WorldWideScience

Sample records for prenatal auditory stimulation

  1. Prenatal music stimulation facilitates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus)

    Indian Academy of Sciences (India)

    Saborni Roy; Tapas C Nag; Ashish Datt Upadhyay; Rashmi Mathur; Suman Jain

    2014-03-01

    Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.

  2. Prenatal music stimulation facilitates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus).

    Science.gov (United States)

    Roy, Saborni; Nag, Tapas C; Upadhyay, Ashish Datt; Mathur, Rashmi; Jain, Suman

    2014-03-01

    Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.

  3. Passive auditory stimulation improves vision in hemianopia.

    Directory of Open Access Journals (Sweden)

    Jörg Lewald

    Full Text Available UNLABELLED: Techniques employed in rehabilitation of visual field disorders such as hemianopia are usually based on either visual or audio-visual stimulation and patients have to perform a training task. Here we present results from a completely different, novel approach that was based on passive unimodal auditory stimulation. Ten patients with either left or right-sided pure hemianopia (without neglect received one hour of unilateral passive auditory stimulation on either their anopic or their intact side by application of repetitive trains of sound pulses emitted simultaneously via two loudspeakers. Immediately before and after passive auditory stimulation as well as after a period of recovery, patients completed a simple visual task requiring detection of light flashes presented along the horizontal plane in total darkness. The results showed that one-time passive auditory stimulation on the side of the blind, but not of the intact, hemifield of patients with hemianopia induced an improvement in visual detections by almost 100% within 30 min after passive auditory stimulation. This enhancement in performance was reversible and was reduced to baseline 1.5 h later. A non-significant trend of a shift of the visual field border toward the blind hemifield was obtained after passive auditory stimulation. These results are compatible with the view that passive auditory stimulation elicited some activation of the residual visual pathways, which are known to be multisensory and may also be sensitive to unimodal auditory stimuli as were used here. TRIAL REGISTRATION: DRKS00003577.

  4. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  5. Prenatal IV Cocaine: Alterations in Auditory Information Processing

    Directory of Open Access Journals (Sweden)

    Charles F. Mactutus

    2011-06-01

    Full Text Available One clue regarding the basis of cocaine-induced deficits in attentional processing is provided by the clinical findings of changes in the infants’ startle response; observations buttressed by neurophysiological evidence of alterations in brainstem transmission time. Using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, the present study examined the effects of prenatal cocaine on auditory information processing via tests of the acoustic startle response (ASR, habituation, and prepulse inhibition (PPI in the offspring. Nulliparous Long-Evans female rats, implanted with an IV access port prior to breeding, were administered saline, 0.5, 1.0, or 3.0 mg/kg/injection of cocaine HCL (COC from gestation day (GD8-20 (1x/day-GD8-14, 2x/day-GD15-20. COC had no significant effects on maternal/litter parameters or growth of the offspring. At 18-20 days of age, one male and one female, randomly selected from each litter displayed an increased ASR (>30% for males at 1.0 mg/kg and >30% for females at 3.0 mg/kg. When reassessed in adulthood (D90-100, a linear dose-response increase was noted on response amplitude. At both test ages, within-session habituation was retarded by prenatal cocaine treatment. Testing the females in diestrus vs. estrus did not alter the results. Prenatal cocaine altered the PPI response function across interstimulus interval (ISI and induced significant sex-dependent changes in response latency. Idazoxan, an alpha2-adrenergic receptor antagonist, significantly enhanced the ASR, but less enhancement was noted with increasing doses of prenatal cocaine. Thus, in utero exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, causes persistent, if not permanent, alterations in auditory information processing, and suggests dysfunction of the central noradrenergic circuitry modulating, if not mediating, these responses.

  6. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  7. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  8. Modulation of auditory percepts by transcutaneous electrical stimulation.

    Science.gov (United States)

    Ueberfuhr, Margarete Anna; Braun, Amalia; Wiegrebe, Lutz; Grothe, Benedikt; Drexl, Markus

    2017-07-01

    Transcutaneous, electrical stimulation with electrodes placed on the mastoid processes represents a specific way to elicit vestibular reflexes in humans without active or passive subject movements, for which the term galvanic vestibular stimulation was coined. It has been suggested that galvanic vestibular stimulation mainly affects the vestibular periphery, but whether vestibular hair cells, vestibular afferents, or a combination of both are excited, is still a matter of debate. Galvanic vestibular stimulation has been in use since the late 18th century, but despite the long-known and well-documented effects on the vestibular system, reports of the effect of electrical stimulation on the adjacent cochlea or the ascending auditory pathway are surprisingly sparse. The present study examines the effect of transcutaneous, electrical stimulation of the human auditory periphery employing evoked and spontaneous otoacoustic emissions and several psychoacoustic measures. In particular, level growth functions of distortion product otoacoustic emissions were recorded during electrical stimulation with alternating currents (2 Hz, 1-4 mA in 1 mA-steps). In addition, the level and frequency of spontaneous otoacoustic emissions were followed before, during, and after electrical stimulation (2 Hz, 1-4 mA). To explore the effect of electrical stimulation on the retrocochlear level (i.e. on the ascending auditory pathway beyond the cochlea), psychoacoustic experiments were carried out. Specifically, participants indicated whether electrical stimulation (4 Hz, 2 and 3 mA) induced amplitude modulations of the perception of a pure tone, and of auditory illusions after presentation of either an intense, low-frequency sound (Bounce tinnitus) or a faint band-stop noise (Zwicker tone). These three psychoacoustic measures revealed significant perceived amplitude modulations during electrical stimulation in the majority of participants. However, no significant changes of evoked and

  9. Antidepressants may mitigate the effects of prenatal maternal anxiety on infant auditory sensory gating.

    Science.gov (United States)

    Hunter, Sharon K; Mendoza, Jordan H; D'Anna, Kimberly; Zerbe, Gary O; McCarthy, Lizbeth; Hoffman, Camille; Freedman, Robert; Ross, Randal G

    2012-06-01

    Prenatal maternal anxiety has detrimental effects on the offspring's neurocognitive development, including impaired attentional function. Antidepressants are commonly used during pregnancy, yet their impact on offspring attention and their interaction with maternal anxiety has not been assessed. The authors used P50 auditory sensory gating, a putative marker of early attentional processes measurable in young infants, to assess the impact of maternal anxiety and antidepressant use. A total of 242 mother-infant dyads were classified relative to maternal history of anxiety and maternal prenatal antidepressant use. Infant P50 auditory sensory gating was recorded during active sleep at a mean age of 76 days (SD=38). In the absence of prenatal antidepressant exposure, infants whose mothers had a history of anxiety diagnoses had diminished P50 sensory gating. Prenatal antidepressant exposure mitigated the effect of anxiety. The effect of maternal anxiety was limited to amplitude of response to the second stimulus, while antidepressant exposure had an impact on the amplitude of response to both the first and second stimulus. Maternal anxiety disorders are associated with less inhibition during infant sensory gating, a performance deficit mitigated by prenatal antidepressant exposure. This effect may be important in considering the risks and benefits of antidepressant use during pregnancy. Cholinergic mechanisms are hypothesized for both anxiety and antidepressant effects, although the cholinergic receptors involved are likely different for anxiety and antidepressant effects.

