; Strik, Werner; Dierks, Thomas; Hubl, Daniela

    2013-03-15

    Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment. Thirty patients with schizophrenia or schizoaffective disorder were investigated. Fifteen patients received a 10-day TMS treatment to the left temporoparietal cortex, and 15 received the standard treatment. The stimulation location was chosen according to an individually determined language region determined by a functional magnetic resonance imaging language paradigm, which identified the sensorimotor language area, area Spt (sylvian parietotemporal), as the target region. TMS-treated patients showed positive clinical effects, which were indicated by a reduction in AVH scores (p ≤ .001). Cerebral blood flow was significantly decreased in the primary auditory cortex (p ≤ .001), left Broca's area (p ≤ .001), and cingulate gyrus (p ≤ .001). In control subjects, neither positive clinical effects nor cerebral blood flow decreases were detected. The decrease in cerebral blood flow in the primary auditory cortex correlated with the decrease in AVH scores (p ≤ .001). TMS reverses hyperactivity of language regions involved in the emergence of AVH. Area Spt acts as a gateway to the hallucination-generating cerebral network. Successful therapy corresponded to decreased cerebral blood flow in the primary auditory cortex, supporting its crucial role in triggering AVH and contributing to the physical quality of the false perceptions. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  18. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    Goycoolea, Marcos; Mena, Ismael; Neubauer, Sonia

    2004-01-01

    Objectives. 1. To determine which areas of the cerebral cortex are activated stimulating the left ear with pure tones, and what type of stimulation occurs (eg. excitatory or inhibitory) in these different areas. 2. To use this information as an initial step to develop a normal functional data base for future studies. 3. To try to determine if there is a biological substrate to the process of recalling previous auditory perceptions and if possible, suggest a locus for auditory memory. Method. Brain perfusion single photon emission computerized tomography (SPECT) evaluation was conducted: 1-2) Using auditory stimulation with pure tones in 4 volunteers with normal hearing. 3) In a patient with bilateral profound hearing loss who had auditory perception of previous musical experiences; while injected with Tc99m HMPAO while she was having the sensation of hearing a well known melody. Results. Both in the patient with auditory hallucinations and the normal controls -stimulated with pure tones- there was a statistically significant increase in perfusion in Brodmann's area 39, more intense on the right side (right to left p < 0.05). With a lesser intensity there was activation in the adjacent area 40 and there was intense activation also in the executive frontal cortex areas 6, 8, 9, and 10 of Brodmann. There was also activation of area 7 of Brodmann; an audio-visual association area; more marked on the right side in the patient and the normal stimulated controls. In the subcortical structures there was also marked activation in the patient with hallucinations in both lentiform nuclei, thalamus and caudate nuclei also more intense in the right hemisphere, 5, 4.7 and 4.2 S.D. above the mean respectively and 5, 3.3, and 3 S.D. above the normal mean in the left hemisphere respectively. Similar findings were observed in normal controls. Conclusions. After auditory stimulation with pure tones in the left ear of normal female volunteers, there is bilateral activation of area 39

  19. Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study.

    Science.gov (United States)

    Rosenberg, Oded; Roth, Yiftach; Kotler, Moshe; Zangen, Abraham; Dannon, Pinhas

    2011-02-09

    Schizophrenia is a chronic and disabling disease that presents with delusions and hallucinations. Auditory hallucinations are usually expressed as voices speaking to or about the patient. Previous studies have examined the effect of repetitive transcranial magnetic stimulation (TMS) over the temporoparietal cortex on auditory hallucinations in schizophrenic patients. Our aim was to explore the potential effect of deep TMS, using the H coil over the same brain region on auditory hallucinations. Eight schizophrenic patients with refractory auditory hallucinations were recruited, mainly from Beer Ya'akov Mental Health Institution (Tel Aviv university, Israel) ambulatory clinics, as well as from other hospitals outpatient populations. Low-frequency deep TMS was applied for 10 min (600 pulses per session) to the left temporoparietal cortex for either 10 or 20 sessions. Deep TMS was applied using Brainsway's H1 coil apparatus. Patients were evaluated using the Auditory Hallucinations Rating Scale (AHRS) as well as the Scale for the Assessment of Positive Symptoms scores (SAPS), Clinical Global Impressions (CGI) scale, and the Scale for Assessment of Negative Symptoms (SANS). This preliminary study demonstrated a significant improvement in AHRS score (an average reduction of 31.7% ± 32.2%) and to a lesser extent improvement in SAPS results (an average reduction of 16.5% ± 20.3%). In this study, we have demonstrated the potential of deep TMS treatment over the temporoparietal cortex as an add-on treatment for chronic auditory hallucinations in schizophrenic patients. Larger samples in a double-blind sham-controlled design are now being preformed to evaluate the effectiveness of deep TMS treatment for auditory hallucinations. This trial is registered with clinicaltrials.gov (identifier: NCT00564096).

  20. Use of transcranial direct current stimulation for the treatment of auditory hallucinations of schizophrenia – a systematic review

    Directory of Open Access Journals (Sweden)

    Pondé PH

    2017-02-01

    Full Text Available Pedro H Pondé,1 Eduardo P de Sena,2 Joan A Camprodon,3 Arão Nogueira de Araújo,2 Mário F Neto,4 Melany DiBiasi,5 Abrahão Fontes Baptista,6,7 Lidia MVR Moura,8 Camila Cosmo2,3,6,9,10 1Dynamics of Neuromusculoskeletal System Laboratory, Bahiana School of Medicine and Public Health, 2Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil; 3Laboratory for Neuropsychiatry and Neuromodulation and Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 4Scientific Training Center Department, School of Medicine of Bahia, Federal University of Bahia, Salvador, Bahia, Brazil; 5Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; 6Functional Electrostimulation Laboratory, Biomorphology Department, 7Postgraduate Program on Medicine and Human Health, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil; 8Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 9Center for Technological Innovation in Rehabilitation, Federal University of Bahia, 10Bahia State Health Department (SESAB, Salvador, Bahia, Brazil Introduction: Auditory hallucinations are defined as experiences of auditory perceptions in the absence of a provoking external stimulus. They are the most prevalent symptoms of schizophrenia with high capacity for chronicity and refractoriness during the course of disease. The transcranial direct current stimulation (tDCS – a safe, portable, and inexpensive neuromodulation technique – has emerged as a promising treatment for the management of auditory hallucinations. Objective: The aim of this study is to analyze the level of evidence in the literature available for the use of tDCS as a treatment for auditory hallucinations in schizophrenia. Methods: A systematic review was performed

  1. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  2. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  3. Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study

    Directory of Open Access Journals (Sweden)

    Zangen Abraham

    2011-02-01

    Full Text Available Abstract Background Schizophrenia is a chronic and disabling disease that presents with delusions and hallucinations. Auditory hallucinations are usually expressed as voices speaking to or about the patient. Previous studies have examined the effect of repetitive transcranial magnetic stimulation (TMS over the temporoparietal cortex on auditory hallucinations in schizophrenic patients. Our aim was to explore the potential effect of deep TMS, using the H coil over the same brain region on auditory hallucinations. Patients and methods Eight schizophrenic patients with refractory auditory hallucinations were recruited, mainly from Beer Ya'akov Mental Health Institution (Tel Aviv university, Israel ambulatory clinics, as well as from other hospitals outpatient populations. Low-frequency deep TMS was applied for 10 min (600 pulses per session to the left temporoparietal cortex for either 10 or 20 sessions. Deep TMS was applied using Brainsway's H1 coil apparatus. Patients were evaluated using the Auditory Hallucinations Rating Scale (AHRS as well as the Scale for the Assessment of Positive Symptoms scores (SAPS, Clinical Global Impressions (CGI scale, and the Scale for Assessment of Negative Symptoms (SANS. Results This preliminary study demonstrated a significant improvement in AHRS score (an average reduction of 31.7% ± 32.2% and to a lesser extent improvement in SAPS results (an average reduction of 16.5% ± 20.3%. Conclusions In this study, we have demonstrated the potential of deep TMS treatment over the temporoparietal cortex as an add-on treatment for chronic auditory hallucinations in schizophrenic patients. Larger samples in a double-blind sham-controlled design are now being preformed to evaluate the effectiveness of deep TMS treatment for auditory hallucinations. Trial registration This trial is registered with clinicaltrials.gov (identifier: NCT00564096.

  4. Reliability of low-frequency auditory stimulation studies associated with technetium-99m hexamethylpropylene amine oxime single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Le Saco, Y.; Turzo, A.; Guias, B.; Morin, P.P. (Centre Hospitalier Universitaire, 29 - Brest (France). Dept. of Nuclear Medicine); Jezequel, J. (Centre Hospitalier Universitaire, 29 - Brest (France). Dept. of Otorhinolaryngology); Robier, A. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Otorhinolaryngology); Baulieu, J.L. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Nuclear Medicine)

    1993-05-01

    Development of auditory stimulation tests associated with single-photon emission tomography (SPET) shows evidence of variations in perfusion related to the stimuli. Three brain SPET examinations with technetium-99m hexamethylpropylene amine oxime were performed on eight right-handed adults with normal hearing, the first one without stimulation and the other two associated with a 500-Hz/30-dB stimulation of the right ear. Temporal regions of interest covering auditory areas, as well as parietal ones (internal control), were drawn on three successive coronal slices. A cortico-cerebellar index R was calculated, and the variation in activity was defined for each subject using the ratio R[sub poststimulation] - R[sub prestimulation]/R[sub prest]u[sub mulation]. A significant increase in the temporal cortex count occurred in all subjects. This increase was bilateral, except for one subject in whom it was not significant on the right side. This result recurred during the second stimulation study. Overall the response of the left temporal cortex was stronger, although the asymmetry was not significant. The asymmetry repeated itself after each stimulation. The perfursion response is globally reliable in our study. We must ascertainhow sensitive this test is with regard to deaf adults and adults with normal hearing before extending its use to children. (orig.).

  5. Reliability of low-frequency auditory stimulation studies associated with technetium-99m hexamethylpropylene amine oxime single-photon emission tomography

    International Nuclear Information System (INIS)

    Le Saco, Y.; Turzo, A.; Guias, B.; Morin, P.P.; Jezequel, J.; Robier, A.; Baulieu, J.L.

    1993-01-01

    Development of auditory stimulation tests associated with single-photon emission tomography (SPET) shows evidence of variations in perfusion related to the stimuli. Three brain SPET examinations with technetium-99m hexamethylpropylene amine oxime were performed on eight right-handed adults with normal hearing, the first one without stimulation and the other two associated with a 500-Hz/30-dB stimulation of the right ear. Temporal regions of interest covering auditory areas, as well as parietal ones (internal control), were drawn on three successive coronal slices. A cortico-cerebellar index R was calculated, and the variation in activity was defined for each subject using the ratio R poststimulation - R prestimulation /R prest u mulation . A significant increase in the temporal cortex count occurred in all subjects. This increase was bilateral, except for one subject in whom it was not significant on the right side. This result recurred during the second stimulation study. Overall the response of the left temporal cortex was stronger, although the asymmetry was not significant. The asymmetry repeated itself after each stimulation. The perfursion response is globally reliable in our study. We must ascertainhow sensitive this test is with regard to deaf adults and adults with normal hearing before extending its use to children. (orig.)

  6. The effect of auditory stimulation on autobiographical recall in dementia.

    Science.gov (United States)

    Foster, N A; Valentine, E R

    2001-01-01

    Elderly individuals with mild-moderate ("high ability") or moderate ("low ability") dementia, answered autobiographical memory questions drawn from three life eras (remote, medium-remote, and recent), in familiar music, novel music, cafeteria noise or quiet. Recall was significantly better in the high-ability than the low-ability group, in sound than in quiet, and in music than in noise. Recall was significantly related to life era, declining from remote to recent memory. The superiority of recall in music compared with noise was apparent for recall from remote and medium-remote but not recent eras. The results are interpreted as favoring an explanation of the beneficial effect of auditory stimulation, predominantly in terms of enhanced arousal or attention deployment, with a possible subsidiary role for associative facilitation.

  7. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Oral Contraceptives Attenuate Cardiac Autonomic Responses to Musical Auditory Stimulation: Pilot Study.

    Science.gov (United States)

    Milan, Réveni Carmem; Plassa, Bruna Oliveira; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Gomes, Rayana L; Garner, David M; Valenti, Vitor E

    2015-01-01

    The literature presents contradictory results regarding the effects of contraceptives on cardiac autonomic regulation. The research team aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in women who use oral contraceptives. The research team designed a transversal observational pilot study. The setting was the Centro de Estudos do Sistema Nervoso Autônomo (CESNA) in the Departamento de Fonoaudiologia at the Universidade Estadual Paulista (UNESP) in Marília, SP, Brazil. Participants were 22 healthy nonathletic and nonsedentary females, all nonsmokers and aged between 18 and 27 y. Participants were divided into 2 groups: (1) 12 women who were not taking oral contraceptives, the control group; and (2) 10 women who were taking oral contraceptives, the oral contraceptive group. In the first stage, a rest control, the women sat with their earphones turned off for 20 min. After that period, the participants were exposed to 20 min of classical baroque music (ie, "Canon in D Major," Johann Pachelbel), at 63-84 dB. Measurements of the equivalent sound levels were conducted in a soundproof room, and the intervals between consecutive heartbeats (R-R intervals) were recorded, with a sampling rate of 1000 Hz. For calculation of the linear indices, the research team used software to perform an analysis of heart rate variability (HRV). Linear indices of HRV were analyzed in the time domain: (1) the standard deviation of normal-to-normal R-R intervals (SDNN), (2) the root-mean square of differences between adjacent normal R-R intervals in a time interval (RMSSD), and (3) the percentage of adjacent R-R intervals with a difference of duration greater than 50 ms (pNN50). The study also analyzed the frequency domain-low frequency (LF), high frequency (HF), and LF/HF ratio. For the control group, the musical auditory stimulation reduced (1) the SDNN from 52.2 ± 10 ms to 48.4 ± 16 ms (P = .0034); (2) the RMSSD from 45.8 ± 22 ms to 41.2

  9. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  10. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  11. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats.

    Science.gov (United States)

    Yan, Xiaonan; Yuan, Chun; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2014-07-01

    In adolescent girls with polycystic ovary syndrome (PCOS), neuroendocrine derangements manifest after the onset of puberty, characterized by rapid LH pulse frequency. The early mechanism underlying the pubertal regulation of the GNRH/LH pulsatile release in adolescents with PCOS remains uncertain. To determine the effects of prenatal androgen exposure on the activation of GNRH neurons and generation of LH pulse at puberty, we administrated 5α-dihydrotestosterone to pregnant rats and observed serum LH levels and expression of hypothalamic genes in female offspring from postnatal 4 to 8 weeks. The 6-week-old prenatally androgenized (PNA) female rats exhibited an increase in LH pulse frequency. The hypothalamic expression of neurokinin B (Nkb (Tac2)) and Lepr mRNA levels in PNA rats increased remarkably before puberty and remained high during puberty, whereas elevated Kiss1 mRNA levels were detected only after the onset of puberty. Exogenous kisspeptin, NK3R agonist, and leptin triggered tonic stimulation of GNRH neurons and increased LH secretion in 6-week-old PNA rats. Leptin upregulated Kiss1 mRNA levels in the hypothalamus of pubertal PNA rats; however, pretreatment with a kisspeptin antagonist failed to suppress the elevated serum LH stimulated by leptin, indicating that the stimulatory effects of leptin may be conveyed indirectly to GNRH neurons via other neural components within the GNRH neuronal network, rather than through the kisspeptin-GPR54 pathway. These findings validate the hypotheses that NKB and leptin play an essential role in the activation of GNRH neurons and initiation of increased LH pulse frequency in PNA female rats at puberty and that kisspeptin may coordinate their stimulatory effects on LH release. © 2014 Society for Endocrinology.

  12. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    Science.gov (United States)

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  13. Effects of transcranial direct current stimulation on the auditory mismatch negativity response and working memory performance in schizophrenia: a pilot study.

    Science.gov (United States)

    Impey, Danielle; Baddeley, Ashley; Nelson, Renee; Labelle, Alain; Knott, Verner

    2017-11-01

    Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving 'sham' stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.

  14. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording.

    Directory of Open Access Journals (Sweden)

    Kang Peng

    Full Text Available In the auditory pathway, the inferior colliculus (IC receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC, and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency. Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.

  15. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  16. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  17. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    Science.gov (United States)

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9months in a cohort study of Chinese infants.

    Science.gov (United States)

    Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide

  19. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  20. Short and long term effects of left and bilateral repetitive transcranial magnetic stimulation in schizophrenia patients with auditory verbal hallucinations: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Leonie Bais

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations, no studies have used bilateral stimulation. Moreover, little is known about durability effects. We studied the short and long term effects of 1 Hz treatment of the left temporo-parietal junction area in schizophrenia patients with persistent auditory verbal hallucinations, compared to sham stimulation, and added an extra treatment arm of bilateral TPJ area stimulation. METHODS: In this randomized controlled trial, 51 patients diagnosed with schizophrenia and persistent auditory verbal hallucinations were randomly allocated to treatment of the left or bilateral temporo-parietal junction area or sham treatment. Patients were treated for six days, twice daily for 20 minutes. Short term efficacy was measured with the Positive and Negative Syndrome Scale (PANSS, the Auditory Hallucinations Rating Scale (AHRS, and the Positive and Negative Affect Scale (PANAS. We included follow-up measures with the AHRS and PANAS at four weeks and three months. RESULTS: The interaction between time and treatment for Hallucination item P3 of the PANSS showed a trend for significance, caused by a small reduction of scores in the left group. Although self-reported hallucination scores, as measured with the AHRS and PANAS, decreased significantly during the trial period, there were no differences between the three treatment groups. CONCLUSION: We did not find convincing evidence for the efficacy of left-sided rTMS, compared to sham rTMS. Moreover, bilateral rTMS was not superior over left rTMS or sham in improving AVH. Optimizing treatment parameters may result in stronger evidence for the efficacy of rTMS treatment of AVH. Moreover, future research should consider

  1. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    Science.gov (United States)

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  2. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  3. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    Directory of Open Access Journals (Sweden)

    Sarah Boukezzi

    2017-06-01

    Full Text Available Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD. Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS during eye movement desensitization and reprocessing (EMDR therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations as well as psychophysiological measures (skin conductance responses, SCRs were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  4. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  6. The effects of auditory stimulation with music on heart rate variability in healthy women

    Directory of Open Access Journals (Sweden)

    Adriano L. Roque

    2013-07-01

    Full Text Available OBJECTIVES: There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. METHODS: We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21, who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19, who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB. A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB. The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio, low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. RESULTS: The triangular index and the standard deviation of

  7. The effects of auditory stimulation with music on heart rate variability in healthy women.

    Science.gov (United States)

    Roque, Adriano L; Valenti, Vitor E; Guida, Heraldo L; Campos, Mônica F; Knap, André; Vanderlei, Luiz Carlos M; Ferreira, Lucas L; Ferreira, Celso; Abreu, Luiz Carlos de

    2013-07-01

    There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21), who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19), who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB). A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB). The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio), low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. The triangular index and the standard deviation of the long-term RR interval indices were reduced

  8. Improvement in visual target detections and reaction time by auditory stimulation; Shikaku shigeki ga shikaku mokuhyo no kenshutsu to hanno jikan ni oyobosu kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Mitobe, K.; Akiyama, T.; Yoshimura, N. [Akita University, Akita (Japan); Takahashi, M. [Hokkaido University, Sapporo (Japan)

    1998-03-01

    The purpose of this study was to investigate a traffic environment that can reduce traffic accidents of elder walker. We focused on the relationship between traffic accidents and elder person`s spatial attention. In this paper, an adolescent subject`s and an elder subject`s pointing movement to a visual target was measured in three conditions. Condition 1: Only target was presented. Condition 2: Auditory stimulation was added at a location the same distance from the center as that of the targets but in the opposite direction. Condition 3: Auditory stimulation was added at the same location as the target. The targets were placed in extra working space with the distance of 1.5 meter from a subject to the targets. In adolescent subjects, results showed that in Condition 3, latency was shorter and the error rate of pointing movements was lower than in the other conditions. In elder subjects, results showed that in all Conditions, ignore ratio to peripheral targets is higher than adolescent subjects. Nevertheless, in condition 3, ignore ratio was lower than in the other conditions. These results suggest that, it is possible to draw elder walker`s spatial attention and to control spatial attention by auditory stimulation. 13 refs., 6 figs., 1 tab.

  9. Direct recordings from the auditory cortex in a cochlear implant user.

    Science.gov (United States)

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  10. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  11. Facilitating Access to Emotions: Neural Signature of EMDR Stimulation

    Science.gov (United States)

    Herkt, Deborah; Tumani, Visal; Grön, Georg; Kammer, Thomas; Hofmann, Arne; Abler, Birgit

    2014-01-01

    Background Eye Movement Desensitisation and Reprocessing (EMDR) is a method in psychotherapy effective in treating symptoms of posttraumatic stress disorder. The client attends to alternating bilateral visual, auditory or sensory stimulation while confronted with emotionally disturbing material. It is thought that the bilateral stimulation as a specific element of EMDR facilitates accessing and processing of negative material while presumably creating new associative links. We hypothesized that the putatively facilitated access should be reflected in increased activation of the amygdala upon bilateral EMDR stimulation even in healthy subjects. Methods We investigated 22 healthy female university students (mean 23.5 years) with fMRI. Subjects were scanned while confronted with blocks of disgusting and neutral picture stimuli. One third of the blocks was presented without any additional stimulation, one third with bilateral simultaneous auditory stimulation, and one third with bilateral alternating auditory stimulation as used in EMDR. Results Contrasting disgusting vs. neutral picture stimuli confirmed the expected robust effect of amygdala activation for all auditory stimulation conditions. The interaction analysis with the type of auditory stimulation revealed a specific increase in activation of the right amygdala for the bilateral alternating auditory stimulation. Activation of the left dorsolateral prefrontal cortex showed the opposite effect with decreased activation. Conclusions We demonstrate first time evidence for a putative neurobiological basis of the bilateral alternating stimulation as used in the EMDR method. The increase in limbic processing along with decreased frontal activation is in line with theoretical models of how bilateral alternating stimulation could help with therapeutic reintegration of information, and present findings may pave the way for future research on EMDR in the context of posttraumatic stress disorder. PMID:25165974

  12. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep.

    Science.gov (United States)

    Lu, Chunxia; Cardoso, Rodolfo C; Puttabyatappa, Muraly; Padmanabhan, Vasantha

    2016-05-01

    Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions. © 2016 by the Society for the Study of Reproduction, Inc.

  13. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  14. Assessment of auditory threshold using Multiple Magnitude-Squared Coherence and amplitude modulated tones monaural stimulation around 40 Hz.