  10. Modulating human auditory processing by transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kai eHeimrath

    2016-03-01

    Full Text Available Transcranial electrical stimulation (tES has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation (tDCS, transcranial alternating current stimulation (tACS, and transcranial random noise stimulation (tRNS has emerged. However, while the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders.

  11. Stimulation of the human auditory nerve with optical radiation

    Science.gov (United States)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  12. Influence of Auditory and Haptic Stimulation in Visual Perception

    Directory of Open Access Journals (Sweden)

    Shunichi Kawabata

    2011-10-01

    Full Text Available While many studies have shown that visual information affects perception in the other modalities, little is known about how auditory and haptic information affect visual perception. In this study, we investigated how auditory, haptic, or auditory and haptic stimulation affects visual perception. We used a behavioral task based on the subjects observing the phenomenon of two identical visual objects moving toward each other, overlapping and then continuing their original motion. Subjects may perceive the objects as either streaming each other or bouncing and reversing their direction of motion. With only visual motion stimulus, subjects usually report the objects as streaming, whereas if a sound or flash is played when the objects touch each other, subjects report the objects as bouncing (Bounce-Inducing Effect. In this study, “auditory stimulation”, “haptic stimulation” or “haptic and auditory stimulation” were presented at various times relative to the visual overlap of objects. Our result shows the bouncing rate when haptic and auditory stimulation were presented were the highest. This result suggests that the Bounce-Inducing Effect is enhanced by simultaneous modality presentation to visual motion. In the future, a neuroscience approach (eg, TMS, fMRI may be required to elucidate the brain mechanism in this study.

  13. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    to neutralize the charge induced during the cathodic phase. Single-neuron recordings in cat auditory nerve using monophasic electrical stimulation show, however, that both phases in isolation can generate an AP. The site of AP generation differs for both phases, being more central for the anodic phase and more...... perception of CI listeners, a model needs to incorporate the correct responsiveness of the AN to anodic and cathodic polarity. Previous models of electrical stimulation have been developed based on AN responses to symmetric biphasic stimulation or to monophasic cathodic stimulation. These models, however......, fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate...

  14. Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.

    Science.gov (United States)

    Chung, Yoojin; Delgutte, Bertrand; Colburn, H Steven

    2015-02-01

    Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners' sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model's ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons.

  15. Transcranial direct current stimulation as a treatment for auditory hallucinations

    OpenAIRE

    Sanne eKoops; Hilde evan den Brink; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS) is a safe and non-invasive technique that is able to...

  16. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  17. Speech Auditory Brainstem Response through hearing aid stimulation.

    Science.gov (United States)

    Bellier, Ludovic; Veuillet, Evelyne; Vesson, Jean-François; Bouchet, Patrick; Caclin, Anne; Thai-Van, Hung

    2015-07-01

    Millions of people across the world are hearing impaired, and rely on hearing aids to improve their everyday life. Objective audiometry could optimize hearing aid fitting, and is of particular interest for non-communicative patients. Speech Auditory Brainstem Response (speech ABR), a fine electrophysiological marker of speech encoding, is presently seen as a promising candidate for implementing objective audiometry; yet, unlike lower-frequency auditory-evoked potentials (AEPs) such as cortical AEPs or auditory steady-state responses (ASSRs), aided-speech ABRs (i.e., speech ABRs through hearing aid stimulation) have almost never been recorded. This may be due to their high-frequency components requesting a high temporal precision of the stimulation. We assess here a new approach to record high-quality and artifact-free speech ABR while stimulating directly through hearing aids. In 4 normal-hearing adults, we recorded speech ABR evoked by a /ba/ syllable binaurally delivered through insert earphones for quality control or through hearing aids. To assess the presence of a potential stimulus artifact, recordings were also done in mute conditions with the exact same potential sources of stimulus artifacts as in the main runs. Hearing aid stimulation led to artifact-free speech ABR in each participant, with the same quality as when using insert earphones, as shown with signal-to-noise (SNR) measurements. Our new approach consisting in directly transmitting speech stimuli through hearing aids allowed for a perfect temporal precision mandatory in speech ABR recordings, and could thus constitute a decisive step in hearing impairment investigation and in hearing aid fitting improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    Science.gov (United States)

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity.

  19. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  20. Prenatal Cigarette Exposure and Infant Learning Stimulation as Predictors of Cognitive Control in Childhood

    Science.gov (United States)

    Mezzacappa, Enrico; Buckner, John C.; Earls, Felton

    2011-01-01

    Prenatal exposures to neurotoxins and postnatal parenting practices have been shown to independently predict variations in the cognitive development and emotional-behavioral well-being of infants and children. We examined the independent contributions of prenatal cigarette exposure and infant learning stimulation, as well as their…

  1. Prenatal Cigarette Exposure and Infant Learning Stimulation as Predictors of Cognitive Control in Childhood

    Science.gov (United States)

    Mezzacappa, Enrico; Buckner, John C.; Earls, Felton

    2011-01-01

    Prenatal exposures to neurotoxins and postnatal parenting practices have been shown to independently predict variations in the cognitive development and emotional-behavioral well-being of infants and children. We examined the independent contributions of prenatal cigarette exposure and infant learning stimulation, as well as their…

  2. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  3. The interaction between duration, velocity and repetitive auditory stimulation.

    Science.gov (United States)

    Makin, Alexis D J; Poliakoff, Ellen; Dillon, Joe; Perrin, Aimee; Mullet, Thomas; Jones, Luke A

    2012-03-01

    Repetitive auditory stimulation (with click trains) and visual velocity signals both have intriguing effects on the subjective passage of time. Previous studies have established that prior presentation of auditory clicks increases the subjective duration of subsequent sensory input, and that faster moving stimuli are also judged to have been presented for longer (the time dilation effect). However, the effect of clicks on velocity estimation is unknown, and the nature of the time dilation effect remains ambiguous. Here were present a series of five experiments to explore these phenomena in more detail. Participants viewed a rightward moving grating which traveled at velocities ranging from 5 to 15°/s and which lasted for durations of 500 to 1500 ms. Gratings were preceded by clicks, silence or white noise. It was found that both clicks and higher velocities increased subjective duration. It was also found that the time dilation effect was a constant proportion of stimulus duration. This implies that faster velocity increases the rate of the pacemaker component of the internal clock. Conversely, clicks increased subjective velocity, but the magnitude of this effect was not proportional to actual velocity. Through considerations of these results, we conclude that clicks independently affect velocity and duration representations.