    Science.gov (United States)

    Silva, Glaucia de Morais; Antunes, Felipe; Henrique, Catherine Salvador; Felix, Leonardo Bonato

    2018-06-01

    The use of objective detection techniques applied to the auditory steady-state responses (ASSRs) for the assessment of auditory thresholds has been investigated over the years. The idea consists in setting up the audiometric profile without subjective inference from patients and evaluators. The challenge encountered is to reduce the detection time of auditory thresholds reaching high correlation coefficients between the objective and the conventional thresholds, as well as reducing difference between thresholds. This paper evaluated the use of the Multiple Magnitude-Squared Coherence (MMSC) in Auditory Steady-State Responses (ASSRs) evoked by amplitude modulated tones around 40 Hz, attaining objective audiograms, which were, later, compared to conventional audiograms. It was proposed an analysis of the electroencephalogram signals of ten subjects, monaurally stimulated, in the intensities 15, 20, 25, 30, 40 and 50 dB SPL, for carrier frequencies of 0.5, 1, 2 and 4 kHz. After the detection protocol parameters variation, two detectors were selected according to behavioral thresholds. The method of this study resulted in a Maximum detector with correlation coefficient r = 0.9262, mean difference between the objective and behavioral thresholds of 6.44 dB SPL, average detection time per ear of 49.96 min and per stimulus of 2.08 min. Meanwhile, the Fast detector presented coefficient r = 0.8401, mean difference of 6.81 dB SPL, average detection time of 28.20 min per ear and 1.18 per stimulus. The results of this study indicate that the MMSC use in the auditory responses detection might provide a reliable and efficient estimation of auditory thresholds. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mark Bodner

    Full Text Available The purpose of this work was to determine in a clinical trial the efficacy of reducing or preventing seizures in patients with neurological handicaps through sustained cortical activation evoked by passive exposure to a specific auditory stimulus (particular music. The specific type of stimulation had been determined in previous studies to evoke anti-epileptiform/anti-seizure brain activity.The study was conducted at the Thad E. Saleeby Center in Harstville, South Carolina, which is a permanent residence for individuals with heterogeneous neurological impairments, many with epilepsy. We investigated the ability to reduce or prevent seizures in subjects through cortical stimulation from sustained passive nightly exposure to a specific auditory stimulus (music in a three-year randomized controlled study. In year 1, baseline seizure rates were established. In year 2, subjects were randomly assigned to treatment and control groups. Treatment group subjects were exposed during sleeping hours to specific music at regular intervals. Control subjects received no music exposure and were maintained on regular anti-seizure medication. In year 3, music treatment was terminated and seizure rates followed. We found a significant treatment effect (p = 0.024 during the treatment phase persisting through the follow-up phase (p = 0.002. Subjects exposed to treatment exhibited a significant 24% decrease in seizures during the treatment phase, and a 33% decrease persisting through the follow-up phase. Twenty-four percent of treatment subjects exhibited a complete absence of seizures during treatment.Exposure to specific auditory stimuli (i.e. music can significantly reduce seizures in subjects with a range of epilepsy and seizure types, in some cases achieving a complete cessation of seizures. These results are consistent with previous work showing reductions in epileptiform activity from particular music exposure and offers potential for achieving a non

  16. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Science.gov (United States)

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  17. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  18. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Directory of Open Access Journals (Sweden)

    Vivien Marmelat

    Full Text Available Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  19. Effects of prenatal exposure to chronic mild stress and toluene in rats

    DEFF Research Database (Denmark)

    Hougaard, Karin; Andersen, Maibritt B; Hansen, Ase M

    2005-01-01

    The aim of the present study was to elucidate whether prenatal chronic stress, in combination with exposure to a developmental neurotoxicant, would increase effects in the offspring compared with the effects of either exposure alone. Development and neurobehavioral effects were investigated...... in female offspring of pregnant rats (Mol:WIST) exposed to chronic mild stress (CMS) during gestational days (GD) 9-20, or 1500 ppm toluene, 6 h/day during gestational days 7-20, or a combination of the two. Prenatal CMS was associated with decreased thymic weight and increased auditory startle response....... The corticosterone response to restraint seemed modified by prenatal exposure to toluene. Lactational body weight was decreased in offsprings subjected to CMS, primarily due to effects in the combined exposure group. Cognitive function was investigated in the Morris water maze, and some indications of improved...

  20. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  1. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W.J.; Willemsen, Antoon T.M.

    2007-01-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  2. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  3. [Effect of music on fetal behaviour].

    Science.gov (United States)

    Malinova, M; Malinova, M

    2004-01-01

    Antenatal music stimulation shown to elicit fetal heart rate and body movement responses, indicating that prenatal experience with music influences auditory functional development. The slower tempo resulted in less movement variation.

  4. Self-Rated Attentiveness Interacts with Transcranial Direct Current Stimulation and Noise Stimulation in Reaction Time in a Go/No-Go Task.

    Science.gov (United States)

    Sikström, Sverker; Jürgensen, Anna-Maria; Haghighi, Maryam; Månsson, Daniel; Smidelik, David; Habekost, Thomas

    2016-01-01

    Previous research has found that stimulating inattentive people with auditory white noise induces enhancement in cognitive performance. This enhancement is believed to occur due to a statistical phenomenon called stochastic resonance, where noise increases the probability of a signal passing the firing threshold in the neural cells. Here we investigate whether people with low attentiveness benefit to a larger extent than attentive people from stimulation by auditory white noise and transcranial direct current stimulation (tDCS). The results show, for both auditory noise and tDCS stimulation, that the changes in performance relative to nonstimulation correlate with the degree of attentiveness in a Go/No-Go task, but not in a N-back task. These results suggest that the benefit of tDCS may interact with inattentiveness.

  5. The Paradigm of Unity in Prenatal Education and Pedagogy

    Directory of Open Access Journals (Sweden)

    Kornas-Biela Dorota

    2014-07-01

    Full Text Available The traditional approach to the relation between parents and their prenatal child presents the child as a fetus, a mainly passive recipient of the mother’s vital biological resources. Contemporary prenatal psychology and pedagogy recognizes this relationship in a quite different perspective: the prenatal child is a member of the family and may be seen as an active member of the wider family as a community, extended to grandparents and other relatives. Between parents and their child in the womb exists a reciprocal relationship at a physiological (hormonal, psychological and spiritual level. The prenatal child communicates with the parents in different ways and reacts to their stimulation (acoustic, tactile, loco-motoric, chemo-receptive, thermo-receptive, and emotional. This dialogue of the parents and their prenatal child enriches each member of the family community. In this sense, the prenatal child is a gift and a challenge for the parents to develop their personality, social competences and spiritual life. The reflections presented in this paper fit the conception of the paradigm of unity applied into the area of prenatal education and prenatal pedagogy as a new pedagogical subdisciline.

  6. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    Science.gov (United States)

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for

  7. Therapeutic riding followed by rhythmic auditory stimulation to improve balance and gait in a subject with orthopedic pathologies.

    Science.gov (United States)

    Ungermann, Cathryn M; Gras, Laura Z

    2011-12-01

    The study objectives were to investigate the effect of therapeutic riding with a subject who had an orthopedic diagnosis. This is a single-subject case report. The study was conducted at an equestrian facility with an indoor riding arena. The subject was a 59-year-old woman with grade I spondylolisthesis at L4/L5 and multilevel lumbar spinal stenosis in central and foraminal canals. The subject had an anterior cervical fusion of C3-C7. The subject has been ambulating with a straight cane due to her history of frequent falls. Gait, agility, strength, range of motion, and balance testing were performed. The subject had impairments of bilateral lower extremities with an ataxic gait pattern and was at risk for continued falls according to the balance measures. The intervention comprised therapeutic riding sessions 3 times a week for 20 minutes for 4 weeks. Each riding session was immediately followed by a 10-minute independent walking program with a metronome for rhythmic auditory stimulation. The outcome measures were as follows: Manual muscle testing and range of motion of the lower extremities, Gait Speed Test, Dynamic Gait Index, Four-Square Step Test, Chair Stand Test, Single Leg Stance. Improvements were seen in lower extremity strength and range of motion and balance. The subject improved on balance scores, placing her out of the risk for falls category. Therapeutic riding followed by rhythmic auditory stimulation improved lower extremity range of motion, strength, and balance with this subject.

  8. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.

  9. Prenatal Nicotine Exposure Disrupts Infant Neural Markers of Orienting.

    Science.gov (United States)

    King, Erin; Campbell, Alana; Belger, Aysenil; Grewen, Karen

    2017-08-17

    Prenatal nicotine exposure (PNE) from maternal cigarette-smoking is linked to developmental deficits, including impaired auditory processing, language, generalized intelligence, attention and sleep. Fetal brain undergoes massive growth, organization and connectivity during gestation, making it particularly vulnerable to neurotoxic insult. Nicotine binds to nicotinic acetylcholine receptors, which are extensively involved in growth, connectivity and function of developing neural circuitry and neurotransmitter systems. Thus, PNE may have long-term impact on neurobehavioral development. The purpose of this study was to compare the auditory K-complex, an event-related potential reflective of auditory gating, sleep preservation and memory consolidation during sleep, in infants with and without PNE and to relate these neural correlates to neurobehavioral development. We compared brain responses to an auditory paired-click paradigm in 3 to 5-month-old infants during Stage 2 sleep, when the K-complex is best observed. We measured component amplitude and delta activity during the K-complex. PNE may impair auditory sensory gating, which may contribute to disrupted sleep and to reduced auditory discrimination and learning, attention re-orienting and/or arousal during wakefulness reported in other studies. Links between PNE and reduced K-complex amplitude and delta power may represent altered cholinergic and GABAergic synaptic programming, and possibly reflect early neural bases for PNE-linked disruptions in sleep quality and auditory processing. These may pose significant disadvantage for language acquisition, attention, and social interaction necessary for academic and social success. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  11. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  12. Spatial auditory attention is modulated by tactile priming.

    Science.gov (United States)

    Menning, Hans; Ackermann, Hermann; Hertrich, Ingo; Mathiak, Klaus

    2005-07-01

    Previous studies have shown that cross-modal processing affects perception at a variety of neuronal levels. In this study, event-related brain responses were recorded via whole-head magnetoencephalography (MEG). Spatial auditory attention was directed via tactile pre-cues (primes) to one of four locations in the peripersonal space (left and right hand versus face). Auditory stimuli were white noise bursts, convoluted with head-related transfer functions, which ensured spatial perception of the four locations. Tactile primes (200-300 ms prior to acoustic onset) were applied randomly to one of these locations. Attentional load was controlled by three different visual distraction tasks. The auditory P50m (about 50 ms after stimulus onset) showed a significant "proximity" effect (larger responses to face stimulation as well as a "contralaterality" effect between side of stimulation and hemisphere). The tactile primes essentially reduced both the P50m and N100m components. However, facial tactile pre-stimulation yielded an enhanced ipsilateral N100m. These results show that earlier responses are mainly governed by exogenous stimulus properties whereas cross-sensory interaction is spatially selective at a later (endogenous) processing stage.

  13. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    Science.gov (United States)

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line

  14. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  15. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Science.gov (United States)

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  16. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  17. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties

    Directory of Open Access Journals (Sweden)

    Colin eHorne

    2016-02-01

    Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  18. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study.

    Science.gov (United States)

    Söderlund, Göran B W; Björk, Christer; Gustafsson, Peik

    2016-01-01

    Recent research has shown that acoustic white noise (80 dB) can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD). This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC) took the same tests as a comparison. Twenty children with ADHD of combined or inattentive subtypes and twenty TDC matched for age and gender performed three different tests (word recall, spanboard and n-back task) during exposure to white noise (80 dB) and in a silent condition. The ADHD children were tested with and without central stimulant medication. In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks. This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  19. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-09-01

    Full Text Available Background: Recent research has shown that acoustic white noise (80 dB can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD. This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC took the same tests as a comparison.Methods: Twenty children with ADHD of combined or inattentive subtypes and twenty typically developed children matched for age and gender performed three different tests (word recall, spanboard and n-back task during exposure to white noise (80 dB and in a silent condition. The ADHD children were tested with and without central stimulant medication.Results: In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks.Conclusion: This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  20. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  1. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    Science.gov (United States)

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  2. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.

    Science.gov (United States)

    Takacs, Joseph D; Forrest, Taylor J; Basura, Gregory J

    2017-12-01

    We previously demonstrated that bimodal stimulation (spinal trigeminal nucleus [Sp5] paired with best frequency tone) altered neural tone-evoked and spontaneous firing rates (SFRs) in primary auditory cortex (A1) 15 min after pairing in guinea pigs with and without noise-induced tinnitus. Neural responses were enhanced (+10 ms) or suppressed (0 ms) based on the bimodal pairing interval. Here we investigated whether bimodal stimulation leads to long-term (up to 2 h) changes in tone-evoked and SFRs and neural synchrony (correlate of tinnitus) and if the long-term bimodal effects are altered following noise exposure. To obviate the effects of permanent hearing loss on the results, firing rates and neural synchrony were measured three weeks following unilateral (left ear) noise exposure and a temporary threshold shift. Simultaneous extra-cellular single-unit recordings were made from contralateral (to noise) A1 and dorsal rostral belt (RB); an associative auditory cortical region thought to influence A1, before and after bimodal stimulation (pairing intervals of 0 ms; simultaneous Sp5-tone and +10 ms; Sp5 precedes tone). Sixty and 120 min after 0 ms pairing tone-evoked and SFRs were suppressed in sham A1; an effect only preserved 120 min following pairing in noise. Stimulation at +10 ms only affected SFRs 120 min after pairing in sham and noise-exposed A1. Within sham RB, pairing at 0 and +10 ms persistently suppressed tone-evoked and SFRs, while 0 ms pairing in noise markedly enhanced tone-evoked and SFRs up to 2 h. Together, these findings suggest that bimodal stimulation has long-lasting effects in A1 that also extend to the associative RB that is altered by noise and may have persistent implications for how noise damaged brains process multi-sensory information. Moreover, prior to bimodal stimulation, noise damage increased neural synchrony in A1, RB and between A1 and RB neurons. Bimodal stimulation led to persistent changes in neural synchrony in

  3. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders A meta-analysis***

    Institute of Scientific and Technical Information of China (English)

    Yingli Zhang; Wei Liang; Shichang Yang; Ping Dai; Lijuan Shen; Changhong Wang

    2013-01-01

    OBJECTIVE: This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hal ucination of patients with schizophrenia spectrum disorders. DATA SOURCES: Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Control ed Trials databases from January 1985 to May 2012. Key words were “transcranial magnetic stimulation”, “TMS”, “repetitive transcranial magnetic stimulation”, and “hal ucination”. STUDY SELECTION: Selected studies were randomized control ed trials assessing therapeutic ef-ficacy of repetitive transcranial magnetic stimulation for hal ucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hal ucination in schizophrenia spectrum disorders. Control groups received sham stimulation. MAIN OUTCOME MEASURES: The primary outcome was total scores of Auditory Hal ucinations Rating Scale, Auditory Hal ucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hal ucination item, and Hal ucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. RESULTS: Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. Al data were completely effective, involving 398 patients. Overal mean weighted effect size for repeti-tive transcranial magnetic stimulation versus sham stimulation was statistical y significant (MD =-0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P =0.005). No significant differences were found

  4. Early cannabinoid exposure influences neuroendocrine and reproductive functions in male mice: I. Prenatal exposure.

    Science.gov (United States)

    Dalterio, S; Steger, R; Mayfield, D; Bartke, A

    1984-01-01

    Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.

  5. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  6. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    Science.gov (United States)

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  8. Persistent fluctuations in stride intervals under fractal auditory stimulation

    NARCIS (Netherlands)

    Marmelat, V.C.M.; Torre, K.; Beek, P.J.; Daffertshofer, A.

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may

  9. Familiar auditory sensory training in chronic traumatic brain injury: a case study.

    Science.gov (United States)

    Sullivan, Emily Galassi; Guernon, Ann; Blabas, Brett; Herrold, Amy A; Pape, Theresa L-B

    2018-04-01

    The evaluation and treatment for patients with prolonged periods of seriously impaired consciousness following traumatic brain injury (TBI), such as a vegetative or minimally conscious state, poses considerable challenges, particularly in the chronic phases of recovery. This blinded crossover study explored the effects of familiar auditory sensory training (FAST) compared with a sham stimulation in a patient seven years post severe TBI. Baseline data were collected over 4 weeks to account for variability in status with neurobehavioral measures, including the Disorders of Consciousness scale (DOCS), Coma Near Coma scale (CNC), and Consciousness Screening Algorithm. Pre-stimulation neurophysiological assessments were completed as well, namely Brainstem Auditory Evoked Potentials (BAEP) and Somatosensory Evoked Potentials (SSEP). Results revealed that a significant improvement in the DOCS neurobehavioral findings after FAST, which was not maintained during the sham. BAEP findings also improved with maintenance of these improvements following sham stimulation as evidenced by repeat testing. The results emphasize the importance for continued evaluation and treatment of individuals in chronic states of seriously impaired consciousness with a variety of tools. Further study of auditory stimulation as a passive treatment paradigm for this population is warranted. Implications for Rehabilitation Clinicians should be equipped with treatment options to enhance neurobehavioral improvements when traditional treatment methods fail to deliver or maintain functional behavioral changes. Routine assessment is crucial to detect subtle changes in neurobehavioral function even in chronic states of disordered consciousness and determine potential preserved cognitive abilities that may not be evident due to unreliable motor responses given motoric impairments. Familiar Auditory Stimulation Training (FAST) is an ideal passive stimulation that can be supplied by families, allied health

  10. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  11. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  12. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study

    DEFF Research Database (Denmark)

    Leitão, Joana; Thielscher, Axel; Werner, Sebastian

    2013-01-01

    cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state...... deactivations induced by auditory activity to TMS sounds. TMS to IPS may increase the responses in visual (or auditory) cortices to visual (or auditory) stimulation via a gain control mechanism or crossmodal interactions. Collectively, our results demonstrate that understanding TMS effects on (uni......Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual...

  13. Precision rodent whisker stimulator with integrated servo-locked control and displacement measurement.

    Science.gov (United States)

    Walker, Jennifer L; Monjaraz-Fuentes, Fernanda; Pedrow, Christi R; Rector, David M

    2011-03-15

    We developed a high speed voice coil based whisker stimulator that delivers precise deflections of a single whisker or group of whiskers in a repeatable manner. The device is miniature, quiet, and inexpensive to build. Multiple stimulators fit together for independent stimulation of four or more whiskers. The system can be used with animals under anesthesia as well as awake animals with head-restraint, and does not require trimming the whiskers. The system can deliver 1-2 mm deflections in 2 ms resulting in velocities up to 900 mm/s to attain a wide range of evoked responses. Since auditory artifacts can influence behavioral studies using whisker stimulation, we tested potential effects of auditory noise by recording somatosensory evoked potentials (SEP) with varying auditory click levels, and with/without 80 dBa background white noise. We found that auditory clicks as low as 40 dBa significantly influence the SEP. With background white noise, auditory clicks as low as 50 dBa were still detected in components of the SEP. For behavioral studies where animals must learn to respond to whisker stimulation, these sounds must be minimized. Together, the stimulator and data system can be used for psychometric vigilance tasks, mapping of the barrel cortex and other electrophysiological paradigms. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  16. Adjuvant low-frequency rTMS in treating auditory hallucinations in recent-onset schizophrenia: a randomized controlled study investigating the effect of high-frequency priming stimulation.

    Science.gov (United States)

    Ray, Prasenjit; Sinha, Vinod Kumar; Tikka, Sai Krishna

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been found to be effective in reducing frequency and duration of auditory verbal hallucinations (AVH). Priming stimulation, which involves high-frequency rTMS stimulation followed by low-frequency rTMS, has been shown to markedly enhance the neural response to the low-frequency stimulation train. However, this technique has not been investigated in recent onset schizophrenia patients. The aim of this randomized controlled study was to investigate whether the effects of rTMS on AVH can be enhanced with priming rTMS in recent onset schizophrenia patients. Forty recent onset schizophrenia patients completed the study. Patients were randomized over two groups: one receiving low-frequency rTMS preceded by priming and another receiving low-frequency rTMS without priming. Both treatments were directed at the left temporo-parietal region. The severity of AVH and other psychotic symptoms were assessed with the auditory hallucination subscale (AHRS) of the Psychotic Symptom Rating Scales (PSYRATS), the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression (CGI). We found that all the scores of these ratings significantly reduced over time (i.e. baseline through 1, 2, 4 and 6 weeks) in both the treatment groups. We found no difference between the two groups on all measures, except for significantly greater improvement on loudness of AVH in the group with priming stimulation during the follow-ups (F = 2.72; p low-frequency rTMS alone and high-frequency priming of low-frequency rTMS do not elicit significant differences in treatment of overall psychopathology, particularly AVH when given in recent onset schizophrenia patients. Add on priming however, seems to be particularly better in faster reduction in loudness of AVH.

  17. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  18. Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.

    Science.gov (United States)

    Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A

    1985-01-01

    The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.

  19. [Digital signal processing of a novel neuron discharge model stimulation strategy for cochlear implants].

    Science.gov (United States)

    Yang, Yiwei; Xu, Yuejin; Miu, Jichang; Zhou, Linghong; Xiao, Zhongju

    2012-10-01

    To apply the classic leakage integrate-and-fire models, based on the mechanism of the generation of physiological auditory stimulation, in the information processing coding of cochlear implants to improve the auditory result. The results of algorithm simulation in digital signal processor (DSP) were imported into Matlab for a comparative analysis. Compared with CIS coding, the algorithm of membrane potential integrate-and-fire (MPIF) allowed more natural pulse discharge in a pseudo-random manner to better fit the physiological structures. The MPIF algorithm can effectively solve the problem of the dynamic structure of the delivered auditory information sequence issued in the auditory center and allowed integration of the stimulating pulses and time coding to ensure the coherence and relevance of the stimulating pulse time.

  20. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  1. Transcranial direct current stimulation as a treatment for auditory hallucinations

    NARCIS (Netherlands)

    Koops, Sanne; van den Brink, Hilde; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication resistant group are scarce and most of them focus on coping with

  2. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  3. Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness

    NARCIS (Netherlands)

    Vos, Sjoerd; Haakma, Wieke; Versnel, Huib; Froeling, Martijn; Speleman, Lucienne; Dik, Pieter; Viergever, Max A.; Leemans, Alexander; Grolman, Wilko

    A cochlear implant (CI) can restore hearing in patients with profound sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Therefore, the viability of the auditory nerve is vitally important in successful hearing recovery. However, the nerve typically degenerates

  4. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  5. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  6. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  7. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  8. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    Science.gov (United States)

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  9. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  10. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Sonia Dollfus

    2013-04-01

    Full Text Available Several cross-sectional functional Magnetic Resonance Imaging (fMRI studies reported a negative correlation between auditory verbal hallucination (AVH severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS. Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS cluster, considered henceforward as a functional region of interest (fROI. After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities.

  11. Neurovascular Saturation Thresholds Under High Intensity Auditory Stimulation During Wake

    Science.gov (United States)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2012-01-01

    Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical imaging techniques to increasing intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during

  12. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  13. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    . A single ANF is modeled as a network of two exponential integrateand-fire point-neuron models, referred to as peripheral and central axons of the ANF. The peripheral axon is excited by the cathodic charge, inhibited by the anodic charge, and exhibits longer spike latencies than the central axon......A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike......; the central axon is excited by the anodic charge, inhibited by the cathodic charge, and exhibits shorter spike latencies than the peripheral axon. The model also includes subthreshold and suprathreshold adaptive feedback loops which continuously modify the membrane potential and can account for effects...

  14. Effects of prenatal music stimulation on state/trait anxiety in full-term pregnancy and its influence on childbirth: a randomized controlled trial.

    Science.gov (United States)

    García González, J; Ventura Miranda, M I; Requena Mullor, M; Parron Carreño, T; Alarcón Rodriguez, R

    2018-04-01

    Many researchers have pointed out the strong relationship between maternal psychological well-being and fetal welfare during pregnancy. The impact of music interventions during pregnancy should be examined in depth, as they could have an impact on stress reduction, not only during pregnancy but also during the course of delivery, and furthermore induce fetal awareness. This study aimed to investigate the effect of music on maternal anxiety, before and after a non-stress test (NST), and the effect of music on the birthing process. The four hundred and nine pregnant women coming for routine prenatal care were randomized in the third trimester to receive either music (n = 204) or no music (n = 205) stimulation during an NST. The primary outcome was considered as the maternal state anxiety score before and after the NST, and the secondary outcome was the birthing process. Before their NST, full-term pregnant women who had received music intervention were found to have a similar state-trait anxiety score to those from the control group, with 38.10 ± 8.8 and 38.08 ± 8.2, respectively (p = .97). After the NST, the mean state-trait anxiety score of each group was recorded, with results of 30.58 ± 13.2 for those with music intervention, and 43.11 ± 15.0 for those without music intervention (p < .001). In the control group, the NST was followed by a statistically significant increase in the state-trait anxiety score (38.08 ± 8.2 versus 43.11 ± 15.0, p < .001). However, listening to music during the NST resulted in a statistically significant decrease in the state-trait anxiety score of the study group (38.10 ± 8.8 versus 30.58 ± 13.2, OR = 0.87, p < .001). Furthermore, the first stage of labor was shorter in women who received music stimulation (OR = 0.92, p < .004). They also presented a more natural delivery beginning (spontaneous) and less medication (stimulated and induced) than those who were

  15. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  17. Auditory-visual integration of emotional signals in a virtual environment for cynophobia.

    Science.gov (United States)

    Taffou, Marine; Chapoulie, Emmanuelle; David, Adrien; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2012-01-01

    Cynophobia (dog phobia) has both visual and auditory relevant components. In order to investigate the efficacy of virtual reality (VR) exposure-based treatment for cynophobia, we studied the efficiency of auditory-visual environments in generating presence and emotion. We conducted an evaluation test with healthy participants sensitive to cynophobia in order to assess the capacity of auditory-visual virtual environments (VE) to generate fear reactions. Our application involves both high fidelity visual stimulation displayed in an immersive space and 3D sound. This specificity enables us to present and spatially manipulate fearful stimuli in the auditory modality, the visual modality and both. Our specific presentation of animated dog stimuli creates an environment that is highly arousing, suggesting that VR is a promising tool for cynophobia treatment and that manipulating auditory-visual integration might provide a way to modulate affect.

  18. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  19. Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Ozge Ozalp Yuregir

    2012-02-01

    Full Text Available Prenatal diagnosis is the process of determining the health or disease status of the fetus or embryo before birth. The purpose is early detection of diseases and early intervention when required. Prenatal genetic tests comprise of cytogenetic (chromosome assessment and molecular (DNA mutation analysis tests. Prenatal testing enables the early diagnosis of many diseases in risky pregnancies. Furthermore, in the event of a disease, diagnosing prenatally will facilitate the planning of necessary precautions and treatments, both before and after birth. Upon prenatal diagnosis of some diseases, termination of the pregnancy could be possible according to the family's wishes and within the legal frameworks. [Archives Medical Review Journal 2012; 21(1.000: 80-94

  20. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    Science.gov (United States)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  1. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    Science.gov (United States)

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  2. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  3. Auditory neuropathy/auditory dyssynchrony in children with cochlear implants Neuropatia auditiva/dessincronia auditiva em crianças usuárias de implante coclear

    Directory of Open Access Journals (Sweden)

    Ana Claudia Martinho de Carvalho

    2011-08-01

    Full Text Available The electrical stimulation generated by the Cochlear Implant (CI may improve the neural synchrony and hence contribute to the development of auditory skills in patients with Auditory Neuropathy/Auditory Dyssynchrony (AN/AD. AIM: Prospective cohort cross-sectional study to evaluate the auditory performance and the characteristics of the electrically evoked compound action potential (ECAP in 18 children with AN/AD and cochlear implants. MATERIAL AND METHODS: The auditory perception was evaluated by sound field thresholds and speech perception tests. To evaluate ECAP's characteristics, the threshold and amplitude of neural response were evaluated at 80Hz and 35Hz. RESULTS: No significant statistical difference was found concerning the development of auditory skills. The ECAP's characteristics differences at 80 and 35Hz stimulation rate were also not statistically significant. CONCLUSIONS: The CI was seen as an efficient resource to develop auditory skills in 94% of the AN/AD patients studied. The auditory perception benefits and the possibility to measure ECAP showed that the electrical stimulation could compensate for the neural dyssynchrony caused by the AN/AD. However, a unique clinical procedure cannot be proposed at this point. Therefore, a careful and complete evaluation of each AN/AD patient before recommending a Cochlear Implant is advised. Clinical Trials: NCT01023932A estimulação elétrica gerada pelo Implante Coclear (IC pode ser capaz de melhorar a sincronia neural e contribuir para o desenvolvimento das habilidades auditivas de sujeitos portadores de Neuropatia Auditiva/Dessincronia Auditiva (NA/DA. OBJETIVO: Estudo de coorte prospectivo transversal para avaliar o desempenho auditivo e as características do Potencial de Ação Composto Eletricamente Evocado no Nervo Auditivo (ECAP em 18 crianças portadoras de NA/DA e usuárias de IC. MATERIAL E MÉTODOS: Percepção auditiva e características do ECAP foram avaliadas

  4. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS

    Directory of Open Access Journals (Sweden)

    Paul Fredrick Sowman

    2014-06-01

    Full Text Available Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS -induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  5. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Science.gov (United States)

    Ubiali, Thalita; Sanfins, Milaine Dominici; Borges, Leticia Reis; Colella-Santos, Maria Francisca

    2016-01-01

    The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing. P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation. P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values. Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  6. Age-Associated Reduction of Asymmetry in Human Central Auditory Function: A 1H-Magnetic Resonance Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Xianming Chen

    2013-01-01

    Full Text Available The aim of this study was to investigate the effects of age on hemispheric asymmetry in the auditory cortex after pure tone stimulation. Ten young and 8 older healthy volunteers took part in this study. Two-dimensional multivoxel 1H-magnetic resonance spectroscopy scans were performed before and after stimulation. The ratios of N-acetylaspartate (NAA, glutamate/glutamine (Glx, and γ-amino butyric acid (GABA to creatine (Cr were determined and compared between the two groups. The distribution of metabolites between the left and right auditory cortex was also determined. Before stimulation, left and right side NAA/Cr and right side GABA/Cr were significantly lower, whereas right side Glx/Cr was significantly higher in the older group compared with the young group. After stimulation, left and right side NAA/Cr and GABA/Cr were significantly lower, whereas left side Glx/Cr was significantly higher in the older group compared with the young group. There was obvious asymmetry in right side Glx/Cr and left side GABA/Cr after stimulation in young group, but not in older group. In summary, there is marked hemispheric asymmetry in auditory cortical metabolites following pure tone stimulation in young, but not older adults. This reduced asymmetry in older adults may at least in part underlie the speech perception difficulties/presbycusis experienced by aging adults.

  7. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  8. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    Directory of Open Access Journals (Sweden)

    Pegah Afra

    2009-01-01

    Full Text Available Pegah Afra, Michael Funke, Fumisuke MatsuoDepartment of Neurology, University of Utah, Salt Lake City, UT, USAAbstract: Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms.Keywords: synesthesia, auditory-visual, cross modal

  9. Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

    Directory of Open Access Journals (Sweden)

    Kathleen Joos

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external auditory stimulus and affects 10–15% of the Western population. Previous studies have demonstrated the therapeutic effect of anodal transcranial direct current stimulation (tDCS over the left auditory cortex on tinnitus loudness, but the effect of this presumed excitatory stimulation contradicts with the underlying pathophysiological model of tinnitus. Therefore, we included 175 patients with chronic tinnitus to study polarity specific effects of a single tDCS session over the auditory cortex (39 anodal, 136 cathodal. To assess the effect of treatment, we used the numeric rating scale for tinnitus loudness and annoyance. Statistical analysis demonstrated a significant main effect for tinnitus loudness and annoyance, but for tinnitus annoyance anodal stimulation has a significantly more pronounced effect than cathodal stimulation. We hypothesize that the suppressive effect of tDCS on tinnitus loudness may be attributed to a disrupting effect of ongoing neural hyperactivity, independent of the inhibitory or excitatory effects and that the reduction of annoyance may be induced by influencing adjacent or functionally connected brain areas involved in the tinnitus related distress network. Further research is required to explain why only anodal stimulation has a suppressive effect on tinnitus annoyance.

  10. Auditory perception and the control of spatially coordinated action of deaf and hearing children.

    Science.gov (United States)

    Savelsbergh, G J; Netelenbos, J B; Whiting, H T

    1991-03-01

    From birth onwards, auditory stimulation directs and intensifies visual orientation behaviour. In deaf children, by definition, auditory perception cannot take place and cannot, therefore, make a contribution to visual orientation to objects approaching from outside the initial field of view. In experiment 1, a difference in catching ability is demonstrated between deaf and hearing children (10-13 years of age) when the ball approached from the periphery or from outside the field of view. No differences in catching ability between the two groups occurred when the ball approached from within the field of view. A second experiment was conducted in order to determine if differences in catching ability between deaf and hearing children could be attributed to execution of slow orientating movements and/or slow reaction time as a result of the auditory loss. The deaf children showed slower reaction times. No differences were found in movement times between deaf and hearing children. Overall, the findings suggest that a lack of auditory stimulation during development can lead to deficiencies in the coordination of actions such as catching which are both spatially and temporally constrained.

  11. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  12. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    Science.gov (United States)

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. La actividad física y la estimulación prenatal en la etapa de gestación

    Directory of Open Access Journals (Sweden)

    Romero-Ibarra, Orlando

    2015-09-01

    Full Text Available It has been proved scientifically that prenatal stimulation promotes the development and maturation of the nervous system. While 75% of development is genetic, 25% depends on stimulation and experience. This research, which is non-experimental, transversal, descriptive and involves a field study. Thirty-five pregnant women in the Enrique Sotomayor Hospital in Guayaquil were interviewed along with seven obstetricians of the aforesaid hospital and the Hospital of the Ecuadorian Institute of Social Security (IESS in Durán, the León Becerra Hospital in Milagro and the Health Center in the parish of Cone in the canton of Yaguachi, Ecuador. Fifteen gym instructors who are teaching Physical Culture in the area were also interviewed. The aim was to establish the pregnant woman’s level of knowledge and participation in prenatal exercise and professional ideas regarding the ideal way to work in the area of prenatal stimulation and the advantages or disadvantages of this activity. The results showed that 77.14% of pregnant women surveyed have never participated in these activities despite the fact that 51.42% were aware that they should always practice this type of exercise even when heavily pregnant.

  14. Inducing circular vection with tactile stimulation encircling the waist

    NARCIS (Netherlands)

    Tinga, A.M.; Jansen, C.; Smagt, M.J. van der; Nijboer, T.C.W.; Erp, J.B.F. van

    2018-01-01

    In general, moving sensory stimuli (visual and auditory) can induce illusory sensations of self-motion (i.e. vection) in the direction opposite of the sensory stimulation. The aim of the current study was to examine whether tactile stimulation encircling the waist could induce circular vection

  15. Group prenatal care.

    Science.gov (United States)

    Mazzoni, Sara E; Carter, Ebony B

    2017-06-01

    Patients participating in group prenatal care gather together with women of similar gestational ages and 2 providers who cofacilitate an educational session after a brief medical assessment. The model was first described in the 1990s by a midwife for low-risk patients and is now practiced by midwives and physicians for both low-risk patients and some high-risk patients, such as those with diabetes. The majority of literature on group prenatal care uses CenteringPregnancy, the most popular model. The first randomized controlled trial of CenteringPregnancy showed that it reduced the risk of preterm birth in low-risk women. However, recent meta-analyses have shown similar rates of preterm birth, low birthweight, and neonatal intensive care unit admission between women participating in group prenatal care and individual prenatal care. There may be subgroups, such as African Americans, who benefit from this type of prenatal care with significantly lower rates of preterm birth. Group prenatal care seems to result in increased patient satisfaction and knowledge and use of postpartum family planning as well as improved weight gain parameters. The literature is inconclusive regarding breast-feeding, stress, depression, and positive health behaviors, although it is theorized that group prenatal care positively affects these outcomes. It is unclear whether group prenatal care results in cost savings, although it may in large-volume practices if each group consists of approximately 8-10 women. Group prenatal care requires a significant paradigm shift. It can be difficult to implement and sustain. More randomized trials are needed to ascertain the true benefits of the model, best practices for implementation, and subgroups who may benefit most from this innovative way to provide prenatal care. In short, group prenatal care is an innovative and promising model with comparable pregnancy outcomes to individual prenatal care in the general population and improved outcomes in some

  16. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  17. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Directory of Open Access Journals (Sweden)

    Thalita Ubiali

    Full Text Available The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing.P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation.P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values.Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  18. Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation.

    Science.gov (United States)

    Wang, Hong; Wang, Xu; Wetzel, Wolfram; Scheich, Henning

    2006-04-01

    Bilateral rapid-rate transcranial magnetic stimulation (rTMS) of gerbil auditory cortex with a miniature coil device was used to study short-term and long-term effects on discrimination learning of frequency-modulated tones. We found previously that directional discrimination of frequency modulation (rising vs. falling) relies on auditory cortex processing and that formation of its memory depends on local protein synthesis. Here we show that, during training over 5 days, certain rTMS regimes contingent on training had differential effects on the time course of learning. When rTMS was applied several times per day, i.e. four blocks of 5 min rTMS each followed 5 min later by a 3-min training block and 15-min intervals between these blocks (experiment A), animals reached a high discrimination performance more slowly over 5 days than did controls. When rTMS preceded only the first two of four training blocks (experiment B), or when prolonged rTMS (20 min) preceded only the first block, or when blocks of experiment A had longer intervals (experiments C and D), no significant day-to-day effects were found. However, in experiment A, and to some extent in experiment B, rTMS reduced the within-session discrimination performance. Nevertheless the animals learned, as demonstrated by a higher performance the next day. Thus, our results indicate that rTMS treatments accumulate over a day but not strongly over successive days. We suggest that rTMS of sensory cortex, as used in our study, affects short-term memory but not long-term memory formation.

  19. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    OpenAIRE

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMR...

  20. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Jill B Firszt

    2013-12-01

    Full Text Available Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants, less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type

  1. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  2. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.

    Science.gov (United States)

    Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C; Cao, Guo Zhong; Shen, I Y; Hume, Clifford R

    2015-12-01

    Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. © The Author(s) 2015.

  3. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator

    Directory of Open Access Journals (Sweden)

    Chuan Luo

    2015-11-01

    Full Text Available Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT. This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays.

  4. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  6. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  7. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network

    Directory of Open Access Journals (Sweden)

    Anja Hohmann

    2018-01-01

    Full Text Available Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG and posterior inferior frontal gyri (pIFG with cathodal transcranial direct current stimulation (tDCS—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.

  8. Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf

    Directory of Open Access Journals (Sweden)

    Karen A. Gordon

    2013-10-01

    Full Text Available We have explored both the benefits and detriments of providing electrical input through a cochlear implant in one ear to the auditory system of young children. A cochlear implant delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf with access to sound. The goals of implantation are to restrict reorganization of the deprived immature auditory brain and promote development of hearing and spoken language. It is clear that limiting the duration of deprivation is a key factor. Additional considerations are the onset, etiology, and use of residual hearing as each of these can have unique effects on auditory development in the pre-implant period. New findings show that many children receiving unilateral cochlear implants are developing mature-like brainstem and thalamo-cortical responses to sound with long term use despite these sources of variability; however, there remain considerable abnormalities in cortical function. The most apparent, determined by implanting the other ear and measuring responses to acute stimulation, is a loss of normal cortical response from the deprived ear. Recent data reveal that this can be avoided in children by early implantation of both ears simultaneously or with limited delay. We conclude that auditory development requires input early in development and from both ears.

  9. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    Science.gov (United States)

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  10. Auditory access, language access, and implicit sequence learning in deaf children.

    Science.gov (United States)

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  11. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  12. Multisensory Stimulation to Improve Low- and Higher-Level Sensory Deficits after Stroke: A Systematic Review

    OpenAIRE

    Tinga, Angelica Maria; Visser-Meily, Johanna Maria Augusta; van der Smagt, Maarten Jeroen; Van der Stigchel, Stefan; van Ee, Raymond; Nijboer, Tanja Cornelia Wilhelmina

    2015-01-01

    The aim of this systematic review was to integrate and assess evidence for the effectiveness of multisensory stimulation (i.e., stimulating at least two of the following sensory systems: visual, auditory, and somatosensory) as a possible rehabilitation method after stroke. Evidence was considered with a focus on low-level, perceptual (visual, auditory and somatosensory deficits), as well as higher-level, cognitive, sensory deficits. We referred to the electronic databases Scopus and PubMed to...

  13. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  14. Prenatal Tests

    Science.gov (United States)

    ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  15. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    Science.gov (United States)

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  16. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat

    Directory of Open Access Journals (Sweden)

    Jasper V. Smit

    2017-10-01

    Full Text Available Background Recently it has been shown in animal studies that deep brain stimulation (DBS of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. Methods The auditory brainstem response (ABR was measured in rats during high frequency stimulation (HFS and low frequency stimulation (LFS in the central nucleus of the inferior colliculus (CIC, n = 5 or dentate cerebellar nucleus (DCBN, n = 5. Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I–III, III–V, I–V and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. Results In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. Discussion DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  17. Investigation of a new electrode array technology for a central auditory prosthesis.

    Directory of Open Access Journals (Sweden)

    Roger Calixto

    Full Text Available Ongoing clinical studies on patients recently implanted with the auditory midbrain implant (AMI into the inferior colliculus (IC for hearing restoration have shown that these patients do not achieve performance levels comparable to cochlear implant patients. The AMI consists of a single-shank array (20 electrodes for stimulation along the tonotopic axis of the IC. Recent findings suggest that one major limitation in AMI performance is the inability to sufficiently activate neurons across the three-dimensional (3-D IC. Unfortunately, there are no currently available 3-D array technologies that can be used for clinical applications. More recently, there has been a new initiative by the European Commission to fund and develop 3-D chronic electrode arrays for science and clinical applications through the NeuroProbes project that can overcome the bulkiness and limited 3-D configurations of currently available array technologies. As part of the NeuroProbes initiative, we investigated whether their new array technology could be potentially used for future AMI patients. Since the NeuroProbes technology had not yet been tested for electrical stimulation in an in vivo animal preparation, we performed experiments in ketamine-anesthetized guinea pigs in which we inserted and stimulated a NeuroProbes array within the IC and recorded the corresponding neural activation within the auditory cortex. We used 2-D arrays for this initial feasibility study since they were already available and were sufficient to access the IC and also demonstrate effective activation of the central auditory system. Based on these encouraging results and the ability to develop customized 3-D arrays with the NeuroProbes technology, we can further investigate different stimulation patterns across the ICC to improve AMI performance.

  18. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    Science.gov (United States)

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. The Impact of Monaural Beat Stimulation on Anxiety and Cognition

    Directory of Open Access Journals (Sweden)

    Leila Chaieb

    2017-05-01

    Full Text Available Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz, alpha (10 Hz and gamma (40 Hz beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.

  20. The Impact of Monaural Beat Stimulation on Anxiety and Cognition.

    Science.gov (United States)

    Chaieb, Leila; Wilpert, Elke C; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.

  1. Diagnóstico Prenatal

    OpenAIRE

    López, Jaime Octavio; Saldarriaga, Wilmar; Fundación Valle de Lili

    2010-01-01

    Diagnóstico Prenatal/ propósitos del diagnóstico prenatal/ Tamizaje a partir del Control Prenatal/ Pacientes de bajo riesgo/ Tamizaje bioquímico/ Pacientes de alto riesgo/ Pruebas invasivas y no invasivas

  2. [Prenatal care in Latin America].

    Science.gov (United States)

    Buekens, P; Hernández, P; Infante, C

    1990-01-01

    Available data on the coverage of prenatal care in Latin America were reviewed. In recent years, only Bolivia had a coverage of prenatal care of less than 50 per cent. More than 90 per cent of pregnant women received prenatal care in Chile, Cuba, the Dominican Republic, and Puerto Rico. Prenatal care increased between the 1970 and 1980 in the Dominican Republic, Ecuador, Guatemala, Honduras, Mexico, and Peru. The coverage of prenatal care decreased in Bolivia and Colombia. The mean number of visits increased in Cuba and Puerto Rico. The increase of prenatal care in Guatemala and Honduras is due to increased care by traditional birth attendants, compared to the role of health care institutions. We compared the more recent data on tetanus immunization of pregnant women to the more recent data on prenatal care. The rates of tetanus immunization are always lower than the rates of prenatal care attendance, except in Costa Rica. The rates of tetanus immunization was less than half as compared to the rates of prenatal care in Bolivia, Guatemala, and Peru. To improve the content of prenatal care should be an objective complementary to the increase of the number of attending women.

  3. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    Science.gov (United States)

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation.

    Science.gov (United States)

    Klinke, R; Kral, A; Heid, S; Tillein, J; Hartmann, R

    1999-09-10

    In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naïve, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.

  5. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    Science.gov (United States)

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and

  6. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  7. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    Science.gov (United States)

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  8. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  9. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  10. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  11. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tae, Woo Suk; Yakunina, Natalia; Nam, Eui-Cheol; Kim, Tae Su; Kim, Sam Soo

    2014-01-01

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  12. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS

    Directory of Open Access Journals (Sweden)

    Mohamad Issa

    2016-01-01

    Full Text Available Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex and non-ROI (adjacent nonauditory cortices during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS. Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  13. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  14. Audio-tactile stimulation: A tool to improve health and well-being?