  4. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver

    National Research Council Canada - National Science Library

    Bianca C R de Castro; Heraldo L Guida; Adriano L Roque; Luiz Carlos de Abreu; Celso Ferreira; Renata S Marcomini; Carlos B M Monteiro; Fernando Adami; Viviane F Ribeiro; Fernando L A Fonseca; Vilma N S Santos; Vitor E Valenti

    2014-01-01

    ...) during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM...

  5. The effect of auditory stimulation on autobiographical recall in dementia.

    Science.gov (United States)

    Foster, N A; Valentine, E R

    2001-01-01

    Elderly individuals with mild-moderate ("high ability") or moderate ("low ability") dementia, answered autobiographical memory questions drawn from three life eras (remote, medium-remote, and recent), in familiar music, novel music, cafeteria noise or quiet. Recall was significantly better in the high-ability than the low-ability group, in sound than in quiet, and in music than in noise. Recall was significantly related to life era, declining from remote to recent memory. The superiority of recall in music compared with noise was apparent for recall from remote and medium-remote but not recent eras. The results are interpreted as favoring an explanation of the beneficial effect of auditory stimulation, predominantly in terms of enhanced arousal or attention deployment, with a possible subsidiary role for associative facilitation.

  6. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia.

    Science.gov (United States)

    Kuga, Hironori; Onitsuka, Toshiaki; Hirano, Yoji; Nakamura, Itta; Oribe, Naoya; Mizuhara, Hiroaki; Kanai, Ryota; Kanba, Shigenobu; Ueno, Takefumi

    2016-10-01

    Recent MRI studies have shown that schizophrenia is characterized by reductions in brain gray matter, which progress in the acute state of the disease. Cortical circuitry abnormalities in gamma oscillations, such as deficits in the auditory steady state response (ASSR) to gamma frequency (>30-Hz) stimulation, have also been reported in schizophrenia patients. In the current study, we investigated neural responses during click stimulation by BOLD signals. We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ), 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ), and 24 healthy controls (HC), assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  7. Immediate effects of different frequencies of auditory stimulation on lower limb motor function of healthy people

    Science.gov (United States)

    Yu, Lili; Huang, Qiuchen; Hu, Chunying; Ye, Miao

    2016-01-01

    [Purpose] The purpose of this study was to explore the immediate effects of different frequencies of auditory stimulation on the lower limb motor function of healthy people. [Subjects and Methods] The subjects were 7 healthy people (5 males and 2 females). The subjects’ lower limb function was measured without auditory stimulation (control), and with auditory stimulation of 500, 1,000, 1,500, and 2,000 Hz. The measured parameters were maximum knee extension torque, average knee extension torque, the Timed Up and Go test (TUG) time, Functional Reach (FR), and the 10-meter walking time. [Results] The TUG times of 500, 1,500, and 2,000 Hz auditory stimulation showed significant decreases compared to the control. The 10-m walking times of 1,000 and 2,000 Hz auditory stimulation showed significant decreases compared to the control. [Conclusion] The results show that auditory stimulation improved the TUG and 10-meter walking times of healthy people and that different frequencies of auditory stimulation had different effects on lower limb motor function. PMID:27630392

  8. Tinnitus suppression by electric stimulation of the auditory nerve

    Directory of Open Access Journals (Sweden)

    Janice Erica Chang

    2012-03-01

    Full Text Available Electric stimulation of the auditory nerve via a cochlear implant (CI has been observed to suppress tinnitus, but parameters of an effective electric stimulus remain unexplored. Here we used CI research processors to systematically vary pulse rate, electrode place, and current amplitude of electric stimuli, and measure their effects on tinnitus loudness and stimulus loudness as a function of stimulus duration. Thirteen tinnitus subjects who used CIs were tested, with 9 (70% being Responders who achieved greater than 30% tinnitus loudness reduction in response to at least one stimulation condition and the remaining 4 (30% being Non-Responders who had less than 30% tinnitus loudness reduction in response to any stimulus condition tested. Despite large individual variability, several interesting observations were made between stimulation parameters, tinnitus characteristics, and tinnitus suppression. If a subject’s tinnitus was suppressed by one stimulus, then it was more likely to be suppressed by another stimulus. If the tinnitus contained a pulsating component, then it would be more likely suppressed by a given combination of stimulus parameters than tinnitus without these components. There was also a disassociation between the subjects’ clinical speech processor and our research processor in terms of their effectiveness in tinnitus suppression. Finally, an interesting dichotomy was observed between loudness adaptation to electric stimuli and their effects on tinnitus loudness, with the Responders exhibiting higher degrees of loudness adaptation than the Non-Responders. Although the mechanisms underlying these observations remain to be resolved, their clinical implications are clear. When using a CI to manage tinnitus, the clinical processor that is optimized for speech perception needs to be customized for optimal tinnitus suppression.

  9. La estimulación prenatal: Resultados relevantes en el periparto Prenatal stimulation: Results in the peripartum period

    Directory of Open Access Journals (Sweden)

    M. J. Aguilar Cordero

    2012-12-01

    Full Text Available Durante el proceso gestacional, el estrés prolongado y las preocupaciones que genera este período pueden alterar el desarrollo y la función del hemisferio derecho; de ahí la importancia que se atribuye a los distintos programas de estimulación temprana dirigido a las mujeres gestantes. Objetivos: Determinar los resultados perinatales en el momento del parto de las mujeres que recibieron el programa de estimulación prenatal. Material: Se realizó un estudio experimental en cinco áreas de salud del municipio de Cienfuegos (Cuba para identificar los resultados perinatales en el momento del parto y de las mujeres que recibieron el programa de estimulación prenatal. Metodología: Se efectuó una muestra intencional de la totalidad del universo, correspondiente a una n = 200 embarazadas, entre las 20 y las 28 semanas de gestación. Las variables estudiadas fueron la duración del trabajo del parto, el peso del recién nacido, el apgar al nacimiento, el tipo de parto y la opinión que las mujeres estudiadas tenían sobre el programa. Resultados: En el 36% de la población estudiada, el trabajo del parto fue menor de 6 horas. En el 67,5%, el recién nacido tuvo un peso comprendido entre 2.500 y 3.000 gramos y para el 96,5% de los hijos de las madres estimuladas, el apgar al nacer fue evaluado entre 8 y 9. En el 68,5% de las mujeres que recibieron el programa de estimulación, su parto fue eutócico y el 96% de las mujeres participantes está satisfecha con el programa recibido. Conclusiones: Se ha demostrado que estos nuevos programas de estimulación prenatal son bien aceptadas por la embarazada.During pregnancy, the prolonged stress and worry felt by mothers can alter the development and function of the right brain hemisphere. For this reason, importance is given to prenatal stimulation programs for pregnant women. Objectives: To determine the perinatal results in the moment of childbirth in mothers who had participated in prenatal stimulation