    NARCIS (Netherlands)

    Dijk, E.O.; Nijholt, A.; Erp, J.B.F. van; Wolferen, G. van; Kuyper, E.

    2013-01-01

    Stimulation of the tactile sense or the hearing sense can be used to improve a person's health and well-being. For example, to make someone relax, feel better or sleep better. In this position paper, we present the concept of auditory-tactile stimulation for health and well-being. Through carefully

  15. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Phencyclidine Disrupts the Auditory Steady State Response in Rats.

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    Full Text Available The Auditory Steady-State Response (ASSR in the electroencephalogram (EEG is usually reduced in schizophrenia (SZ, particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP, produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP and Phase Locking Factor (PLF. In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg, following two weeks of subchronic, continuous administration (5 mg/kg/day, and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.

  17. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    Science.gov (United States)

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  18. Auditory Cortex tACS and tRNS for Tinnitus: Single versus Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Laura Claes

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external acoustic source, which often exerts a significant impact on the quality of life. Currently there is evidence that neuroplastic changes in both neural pathways are involved in the generation and maintaining of tinnitus. Neuromodulation has been suggested to interfere with these neuroplastic alterations. In this study we aimed to compare the effect of two upcoming forms of transcranial electrical neuromodulation: alternating current stimulation (tACS and random noise stimulation (tRNS, both applied on the auditory cortex. A database with 228 patients with chronic tinnitus who underwent noninvasive neuromodulation was retrospectively analyzed. The results of this study show that a single session of tRNS induces a significant suppressive effect on tinnitus loudness and distress, in contrast to tACS. Multiple sessions of tRNS augment the suppressive effect on tinnitus loudness but have no effect on tinnitus distress. In conclusion this preliminary study shows a possibly beneficial effect of tRNS on tinnitus and can be a motivation for future randomized placebo-controlled clinical studies with auditory tRNS for tinnitus. Auditory alpha-modulated tACS does not seem to be contributing to the treatment of tinnitus.

  19. The Prenatal Care at School Program

    Science.gov (United States)

    Griswold, Carol H.; Nasso, Jacqueline T.; Swider, Susan; Ellison, Brenda R.; Griswold, Daniel L.; Brooks, Marilyn

    2013-01-01

    School absenteeism and poor compliance with prenatal appointments are concerns for pregnant teens. The Prenatal Care at School (PAS) program is a new model of prenatal care involving local health care providers and school personnel to reduce the need for students to leave school for prenatal care. The program combines prenatal care and education…

  20. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus.

    Science.gov (United States)

    Venezia, Jonathan H; Vaden, Kenneth I; Rong, Feng; Maddox, Dale; Saberi, Kourosh; Hickok, Gregory

    2017-01-01

    The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

  1. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  2. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  3. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  4. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Directory of Open Access Journals (Sweden)

    Miguel Fernandez-Del-Olmo

    Full Text Available Fast reaction times and the ability to develop a high rate of force development (RFD are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS; a visual stimulus accompanied by a non-startle auditory stimulus (AS; and a visual stimulus accompanied by a startle auditory stimulus (SS. Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  5. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  6. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  7. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  8. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  9. Prenatal Care Checkup

    Science.gov (United States)

    ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  10. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  11. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  12. Further Evaluation of Methods to Identify Matched Stimulation

    OpenAIRE

    Rapp, John T

    2007-01-01

    The effects of preferred stimulation on the vocal stereotypy of 2 individuals were evaluated in two experiments. The results of Experiment 1 showed that (a) the vocal stereotypy of both participants persisted in the absence of social consequences, (b) 1 participant manipulated toys that did and did not produce auditory stimulation, but only sound-producing toys decreased his vocal stereotypy, and (c) only noncontingent music decreased vocal stereotypy for the other participant, but sterotypy ...

  13. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  14. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory?

    Science.gov (United States)

    Horton, Megan K; Kahn, Linda G; Perera, Frederica; Barr, Dana Boyd; Rauh, Virginia

    2012-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphorus insecticide, has long been associated with delayed neurocognitive development and most recently with decrements in working memory at age 7. In the current paper, we expanded the previous work on CPF to investigate how additional biological and social environmental factors might create or explain differential neurodevelopmental susceptibility, focusing on main and moderating effects of the quality of the home environment (HOME) and child sex. We evaluate how the quality of the home environment (specifically, parental nurturance and environmental stimulation) and child sex interact with the adverse effects of prenatal CPF exposure on working memory at child age 7years. We did not observe a remediating effect of a high quality home environment (either parental nurturance or environmental stimulation) on the adverse effects of prenatal CPF exposure on working memory. However, we detected a borderline significant interaction between prenatal exposure to CPF and child sex (B (95% CI) for interaction term=-1.714 (-3.753 to 0.326)) suggesting males experience a greater decrement in working memory than females following prenatal CPF exposure. In addition, we detected a borderline interaction between parental nurturance and child sex (B (95% CI) for interaction term=1.490 (-0.518 to 3.499)) suggesting that, in terms of working memory, males benefit more from a nurturing environment than females. To our knowledge, this is the first investigation into factors that may inform an intervention strategy to reduce or reverse the cognitive deficits resulting from prenatal CPF exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory?

    Science.gov (United States)

    Horton, Megan K.; Kahn, Linda G.; Perera, Frederica; Barr, Dana Boyd; Rauh, Virginia

    2013-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphorus insecticide, has long been associated with delayed neurocognitive development and most recently with decrements in working memory at age 7. In the current paper, we expanded the previous work on CPF to investigate how additional biological and social environmental factors might create or explain differential neurodevelopmental susceptibility, focusing on main and moderating effects of the quality of the home environment (HOME) and child sex. We evaluate how the quality of the home environment (specifically, parental nurturance and environmental stimulation) and child sex interact with the adverse effects of prenatal CPF exposure on working memory at child age 7 years. We did not observe a remediating effect of a high quality home environment (either parental nurturance or environmental stimulation) on the adverse effects of prenatal CPF exposure on working memory. However, we detected a borderline significant interaction between prenatal exposure to CPF and child sex (B (95% CI) for interaction term = −1.714 (−3.753 to 0.326)) suggesting males experience a greater decrement in working memory than females following prenatal CPF exposure. In addition, we detected a borderline interaction between parental nurturance and child sex (B (95% CI) for interaction term = 1.490 (−0.518 to 3.499)) suggesting that, in terms of working memory, males benefit more from a nurturing environment than females. To our knowledge, this is the first investigation into factors that may inform an intervention strategy to reduce or reverse the cognitive deficits resulting from prenatal CPF exposure. PMID:22824009

  16. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  17. Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN).

    Science.gov (United States)

    Paavilainen, P; Simola, J; Jaramillo, M; Näätänen, R; Winkler, I

    2001-03-01

    Brain mechanisms extracting invariant information from varying auditory inputs were studied using the mismatch-negativity (MMN) brain response. We wished to determine whether the preattentive sound-analysis mechanisms, reflected by MMN, are capable of extracting invariant relationships based on abstract conjunctions between two sound features. The standard stimuli varied over a large range in frequency and intensity dimensions following the rule that the higher the frequency, the louder the intensity. The occasional deviant stimuli violated this frequency-intensity relationship and elicited an MMN. The results demonstrate that preattentive processing of auditory stimuli extends to unexpectedly complex relationships between the stimulus features.

  18. Preconception Care and Prenatal Care

    Science.gov (United States)

    ... Twitter Pinterest Email Print About Preconception Care and Prenatal Care What is preconception care? Preconception care is the ... improve the health of your child. What is prenatal care? Prenatal care is the health care a woman ...

  19. Contributions from eye movement potentials to stimulus preceding negativity during anticipation of auditory stimulation

    DEFF Research Database (Denmark)

    Engdahl, Lis; Bjerre, Vicky K; Christoffersen, Gert R J

    2007-01-01

    Cognitive anticipation of a stimulus has been associated with an ERP called "stimulus preceding negativity" (SPN). A new auditory delay task without stimulus-related motor activity demonstrated a prefrontal SPN, present during attentive anticipation of sounds with closed eyes, but absent during d...

  20. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  1. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  2. Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising.

    Science.gov (United States)

    Mina, Faten; Attina, Virginie; Duroc, Yvan; Veuillet, Evelyne; Truy, Eric; Thai-Van, Hung

    2017-01-01

    Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA) algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.

  3. Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising.

    Directory of Open Access Journals (Sweden)

    Faten Mina

    Full Text Available Auditory steady state responses (ASSRs in cochlear implant (CI patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.

  4. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    Science.gov (United States)

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  5. Pertumbuhan Prenatal dalam Kandungan Kambing Melalui Superovulasi

    Directory of Open Access Journals (Sweden)

    ADRIANI

    2007-06-01

    Full Text Available Thirty six Etawah-grade does (BW 20.4-44.2 kg, age 2.5-7 years were used to study the efficacy of increasing secretion of endogenous hormones of pregnancy by superovulation of does to stimulate of growth prenatal in uterus. The does were injected with pregnant mare serum gonadotrophin (PMSG, 0 IU/kg BW [grouped into nonsuperovulation-NSO] and 15 IU/kg BW [grouped into Superovulation-SO]. Intravaginal sponge (60 mg medroxyprogesterone acetate was applied for 14 days to synchronize estrus cycle. Twenty four hours prior to sponge removal, PMSG was injected to stimulate superovulation. After sponge removal, five experimental does were mixed with one buck for natural mating. Superovulation prior to mating increased number of corpora lutea, mean of maternal serum estradiol concentration, progesterone concentration, litter size, average birth weight and average milk yield, by 112, 67, 42, 27, 32, and 35%, respectively. Those were correlated with the increase of uterine, corpora lutea, and individual birth weight.

  6. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  7. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  8. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  9. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  10. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients.

    Science.gov (United States)

    López-Solà, Marina; Pujol, Jesus; Wager, Tor D; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-11-01

    Fibromyalgia (FM) is a disorder characterized by chronic pain and enhanced responses to acute noxious events. However, the sensory systems affected in FM may extend beyond pain itself, as FM patients show reduced tolerance to non-nociceptive sensory stimulation. Characterizing the neural substrates of multisensory hypersensitivity in FM may thus provide important clues about the underlying pathophysiology of the disorder. The aim of this study was to characterize brain responses to non-nociceptive sensory stimulation in FM patients and their relationship to subjective sensory sensitivity and clinical pain severity. Functional magnetic resonance imaging (MRI) was used to assess brain response to auditory, visual, and tactile motor stimulation in 35 women with FM and 25 matched controls. Correlation and mediation analyses were performed to establish the relationship between brain responses and 3 types of outcomes: subjective hypersensitivity to daily sensory stimulation, spontaneous pain, and functional disability. Patients reported increased subjective sensitivity (increased unpleasantness) in response to multisensory stimulation in daily life. Functional MRI revealed that patients showed reduced task-evoked activation in primary/secondary visual and auditory areas and augmented responses in the insula and anterior lingual gyrus. Reduced responses in visual and auditory areas were correlated with subjective sensory hypersensitivity and clinical severity measures. FM patients showed strong attenuation of brain responses to nonpainful events in early sensory cortices, accompanied by an amplified response at later stages of sensory integration in the insula. These abnormalities are associated with core FM symptoms, suggesting that they may be part of the pathophysiology of the disease. Copyright © 2014 by the American College of Rheumatology.

  12. SPET monitoring of perfusion changes in auditory cortex following mono- and multi-frequency stimuli

    Energy Technology Data Exchange (ETDEWEB)

    De Rossi, G. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Paludetti, G. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Di Nardo, W. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Calcagni, M.L. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Di Giuda, D. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Almadori, G. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Galli, J. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy)

    1996-08-01

    In order to assess the relationship between auditory cortex perfusion and the frequency of acoustic stimuli, twenty normally-hearing subjects underwent cerebral SPET. In 10 patients a multi-frequency stimulus (250-4000 Hz at 40 dB SL) was delivered, while 10 subjects were stimulated with a 500 Hz pure tone at 40 dB SL. The prestimulation SPET was subtracted from poststimulation study and auditory cortex activation was expressed as percent increments. Contralateral cortex was the most active area with multifrequency and monofrequency stimuli as well. A clear demonstration of a tonotopic distribution of acoustic stimuli in the auditory cortex was achieved. In addition, the accessory role played by homolateral accoustic areas was confirmed. The results of the present research support the hypothesis that brain SPET may be useful to obtain semiquantitative reliable information on low frequency auditory level in profoundly deaf patients. This may be achieved comparing the extension of the cortical areas activated by high-intensity multifrequency stimuli. (orig.) [Deutsch] Zur Aufklaerung der Beziehung von regionaler Perfusion des auditorischen Kortex und Frequenz des akustischen Stimulus wurden 20 Normalpatienten mit Hilfe von Hirn-SPECT untersucht. Bei je 10 Patienten wurde ein Multifrequenzstimulus (250-2000 Hz bei 60 dB) bzw. ein Monofrequenzstimulus (500 Hz bei 60 dB) verwendet. Die vor der Stimulation akquirierten SPECT-Daten wurden jeweils von den nach der Stimulation akquirierten SPECT-Daten abgezogen und die aditorische Kortexaktivation als prozentuale Steigerung ausgedrueckt. Der kontralaterale Kortex war das am staerksten aktivierte Areal sowohl bei der Multifrequenz- als auch bei der Monofrequenzstimulation. Es konnte eine klare tonotopische Verteilung der akustischen Stimuli im auditorischen Koretx demonstriert werden. Zusaetzlich konnte die akzessorische Rolle des homolateralen akustischen Kortex bestaetigt werden. Die Ergebnisse dieser Studie unterstuetzen

  13. Multisensory Stimulation to Improve Low- and Higher-Level Sensory Deficits after Stroke : A Systematic Review

    NARCIS (Netherlands)

    Tinga, A.M.; Visser-Meily, Johanna M a; van der Smagt, M.J.; van der Stigchel, S.; van Ee, R.; Nijboer, T.C.W.

    The aim of this systematic review was to integrate and assess evidence for the effectiveness of multisensory stimulation (i.e., stimulating at least two of the following sensory systems: visual, auditory, and somatosensory) as a possible rehabilitation method after stroke. Evidence was considered

  14. The Influence of Auditory Information on Visual Size Adaptation.

    Science.gov (United States)

    Tonelli, Alessia; Cuturi, Luigi F; Gori, Monica

    2017-01-01

    Size perception can be influenced by several visual cues, such as spatial (e.g., depth or vergence) and temporal contextual cues (e.g., adaptation to steady visual stimulation). Nevertheless, perception is generally multisensory and other sensory modalities, such as auditory, can contribute to the functional estimation of the size of objects. In this study, we investigate whether auditory stimuli at different sound pitches can influence visual size perception after visual adaptation. To this aim, we used an adaptation paradigm (Pooresmaeili et al., 2013) in three experimental conditions: visual-only, visual-sound at 100 Hz and visual-sound at 9,000 Hz. We asked participants to judge the size of a test stimulus in a size discrimination task. First, we obtained a baseline for all conditions. In the visual-sound conditions, the auditory stimulus was concurrent to the test stimulus. Secondly, we repeated the task by presenting an adapter (twice as big as the reference stimulus) before the test stimulus. We replicated the size aftereffect in the visual-only condition: the test stimulus was perceived smaller than its physical size. The new finding is that we found the auditory stimuli have an effect on the perceived size of the test stimulus after visual adaptation: low frequency sound decreased the effect of visual adaptation, making the stimulus perceived bigger compared to the visual-only condition, and contrarily, the high frequency sound had the opposite effect, making the test size perceived even smaller.

  15. The Effects of Audiovisual Stimulation on the Acceptance of Background Noise.

    Science.gov (United States)

    Plyler, Patrick N; Lang, Rowan; Monroe, Amy L; Gaudiano, Paul

    2015-05-01

    Previous examinations of noise acceptance have been conducted using an auditory stimulus only; however, the effect of visual speech supplementation of the auditory stimulus on acceptance of noise remains limited. The purpose of the present study was to determine the effect of audiovisual stimulation on the acceptance of noise in listeners with normal and impaired hearing. A repeated measures design was utilized. A total of 92 adult participants were recruited for this experiment. Of these participants, 54 were listeners with normal hearing and 38 were listeners with sensorineural hearing impairment. Most comfortable levels and acceptable noise levels (ANL) were obtained using auditory and auditory-visual stimulation modes for the unaided listening condition for each participant and for the aided listening condition for 35 of the participants with impaired hearing that owned hearing aids. Speech reading ability was assessed using the Utley test for each participant. The addition of visual input did not impact the most comfortable level values for listeners in either group; however, visual input improved unaided ANL values for listeners with normal hearing and aided ANL values in listeners with impaired hearing. ANL benefit received from visual speech input was related to the auditory ANL in listeners in each group; however, it was not related to speech reading ability for either listener group in any experimental condition. Visual speech input can significantly impact measures of noise acceptance. The current ANL measure may not accurately reflect acceptance of noise values when in more realistic environments, where the signal of interest is both audible and visible to the listener. American Academy of Audiology.

  16. Does offering prenatal screening influence pregnant women's attitudes regarding prenatal testing?

    NARCIS (Netherlands)

    Kleinveld, J.H.; van den Berg, M.; van Eijk, J.T.; van Vugt, J.M.G.; van der Wal, G.; Timmermans, D.R.M.

    2008-01-01

    Objectives: This study aims to find out whether offering prenatal screening for Down syndrome and neural tube defects influences pregnant women's attitudes toward having a screening test. Methods: Women were randomised into a group that was offered prenatal screening and a group that was not offered

  17. Language processing of auditory cortex revealed by functional magnetic resonance imaging in presbycusis patients.

    Science.gov (United States)

    Chen, Xianming; Wang, Maoxin; Deng, Yihong; Liang, Yonghui; Li, Jianzhong; Chen, Shiyan

    2016-01-01

    Contralateral temporal lobe activation decreases with aging, regardless of hearing status, with elderly individuals showing reduced right ear advantage. Aging and hearing loss possibly lead to presbycusis speech discrimination decline. To evaluate presbycusis patients' auditory cortex activation under verbal stimulation. Thirty-six patients were enrolled: 10 presbycusis patients (mean age = 64 years, range = 60-70), 10 in the healthy aged group (mean age = 66 years, range = 60-70), and 16 young healthy volunteers (mean age = 25 years, range = 23-28). These three groups underwent simultaneous 1 kHz and 90 dB single-syllable word stimuli and (blood-oxygen-level-dependent functional magnetic resonance imaging) BOLD fMRI examinations. The main activation regions were superior temporal and middle temporal gyrus. For all aged subjects, the right region of interest (ROI) activation volume was decreased compared with the young group. With left ear stimulation, bilateral ROI activation intensity held. With right ear stimulation, the aged group's activation intensity was higher. Using monaural stimulation in the young group, contralateral temporal lobe activation volume and intensity were higher vs ipsilateral, while they were lower in the aged and presbycusis groups. On left and right ear auditory tasks, the young group showed right ear advantage, while the aged and presbycusis groups showed reduced right ear advantage.

  18. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  19. Prenatal diethylstilbestrol exposure and reproductive hormones in premenopausal women.

    Science.gov (United States)

    Wise, L A; Troisi, R; Hatch, E E; Titus, L J; Rothman, K J; Harlow, B L

    2015-06-01

    Diethylstilbestrol (DES), a synthetic estrogen widely prescribed to pregnant women in the mid-1900s, is a potent endocrine disruptor. Prenatal DES exposure has been associated with reproductive disorders in women, but little is known about its effects on endogenous hormones. We assessed the association between prenatal DES exposure and reproductive hormones among participants from the Harvard Study of Moods and Cycles (HSMC), a longitudinal study of premenopausal women aged 36-45 years from Massachusetts (1995-1999). Prenatal DES exposure was reported at baseline (43 DES exposed and 782 unexposed). Early follicular-phase concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol were measured at baseline and every 6 months during 36 months of follow-up. Inhibin B concentrations were measured through 18 months. We used multivariable logistic and repeated-measures linear regression to estimate odds ratios (OR) and percent differences in mean hormone values (β), respectively, comparing DES exposed with unexposed women, adjusted for potential confounders. DES-exposed women had lower mean concentrations of estradiol (pg/ml) (β=-15.6%, 95% confidence interval (CI): -26.5%, -3.2%) and inhibin B (pg/ml) (β=-20.3%, CI: -35.1%, -2.3%), and higher mean concentrations of FSH (IU/I) (β=12.2%, CI: -1.5%, 27.9%) and LH (IU/I) (β=10.4%, CI: -7.2%, 31.3%), than unexposed women. ORs for the association of DES with maximum FSH>10 IU/I and minimum inhibin B<45 pg/ml--indicators of low ovarian reserve--were 1.90 (CI: 0.86, 4.22) and 4.00 (CI: 0.88-18.1), respectively. Prenatal DES exposure was associated with variation in concentrations of FSH, estradiol and inhibin B among women of late reproductive age.

  20. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  1. An EMG Study of the Lip Muscles during Covert Auditory Verbal Hallucinations in Schizophrenia

    Science.gov (United States)

    Rapin, Lucile; Dohen, Marion; Polosan, Mircea; Perrier, Pascal; Loevenbruck, Hélène

    2013-01-01

    Purpose: "Auditory verbal hallucinations" (AVHs) are speech perceptions in the absence of external stimulation. According to an influential theoretical account of AVHs in schizophrenia, a deficit in inner-speech monitoring may cause the patients' verbal thoughts to be perceived as external voices. The account is based on a…

  2. Prenatal care: associations with prenatal depressive symptoms and social support in low-income urban women.

    Science.gov (United States)

    Sidebottom, Abbey C; Hellerstedt, Wendy L; Harrison, Patricia A; Jones-Webb, Rhonda J

    2017-10-01

    We examined associations of depressive symptoms and social support with late and inadequate prenatal care in a low-income urban population. The sample was prenatal care patients at five community health centers. Measures of depressive symptoms, social support, and covariates were collected at prenatal care entry. Prenatal care entry and adequacy came from birth certificates. We examined outcomes of late prenatal care and less than adequate care in multivariable models. Among 2341 study participants, 16% had elevated depressive symptoms, 70% had moderate/poor social support, 21% had no/low partner support, 37% had late prenatal care, and 29% had less than adequate prenatal care. Women with both no/low partner support and elevated depressive symptoms were at highest risk of late care (AOR 1.85, CI 1.31, 2.60, p care (AOR 0.74, CI 0.54, 1.10, p = 0.051). Women with moderate/high depressive symptoms were less likely to experience less than adequate care compared to women with low symptoms (AOR 0.73, CI 0.56, 0.96, p = 0.022). Social support and partner support were negatively associated with indices of prenatal care use. Partner support was identified as protective for women with depressive symptoms with regard to late care. Study findings support public health initiatives focused on promoting models of care that address preconception and reproductive life planning. Practice-based implications include possible screening for social support and depression in preconception contexts.