  10. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs : Relation to neuronal status

    NARCIS (Netherlands)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B.; Klis, Sjaak F L; Grolman, Wilko

    2015-01-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to ch

  11. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  12. Effects of auditory stimulation with music of different intensities on heart period

    OpenAIRE

    do Amaral, Joice A.T.; Guida, Heraldo L; de Abreu, Luiz Carlos; Barnabé, Viviani; Vanderlei,Franciele M.; Valenti, Vitor E.

    2015-01-01

    Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV). There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24...

  13. Optogenetic stimulation of the auditory pathway for research and future prosthetics.

    Science.gov (United States)

    Moser, Tobias

    2015-10-01

    Sound is encoded by spiral ganglion neurons (SGNs) in the hearing organ, the cochlea, with great temporal, spectral and intensity resolution. When hearing fails, electric stimulation by implanted prostheses can partially restore hearing. Optical stimulation promises a fundamental advance of hearing restoration over electric prostheses since light can be conveniently focused and hence might dramatically improve frequency resolution of sound encoding. Combining optogenetic manipulation of neurons with innovative optical stimulation technology promises versatile spatiotemporal stimulation patterns in the auditory system. Therefore, using optical stimulation of SGNs also has great potential for auditory research. Here, I review recent progress in optogenetic stimulation of the auditory system and its potential for future application in research and hearing restoration.

  14. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: a stereological investigation.

    Science.gov (United States)

    Sanyal, Tania; Palanisamy, Pradeep; Nag, T C; Roy, T S; Wadhwa, Shashi

    2013-06-01

    The present study explores whether prenatal patterned and unpatterned sound of high sound pressure level (110 dB) has any differential effect on the morphology of brainstem auditory nuclei, field L (auditory cortex analog) and hippocampus in chicks (Gallus domesticus). The total number of neurons and glia, mean neuronal nuclear area and total volume of the brainstem auditory nuclei, field L and hippocampus of post-hatch day 1 chicks were determined in serial, cresyl violet-stained sections, using stereology software. All regions studied showed a significantly increased total volume with increase in total neuron number and mean neuronal nuclear area in the patterned music stimulated group as compared to control. Contrastingly the unpatterned noise stimulated group showed an attenuated volume with reduction in the total neuron number. The mean neuronal nuclear area was significantly reduced in the auditory nuclei and hippocampus but increased in the field L. Glial cell number was significantly increased in both experimental groups, being highest in the noise group. The brainstem auditory nuclei and field L showed an increase in glia to neuron ratio in the experimental groups as compared to control. In the hippocampus the ratio remained unaltered between control and music groups, but was higher in the noise group. It is thus evident that though the sound pressure level in both experimental groups was the same there were differential changes in the morphological parameters of the brain regions studied, indicating that the characteristics of the sound had a role in mediating these effects.

  15. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation

    Directory of Open Access Journals (Sweden)

    Baumann Simon

    2007-02-01

    Full Text Available Abstract Background Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control habituation phase they heard brief telephone ringing. In the third (conditioning phase we coincidently presented the visual stimulus (CS paired with the auditory stimulus (UCS. In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS- or viewed the visual stimulus in isolation (extinction, CS+ according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button. Results During unpaired visual presentations (preceding and following the paired presentation we observed significant brain responses beyond primary visual cortex in the bilateral posterior auditory association cortex (planum temporale, planum parietale and in the right superior temporal sulcus whereas the primary auditory regions were not involved. By contrast, the activity in auditory core regions was markedly larger when participants were presented with auditory stimuli. Conclusion These results demonstrate involvement of multisensory and auditory association areas in perception of unimodal visual stimulation which may reflect the instantaneous forming of multisensory associations and cannot be attributed to sensation of an auditory event. More importantly, we are able

  16. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju

    2015-01-01

    Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657

  17. The effect of bilateral transcranial direct current stimulation on early auditory processing in schizophrenia: a preliminary study.

    Science.gov (United States)

    Dunn, Walter; Rassovsky, Yuri; Wynn, Jonathan; Wu, Allan D; Iacoboni, Marco; Hellemann, Gerhard; Green, Michael F

    2017-07-07

    Transcranial direct current stimulation (tDCS) was applied bilaterally over the auditory cortex in 12 schizophrenia patients to modulate early auditory processing. Performance on a tone discrimination task (tone-matching task-TMT) and auditory mismatch negativity were assessed after counterbalanced anodal, cathodal, and sham tDCS. Cathodal stimulation improved TMT performance (p stimulation condition by negative symptom interaction in which greater negative symptoms were associated with a better TMT performance after anodal tDCS.

  18. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    Science.gov (United States)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  19. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.

    Science.gov (United States)

    Abikoff, H; Courtney, M E; Szeibel, P J; Koplewicz, H S

    1996-05-01

    This study evaluated the impact of extra-task stimulation on the academic task performance of children with attention-deficit/hyperactivity disorder (ADHD). Twenty boys with ADHD and 20 nondisabled boys worked on an arithmetic task during high stimulation (music), low stimulation (speech), and no stimulation (silence). The music "distractors" were individualized for each child, and the arithmetic problems were at each child's ability level. A significant Group x Condition interaction was found for number of correct answers. Specifically, the nondisabled youngsters performed similarly under all three auditory conditions. In contrast, the children with ADHD did significantly better under the music condition than speech or silence conditions. However, a significant Group x Order interaction indicated that arithmetic performance was enhanced only for those children with ADHD who received music as the first condition. The facilitative effects of salient auditory stimulation on the arithmetic performance of the children with ADHD provide some support for the underarousal/optimal stimulation theory of ADHD.

  20. Persistent fluctuations in stride intervals under fractal auditory stimulation

    NARCIS (Netherlands)

    Marmelat, V.C.M.; Torre, K.; Beek, P.J.; Daffertshofer, A.