  3. Auditory feedback blocks memory benefits of cueing during sleep.

    Science.gov (United States)

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-10-28

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep.

  4. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    Science.gov (United States)

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  5. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  6. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Use of Repetitive Transcranial Magnetic Stimulation for Treatment in Psychiatry

    NARCIS (Netherlands)

    Aleman, Andre

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory verbal hallucinations in schizophrenia.

  8. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  9. Activity in a premotor cortical nucleus of zebra finches is locally organized and exhibits auditory selectivity in neurons but not in glia.

    Directory of Open Access Journals (Sweden)

    Michael H Graber

    Full Text Available Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations.

  10. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  11. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  12. Seeing the sound after visual loss: functional MRI in acquired auditory-visual synesthesia.

    Science.gov (United States)

    Yong, Zixin; Hsieh, Po-Jang; Milea, Dan

    2017-02-01

    Acquired auditory-visual synesthesia (AVS) is a rare neurological sign, in which specific auditory stimulation triggers visual experience. In this study, we used event-related fMRI to explore the brain regions correlated with acquired monocular sound-induced phosphenes, which occurred 2 months after unilateral visual loss due to an ischemic optic neuropathy. During the fMRI session, 1-s pure tones at various pitches were presented to the patient, who was asked to report occurrence of sound-induced phosphenes by pressing one of the two buttons (yes/no). The brain activation during phosphene-experienced trials was contrasted with non-phosphene trials and compared to results obtained in one healthy control subject who underwent the same fMRI protocol. Our results suggest, for the first time, that acquired AVS occurring after visual impairment is associated with bilateral activation of primary and secondary visual cortex, possibly due to cross-wiring between auditory and visual sensory modalities.

  13. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Bisensory stimulation increases gamma-responses over multiple cortical regions.

    Science.gov (United States)

    Sakowitz, O W; Quiroga, R Q; Schürmann, M; Başar, E

    2001-04-01

    In the framework of the discussion about gamma (approx. 40 Hz) oscillations as information carriers in the brain, we investigated the relationship between gamma responses in the EEG and intersensory association. Auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) were compared with bisensory evoked potentials (BEPs; simultaneous auditory and visual stimulation) in 15 subjects. Gamma responses in AEPs, VEPs and BEPs were assessed by means of wavelet decomposition. Overall maximum gamma-components post-stimulus were highest in BEPs (P < 0.01). Bisensory evoked gamma-responses also showed significant central, parietal and occipital amplitude-increases (P < 0.001, P < 0.01, P < 0.05, respectively; prestimulus interval as baseline). These were of greater magnitude when compared with the unisensory responses. As a correlate of the marked gamma responses to bimodal stimulation we suggest a process of 'intersensory association', i.e. one of the steps between sensory transmission and perception. Our data may be interpreted as a further example of function-related gamma responses in the EEG.

  15. Prenatal stress may increase vulnerability to life events comparison with the effects of prenatal dexamethasone

    DEFF Research Database (Denmark)

    Hougaard, Karin; Andersen, Maibritt B; Kjaer, Sanna L

    2005-01-01

    naïve at the time of ASR testing, whereas the other had been through blood sampling for assessment of the hormonal stress response to restraint, 3 months previously. Both prenatal CMS and dexamethasone increased ASR in the offspring compared to controls, but only in prenatally stressed offspring......Prenatal stress has been associated with a variety of alterations in the offspring. The presented observations suggest that rather than causing changes in the offspring per se, prenatal stress may increase the organism's vulnerability to aversive life events. Offspring of rat dams stressed...... of the acoustic startle response. Further, a single aversive life event showed capable of changing the reactivity of prenatally stressed offspring, whereas offspring of dams going through a less stressful gestation was largely unaffected by this event. This suggests that circumstances dating back to the very...

  16. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  18. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  20. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    Science.gov (United States)

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Prenatal anxiety effects: A review.

    Science.gov (United States)

    Field, Tiffany

    2017-11-01

    This review is based on literature on prenatal anxiety effects that was found on Pubmed and PsycINFO for the years 2010-2016. Prenatal anxiety is thought to have distinct features, although it has been measured both by specific prenatal anxiety symptoms as well as by standardized anxiety scales. Its prevalence has ranged from 21 to 25% and it has been predicted by a number of pregnancy - related variables such as unintended pregnancy, demographic variables such as low acculturation and income and psychosocial factors including pessimism and partner tension. Prenatal anxiety effects on pregnancy include increased cortisol levels, pro-inflammatory cytokines, obstetric problems and cesarean section. Effects on the neonate include lower gestational age, prematurity, less insulin-like growth factor in cord blood, less exclusive breast-feeding and less self-regulation during the heelstick procedure. Prenatal anxiety effects continue into infancy and childhood both on physiological development and emotional/mental development. Among the physiological effects are lower vagal activity across the first two years, and lower immunity, more illnesses and reduced gray matter in childhood. Prenatal anxiety effects on emotional/mental development include greater negative emotionality and in infants, lower mental development scores and internalizing problems. Anxiety disorders occur during childhood and elevated cortisol and internalizing behaviors occur during adolescence. Interventions for prenatal anxiety are virtually nonexistent, although stroking (massaging) the infant has moderated the pregnancy - specific anxiety effects on internalizing behaviors in the offspring. The limitations of this literature include the homogeneity of samples, the frequent use of anxiety measures that are not specific to pregnancy, and the reliance on self-report. Nonetheless, the literature highlights the negative, long-term effects of prenatal anxiety and the need for screening and early

  2. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Directory of Open Access Journals (Sweden)

    Liliane Aparecida Fagundes Silva

    2015-01-01

    Full Text Available The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP; speech perception tests of the Glendonald Auditory Screening Procedure (GASP; Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS; and Meaningful Use of Speech Scales (MUSS. The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms. In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms. The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI.

  3. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  4. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Science.gov (United States)

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  5. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Christos I Ioannou

    Full Text Available The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB. The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  6. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  7. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  8. Prenatal vitamins: what is in the bottle?

    Science.gov (United States)

    Duerbeck, Norman B; Dowling, David D; Duerbeck, Jillinda M

    2014-12-01

    Nearly all obstetricians routinely prescribe prenatal vitamins to their pregnant patients at the time of the first prenatal visit. Many times, patients' understanding of the health benefits of prenatal vitamins differs substantially from that of the prescribing physician. The following is a review of the most common ingredients found in prenatal vitamins and their purported health benefits.

  9. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  10. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  11. Prenatal stress, prematurity and asthma

    Science.gov (United States)

    Medsker, Brock; Forno, Erick; Simhan, Hyagriv; Celedón, Juan C.

    2016-01-01

    Asthma is the most common chronic disease of childhood, affecting millions of children in the U.S. and worldwide. Prematurity is a risk factor for asthma, and certain ethnic or racial minorities such as Puerto Ricans and non-Hispanic Blacks are disproportionately affected by both prematurity and asthma. In this review, we examine current evidence to support maternal psychosocial stress as a putative link between prematurity and asthma, while also focusing on disruption of the hypothalamic-pituitary-adrenal (HPA) axis and immune responses as potential underlying mechanisms for stress-induced “premature asthma”. Prenatal stress may not only cause abnormalities in the HPA axis but also epigenetic changes in the fetal glucocorticoid receptor gene (NR3C1), leading to impaired glucocorticoid metabolism. Moreover, maternal stress can alter fetal cytokine balance, favoring Th2 (allergic) immune responses characteristic of atopic asthma: IL-6, which has been associated with premature labor, can promote Th2 responses by stimulating production of IL-4 and IL-13. Given a link among stress, prematurity, and asthma, future research should include birth cohorts aimed at confirming and better characterizing “premature asthma”. If confirmed, clinical trials of prenatal maternal stress reduction would be warranted to reduce the burden of these common co-morbidities. While awaiting the results of such studies, sound policies to prevent domestic and community violence (e.g. from firearms) are justified, not only by public safety but also by growing evidence of detrimental effects of violence-induced stress on psychiatric and somatic health. PMID:26676148

  12. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie.

    Science.gov (United States)

    Hanke, Michael; Baumgartner, Florian J; Ibe, Pierre; Kaule, Falko R; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset - 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film ("Forrest Gump"). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures - from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized.

  13. Prenatal treatment prevents learning deficit in Down syndrome model.

    Science.gov (United States)

    Incerti, Maddalena; Horowitz, Kari; Roberson, Robin; Abebe, Daniel; Toso, Laura; Caballero, Madeline; Spong, Catherine Y

    2012-01-01

    Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8-10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, PDown syndrome-placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome-placebo (ptreatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.

  14. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  15. Genes Underlying Positive Influence Of Prenatal Environmental ...

    African Journals Online (AJOL)

    Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And ... Prenatal environmental enrichment (EE) has been proven to positively affect but ... Conclusion: The negative-positive prenatal effect could contribute to altered ...

  16. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  17. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  18. Prenatal Care: New Hampshire Residents - 1976.

    Science.gov (United States)

    Mires, Maynard H.; Sirc, Charles E.

    Data from 1976 New Hampshire birth certificates were used to examine the correlations between the degree (month of pregnancy that prenatal care began) and intensity (number of prenatal visits) of prenatal care and low infant birth weight, illegitimacy, maternal age, maternal education, and complications of pregnancy. The rate of low birth weight…

  19. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  20. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  1. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of continuous exposure to carbon monoxide on auditory vigilance in man

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.M.; Jolly, E.J.; Pethybridge, R.J.; Colquhoun, W.P.

    1981-02-01

    Six different groups of non-smoking young male subjcts were stutied separately for 18 consecutive days each in a closed controlled-environment human exposure chamber. Each group was subjected to a 5-day control period in fresh air followed successively by an 8-day period of continuous exposure to 50 ppm, 15 ppm or 0 ppm (controll) by volume of carbon monoxide (CO) in air, and a 5-day recovery period in fresh air. The subjects performed a 1-h auditory vigilance task every day at the same time of day in a fixed qualitative, quantitative, and temporal relationship with food intake, consumption of stimulating beverages, physical activity, and sleep. It was concluded that such CO exposure, involving the continuous carriage of carboxyhaemoglobin loads up to 70%, was without significant effect on auditory vigilance.

  3. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    Science.gov (United States)

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  4. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  5. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  6. Neurodevelopmental Outcomes of Prenatal Stress

    Directory of Open Access Journals (Sweden)

    M. Genco Usta

    2012-03-01

    Full Text Available The influence of prenatal stress on psychopathology has been observed in many animal and human studies. In many studies, stress during prenatal period has been shown to result in negative feedback dysregulation and hyperactivity of hypothalamo-pituitary-adrenocortical axis. Prenatal stres also may cause increased risk of birth complications, startle or distress in response to novel and surprising stimuli during infancy; lower Full Scale IQs, language abilities and attention deficiency in period of 3-5 years; increased risk of attention deficit hyperactivity syndrome, anxiety symptoms, depressive disorder and impulsivity during adolescence. Additionally, timing of prenatal stress is also important and 12-22 weeks of gestation seems to be the most vulnerable period. The results underline the need for early prevention and intervention programs for highly anxious women during pregnancy. Administration of prenatal stress monitoring to public health programs or removing pregnant women who have been exposed to life events such as natural disaster, terror attack to secure areas that provide basic needs may be crucial.

  7. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    Science.gov (United States)

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  8. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    Science.gov (United States)

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  9. Barriers to adequate prenatal care utilization in American Samoa

    Science.gov (United States)

    Hawley, Nicola L; Brown, Carolyn; Nu’usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T

    2013-01-01

    Objective To describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Methods Using data from prenatal clinic records, women (n=692) were categorized according to the Adequacy of Prenatal Care Utilization Index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way Analysis of Variance (ANOVA) and independent samples t-tests. Results Between 2001 and 2008 85.4% of women received inadequate prenatal care. Parity (P=0.02), maternal unemployment (P=0.03), and both parents being unemployed (P=0.03) were negatively associated with the timing of prenatal care initation. Giving birth in 2007–2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 versus 25.12 weeks; Pprenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007–2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population. PMID:24045912

  10. Amplitude by peak interaction but no evidence of auditory mismatch response deficits to frequency change in preschool age children with FASD.

    Science.gov (United States)

    Kabella, Danielle M; Flynn, Lucinda; Peters, Amanda; Kodituwakku, Piyadasa; Stephen, Julia M

    2018-05-24

    Prior studies indicate that the auditory mismatch response is sensitive to early alterations in brain development in multiple developmental disorders. Prenatal alcohol exposure is known to impact early auditory processing. The current study hypothesized alterations in the mismatch response in young children with FASD. Participants in this study were 9 children with a fetal alcohol spectrum disorder and 17 control children (Control) aged 3 to 6 years. Participants underwent MEG and structural MRI scans separately. We compared groups on neurophysiological Mismatch Negativity (MMN) responses to auditory stimuli measured using the auditory oddball paradigm. Frequent (1000 Hz) and rare (1200Hz) tones were presented at 72 dB. There was no significant group difference in MMN response latency or amplitude represented by the peak located ~200 ms after stimulus presentation in the difference timecourse between frequent and infrequent tones. Examining the timecourses to the frequent and infrequent tones separately, RM-ANOVA with condition (frequent vs. rare), peak (N100m and N200m), and hemisphere as within-subject factors and diagnosis and sex as the between-subject factors showed a significant interaction of peak by diagnosis (p = 0.001), with a pattern of decreased amplitude from N100m to N200m in Control children and the opposite pattern in children with FASD. However, no significant difference was found with the simple effects comparisons. No group differences were found in the response latencies of the rare auditory evoked fields (AEFs). The results indicate that there was no detectable effect of alcohol exposure on the amplitude or latency of the MMNm response to simple tones modulated by frequency change in preschool-age children with FASD. However, while discrimination abilities to simple tones may be intact, early auditory sensory processing revealed by the interaction between N100m and N200m amplitude indicates that auditory sensory processing may be altered in

  11. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Illing, Robert-Benjamin

    2010-08-06

    The immediate-early-gene c-fos is among the first genes to be expressed following sensory-invoked neuronal activity. Its gene product c-Fos forms the limiting monomer of the heterodimeric activator protein-1 transcription factor that triggers various genes involved in neuroplastic remodeling. This study investigated the pattern of c-Fos expression in anteroventral (AVCN) and dorsal cochlear nucleus (DCN) and central inferior colliculus (CIC) after 45 min, 73 min, 2 h, 3:15 h and 5 h of unilateral electrical intracochlear stimulation (EIS) at 50 Hz in anaesthetized rats. Following EIS, tonotopic c-Fos expression was observed for each stimulation time in ipsilateral AVCN, DCN bilaterally, and contralateral CIC. By counting c-Fos positive nuclei, we discovered temporal non-linearities in the size of the respective population of c-Fos expressing neurons. In all regions investigated, the populations significantly increased from 73 min to 2 h but decreased towards 3:15 h. In AVCN, the number rose again by 5 h of EIS. Remarkably, the same was noted for neurons with large nuclei in deep DCN. In both regions, the population of responsive neurons shifted spatially: In central AVCN, the density of c-Fos positive cells increased significantly from 2 to 5h with medial and lateral regions remaining unchanged. In DCN, the density of large c-Fos positive nuclei fell in the upper and rose in the deep layers from 45 min to 5h of EIS. In conclusion, spatiotemporally varying recruitments of neuronal subpopulations into cellular networks responding to specific patterns of sensory activity take place in the auditory brainstem. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Prenatal Care: Third Trimester Visits

    Science.gov (United States)

    ... Pregnancy week by week During the third trimester, prenatal care might include vaginal exams to check the baby's position. By Mayo Clinic Staff Prenatal care is an important part of a healthy pregnancy, ...

  13. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    Science.gov (United States)

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  14. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  15. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  16. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Martin eSchecklmann

    2015-10-01

    Full Text Available Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About ten years ago, repetitive transcranial magnetic stimulation (rTMS of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity. Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel EEG system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil served as sham condition. Before and after each rTMS protocol five minutes of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with one week interval in between.Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS.This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be interpreted

  17. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Science.gov (United States)

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  18. Prevalence, prenatal diagnosis and clinical features of oculo-auriculo-vertebral spectrum

    DEFF Research Database (Denmark)

    Barisic, Ingeborg; Odak, Ljubica; Loane, Maria

    2014-01-01

    . Of the 355 infants diagnosed with oculo-auriculo-vertebral spectrum, there were 95.8% (340/355) live born, 0.8% (3/355) fetal deaths, 3.4% (12/355) terminations of pregnancy for fetal anomaly and 1.5% (5/340) neonatal deaths. In 18.9%, there was prenatal detection of anomaly/anomalies associated with oculo......-auriculo-vertebral spectrum, 69.7% were diagnosed at birth, 3.9% in the first week of life and 6.1% within 1 year of life. Microtia (88.8%), hemifacial microsomia (49.0%) and ear tags (44.4%) were the most frequent anomalies, followed by atresia/stenosis of external auditory canal (25.1%), diverse vertebral (24.3%) and eye...... anomaly, was 3.8 per 100,000 births. Twinning, assisted reproductive techniques and maternal pre-pregnancy diabetes were confirmed as risk factors. The high rate of different associated anomalies points to the need of performing an early ultrasound screening in all infants born with this disorder....

  19. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  20. Prenatal Care: Second Trimester Visits

    Science.gov (United States)

    ... Pregnancy week by week During the second trimester, prenatal care includes routine lab tests and measurements of your ... too. By Mayo Clinic Staff The goal of prenatal care is to ensure that you and your baby ...

  1. Prenatal Nitrate Exposure and Childhood Asthma. Influence of Maternal Prenatal Stress and Fetal Sex.

    Science.gov (United States)

    Bose, Sonali; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Di, Qian; Rosa, Maria José; Lee, Alison; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Wright, Robert O; Cohen, Sheldon; Coull, Brent A; Wright, Rosalind J

    2017-12-01

    Impact of ambient pollution upon children's asthma may differ by sex, and exposure dose and timing. Psychosocial stress can also modify pollutant effects. These associations have not been examined for in utero ambient nitrate exposure. We implemented Bayesian-distributed lag interaction models to identify sensitive prenatal windows for the influence of nitrate (NO 3 - ) on child asthma, accounting for effect modification by sex and stress. Analyses included 752 mother-child dyads. Daily ambient NO 3 - exposure during pregnancy was derived using a hybrid chemical transport (Geos-Chem)/land-use regression model and natural log transformed. Prenatal maternal stress was indexed by a negative life events score (high [>2] vs. low [≤2]). The outcome was clinician-diagnosed asthma by age 6 years. Most mothers were Hispanic (54%) or black (29%), had a high school education or less (66%), never smoked (80%), and reported low prenatal stress (58%); 15% of children developed asthma. BDILMs adjusted for maternal age, race, education, prepregnancy obesity, atopy, and smoking status identified two sensitive windows (7-19 and 33-40 wk gestation), during which increased NO 3 - was associated with greater odds of asthma, specifically among boys born to mothers reporting high prenatal stress. Cumulative effects of NO 3 - across pregnancy were also significant in this subgroup (odds ratio = 2.64, 95% confidence interval = 1.27-5.39; per interquartile range increase in ln NO 3 - ). Prenatal NO 3 - exposure during distinct sensitive windows was associated with incident asthma in boys concurrently exposed to high prenatal stress.

  2. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  3. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  4. Prenatal Genetic Counseling (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español Prenatal Genetic Counseling KidsHealth / For Parents / Prenatal Genetic Counseling What's in ... can they help your family? What Is Genetic Counseling? Genetic counseling is the process of: evaluating family ...

  5. Eugenesia y diagnóstico prenatal

    OpenAIRE

    González Salvat, Rosa María; González Labrador, Ignacio

    2002-01-01

    El uso del diagnóstico prenatal en la práctica de la genética médica ha hecho que se recuerden teorías eugenésicas. Se realizó una revisión histórica de este término y se relacionó con el uso del diagnóstico prenatal (DPN) y el aborto selectivo a la luz de los conocimientos bioéticos actuales. The use of the prenatal diagnosis in the practice of medical genetics has led us to remember eugenic theories. A historical review of this term was made and it was connected with the use of prenatal ...

  6. Prenatal Diagnosis of Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Yau, Mabel; Khattab, Ahmed; New, Maria I

    2016-06-01

    Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is a monogenic disorder of adrenal steroidogenesis. To prevent genital ambiguity, in girls, prenatal dexamethasone treatment is administered early in the first trimester. Prenatal genetic diagnosis of CAH and fetal sex determination identify affected female fetuses at risk for genital virilization. Advancements in prenatal diagnosis are owing to improved understanding of the genetic basis of CAH and improved technology. Cloning of the CYP21A2 gene ushered in molecular genetic analysis as the current standard of care. Noninvasive prenatal diagnosis allows for targeted treatment and avoids unnecessary treatment of males and unaffected females. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  9. Targeted neural network interventions for auditory hallucinations: Can TMS inform DBS?

    Science.gov (United States)

    Taylor, Joseph J; Krystal, John H; D'Souza, Deepak C; Gerrard, Jason Lee; Corlett, Philip R

    2017-09-29

    The debilitating and refractory nature of auditory hallucinations (AH) in schizophrenia and other psychiatric disorders has stimulated investigations into neuromodulatory interventions that target the aberrant neural networks associated with them. Internal or invasive forms of brain stimulation such as deep brain stimulation (DBS) are currently being explored for treatment-refractory schizophrenia. The process of developing and implementing DBS is limited by symptom clustering within psychiatric constructs as well as a scarcity of causal tools with which to predict response, refine targeting or guide clinical decisions. Transcranial magnetic stimulation (TMS), an external or non-invasive form of brain stimulation, has shown some promise as a therapeutic intervention for AH but remains relatively underutilized as an investigational probe of clinically relevant neural networks. In this editorial, we propose that TMS has the potential to inform DBS by adding individualized causal evidence to an evaluation processes otherwise devoid of it in patients. Although there are significant limitations and safety concerns regarding DBS, the combination of TMS with computational modeling of neuroimaging and neurophysiological data could provide critical insights into more robust and adaptable network modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  11. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. Copyright © 2015 the American Physiological Society.

  12. Congenital lung malformations: correlation between prenatal and ...

    African Journals Online (AJOL)

    Aim: Congenital lung malformations are a common finding during prenatal ultrasonography (US). Investigations were completed by means of prenatal MRI and postnatal computed tomographic (CT) scan. The purpose of this study was to compare these prenatal findings with postnatal findings and pathological findings after ...

  13. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  15. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  16. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  17. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus.