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing isgenerally considered to reduce stride variability and may henc

  1. Transcranial direct current stimulation as a treatment for auditory hallucinations

    NARCIS (Netherlands)

    Koops, Sanne; van den Brink, Hilde; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication resistant group are scarce and most of them focus on coping with

  2. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Science.gov (United States)

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  3. Auditory Stimulation Dishabituates Olfactory Responses via Noradrenergic Cortical Modulation

    Directory of Open Access Journals (Sweden)

    Jonathan J. Smith

    2009-01-01

    Full Text Available Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ß-receptors provides a mechanism for dishabituation. The results demonstrate that a 108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex. The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia responses in awake rats. Finally, blockade of piriform cortical norepinephrine ß-receptors with bilateral intracortical infusions of propranolol (100 μM disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a cross-modal alerting stimulus.

  4. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Directory of Open Access Journals (Sweden)

    Vivien Marmelat

    Full Text Available Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  5. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Science.gov (United States)

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  6. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.

  7. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.

    Science.gov (United States)

    Darrow, Keith N; Slama, Michaël C C; Kozin, Elliott D; Owoc, Maryanna; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M Christian; Lee, Daniel J

    2015-03-02

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway and whether it elicited an evoked response. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of the central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50dB SPL acoustic click. This broad pattern of activity was consistent with histological confirmation of green fluorescent protein (GFP) label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics may be necessary to convey information at rates typical of many auditory signals.

  8. Effect of vestibular stimulation on auditory and visual reaction time in relation to stress

    Directory of Open Access Journals (Sweden)

    Archana Rajagopalan

    2017-01-01

    Full Text Available The present study was undertaken to provide scientific evidence and for beneficial effects of vestibular stimulation for the management of stress-induced changes in auditory and visual reaction time (RT. A total of 240 healthy college students of the age group of 18-24 of either gender were a part of this research after obtaining written consent from them. RT for right and left response was measured for two auditory stimuli (low and high pitch and visual stimuli (red and green were recorded. A significant decrease in the visual RT for green light and red light was observed and stress-induced changes was effectively prevented followed by vestibular stimulation. Auditory RT for high pitch right and left response was significantly decreased and stress-induced changes was effectively prevented followed by vestibular stimulation. Vestibular stimulation is effective in boosting auditory and visual RT and preventing stress-induced changes in RT in males and females. We recommend incorporation of vestibular stimulation by swinging in our lifestyle for improving cognitive functions.

  9. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  10. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    Directory of Open Access Journals (Sweden)

    Abhilash ePonnath

    2014-07-01

    Full Text Available Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds or presented on a sound-by-sound basis (ms, experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses, excitability (spikes / acoustic stimulus to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted < 2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  11. Paired associative stimulation of the auditory system: a proof-of-principle study.

    Directory of Open Access Journals (Sweden)

    Martin Schecklmann

    Full Text Available BACKGROUND: Paired associative stimulation (PAS consisting of repeated application of transcranial magnetic stimulation (TMS pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS. METHODS: Acoustic stimuli (4 kHz were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms or 10 ms (PAS(10 ms. Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS at 0.1 Hz (200 stimuli and 1 Hz (1000 stimuli in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs for the tone (4 kHz used in the pairing, and a control tone (1 kHz in a within subjects design. RESULTS: Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms and PAS(10 ms, but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms. Similar, but less pronounced effects were observed for the 1 kHz control tone. CONCLUSION: These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity.

  12. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  13. Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea.

    Science.gov (United States)

    Xia, Nan; Wu, Xiao Y; Wang, Xing; Mou, Zong X; Wang, Man Q; Gu, Xin; Zheng, Xiao L; Hou, Wen S

    2014-01-01

    Pulsed near-infrared radiation has been proposed as an alternative stimulus for auditory nerve stimulation and could be potentially used in the design of cochlear implant. Although the infrared with high absorption coefficient of water (i.e., wavelength ranged from 1.8 to 2.2 μm) has been widely investigated, the lymph in the cochlea absorbs most of the infrared energies, and only a small part can arrive at the target auditory nerves. The present study is aimed to test whether the short-wavelength near-infrared irradiation with lower absorption coefficients can penetrate the lymph fluid to stimulate the auditory nerves. An 808-nm near-infrared laser was chosen to stimulate the auditory nerve in the guinea pig cochlea. The infrared pulse was delivered by an optical fiber that was surgically inserted near the round window membrane and oriented toward the spiral ganglion cells in the basal turn of the cochlea. The 2-Hz infrared pulses were used to stimulate the cochlea before and after the deafness with different pulse durations (100-1,000 μs). Optically evoked compound action potentials (oCAPs) were recorded during the infrared radiation. We successfully recorded oCAPs from both normal hearing animals and deafened animals. The oCAP amplitude increased with the infrared radiation energy. The preliminary experiment suggests that the near-infrared with lower absorption coefficients can effectively pass through the lymph filled in the cochlea and stimulate the auditory nerve. Further studies will optimize the deafness animal model and determine the optimal stimulation parameters.

  14. Review of the Efficacy of Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations

    NARCIS (Netherlands)

    Slotema, Christina W.; Blom, Jan; van Lutterveld, Remko; Hoek, Hans W.; Sommer, Iris E. C.

    2014-01-01

    With an increase of the number of studies exploring repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations (AVH), an update is provided on the efficacy of different paradigms. A literature search was performed from 1966 through April 2013. Twenty-five

  15. Infant Reactivity to Redundant Proprioceptive and Auditory Stimulation: A Twin Study.

    Science.gov (United States)

    Van den Daele, Leland D.

    The role of genetic factors in infant response to redundancy was evaluated through observation of the behavior of three sets of same-sex fraternal twins and six sets of same-sex identical twins to combinations of redundant proprioceptive and auditory stimulation. The twins ranged in age from 6 weeks to 24 weeks. One member of each twin set was…

  16. The Analysis and Treatment of Problem Behavior Evoked by Auditory Stimulation

    Science.gov (United States)

    Devlin, Sarah; Healy, Olive; Leader, Geraldine; Reed, Phil

    2008-01-01

    The current study aimed to identify specific stimuli associated with music that served as an establishing operation (EO) for the problem behavior of a 6-year-old child with a diagnosis of autism. Specific EOs for problem behavior evoked by auditory stimulation could be identified. A differential negative reinforcement procedure was implemented for…

  17. Innervation of the Human Cavum Conchae and Auditory Canal: Anatomical Basis for Transcutaneous Auricular Nerve Stimulation

    Science.gov (United States)

    Bermejo, P.; López, M.; Larraya, I.; Chamorro, J.; Cobo, J. L.; Ordóñez, S.