    Science.gov (United States)

    Kleinjung, Tobias; Eichhammer, Peter; Langguth, Berthold; Jacob, Peter; Marienhagen, Joerg; Hajak, Goeran; Wolf, Stephan R; Strutz, Juergen

    2005-04-01

    The pathophysiologic mechanisms of idiopathic tinnitus remain unclear. Recent studies demonstrated focal brain activation in the auditory cortex of patients with chronic tinnitus. Low-frequency repetitive transcranial magnetic stimulation (rTMS) is able to reduce cortical hyperexcitability. Fusing of the individual PET-scan with the structural MRI-scan (T1, MPRAGE) allowed us to identify exactly the area of increased metabolic activity in the auditory cortex of patients with chronic tinnitus. With the use of a neuronavigational system, this target area was exactly stimulated by the figure 8-shaped magnetic coil. In a prospective study, rTMS (110% motor threshold; 1 Hz; 2000 stimuli/day over 5 days) was performed using a placebo controlled cross-over design. Patients were blinded regarding the stimulus condition. For the sham stimulation a specific sham-coil system was used. Fourteen patients were followed for 6 months. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). Tertiary referral medical center. Increased metabolic activation in the auditory cortex was verified in all patients. After 5 days of verum rTMS, a highly significant improvement of the tinnitus score was found whereas the sham treatment did not show any significant changes. The treatment outcome after 6 months still demonstrated significant reduction of tinnitus score. These preliminary results demonstrate that neuronavigated rTMS offers new possibilities in the understanding and treatment of chronic tinnitus.

  18. Functional Changes in the Human Auditory Cortex in Ageing

    Science.gov (United States)

    Profant, Oliver; Tintěra, Jaroslav; Balogová, Zuzana; Ibrahim, Ibrahim; Jilek, Milan; Syka, Josef

    2015-01-01

    Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing. PMID:25734519

  19. Impact of Combined Prenatal Ethanol and Prenatal Stress Exposures on Markers of Activity-Dependent Synaptic Plasticity in Rat Dentate Gyrus

    OpenAIRE

    Staples, Miranda C.; Porch, Morgan W.; Savage, Daniel D.

    2014-01-01

    Prenatal ethanol exposure and prenatal stress can each cause long-lasting deficits in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms underlying these perturbations following a learning event are still poorly understood. We examined the effects of prenatal ethanol exposure and prenatal stress exposure, either alone or in combination, on the cytosolic expression of activity-regulated cytoskeletal (ARC) protein and the synaptosomal expression o...

  20. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side...... stimulation that gives rise to the associated conscious vestibular sensation of vertigo....

  1. Prenatal chemical exposures and child language development.

    Science.gov (United States)

    Dzwilewski, Kelsey L C; Schantz, Susan L

    2015-01-01

    The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals, both manmade (insulating materials, flame retardants, pesticides) and naturally occurring (e.g., lead, mercury), may be associated with delays or impairments in language development. We focus primarily on a subset of more extensively studied chemicals-polychlorinated biphenyls (PCBs), lead, and methyl mercury-for which a reasonable body of literature on neurodevelopmental outcomes is available. We also briefly summarize the smaller body of evidence for other chemicals including polybrominated diphenyl ether flame retardants (PBDEs) and organophosphate pesticides. Very few studies have used specific assessments of language development and function. Therefore, we included discussion of aspects of cognitive development such as overall intellectual functioning and verbal abilities that rely on language, as well as aspects of cognition such as verbal and auditory working memory that are critical underpinnings of language development. A high percentage of prospective birth cohort studies of PCBs, lead, and mercury have reported exposure-related reductions in overall IQ and/or verbal IQ that persist into middle or late childhood. Given these findings, it is important that clinicians and researchers in communication sciences and disorders are aware of the potential for environmental chemicals to impact language development. The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals may be associated with delays or impairments in language development. Readers will gain an understanding of the literature suggesting that early exposure to polychlorinated biphenyls (PCBs), lead, and mercury may be associated with decrements in cognitive domains that depend on language or are critical for language development. We also briefly summarize the smaller body of evidence regarding polybrominated diphenyl

  2. Prenatal drug exposure: infant and toddler outcomes.

    Science.gov (United States)

    Bandstra, Emmalee S; Morrow, Connie E; Mansoor, Elana; Accornero, Veronica H

    2010-04-01

    This manuscript provides an overview of the current scientific literature on the impact of maternal drug use, specifically opioids and cocaine, during pregnancy on the acute and long-term outcomes of infants and toddlers from birth through age 3 years. Emphasis with regard to opioids is placed on heroin and opioid substitutes used to treat opioid addiction, including methadone, which has long been regarded as the standard of care in pregnancy, and buprenorphine, which is increasingly being investigated and prescribed as an alternative to methadone. Controlled studies comparing methadone at high and low doses, as well as those comparing methadone with buprenorphine, are highlighted and the diagnosis and management of neonatal abstinence syndrome is discussed. Over the past two decades, attention of the scientific and lay communities has also been focused on the potential adverse effects of cocaine and crack cocaine, especially during the height of the cocaine epidemic in the United States. Herein, the findings are summarized from prospective studies comparing cocaine-exposed with non-cocaine-exposed infants and toddlers with respect to anthropometric growth, infant neurobehavior, visual and auditory function, and cognitive, motor, and language development. The potentially stigmatizing label of the so-called "crack baby" preceded the evidence now accumulating from well-designed prospective investigations that have revealed less severe sequelae in the majority of prenatally exposed infants than originally anticipated. In contrast to opioids, which may produce neonatal abstinence syndrome and infant neurobehavioral deficits, prenatal cocaine exposure appears to be associated with what has been described as statistically significant but subtle decrements in neurobehavioral, cognitive, and language function, especially when viewed in the context of other exposures and the caregiving environment which may mediate or moderate the effects. Whether these early findings may

  3. Prenatal Care: First Trimester Visits

    Science.gov (United States)

    ... care provider will discuss the importance of proper nutrition and prenatal vitamins. Your first prenatal visit is a good time to discuss exercise, sex during pregnancy and other lifestyle issues. You might also discuss your work environment and the use of medications during pregnancy. If ...

  4. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Attitudes of pregnant women and male partners towards non-invasive prenatal testing and widening the scope of prenatal screening

    NARCIS (Netherlands)

    van Schendel, Rachèl V.; Kleinveld, Johanna H.; Dondorp, Wybo J.; Pajkrt, Eva; Timmermans, Danielle R. M.; Holtkamp, Kim C. A.; Karsten, Margreet; Vlietstra, Anne L.; Lachmeijer, Augusta M. A.; Henneman, Lidewij

    2014-01-01

    Non-invasive prenatal testing (NIPT) and its potential to test for multiple disorders has received much attention. This study explores attitudes of women and men towards NIPT, and their views on widening the scope of prenatal testing in a country with a low uptake of prenatal screening (The

  6. Effect of prenatal exposure to low dose beta radiation from tritiated water on postnatal growth and neurobehavior of rats

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1998-01-01

    Objective: Effects of prenatal exposure to HTO (tritiated water) on postnatal growth and neurobehavior of rats were studied by determination of multiple parameters. Methods: Pregnant adult Wistar rats were randomly assigned to 4 groups, of which 3 groups were irradiated with beta-rays from tritiated water (HTO) by one single intraperitoneal injection on the 13th day of gestation. Offspring of these rats received cumulative doses of 0.000, 0.044, 0.088 and 0.264 Gy utero, respectively, and were observed for the appearance of three physiologic markers (eye opening, pinna detachment, incisor eruption), the age of acquisition of two reflexes (surface righting, negative geotaxis) and sensuous function (auditory startle), movement and coordination functions and activity (forelimb hanging, continuous corridor activity), and learning and memory (electric avoidance reflex in Y-maze, conditional reflex). Results: Results for most parameters in the 0.044 and 0.088 Gy groups were different significantly from those in the controls and for most parameters a dose-dependent effect was found. Conclusion: Offspring of rats having received prenatal low dose irradiation from HTO showed delayed growth and abnormal neurobehavior

  7. ACOG Committee Opinion No. 731: Group Prenatal Care.

    Science.gov (United States)

    2018-03-01

    Individual prenatal care is intended to prevent poor perinatal outcomes and provide education to women throughout pregnancy, childbirth, and the postpartum period through a series of one-on-one encounters between a woman and her obstetrician or other obstetric care provider. Concerns regarding increasing health care costs, health care provider availability, dissatisfaction with wait times, and the minimal opportunity for education and support associated with the individual care model have given rise to interest in alternative models of prenatal care. One alternative model, group prenatal care, may be beneficial or preferred for some practice settings and patient populations, although individual prenatal care remains standard practice. Group prenatal care models are designed to improve patient education and include opportunities for social support while maintaining the risk screening and physical assessment of individual prenatal care. Bringing patients with similar needs together for health care encounters increases the time available for the educational component of the encounter, improves efficiency, and reduces repetition. Evidence suggests patients have better prenatal knowledge, feel more ready for labor and delivery, are more satisfied with care in prenatal care groups, and initiate breastfeeding more often. There is no evidence that suggests that group prenatal care causes harm. Individual and group care models warrant additional study with a goal of demonstrating differences in outcomes and identifying populations that benefit most from specific care models.

  8. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  9. Prenatal Testing: MedlinePlus Health Topic

    Science.gov (United States)

    ... Dept. of Health and Human Services Office on Women's Health Start Here Prenatal Tests (Nemours Foundation) Also in Spanish Prenatal Tests (March of Dimes Birth Defects Foundation) Also in Spanish ...

  10. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  11. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  12. Prenatal and Postnatal Management of Hydronephrosis

    Science.gov (United States)

    Rao, Pravin K.; Palmer, Jeffrey S.

    2009-01-01

    The majority of pregnant women in the U.S. undergo prenatal ultrasonography and approximately 0.5% of these examinations will detect fetal malformations. Up to one-half of these abnormalities include the genitourinary system and the most common urological finding is hydronephrosis. Some conditions associated with prenatal hydronephrosis portend a poor prognosis, while others can follow a fairly benign course. This review focuses on the definition and prenatal assessment of hydronephrosis, fetal intervention, and postnatal management. PMID:19618087

  13. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  14. Prenatal diagnosis of horseshoe lung and esophageal atresia

    International Nuclear Information System (INIS)

    Goldberg, Shlomit; Ringertz, Hans; Barth, Richard A.

    2006-01-01

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  15. Prenatal diagnosis of horseshoe lung and esophageal atresia

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Shlomit; Ringertz, Hans [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Barth, Richard A. [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Lucile Packard Children' s Hospital, Radiology, Palo Alto, CA (United States)

    2006-09-15

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  16. Prenatal ultrasonographic findings of cloacal anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi Jin [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To evaluate the ultrasonographic characteristic of a rare malformation comples, Cloacal anomaly on prenatal ultrasonography. From March 1991 to July 2001, eight cases with the persistent cloaca (4 cases in female and 1 case in male) and cloacal exstrophy (3 cases) diagnosed by prenatal ultrasound examination were included, and all of them were pathologically confirmed by autopsy. One radiologist retrospectively analyzed the prenatal sonographic images, including the urinary bladder, kidney, pelvic cyst, abdominal wall defect and amount of amniotic fluid. The ultrasonographic diagnosis was established at 21.8 {+-} 7.8 weeks of gestation. The prenatal ultrasonographic findings of the persistent cloaca were absent bladder (n=2), distended bladder (n=2) and small thick bladder (n=1). Sonography of the kidney showed normal (n=2), hydronephrosis (n=1), dysplasia (n=1) and unilateral hydronephrosis with absent contralateral kidney (n=1). Four fetuses showed septated pelvic cyst; three fetuses, oligohydramnios. The prenatal ultrasonographic findings of cloacal exstrophy included absent bladder (n=3), normal kidney (n=1), hydronephrosis (n=1) and absent kidney (n=1). All fetuses with cloacal exstrophy had abdominal wall defect while two of them had oligohydramnios. A prenatal diagnosis of persistent cloaca can be confidently made when there is septated pelvic cyst combined oligohydramnios, sediments within the cyst and intraluminal calcifications. Cloacal exstrophy should be included in diagnosis if there is a low abdominal wall defect with absent urinary bladder.

  17. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families

    Science.gov (United States)

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY-box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array-based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice-site mutation MITF c.909G>A in family 03 and an in-frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling. PMID:29115496

  18. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep

    OpenAIRE

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-01-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insuli...

  19. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  20. Diffusion tensor imaging of the auditory nerve in patients with acquired single-sided deafness

    DEFF Research Database (Denmark)

    Vos, Sjoerd; Haakma, Wieke; Versnel, Huib

    2015-01-01

    following cochlear hair cell loss, and the amount of degeneration may considerably differ between the two ears, also in patients with bilateral deafness. A measure that reflects the nerve's condition would help to assess the best of both nerves and decide accordingly which ear should be implanted......A cochlear implant (CI) can restore hearing in patients with profound sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Therefore, the viability of the auditory nerve is vitally important in successful hearing recovery. However, the nerve typically degenerates...... single-sided sensorineural hearing loss. A specialized acquisition protocol was designed for a 3 T MRI scanner to image the small nerve bundle. The nerve was reconstructed using fiber tractography and DTI metrics - which reflect the nerve's microstructural properties - were computed per tract. Comparing...

  1. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    Science.gov (United States)

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  2. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.

    Science.gov (United States)

    Barbosa, Sara; Pires, Gabriel; Nunes, Urbano

    2016-03-01

    Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  4. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  5. Should prenatal hydronephrosis that resolves before birth be followed postnatally? Analysis and comparison to persistent prenatal hydronephrosis.

    Science.gov (United States)

    Scarborough, Patrick L; Ferrara, Elizabeth; Storm, Douglas W

    2015-09-01

    Prenatal ultrasonography has greatly enhanced detection of congenital genitourinary abnormalities. However, although persistent prenatal hydronephrosis (PPH) is typically imaged and followed postnatally, it remains unclear if prenatal hydronephrosis that resolves in utero (RPH) should be similarly managed. We determined postnatal abnormalities associated with RPH and compared these to those associated with PPH. We performed a retrospective review of all consecutive patients evaluated for prenatal hydronephrosis over 24 months. Patients were followed prenatally with serial ultrasounds and postnatally with ultrasonography and a voiding cystourethrogram. Of the consecutive 165 patients enrolled in the study, 72 had RPH. The average prenatal anterior-posterior renal pelvis length was significantly longer in patients with PPH (5.5 mm) than in those with RPH (4.9 mm) (p = 0.01). Recurrent postnatal hydronephrosis occurred in 44% of patients with RPH, with eventual resolution in 34% of those affected. In comparison, 29% of PPH cases resolved postnatally. Mean time to resolution was statistically shorter for PPH (116 days) than for RPH (175 days) (p = 0.01). Seven PPH patients required surgery, while no RPH patients needed intervention (difference was statistically significant). A significant number of RPH children had postnatal hydronephrosis. Despite a slower resolution time, no children with RPH required intervention. Although RPH may recur postnatally, the significantly lower chance of intervention being required suggests that these children may not require postnatal imaging.

  6. Frequency-Specific, Binaural Stimulation of Students with Reading and Spelling Difficulties.

    Science.gov (United States)

    Johansen, Kjeld

    A study examined the hearing of learning disabled students (such as dyslexics) in an attempt to classify, identify, and design auditory stimulation procedures. Subjects, 40 students from seventh-grade classes and 40 volunteers (ages 9 to 23) with reading and spelling difficulties, were given listening tests. Results indicated that many of the…

  7. New stimulation method with the function of narrowing and moving the stimulated region for cochlear implants. Its evaluation by the animal experiment and the numerical analysis; Jinko naiji no tame no shigeki bui no seneika to ido kino wo motta shigeki hoshiki. Suchi kaiseki to dobutsu jikken ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, S.; Sakajiri, M.; Ifukube, T.; Matsushima, J. [Hokkaido University, Sapporo (Japan)

    1998-02-01

    The electrical stimulation of the auditory nerve can elicit auditory sensations in the subjects with sensorineural deafness. Each stimulating electrode of an electrode array of the multi-channel cochlear implants may stimulate a distinct neural population. However, a great deal of current spreads from each electrode throughout a lymph because of the high electrical conductivity of the lymph liquid. This phenomenon causes the transmitted information to be reduce due to channel interactions. Even if the number of electrodes is increased, the transmitted information will be limited because of current spread. We have proposed the Tripolar Electrode Stimulation Method (TESM) which may succeed in narrowing the stimulation region and continuously moving the stimulation site for the cochlear implants. We evaluate whether or not TESM works according to a theory which is based on the numerical analysis using the auditory nerve fiber model consisted of unmyelinated and myelinated segments. In this simulation, the neural site and the am of the excited fibers are compared with the compound action potentials which we obtained through animal experiments. As a result, based on the numerical analysis using this model, it is also proved that the anodal/cathodal threshold stimulation current ratio increases by decreasing unmyelinated segment between the inner hair cell and the habenula perforate. Also by comparing the result of the numerical analysis with that of the animal experiment, It is suggested that an effect of the unmyelinated segment is not significant. Based on their results mentioned above, we succeed in narrowing a Stimulation region by controlling the am of the currents emitted from the electrodes on both sides. Also we succeed in continuously moving a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides. 11 refs., 14 figs., 1 tab.

  8. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  9. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    Science.gov (United States)

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  10. The role of auditory transient and deviance processing in distraction of task performance: a combined behavioral and event-related brain potential study

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2013-07-01

    Full Text Available Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection – which does not rely on predictive coding mechanisms – can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection or are presented within an otherwise silent situation (triggering transient detection. In the event-related brain potentials, deviants elicited the mismatch negativity (MMN while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON. This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior.

  11. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep.

    Science.gov (United States)

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-07-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.

  12. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Ford, Judith M.; Hubl, Daniela; Orlov, Natasza D.; Sommer, Iris E.; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W.; David, Olivier; Mulert, Christoph; Woodward, Todd S.; Aleman, Andre

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of

  14. Prenatal care in your second trimester

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000557.htm Prenatal care in your second trimester To use the sharing ... Gregory KD, Ramos DE, Jauniaux ERM. Preconception and prenatal care. In: Gabbe SG, Niebyl JR, Simpson JL, et ...

  15. Prenatal care in your third trimester

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000558.htm Prenatal care in your third trimester To use the sharing ... Gregory KD, Ramos DE, Jauniaux ERM. Preconception and prenatal care. In: Gabbe SG, Niebyl JR, Simpson JL, et ...

  16. Current approaches on non-invasive prenatal diagnosis: Prenatal genomics, transcriptomics, personalized fetal diagnosis

    Directory of Open Access Journals (Sweden)

    Tuba Günel

    2014-12-01

    Full Text Available Recent developments in molecular genetics improved our knowledge on fetal genome and physiology. Novel scientific innovations in prenatal diagnosis have accelerated in the last decade changing our vision immensely. Data obtained from fetal genomic studies brought new insights to fetal medicine and by the advances in fetal DNA and RNA sequencing technology novel treatment strategies has evolved. Non-invasive prenatal diagnosis found ground in genetics and the results are widely studied in scientific arena. When Lo and colleges proved fetal genetic material can be extracted from maternal plasma and fetal DNA can be isolated from maternal serum, the gate to many exciting discoveries was open. Microarray technology and advances in sequencing helped fetal diagnosis as well as other areas of medicine. Today it is a very crucial prerequisite for physicians practicing prenatal diagnosis to have a profound knowledge in genetics. Prevailing practical use and application of fetal genomic tests in maternal and fetal medicine mandates obstetricians to update their knowledge in genetics. The purpose of this review is to assist physicians to understand and update their knowledge in fetal genetic testing from maternal blood, individualized prenatal counseling and advancements on the subject by sharing our experiences as İstanbul University Fetal Nucleic Acid Research Group.

  17. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  18. Family structure and use of prenatal care

    Directory of Open Access Journals (Sweden)

    Elisabete Alves

    2015-06-01

    Full Text Available This cross-sectional study intended to assess the use of prenatal care according to the family structure in a population with free universal access to prenatal care. In 2005-2006, the Portuguese birth cohort was assembled by the recruitment of puerperae at public maternity wards in Porto, Portugal. In the current analysis, 7,211 were included. Data on socio-demographic characteristics, obstetric history, and prenatal care were self-reported. Single mothers were considered as those whose household composition did not include a partner at delivery. Approximately 6% of the puerperae were single mothers. These women were more likely to have an unplanned pregnancy (OR = 6.30; 95%CI: 4.94-8.04, an inadequate prenatal care (OR = 2.30; 95%CI: 1.32-4.02, and to miss the ultrasound and the intake of folic acid supplements during the first trimester of pregnancy (OR = 1.71; 95%CI: 1.30-2.27; and OR = 1.67; 95%CI: 1.32-2.13, respectively. The adequacy and use of prenatal care was less frequent in single mothers. Educational interventions should reinforce the use and early initiation of prenatal care.

  19. Prenatal Stress as a Risk-and an Opportunity-Factor.

    Science.gov (United States)

    Hartman, Sarah; Freeman, Sara M; Bales, Karen L; Belsky, Jay

    2018-04-01

    Two separate lines of research indicate (a) that prenatal stress is associated with heightened behavioral and physiological reactivity and (b) that these postnatal phenotypes are associated with increased susceptibility to both positive and negative developmental experiences. Therefore, prenatal stress may increase sensitivity to the rearing environment. We tested this hypothesis by manipulating prenatal stress and rearing-environment quality, using a cross-fostering paradigm, in prairie voles. Results showed that prenatally stressed voles, as adults, displayed the highest behavioral and physiological reactivity when cross-fostered to low-contact (i.e., low-quality) rearing but the lowest behavioral and physiological reactivity when cross-fostered to high-contact (i.e., high-quality) rearing; non-prenatally stressed voles showed no effect of rearing condition. Additionally, while neither prenatal stress nor rearing condition affected oxytocin receptor binding, prenatally stressed voles cross-fostered to high-contact rearing showed the highest vasopressin-1a receptor binding in the amygdala. Results indicate that prenatal stress induces greater environmental sensitivity, making it both a risk and an opportunity factor.

  20. Procedures for central auditory processing screening in schoolchildren.

    Science.gov (United States)

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  1. Prenatal meditation influences infant behaviors.

    Science.gov (United States)

    Chan, Ka Po

    2014-11-01

    Meditation is important in facilitating health. Pregnancy health has been shown to have significant consequences for infant behaviors. In view of limited studies on meditation and infant temperament, this study aims to explore the effects of prenatal meditation on these aspects. The conceptual framework was based on the postulation of positive relationships between prenatal meditation and infant health. A randomized control quantitative study was carried out at Obstetric Unit, Queen Elizabeth Hospital in Hong Kong. 64 pregnant Chinese women were recruited for intervention and 59 were for control. Outcome measures were cord blood cortisol, infant salivary cortisol, and Carey Infant Temperament Questionnaire. Cord blood cortisol level of babies was higher in the intervention group (pmeditation can influence fetal health. Carey Infant Temperament Questionnaire showed that the infants of intervention group have better temperament (pmeditation in relation to child health. Present study concludes the positive effects of prenatal meditation on infant behaviors and recommends that pregnancy care providers should provide prenatal meditation to pregnant women. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Access Barriers to Prenatal Care in Emerging Adult Latinas.

    Science.gov (United States)

    Torres, Rosamar

    2016-03-01

    Despite efforts to improve access to prenatal care, emerging adult Latinas in the United States continue to enter care late in their pregnancies and/or underutilize these services. Since little is known about emerging adult Latinas and their prenatal care experiences, the purpose of this study was to identify actual and perceived prenatal care barriers in a sample of 54 emerging adult Latinas between 18 and 21 years of age. More than 95% of the sample experienced personal and institutional barriers when attempting to access prenatal care. Results from this study lend support for policy changes for time away from school or work to attend prenatal care and for group prenatal care. © 2016. All rights reserved.

  3. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    Science.gov (United States)

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  4. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Prenatal ultrasonographic findings of cloacal anomaly

    International Nuclear Information System (INIS)

    Song, Mi Jin

    2002-01-01

    To evaluate the ultrasonographic characteristic of a rare malformation comples, Cloacal anomaly on prenatal ultrasonography. From March 1991 to July 2001, eight cases with the persistent cloaca (4 cases in female and 1 case in male) and cloacal exstrophy (3 cases) diagnosed by prenatal ultrasound examination were included, and all of them were pathologically confirmed by autopsy. One radiologist retrospectively analyzed the prenatal sonographic images, including the urinary bladder, kidney, pelvic cyst, abdominal wall defect and amount of amniotic fluid. The ultrasonographic diagnosis was established at 21.8 ± 7.8 weeks of gestation. The prenatal ultrasonographic findings of the persistent cloaca were absent bladder (n=2), distended bladder (n=2) and small thick bladder (n=1). Sonography of the kidney showed normal (n=2), hydronephrosis (n=1), dysplasia (n=1) and unilateral hydronephrosis with absent contralateral kidney (n=1). Four fetuses showed septated pelvic cyst; three fetuses, oligohydramnios. The prenatal ultrasonographic findings of cloacal exstrophy included absent bladder (n=3), normal kidney (n=1), hydronephrosis (n=1) and absent kidney (n=1). All fetuses with cloacal exstrophy had abdominal wall defect while two of them had oligohydramnios. A prenatal diagnosis of persistent cloaca can be confidently made when there is septated pelvic cyst combined oligohydramnios, sediments within the cyst and intraluminal calcifications. Cloacal exstrophy should be included in diagnosis if there is a low abdominal wall defect with absent urinary bladder.

  6. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  7. Prenatal Tests

    Science.gov (United States)

    ... tests are considered routine — that is, almost all pregnant women receiving prenatal care get them. They include things like checking urine (pee) levels for protein, sugar, or signs of infection. Other non-routine ...

  8. Prenatal Diagnosis Of Tay-Sachs Disease

    Directory of Open Access Journals (Sweden)

    Özgür Özyüncü

    2010-04-01

    CONCLUSION: Tay-Sachs disease can be diagnosed prenatally by measuring hexosaminidase enzyme activity in fetal tissue samples with an acceptable complication rate. Prenatal diagnosis should be offered to families who have affected siblings with Tay-Sachs disease.

  9. A neural network model of normal and abnormal auditory information processing.

    Science.gov (United States)

    Du, X; Jansen, B H

    2011-08-01

    The ability of the brain to attenuate the response to irrelevant sensory stimulation is referred to as sensory gating. A gating deficiency has been reported in schizophrenia. To study the neural mechanisms underlying sensory gating, a neuroanatomically inspired model of auditory information processing has been developed. The mathematical model consists of lumped parameter modules representing the thalamus (TH), the thalamic reticular nucleus (TRN), auditory cortex (AC), and prefrontal cortex (PC). It was found that the membrane potential of the pyramidal cells in the PC module replicated auditory evoked potentials, recorded from the scalp of healthy individuals, in response to pure tones. Also, the model produced substantial attenuation of the response to the second of a pair of identical stimuli, just as seen in actual human experiments. We also tested the viewpoint that schizophrenia is associated with a deficit in prefrontal dopamine (DA) activity, which would lower the excitatory and inhibitory feedback gains in the AC and PC modules. Lowering these gains by less than 10% resulted in model behavior resembling the brain activity seen in schizophrenia patients, and replicated the reported gating deficits. The model suggests that the TRN plays a critical role in sensory gating, with the smaller response to a second tone arising from a reduction in inhibition of TH by the TRN. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Science.gov (United States)

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  11. Multisensory Stimulation to Improve Low- and Higher-Level Sensory Deficits after Stroke: A Systematic Review.

    Science.gov (United States)

    Tinga, Angelica Maria; Visser-Meily, Johanna Maria Augusta; van der Smagt, Maarten Jeroen; Van der Stigchel, Stefan; van Ee, Raymond; Nijboer, Tanja Cornelia Wilhelmina

    2016-03-01

    The aim of this systematic review was to integrate and assess evidence for the effectiveness of multisensory stimulation (i.e., stimulating at least two of the following sensory systems: visual, auditory, and somatosensory) as a possible rehabilitation method after stroke. Evidence was considered with a focus on low-level, perceptual (visual, auditory and somatosensory deficits), as well as higher-level, cognitive, sensory deficits. We referred to the electronic databases Scopus and PubMed to search for articles that were published before May 2015. Studies were included which evaluated the effects of multisensory stimulation on patients with low- or higher-level sensory deficits caused by stroke. Twenty-one studies were included in this review and the quality of these studies was assessed (based on eight elements: randomization, inclusion of control patient group, blinding of participants, blinding of researchers, follow-up, group size, reporting effect sizes, and reporting time post-stroke). Twenty of the twenty-one included studies demonstrate beneficial effects on low- and/or higher-level sensory deficits after stroke. Notwithstanding these beneficial effects, the quality of the studies is insufficient for valid conclusion that multisensory stimulation can be successfully applied as an effective intervention. A valuable and necessary next step would be to set up well-designed randomized controlled trials to examine the effectiveness of multisensory stimulation as an intervention for low- and/or higher-level sensory deficits after stroke. Finally, we consider the potential mechanisms of multisensory stimulation for rehabilitation to guide this future research.

  12. Cross-Modal Recruitment of Auditory and Orofacial Areas During Sign Language in a Deaf Subject.

    Science.gov (United States)

    Martino, Juan; Velasquez, Carlos; Vázquez-Bourgon, Javier; de Lucas, Enrique Marco; Gomez, Elsa

    2017-09-01

    Modern sign languages used by deaf people are fully expressive, natural human languages that are perceived visually and produced manually. The literature contains little data concerning human brain organization in conditions of deficient sensory information such as deafness. A deaf-mute patient underwent surgery of a left temporoinsular low-grade glioma. The patient underwent awake surgery with intraoperative electrical stimulation mapping, allowing direct study of the cortical and subcortical organization of sign language. We found a similar distribution of language sites to what has been reported in mapping studies of patients with oral language, including 1) speech perception areas inducing anomias and alexias close to the auditory cortex (at the posterior portion of the superior temporal gyrus and supramarginal gyrus); 2) speech production areas inducing speech arrest (anarthria) at the ventral premotor cortex, close to the lip motor area and away from the hand motor area; and 3) subcortical stimulation-induced semantic paraphasias at the inferior fronto-occipital fasciculus at the temporal isthmus. The intraoperative setup for sign language mapping with intraoperative electrical stimulation in deaf-mute patients is similar to the setup described in patients with oral language. To elucidate the type of language errors, a sign language interpreter in close interaction with the neuropsychologist is necessary. Sign language is perceived visually and produced manually; however, this case revealed a cross-modal recruitment of auditory and orofacial motor areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Medicaid reimbursement, prenatal care and infant health.

    Science.gov (United States)

    Sonchak, Lyudmyla

    2015-12-01

    This paper evaluates the impact of state-level Medicaid reimbursement rates for obstetric care on prenatal care utilization across demographic groups. It also uses these rates as an instrumental variable to assess the importance of prenatal care on birth weight. The analysis is conducted using a unique dataset of Medicaid reimbursement rates and 2001-2010 Vital Statistics Natality data. Conditional on county fixed effects, the study finds a modest, but statistically significant positive relationship between Medicaid reimbursement rates and the number of prenatal visits obtained by pregnant women. Additionally, higher rates are associated with an increase in the probability of obtaining adequate care, as well as a reduction in the incidence of going without any prenatal care. However, the effect of an additional prenatal visit on birth weight is virtually zero for black disadvantaged mothers, while an additional visit yields a substantial increase in birth weight of over 20 g for white disadvantaged mothers. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  15. Ventilatory response to induced auditory arousals during NREM sleep.

    Science.gov (United States)

    Badr, M S; Morgan, B J; Finn, L; Toiber, F S; Crabtree, D C; Puleo, D S; Skatrud, J B

    1997-09-01

    Sleep state instability is a potential mechanism of central apnea/hypopnea during non-rapid eye movement (NREM) sleep. To investigate this postulate, we induced brief arousals by delivering transient (0.5 second) auditory stimuli during stable NREM sleep in eight normal subjects. Arousal was determined according to American Sleep Disorders Association (ASDA) criteria. A total of 96 trials were conducted; 59 resulted in cortical arousal and 37 did not result in arousal. In trials associated with arousal, minute ventilation (VE) increased from 5.1 +/- 1.24 minutes to 7.5 +/- 2.24 minutes on the first posttone breath (p = 0.001). However, no subsequent hypopnea or apnea occurred as VE decreased gradually to 4.8 +/- 1.5 l/minute (p > 0.05) on the fifth posttone breath. Trials without arousal did not result in hyperpnea on the first breath nor subsequent hypopnea. We conclude that 1) auditory stimulation resulted in transient hyperpnea only if associated with cortical arousal; 2) hypopnea or apnea did not occur following arousal-induced hyperpnea in normal subjects; 3) interaction with fluctuating chemical stimuli or upper airway resistance may be required for arousals to cause sleep-disordered breathing.

  16. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  17. Prenatal coke: what's behind the smoke? Prenatal cocaine/alcohol exposure and school-age outcomes: the SCHOO-BE experience.

    Science.gov (United States)

    Delaney-Black, V; Covington, C; Templin, T; Ager, J; Martier, S; Compton, S; Sokol, R

    1998-06-21

    Despite media reports and educators' concerns, little substantive data have been published to document or refute the emerging reports that children prenatally exposed to cocaine have serious behavioral problems in school. Recent pilot data from this institution have indeed demonstrated teacher-reported problem behaviors following prenatal cocaine exposure after controlling for the effects of prenatal alcohol use and cigarette exposure. Imperative in the study of prenatal exposure and child outcome is an acknowledgement of the influence of other control factors such as postnatal environment, secondary exposures, and parenting issues. We report preliminary evaluation from a large ongoing historical prospective study of prenatal cocaine exposure on school-age outcomes. The primary aim of this NIDA-funded study is to determine if a relationship exists between prenatal cocaine/alcohol exposures and school behavior and, if so, to determine if the relationship is characterized by a dose-response relationship. A secondary aim evaluates the relationship between prenatal cocaine/alcohol exposures and school achievement. Both relationships will be assessed in a black, urban sample of first grade students using multivariate statistical techniques for confounding as well as mediating and moderating prenatal and postnatal variables. A third aim is to evaluate the relationship between a general standardized classroom behavioral measure and a tool designed to tap the effects thought to be specific to prenatal cocaine exposure. This interdisciplinary research team can address these aims because of the existence of a unique, prospectively collected perinatal Database, funded in part by NIAAA and NICHD. The database includes repeated measures of cocaine, alcohol, and other substances for over 3,500 births since 1986. Information from this database is combined with information from the database of one of the largest public school systems in the nation. The final sample will be

  18. Prenatal Coke: What's Behind the Smoke?: Prenatal Cocaine/Alcohol Exposure and School-Age Outcomes: The SCHOO-BE Experiencea.

    Science.gov (United States)

    Delaney-Black, Virginia; Covington, Chandice; Templin, Tom; Ager, Joel; Martier, Sue; Compton, Scott; Sokol, Robert

    1998-06-01

    Despite media reports and educators' concerns, little substantive data have been published to document or refute the emerging reports that children prenatally exposed to cocaine have serious behavioral problems in school. Recent pilot data from this institution have indeed demonstrated teacher-reported problem behaviors following prenatal cocaine exposure after controlling for the effects of prenatal alcohol use and cigarette exposure. Imperative in the study of prenatal exposure and child outcome is an acknowledgment of the influence of other control factors such as postnatal environment, secondary exposures, and parenting issues. We report preliminary evaluation from a large ongoing historical prospective study of prenatal cocaine exposure on school-age outcomes. The primary aim of this NIDA-funded study is to determine if a relationship exists between prenatal cocaine/alcohol exposures and school behavior and, if so, to determine if the relationship is characterized by a dose-response relationship. A secondary aim evaluates the relationship between prenatal cocaine/alcohol exposures and school achievement. Both relationships will be assessed in a black, urban sample of first grade students using multivariate statistical techniques for confounding as well as mediating and moderating prenatal and postnatal variables. A third aim is to evaluate the relationship between a general standardized classroom behavioral measure and a tool designed to tap the effects thought to be specific to prenatal cocaine exposure. This interdisciplinary research team can address these aims because of the existence of a unique, prospectively collected Perinatal Database, funded in part by NIAAA and NICHD. The database includes repeated measures of cocaine, alcohol, and other substances for over 3,500 births since 1986. Information from this database is combined with information from the database of one of the largest public school systems in the nation. The final sample will be composed

  19. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  20. Association of Group Prenatal Care With Gestational Weight Gain.

    Science.gov (United States)

    Kominiarek, Michelle A; Crockett, Amy; Covington-Kolb, Sarah; Simon, Melissa; Grobman, William A

    2017-04-01

    To compare gestational weight gain among women in group prenatal care with that of women in individual prenatal care. In this retrospective cohort study, women who participated in group prenatal care from 2009 to 2015 and whose body mass indexes (BMIs) and gestational weight gain were recorded were matched with the next two women who had the same payer type, were within 2-kg/m prepregnancy BMI and 2-week gestational age at delivery, and had received individual prenatal care. Bivariate comparisons of demographics and antenatal complications were performed for women in group and individual prenatal care, and weight gain was categorized as "below," "met," or "exceeded" goals according to the 2009 Institute of Medicine guidelines. Logistic regression analysis estimated the association between excessive weight gain and model of care, with adjustment for confounders, stratified by BMI. Women in group prenatal care (n=2,117) were younger and more commonly non-Hispanic black, nulliparous, and without gestational diabetes (P≤.005 for all). Women in group prenatal care more commonly exceeded the weight gain goals (55% compared with 48%, Pprenatal care, compared with individual prenatal care, is associated with excessive gestational weight gain.

  1. Auditory preferences of young children with and without hearing loss for meaningful auditory-visual compound stimuli.

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.

  2. Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, R.; He, J.; Lánský, Petr

    2015-01-01

    Roč. 9, May 18 (2015), s. 59 ISSN 1662-5188 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : synaptic inputs * statistical inference * state-space models * intracellular recordings * auditory cortex Subject RIV: BD - Theory of Information Impact factor: 2.653, year: 2015

  3. Opportunities and challenges in prenatal diagnosis : towards personalized fetal genetics

    NARCIS (Netherlands)

    Lichtenbelt, K.D.

    2013-01-01

    In this thesis we studied the efficacy and utilization of prenatal screening and prenatal diagnosis in the Netherlands and the increasing options for prenatal genetic diagnosis in general. In chapter 1 background information on prenatal screening and diagnosis in pregnancies conceived through

  4. ACOG Committee Opinion No. 731 Summary: Group Prenatal Care.

    Science.gov (United States)

    2018-03-01

    Individual prenatal care is intended to prevent poor perinatal outcomes and provide education to women throughout pregnancy, childbirth, and the postpartum period through a series of one-on-one encounters between a woman and her obstetrician or other obstetric care provider. Concerns regarding increasing health care costs, health care provider availability, dissatisfaction with wait times, and the minimal opportunity for education and support associated with the individual care model have given rise to interest in alternative models of prenatal care. One alternative model, group prenatal care, may be beneficial or preferred for some practice settings and patient populations, although individual prenatal care remains standard practice. Group prenatal care models are designed to improve patient education and include opportunities for social support while maintaining the risk screening and physical assessment of individual prenatal care. Bringing patients with similar needs together for health care encounters increases the time available for the educational component of the encounter, improves efficiency, and reduces repetition. Evidence suggests patients have better prenatal knowledge, feel more ready for labor and delivery, are more satisfied with care in prenatal care groups, and initiate breastfeeding more often. There is no evidence that suggests that group prenatal care causes harm. Individual and group care models warrant additional study with a goal of demonstrating differences in outcomes and identifying populations that benefit most from specific care models.

  5. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  6. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  7. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  8. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  9. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  10. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  11. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  12. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  13. Data on the effect of conductive hearing loss on auditory and visual cortex activity revealed by intrinsic signal imaging.

    Science.gov (United States)

    Teichert, Manuel; Bolz, Jürgen

    2017-10-01

    This data article provides additional data related to the research article entitled "Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing" (Teichert and Bolz, 2017) [1]. The primary auditory and visual cortex (A1 and V1) of adult male C57BL/6J mice (P120-P240) were mapped simultaneously using intrinsic signal imaging (Kalatsky and Stryker, 2003) [2]. A1 and V1 activity evoked by combined auditory and visual stimulation were measured before and after conductive hearing loss (CHL) induced by bilateral malleus removal. We provide data showing that A1 responsiveness evoked by sounds of different sound pressure levels (SPL) decreased after CHL whereas visually evoked V1 activity increased after this intervention. In addition, we also provide imaging data on percentage of V1 activity increases after CHL compared to pre-CHL.

  14. Prenatal programming of childhood overweight and obesity.

    Science.gov (United States)

    Huang, Jennifer S; Lee, Tiffany A; Lu, Michael C

    2007-09-01

    To review the scientific evidence for prenatal programming of childhood overweight and obesity, and discuss its implications for MCH research, practice, and policy. A systematic review of observational studies examining the relationship between prenatal exposures and childhood overweight and obesity was conducted using MOOSE guidelines. The review included literature posted on PubMed and MDConsult and published between January 1975 and December 2005. Prenatal exposures to maternal diabetes, malnutrition, and cigarette smoking were examined, and primary study outcome was childhood overweight or obesity as measured by body mass index (BMI) for children ages 5 to 21. Four of six included studies of prenatal exposure to maternal diabetes found higher prevalence of childhood overweight or obesity among offspring of diabetic mothers, with the highest quality study reporting an odds ratio of adolescent overweight of 1.4 (95% CI 1.0-1.9). The Dutch famine study found that exposure to maternal malnutrition in early, but not late, gestation was associated with increased odds of childhood obesity (OR 1.9, 95% CI 1.5-2.4). All eight included studies of prenatal exposure to maternal smoking showed significantly increased odds of childhood overweight and obesity, with most odds ratios clustering around 1.5 to 2.0. The biological mechanisms mediating these relationships are unknown but may be partially related to programming of insulin, leptin, and glucocorticoid resistance in utero. Our review supports prenatal programming of childhood overweight and obesity. MCH research, practice, and policy need to consider the prenatal period a window of opportunity for obesity prevention.

  15. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.

    Science.gov (United States)

    Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M

    2007-01-01

    The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.

  16. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.

    Science.gov (United States)

    Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk

    2017-05-01

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. II. Spike timing

    DEFF Research Database (Denmark)

    Jørgensen, M B; Christensen-Dalsgaard, J

    1997-01-01

    We studied the directionality of spike timing in the responses of single auditory nerve fibers of the grass frog, Rana temporaria, to tone burst stimulation. Both the latency of the first spike after stimulus onset and the preferred firing phase during the stimulus were studied. In addition, the ...

  18. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  19. Auditory enhancement of visual memory encoding is driven by emotional content of the auditory material and mediated by superior frontal cortex.

    Science.gov (United States)

    Proverbio, A M; De Benedetto, F

    2018-02-01

    The aim of the present study was to investigate how auditory background interacts with learning and memory. Both facilitatory (e.g., "Mozart effect") and interfering effects of background have been reported, depending on the type of auditory stimulation and of concurrent cognitive tasks. Here we recorded event related potentials (ERPs) during face encoding followed by an old/new memory test to investigate the effect of listening to classical music (Čajkovskij, dramatic), environmental sounds (rain) or silence on learning. Participants were 15 healthy non-musician university students. Almost 400 (previously unknown) faces of women and men of various age were presented. Listening to music during study led to a better encoding of faces as indexed by an increased Anterior Negativity. The FN400 response recorded during the memory test showed a gradient in its amplitude reflecting face familiarity. FN400 was larger to new than old faces, and to faces studied during rain sound listening and silence than music listening. The results indicate that listening to music enhances memory recollection of faces by merging with visual information. A swLORETA analysis showed the main involvement of Superior Temporal Gyrus (STG) and medial frontal gyrus in the integration of audio-visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  1. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  2. Consumerism in prenatal diagnosis: a challenge for ethical guidelines

    Science.gov (United States)

    Henn, W.

    2000-01-01

    The ethical guidelines for prenatal diagnosis proposed by the World Health Organisation (WHO), as well as by national regulations, only refer to paternity and gender of the fetus as unacceptable, disease-unrelated criteria for prenatal selection, as no other such parameters are at hand so far. This perspective is too narrow because research on complex genetic systems such as cognition and ageing is about to provide clinically applicable tests for genetic constituents of potentially desirable properties such as intelligence or longevity which could be misused as parameters for prenatal diagnosis. Moreover, there is an increasing number of prenatally testable genetic traits, such as heritable deafness, which are generally regarded as pathological but desired by some prospective parents and taken into account as parameters for pro-disability selection. To protect prenatal diagnosis from ethically unacceptable genetic consumerism, guidelines must be clarified as soon as possible and updated towards a worldwide restriction of prenatal genetic testing to immediately disease-determining traits. Key Words: Genetics • prenatal diagnosis • ethics • consumerism PMID:11129845

  3. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    Science.gov (United States)

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  4. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  5. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  6. Prenatal education for congenital toxoplasmosis.