    2017-01-01

    The innocuous transcutaneous stimulation of nerves supplying the outer ear has been demonstrated to be as effective as the invasive direct stimulation of the vagus nerve for the treatment of some neurological and nonneurological disturbances. Thus, the precise knowledge of external ear innervation is of maximal interest for the design of transcutaneous auricular nerve stimulation devices. We analyzed eleven outer ears, and the innervation was assessed by Masson's trichrome staining, immunohistochemistry, or immunofluorescence (neurofilaments, S100 protein, and myelin-basic protein). In both the cavum conchae and the auditory canal, nerve profiles were identified between the cartilage and the skin and out of the cartilage. The density of nerves and of myelinated nerve fibers was higher out of the cartilage and in the auditory canal with respect to the cavum conchae. Moreover, the nerves were more numerous in the superior and posterior-inferior than in the anterior-inferior segments of the auditory canal. The present study established a precise nerve map of the human cavum conchae and the cartilaginous segment of the auditory canal demonstrating regional differences in the pattern of innervation of the human outer ear. These results may provide additional neuroanatomical basis for the accurate design of auricular transcutaneous nerve stimulation devices.

  18. Auditory stimulation with music influences the geometric indices of heart rate variability in men

    OpenAIRE

    da Silva, Sheila A F; Guida, Heraldo L; dos SantosAntônio, Ana M; Vanderlei, Luiz C. M.; Ferreira, Lucas L.; de Abreu, Luiz C; Sousa, Fernando H; Valenti, Vitor E.

    2014-01-01

    Abstract Background Chronic classical music was reported to increase parasympathetic activitywhen evaluating heart rate variability (HRV). It is poor in the literature investigation of the acute effects of baroque and heavy metal styles of musical auditory stimulation on HRV. In this study we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of HRV in healthy men. ...

  19. Effects of Three Types of Noncontingent Auditory Stimulation on Vocal Stereotypy in Children with Autism

    Science.gov (United States)

    Saylor, Sharyn; Sidener, Tina M.; Reeve, Sharon A.; Fetherston, Anne; Progar, Patrick R.

    2012-01-01

    We evaluated the effects of 3 types of noncontingent auditory stimulation (music, white noise, recordings of vocal stereotypy) on 2 children with autism who engaged in high rates of vocal stereotypy. For both participants, the music condition was the most effective in decreasing vocal stereotypy to near-zero levels, resulted in the highest parent…

  20. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner

    2016-09-13

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.

  1. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  2. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.

    Science.gov (United States)

    Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J

    2014-04-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Supplementary Auditory and Vestibular Stimulation: Effects on Institutionalized Infants

    Science.gov (United States)

    Casler, Lawrence

    1975-01-01

    Supplementary stimulation was supplied for 30 minutes per day for approximately six weeks to 156 normal, full-term institutionalized infants prior to adoption. The Gesell Developmental Schedules were administered regularly (until age 27 months), to determine whether development had been enhanced by the treatment. (JMB)

  4. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    Science.gov (United States)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  5. Acute auditory stimulation with different styles of music influences cardiac autonomic regulation in men

    OpenAIRE

    da Silva, Sheila Ap. F.; Guida, Heraldo L; Ana Marcia dos Santos Antonio; Luiz Carlos de Abreu; Monteiro, Carlos B. M.; Celso Ferreira; Ribeiro, Vivian F.; Viviani Barnabe; Silva, Sidney B; FERNANDO L.A. FONSECA; Fernando Adami; Marcio Petenusso; Raimundo, Rodrigo D; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. ...

  6. The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women

    OpenAIRE

    Roque, Adriano L. [UNESP; Valenti, Vitor E.; Guida, Heraldo L; Campos, Mônica F.; André Knap; Vanderlei, Luiz Carlos M. [UNESP; Celso Ferreira; Luiz Carlos de Abreu

    2013-01-01

    The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had af...

  7. The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women

    OpenAIRE

    Roque, Adriano Luís; Valenti, Vitor Engrácia; Guida, Heraldo Lorena; Campos, Monica F.; Knap, Andre; Vanderlei, Luiz Carlos Marques; Ferreira, Celso; de Abreu, Luiz Carlos

    2013-01-01

    The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. the study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had af...

  8. Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial

    National Research Council Canada - National Science Library

    Bodner, Mark; Turner, Robert P; Schwacke, John; Bowers, Christopher; Norment, Caroline

    2012-01-01

    ... by passive exposure to a specific auditory stimulus (particular music). The specific type of stimulation had been determined in previous studies to evoke anti-epileptiform/anti-seizure brain activity...

  9. Reduction of Seizure Occurrence from Exposure to Auditory Stimulation in Individuals with Neurological Handicaps: A Randomized Controlled Trial: e45303

    National Research Council Canada - National Science Library

    Mark Bodner; Robert P Turner; John Schwacke; Christopher Bowers; Caroline Norment

    2012-01-01

    ... evoked by passive exposure to a specific auditory stimulus (particular music). The specific type of stimulation had been determined in previous studies to evoke anti-epileptiform/anti-seizure brain activity...

  10. Plasticity in the rat posterior auditory field following nucleus basalis stimulation.

    Science.gov (United States)

    Puckett, Amanda C; Pandya, Pritesh K; Moucha, Raluca; Dai, WeiWei; Kilgard, Michael P

    2007-07-01

    Classical conditioning paradigms have been shown to cause frequency-specific plasticity in both primary and secondary cortical areas. Previous research demonstrated that repeated pairing of nucleus basalis (NB) stimulation with a tone results in plasticity in primary auditory cortex (A1), mimicking the changes observed after classical conditioning. However, few studies have documented the effects of similar paradigms in secondary cortical areas. The purpose of this study was to quantify plasticity in the posterior auditory field (PAF) of the rat after NB stimulation paired with a high-frequency tone. NB-tone pairing increased the frequency selectivity of PAF sites activated by the paired tone. This frequency-specific receptive field size narrowing led to a reorganization of PAF such that responses to low- and mid-frequency tones were reduced by 40%. Plasticity in A1 was consistent with previous studies -- pairing a high-frequency tone with NB stimulation expanded the high-frequency region of the frequency map. Receptive field sizes did not change, but characteristic frequencies in A1 were shifted after NB-tone pairing. These results demonstrate that experience-dependent plasticity can take different forms in both A1 and secondary auditory cortex.

  11. Neurophysiological aspects of musical auditory stimulation on the cardiovascular system

    Directory of Open Access Journals (Sweden)

    Lucas Lima Ferreira

    2013-12-01

    Full Text Available Introduction: The literature has shown that musical stimulation can influence the cardiovascular system, however, the neurophysiological aspects of this influence are not yet fully elucidated. Objective: This study describes the influence of music on the neurophysiological mechanisms in the human body, specifically the variable blood pressure, as well as the neural mechanisms of music processing. Methods: Searches were conducted in Medline, PEDro, Lilacs and SciELO using the intersection of the keyword “music” with the keyword descriptors “blood pressure” and “neurophysiology”. Results: There were selected 11 articles, which indicated that music interferes in some aspects of physiological variables. Conclusion: Studies have indicated that music interferes on the control of blood pressure, heart and respiratory rate, through possible involvement of limbic brain areas which modulate hypothalamic-pituitary functions. Further studies are needed in order to identify the mechanisms by which this influence occurs.

  12. Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities

    OpenAIRE

    Amaral, Joice Anaize Tonon do; Nogueira, MArcela Leme; Roque, Adriano L. [UNESP; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Raimundo, Rodrigo Daminello; Vanderlei, Luiz Carlos Marques; Ribeiro, Vivian F.; Ferreira, Celso; Valenti, Vitor Engrácia

    2014-01-01

    Objectives: The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulatio...

  13. Prenatal low dosage dioxin (TCDD) exposure impairs cochlear function resulting in auditory neuropathy.

    Science.gov (United States)

    Safe, Theresa M; Luebke, Anne E

    2016-01-01

    2,3,7,8-tetrachorodibenzo-p-dioxin (TCDD), a ubiquitous and persistent environmental contaminant, is a potent teratogen. Whereas developmental TCDD toxicity is mediated by the aryl hydrocarbon receptor (AhR), the normal function of the AhR is poorly understood. We tested whether dioxin exposure during a critical period of hair cell development disrupts cochlear function in three mouse strains, (C57BL6, BalbC, and CBA) that contain high affinity AhR-b alleles. C57BL/6, BalbC, and CBA dams were exposed to 500 ng/kg TCDD or olive oil (vehicle) on embryonic day 12 by gavage. Cochlear function was analyzed at 1.5 months of age by measuring 1) auditory brainstem response (ABRs) to tone pips from 5.6 to 30 kHz, and 2) distortion-product otoacoustic emissions (DPOAEs) evoked by primaries with f2 at the same frequency values. Cochlear threshold sensitivity following TCDD exposure was significantly elevated in both female and male mice in the C57BL/6 strain, carrying the Ahb-1 allele, but not significantly elevated in the BalbC or CBA strains, carrying the Ahb-2 allele. These ABR threshold deficits in mice carrying the Ahb-1 allele parallels the cleft palate incidence to higher TCDD exposures, suggesting that ABR testing could serve as a sensitive indicator of TCDD toxicity in at-risk children. Moreover, DPOAEs were not affected following TCDD exposure in any of the mouse strains, suggesting that following TCDD exposure mice with the Ahb-1 allele exhibit a mild auditory neuropathy. The causes of many auditory neuropathies are unknown, yet a developmental exposure to dioxin may be a risk factor for this condition.

  14. Prenatal Low Dosage Dioxin (TCDD) Exposure Impairs Cochlear Function Resulting in Auditory Neuropathy

    Science.gov (United States)

    Safe, Theresa M.; Luebke, Anne E.

    2015-01-01

    2,3,7,8-tetrachorodibenzo-p-dioxin (TCDD), a ubiquitous and persistent environmental contaminant, is a potent teratogen. Whereas developmental TCDD toxicity is mediated by the aryl hydrocarbon receptor (AhR), the normal function of the AhR is poorly understood. We tested whether dioxin exposure during a critical period of hair cell development disrupts cochlear function in three mouse strains, (C57BL6, BalbC, and CBA) that contain high affinity AhR-b alleles. C57BL/6, BalbC, and CBA dams were exposed to 500 ng/kg TCDD or olive oil (vehicle) on embryonic day 12 by gavage. Cochlear function was analyzed at 1.5 months of age by measuring 1) auditory brainstem response (ABRs) to tone pips from 5.6 to 30 kHz, and 2) distortion-product otoacoustic emissions (DPOAEs) evoked by primaries with f2 at the same frequency values. Cochlear threshold sensitivity following TCDD exposure was significantly elevated in both female and male mice in the C57BL/6 strain, carrying the Ahb-1 allele, but not significantly elevated in the BalbC or CBA strains, carrying the Ahb-2 allele. These ABR threshold deficits in mice carrying the Ahb-1 allele parallels the cleft palate incidence to higher TCDD exposures, suggesting that ABR testing could serve as a sensitive indicator of TCDD toxicity in at-risk children. Moreover, DPOAEs were not affected following TCDD exposure in any of the mouse strains, suggesting that following TCDD exposure mice with the Ahb-1 allele exhibit a mild auditory neuropathy. The causes of many auditory neuropathies are unknown, yet a developmental exposure to dioxin may be a risk factor for this condition. PMID:26464051

  15. Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys.

    Science.gov (United States)

    Coe, Christopher L; Kramer, Marian; Kirschbaum, Clemens; Netter, Petra; Fuchs, Eberhard

    2002-02-01

    This study investigated whether exposing the fetal primate to repeated episodes of maternal stress would have long-lasting effects on the endotoxin-induced cytokine response and corticosteroid sensitivity of peripheral blood cells in juvenile animals. Pregnant rhesus monkeys were acutely aroused on a daily basis for 6 wk using an acoustical startle protocol, either early or late in the 24-wk pregnancy. To quantify cytokine responses and corticosteroid sensitivity in their offspring at 2 yr of age, whole blood cultures were stimulated with lipopolysaccharide and incubated with dexamethasone (DEX). TNFalpha and IL-6 levels were determined in the culture supernatants. The blood samples were collected from undisturbed monkeys under baseline conditions, as well as in an aroused state induced by a 2 h social separation. Juvenile monkeys from stressed pregnancies had significantly lower cellular cytokine responses compared with the undisturbed controls. When DEX was added to the cell cultures, it systematically inhibited TNFalpha and IL-6 production, bringing the values for control animals down into the range of the prenatally stressed animals. Lipopolysaccharide-induced cytokine production was also markedly suppressed by the experience of acute stress, reducing cytokine responses of controls to the levels found for prenatally disturbed monkeys under baseline conditions. Therefore, this study has demonstrated that prenatal disturbance can induce a lasting change in cytokine biology, which persists well beyond the fetal and infant stage. Further, these effects may be due to elevated hypothalamic-pituitary-adrenal activity in the prenatally stressed animals, because both DEX and acute arousal made the cells from control monkeys appear more similar to those from disturbed pregnancies.

  16. Steady state responses to temporally congruent and incongruent auditory and vibrotactile amplitude modulated stimulation.