    Science.gov (United States)

    Di Mario, Simona; Basevi, Vittorio; Gagliotti, Carlo; Spettoli, Daniela; Gori, Gianfranco; D'Amico, Roberto; Magrini, Nicola

    2015-10-23

    Congenital toxoplasmosis is considered a rare but potentially severe infection. Prenatal education about congenital toxoplasmosis could be the most efficient and least harmful intervention, yet its effectiveness is uncertain. To assess the effects of prenatal education for preventing congenital toxoplasmosis. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015), and reference lists of relevant papers, reviews and websites. Randomized and quasi-randomized controlled trials of all types of prenatal education on toxoplasmosis infection during pregnancy. Cluster-randomized trials were eligible for inclusion. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. Two cluster-randomized controlled trials (RCTs) (involving a total of 5455 women) met the inclusion criteria. The two included trials measured the effectiveness of the intervention in different ways, which meant that meta-analysis of the results was not possible. The overall quality of the two studies, as assessed using the GRADE approach, was low, with high risk of detection and attrition bias in both included trials.One trial (432 women enrolled) conducted in Canada was judged of low methodological quality. This trial did not report on any of the review's pre-specified primary outcomes and the secondary outcomes reported results only as P values. Moreover, losses to follow-up were high (34%, 147 out of 432 women initially enrolled). The authors concluded that prenatal education can effectively change pregnant women's behavior as it increased pet, personal and food hygiene. The second trial conducted in France was also judged of low methodological quality. Losses to follow-up were also high (44.5%, 2233 out of 5023 women initially enrolled) and differential (40% in the intervention group and 52% in the control group). The authors concluded that prenatal education for congenital toxoplasmoses has a

  7. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    Science.gov (United States)

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  8. Effects of prenatal stress on anxiety- and depressive-like behaviors are sex-specific in prepubertal rats.

    Science.gov (United States)

    Iturra-Mena, Ann Mary; Arriagada-Solimano, Marcia; Luttecke-Anders, Ariane; Dagnino-Subiabre, Alexies

    2018-05-17

    The fetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behavior. The aim of this study was to determine the physiological and behavioral effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 until 21, a critical period for fetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviors, and spontaneous social interaction. We also assessed maternal behaviors and two stress markers: basal vs. acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behavior, while both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation as well as anxiety- and depressive-like behaviors were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on the hypothalamus-pituitary-adrenal (HPA) axis activity and on behavior during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, as well as they were more anxious and experienced depressive-like behaviors. Our results can be useful to study the neurobiological basis of childhood depression at a pre-clinical level. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  10. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    International Nuclear Information System (INIS)

    Smits, Marion; Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan; Ridder, Dirk de

    2007-01-01

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P corrected < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  11. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    Science.gov (United States)

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2014-07-01

    Full Text Available Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel to compare memory-related MMN and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians. In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  13. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    Science.gov (United States)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  14. Tongue Growth during Prenatal Development in Korean Fetuses and Embryos

    Directory of Open Access Journals (Sweden)

    Soo Jeong Hong

    2015-11-01

    Full Text Available Background: Prenatal tongue development may affect oral-craniofacial structures, but this muscular organ has rarely been investigated. Methods: In order to document the physiology of prenatal tongue growth, we histologically examined the facial and cranial base structures of 56 embryos and 106 fetuses. Results: In Streeter’s stages 13–14 (fertilization age [FA], 28 to 32 days, the tongue protruded into the stomodeal cavity from the retrohyoid space to the cartilaginous mesenchyme of the primitive cranial base, and in Streeter’s stage 15 (FA, 33 to 36 days, the tongue rapidly swelled and compressed the cranial base to initiate spheno-occipital synchondrosis and continued to swell laterally to occupy most of the stomodeal cavity in Streeter’s stage 16–17 (FA, 37 to 43 days. In Streeter’s stage 18–20 (FA, 44 to 51 days, the tongue was vertically positioned and filled the posterior nasopharyngeal space. As the growth of the mandible and maxilla advanced, the tongue was pulled down and protruded anteriorly to form the linguomandibular complex. Angulation between the anterior cranial base (ACB and the posterior cranial base (PCB was formed by the emerging tongue at FA 4 weeks and became constant at approximately 124°–126° from FA 6 weeks until birth, which was consistent with angulations measured on adult cephalograms. Conclusions: The early clockwise growth of the ACB to the maxillary plane became harmonious with the counter-clockwise growth of the PCB to the tongue axis during the early prenatal period. These observations suggest that human embryonic tongue growth affects ACB and PCB angulation, stimulates maxillary growth, and induces mandibular movement to achieve the essential functions of oral and maxillofacial structures.

  15. Masses and disease entities of the external auditory canal: Radiological and clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    White, R.D., E-mail: richard.white3@nhs.net [Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Ananthakrishnan, G. [Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee (United Kingdom); McKean, S.A. [Department of Otolaryngology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Brunton, J.N. [Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Hussain, S.S.M. [Department of Otolaryngology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Sudarshan, T.A. [Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee (United Kingdom)

    2012-02-15

    A wide spectrum of disease entities can affect the external auditory canal (EAC). This review describes the normal anatomy of the EAC. Congenital abnormalities, infections, neoplasms, and miscellaneous conditions, such as cholesteatoma and acquired stenosis, are shown with reference to clinical relevance and management. Cases have been histologically confirmed, where relevant. The EAC is frequently imaged - for example, on cross-sectional imaging of the brain - and this review should stimulate radiologists to include it as an important area for review.

  16. Electrical and optical co-stimulation in the deaf white cat

    Science.gov (United States)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  17. Neuroimaging of multimodal sensory stimulation in Amyotrophic Lateral Sclerosis (ALS)

    OpenAIRE

    Lulé , Dorothée; Diekmann , Volker; Müller , Hans-Peter; Kassubek , Jan; Ludolph , Albert C; Birbaumer , Niels

    2010-01-01

    Abstract Aim: Structural and functional imaging techniques were combined to investigate sensory system function in amyotrophic lateral sclerosis (ALS). Methods: Functional magnetic resonance imaging (fMRI) was used to investigate cortical activity during visual, auditory, and somato-sensory stimulation in fourteen ALS patients and eighteen control subjects. Changes in amplitude, latency and duration of the BOLD response were modelled. Furthermore, diffusion tensor imaging was ...

  18. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  19. Comparing CenteringPregnancy® to standard prenatal care plus prenatal education

    Science.gov (United States)

    2013-01-01

    Background There is significant evidence to support the importance of prenatal care in preventing adverse outcomes such as preterm birth and low infant birth weight. Previous studies have indicated that the benefits of prenatal care are not evenly distributed throughout the social strata. In addition, emerging evidence suggests that among particular populations, rates of preterm birth are unchanged or increasing. This suggests that an alternate care model is necessary, one that seeks to addresses some of the myriad of social factors that also contribute to adverse birth outcomes. In previous studies, the group prenatal care model CenteringPregnancy® had been shown to reduce adverse birth outcomes, but to date, no comparison had been made with a model that included prenatal education. This study sought to investigate whether any significant difference remained within the comparison groups when both models accounted for social factors. Methods This analysis was based on survey data collected from a prospective cohort of pregnant women through the All Our Babies Study in Calgary, Alberta. Results At baseline, there were significant differences between the comparison groups in their psychosocial health, with the women in the CenteringPregnancy® group scoring higher levels of depressive symptoms, stress and anxiety. At four months postpartum, the differences between the groups were no longer significant. Conclusions: These results suggest that CenteringPregnancy® can recruit and retain a demographically vulnerable group of women with a constellation of risk factors for poor pregnancy and birth outcomes, including poverty, language barriers and poor mental health. Post program, the rates of stress, anxiety and depression were similar to other women with more social and financial advantage. These findings suggest that CenteringPregnancy® may be a community based care strategy that contributes to improved mental health, knowledge, and behaviours to optimize outcomes

  20. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  1. Evaluation of the tripolar electrode stimulation method by numerical analysis and animal experiments for cochlear implants.

    Science.gov (United States)

    Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J

    1997-01-01

    We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.

  2. Should we offer prenatal testing for 17q12 microdeletion syndrome to all cases with prenatally diagnosed echogenic kidneys? Prenatal findings in two families with 17q12 microdeletion syndrome and review of the literature.

    Science.gov (United States)

    Jones, Gabriela E; Mousa, Hatem A; Rowley, Helen; Houtman, Peter; Vasudevan, Pradeep C

    2015-12-01

    The objective of this study is to report the prenatal ultrasound scan findings in four fetuses from two families postnatally diagnosed with 17q12 microdeletion syndrome on microarray CGH and review the literature. We report two families presenting with prenatally detected hyperechogenic kidneys. In family 1, the mother had three pregnancies complicated by anhydramnios with bilateral hyperechogenic kidneys, hyperechogenic enlarged cystic kidneys, and bilateral hyperechogenic kidneys with polyhydramnios respectively. In family 2, prenatal ultrasound scans detected hyperechogenic kidneys. A pubmed search for all reported cases of 17q12 deletion between 2005 and 2015 was performed. All publications were reviewed, and findings summarised. Fourteen publications were deemed suitable for literature review; there was a diagnosis of 17q12 deletion with documented prenatal findings in 25 cases. Prenatal renal anomalies were reported in 88% of these cases. Anomalies were documented from 15 weeks, and most common presentation was hyperechogenic, muticystic, or enlarged kidneys. Both oligohydramnios and polyhydramnios were seen. Postnatal renal ultrasound scan findings were of muticystic or multicystic dysplastic kidney. There did not appear to be correlation of prenatal presentation and severity of renal disease. Prenatal testing should be offered to all cases of hyperechogenic kidneys, with unknown cause. © 2015 John Wiley & Sons, Ltd.

  3. Effects of STN DBS and auditory cueing on the performance of sequential movements and the occurrence of action tremor in Parkinson’s disease

    NARCIS (Netherlands)

    Heida, Tjitske; Wentink, E.C.; Zhao, Yan; Marani, Enrico

    2014-01-01

    Background: Parkinson’s disease (PD) patients show a higher ability to perform repetitive movements when they are cued by external stimuli, suggesting that rhythmic synchronization with an auditory timekeeper can be achieved in the absence of intact basal ganglia function. Deep brain stimulation

  4. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  5. Playfulness and prenatal alcohol exposure: a comparative study.

    Science.gov (United States)

    Pearton, Jordan Louise; Ramugondo, Elelwani; Cloete, Lizahn; Cordier, Reinie

    2014-08-01

    South Africa carries a high burden of alcohol abuse. The effects of maternal alcohol consumption during pregnancy are most pronounced in poor, rural communities. Earlier research suggests that children with prenatal alcohol exposure have poor social behaviour; however, to date, no research has investigated their playfulness. This study investigated the differences in playfulness of children with and without prenatal alcohol exposure. Grade one learners with a positive history of prenatal alcohol exposure (n = 15) and a reference group without a positive history of prenatal alcohol exposure (n = 15) were filmed engaging in free play at their schools. The Test of Playfulness was used to measure playfulness from recordings. Data were subjected to Rasch analysis to calculate interval level measure scores for each participant. The overall measure scores and individual Test of Playfulness social items were subjected to paired samples t-tests to calculate if significant differences existed between the groups. Children with prenatal alcohol exposure had a significantly lower mean overall playfulness score than the reference group (t = -2.51; d.f. = 28; P = 0.02). Children with prenatal alcohol exposure also scored significantly lower than the reference group on 5 of the 12 Test of Playfulness items related to social play. This research suggests that children with prenatal alcohol exposure are more likely to experience poorer overall quality of play, with particular deficits in social play. Considering play is a child's primary occupation, this finding becomes pertinent for occupational therapy practice, particularly in post-apartheid South Africa, where high prenatal alcohol exposure prevalence rates are couched within persistent socio-economic inequalities. © 2014 Occupational Therapy Australia.

  6. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  7. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  8. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  9. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  10. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  11. Noise perception in the workplace and auditory and extra-auditory symptoms referred by university professors.

    Science.gov (United States)

    Servilha, Emilse Aparecida Merlin; Delatti, Marina de Almeida

    2012-01-01

    To investigate the correlation between noise in the work environment and auditory and extra-auditory symptoms referred by university professors. Eighty five professors answered a questionnaire about identification, functional status, and health. The relationship between occupational noise and auditory and extra-auditory symptoms was investigated. Statistical analysis considered the significance level of 5%. None of the professors indicated absence of noise. Responses were grouped in Always (A) (n=21) and Not Always (NA) (n=63). Significant sources of noise were both the yard and another class, which were classified as high intensity; poor acoustic and echo. There was no association between referred noise and health complaints, such as digestive, hormonal, osteoarticular, dental, circulatory, respiratory and emotional complaints. There was also no association between referred noise and hearing complaints, and the group A showed higher occurrence of responses regarding noise nuisance, hearing difficulty and dizziness/vertigo, tinnitus, and earache. There was association between referred noise and voice alterations, and the group NA presented higher percentage of cases with voice alterations than the group A. The university environment was considered noisy; however, there was no association with auditory and extra-auditory symptoms. The hearing complaints were more evident among professors in the group A. Professors' health is a multi-dimensional product and, therefore, noise cannot be considered the only aggravation factor.

  12. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  13. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  14. Karyotyping or rapid aneuploidy detection in prenatal diagnosis? The different views of users and providers of prenatal care

    NARCIS (Netherlands)

    Boormans, E. M. A.; Birnie, E.; Bilardo, C. M.; Oepkes, D.; Bonsel, G. J.; van Lith, J. M. M.

    2009-01-01

    Developments in prenatal diagnosis raise the question which test strategy should be implemented. However, preferences of women and caregivers are underexposed. This study investigates what kind of prenatal test pregnant women and caregivers prefer and if differences between the groups exist, using

  15. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    Science.gov (United States)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin

  16. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  18. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  19. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  20. The accuracy of 2D ultrasound prenatal sex determination ...

    African Journals Online (AJOL)

    Most of the women were happy even when the sex differed from that which they desired. Conclusion: Prenatal sonographic sex determination has a high sensitivity index. Consequently we advocate its use prior to more invasive sex tests. Keywords: Accuracy, gender determination, prenatal gender, prenatal sex, sex ...

  1. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.

    Science.gov (United States)

    Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O

    2008-11-11

    Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.

  3. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  4. Effect of Auditory Constraints on Motor Learning Depends on Stage of Recovery Post Stroke

    Directory of Open Access Journals (Sweden)

    Viswanath eAluru

    2014-06-01

    Full Text Available In order to develop evidence-based rehabilitation protocols post stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in twenty subjects with chronic hemiparesis, and used a bimanual wrist extension task using a custom-made wrist trainer to facilitate learning of wrist extension in the paretic hand under four auditory conditions: 1 without auditory cueing; 2 to non-musical happy sounds; 3 to self-selected music; and 4 to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post stroke.

  5. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  6. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The Motivation-Facilitation Theory of Prenatal Care Access.

    Science.gov (United States)

    Phillippi, Julia C; Roman, Marian W

    2013-01-01

    Despite the availability of services, accessing health care remains a problem in the United States and other developed countries. Prenatal care has the potential to improve perinatal outcomes and decrease health disparities, yet many women struggle with access to care. Current theories addressing access to prenatal care focus on barriers, although such knowledge is minimally useful for clinicians. We propose a middle-range theory, the motivation-facilitation theory of prenatal care access, which condenses the prenatal care access process into 2 interacting components: motivation and facilitation. Maternal motivation is the mother's desire to begin and maintain care. Facilitation represents the goal of the clinic to create easy, open access to person-centered beneficial care. This simple model directs the focus of research and change to the interface of the woman and the clinic and encourages practice-level interventions that facilitate women entering and maintaining prenatal care. © 2013 by the American College of Nurse‐Midwives.

  9. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  10. Adequacy of Prenatal Care and Gestational Weight Gain.

    Science.gov (United States)

    Yeo, SeonAe; Crandell, Jamie L; Jones-Vessey, Kathleen

    2016-02-01

    The goal of prenatal care is to maximize health outcomes for a woman and her fetus. We examined how prenatal care is associated with meeting the 2009 Institute of Medicine (IOM) guidelines for gestational weight gain. The study used deidentified birth certificate data supplied by the North Carolina State Center for Health Statistics. The sample included 197,354 women (≥18 years) who delivered singleton full-term infants in 2011 and 2012. A generalized multinomial model was used to identify how adequate prenatal care was associated with the odds of gaining excessive or insufficient weight during pregnancy according to the 2009 IOM guidelines. The model adjusted for prepregnancy body size, sociodemographic factors, and birth weight. A total of 197,354 women (≥18 years) delivered singleton full-term infants. The odds ratio (OR) for excessive weight gain was 2.44 (95% CI 2.37-2.50) in overweight and 2.33 (95% CI 2.27-2.40) in obese women compared with normal weight women. The OR for insufficient weight gain was 1.15 (95% CI 1.09-1.22) for underweight and 1.34 (95% CI 1.30-1.39) for obese women compared with normal weight women. Prenatal care at the inadequate or intermediate levels was associated with insufficient weight gain (OR: 1.32, 95% CI 1.27-1.38; OR: 1.15, 95% CI 1.09-1.21, respectively) compared with adequate prenatal care. Women with inadequate care were less likely to gain excessive weight (OR: 0.88, 95% CI 0.86-0.91). Whereas prenatal care was effective for preventing insufficient weight gain regardless of prepregnancy body size, educational background, and racial/ethnic group, there were no indications that adequate prenatal care was associated with reduced risk for excessive gestational weight gain. Further research is needed to improve prenatal care programs for preventing excess weight gain.

  11. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory

    Science.gov (United States)

    Kraus, Nina; Strait, Dana; Parbery-Clark, Alexandra

    2012-01-01

    Musicians benefit from real-life advantages such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. PMID:22524346

  12. Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: Study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography

    International Nuclear Information System (INIS)

    Le Scao, Y.; Robier, A.; Beuter, P.; Baulieu, J.L.; Pourcelot, L.

    1992-01-01

    Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethyl-propylene amine oxime ( 99m Tc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (R stimulation -R deprivation )/R deprivation where R=counts in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment. (orig.)

  13. The comparative effects of group prenatal care on psychosocial outcomes.

    Science.gov (United States)

    Heberlein, Emily C; Picklesimer, Amy H; Billings, Deborah L; Covington-Kolb, Sarah; Farber, Naomi; Frongillo, Edward A

    2016-04-01

    To compare the psychosocial outcomes of the CenteringPregnancy (CP) model of group prenatal care to individual prenatal care, we conducted a prospective cohort study of women who chose CP group (N = 124) or individual prenatal care (N = 124). Study participants completed the first survey at study recruitment (mean gestational age 12.5 weeks), with 89% completing the second survey (mean gestational age 32.7 weeks) and 84% completing the third survey (6 weeks' postpartum). Multiple linear regression models compared changes by prenatal care model in pregnancy-specific distress, prenatal planning-preparation and avoidance coping, perceived stress, affect and depressive symptoms, pregnancy-related empowerment, and postpartum maternal-infant attachment and maternal functioning. Using intention-to-treat models, group prenatal care participants demonstrated a 3.2 point greater increase (p prenatal planning-preparation coping strategies. While group participants did not demonstrate significantly greater positive outcomes in other measures, women who were at greater psychosocial risk benefitted from participation in group prenatal care. Among women reporting inadequate social support in early pregnancy, group participants demonstrated a 2.9 point greater decrease (p = 0.03) in pregnancy-specific distress in late pregnancy and 5.6 point higher mean maternal functioning scores postpartum (p = 0.03). Among women with high pregnancy-specific distress in early pregnancy, group participants had an 8.3 point greater increase (p prenatal planning-preparation coping strategies in late pregnancy and a 4.9 point greater decrease (p = 0.02) in postpartum depressive symptom scores. This study provides further evidence that group prenatal care positively impacts the psychosocial well-being of women with greater stress or lower personal coping resources. Large randomized studies are needed to establish conclusively the biological and psychosocial benefits of group

  14. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  15. Prenatal exposure to anticonvulsants and psychosexual development

    NARCIS (Netherlands)

    Dessens, A. B.; Cohen-Kettenis, P. T.; Mellenbergh, G. J.; vd Poll, N.; Koppe, J. G.; Boer, K.

    1999-01-01

    Animal studies have shown that prenatal exposure to the anticonvulsant drugs phenobarbital and phenytoin alters steroid hormone levels which consequently leads to disturbed sexual differentiation. In this study, possible sequelae of prenatal exposure to these anticonvulsants on gender development in

  16. Efficacy of Transcranial Magnetic Stimulation (TMS) in the Treatment of Schizophrenia: A Review of the Literature to Date.

    Science.gov (United States)

    Cole, Jonathan C; Green Bernacki, Carolyn; Helmer, Amanda; Pinninti, Narsimha; O'reardon, John P

    2015-01-01

    We reviewed the literature on transcranial magnetic stimulation and its uses and efficacy in schizophrenia. Multiple sources were examined on transcranial magnetic stimulation efficacy in relieving positive and negative symptoms of schizophrenia. Literature review was conducted via Ovid Medline and PubMed databases. We found multiple published studies and metaanalyses that give evidence that repetitive transcranial magnetic stimulation can have benefit in relieving positive and negative symptoms of schizophrenia, particularly auditory hallucinations. These findings should encourage the psychiatric community to expand research into other applications for which transcranial magnetic stimulation may be used to treat patients with psychiatric disability.

  17. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    Science.gov (United States)

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  18. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  19. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  20. The Underlying Mechanism of Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users Assessed With Objective Measure.

    Science.gov (United States)

    Bahmer, Andreas; Baumann, Uwe

    2016-10-01

    Triphasic pulse stimulation prevents from facial nerve stimulation (FNS) because of a different electromyographic input-output function compared with biphasic pulse stimulation. FNS is sometimes observed in cochlear implant users as an unwanted side effect of electrical stimulation of the auditory nerve. The common stimulation applied in current cochlear implant consists of biphasic pulse patterns. Two common clinical remedies to prevent unpleasant FNS caused by activation of certain electrodes are to expand their pulse phase duration or simply deactivate them. Unfortunately, in some patients these methods do not provide sufficient FNS prevention. In these patients triphasic pulse can prevent from FNS. The underlying mechanism is yet unclear. Electromyographic (EMG) recordings of muscles innervated by the facial nerve (musculi orbicularis ori and oculi) were applied to quantitatively assess the effects on FNS. Triphasic and biphasic fitting maps were compared in four subjects with severe FNS. Based on the recordings, a model is presented which intends to explain the beneficial effects of triphasic pulse application. Triphasic stimulation provided by fitting of an OPUS 2 speech processor device. For three patients, EMG was successfully recorded depending on stimulation level up to uncomfortable and intolerable FNS stimulation as upper boarder. The obtained EMG recordings demonstrated high individual variability. However, a difference between the input-output function for biphasic and triphasic pulse stimulation was visually observable. Compared with standard biphasic stimulation, triphasic pulses require higher stimulation levels to elicit an equal amount of FNS, as reflected by EMG amplitudes. In addition, we assume a steeper slope of the input-output function for biphasic pulse stimulation compared with triphasic pulse stimulation. Triphasic pulse stimulation prevents from FNS because of a smaller gradient of EMG input-output function compared with biphasic pulse