    Science.gov (United States)

    Budd, Timothy W; Timora, Justin R

    2013-09-01

    Recent research suggests that multisensory integration may occur at an early phase in sensory processing and within cortical regions traditionally though to be exclusively unisensory. Evidence from perceptual and electrophysiological studies indicate that the cross modal temporal correspondence of multisensory stimuli plays a fundamental role in the cortical integration of information across separate sensory modalities. Further, oscillatory neural activity in sensory cortices may provide the principle mechanism whereby sensory information from separate modalities is integrated. In the present study we aimed to extend this prior research by using the steady-state EEG response (SSR) to examine whether variations in the cross-modality temporal correspondence of amplitude modulated auditory and vibrotactile stimulation are apparent in SSR activity to multisensory stimulation. To achieve this we varied the cross-modal congruence of modulation rate for passively and simultaneously presented amplitude modulated auditory and vibrotactile stimuli. In order to maximise the SSR response in both modalities 21 and 40 Hz modulation rates were selected. Consistent with prior SSR studies, the present results showed clear evidence of phase-locking for EEG frequencies corresponding to the modulation rate of auditory and vibrotactile stimulation. As also found previously, the optimal modulation rate for SSR activity differed according to the modality, being greater at 40 Hz for auditory responses and greater at 21 Hz for vibrotactile responses. Despite consistent and reliable changes in SSR activity with manipulations of modulation rate within modality, the present study failed to provide strong evidence of multisensory interactions in SSR activity for temporally congruent, relative to incongruent, cross modal conditions. The results are discussed in terms of the role of attention as a possible factor in reconciling inconsistencies in SSR studies of multisensory integration. Crown

  17. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model.

    Science.gov (United States)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about the health of the auditory nerve. In this study, guinea pigs with various degrees of nerve degeneration were used to directly relate firing properties to nerve histology. The same convolution model was applied on human eCAPs to examine similarities and ultimately to examine its clinical applicability. For most eCAPs, the estimated nerve firing probability was bimodal and could be parameterised by two Gaussian distributions with an average latency difference of 0.4 ms. The ratio of the scaling factors of the late and early component increased with neural degeneration in the guinea pig. This ratio decreased with stimulation intensity in humans. The latency of the early component decreased with neural degeneration in the guinea pig. Indirectly, this was observed in humans as well, assuming that the cochlear base exhibits more neural degeneration than the apex. Differences between guinea pigs and humans were observed, among other parameters, in the width of the early component: very robust in guinea pig, and dependent on stimulation intensity and cochlear region in humans. We conclude that the deconvolution of the eCAP is a valuable addition to existing analyses, in particular as it reveals two separate firing components in the auditory nerve.

  18. Noninvasive brain stimulation for the treatment of auditory verbal hallucinations in schizophrenia: methods, effects and challenges

    Science.gov (United States)

    Kubera, Katharina M.; Barth, Anja; Hirjak, Dusan; Thomann, Philipp A.; Wolf, Robert C.

    2015-01-01

    This mini-review focuses on noninvasive brain stimulation techniques as an augmentation method for the treatment of persistent auditory verbal hallucinations (AVH) in patients with schizophrenia. Paradigmatically, we place emphasis on transcranial magnetic stimulation (TMS). We specifically discuss rationales of stimulation and consider methodological questions together with issues of phenotypic diversity in individuals with drug-refractory and persistent AVH. Eventually, we provide a brief outlook for future investigations and treatment directions. Taken together, current evidence suggests TMS as a promising method in the treatment of AVH. Low-frequency stimulation of the superior temporal cortex (STC) may reduce symptom severity and frequency. Yet clinical effects are of relatively short duration and effect sizes appear to decrease over time along with publication of larger trials. Apart from considering other innovative stimulation techniques, such as transcranial Direct Current Stimulation (tDCS), and optimizing stimulation protocols, treatment of AVH using noninvasive brain stimulation will essentially rely on accurate identification of potential responders and non-responders for these treatment modalities. In this regard, future studies will need to consider distinct phenotypic presentations of AVH in patients with schizophrenia, together with the putative functional neurocircuitry underlying these phenotypes. PMID:26528145

  19. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    Science.gov (United States)

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits.

  20. Effects of auditory stimulation with music of different intensities on heart period.

    Science.gov (United States)

    do Amaral, Joice A T; Guida, Heraldo L; de Abreu, Luiz Carlos; Barnabé, Viviani; Vanderlei, Franciele M; Valenti, Vitor E

    2016-01-01

    Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV). There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24 healthy women between 18 and 25 years of age. We analyzed HRV in the time [standard deviation of normal-to-normal RR intervals (SDNN), percentage of adjacent RR intervals with a difference of duration >50 ms (pNN50), and root-mean square of differences between adjacent normal RR intervals in a time interval (RMSSD)] and frequency [low frequency (LF), high frequency (HF), and LF/HF ratio] domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to baroque or heavy-metal music for 5 minutes through an earphone. The volunteers were exposed to three equivalent sound levels (60-70, 70-80, and 80-90 dB). After the first baroque or heavy-metal music, they remained at rest for 5 minutes and then they were exposed to the other music. The sequence of songs was randomized for each individual. Heavy-metal musical auditory stimulation at 80-90 dB reduced the SDNN index compared with control (44.39 ± 14.40 ms vs. 34.88 ± 8.69 ms), and stimulation at 60-70 dB decreased the LF (ms(2)) index compared with control (668.83 ± 648.74 ms(2) vs. 392.5 ± 179.94 ms(2)). Baroque music at 60-70 dB reduced the LF (ms(2)) index (587.75 ± 318.44 ms(2) vs. 376.21 ± 178.85 ms(2)). In conclusion, heavy-metal and baroque musical auditory stimulation at lower intensities acutely reduced global modulation of the heart and only heavy-metal music reduced HRV at higher intensities.

  1. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment

    Science.gov (United States)

    Martiniano, Eli Carlos; Monteiro, Larissa Raylane Lucas; Valenti, Vitor E.; Sorpreso, Isabel Cristina Esposito; de Abreu, Luiz Carlos

    2017-01-01

    We aimed to evaluate the acute effect of musical auditory stimulation on heart rate autonomic regulation during endodontic treatment. The study included 50 subjects from either gender between 18 and 40 years old, diagnosed with irreversible pulpitis or pulp necrosis of the upper front teeth and endodontic treatment indication. HRV was recorded 10 minutes before (T1), during (T2), and immediately (T3 and T4) after endodontic treatment. The volunteers were randomly divided into two equal groups: exposed to music (during T2, T3, and T4) or not. We found no difference regarding salivary cortisol and anxiety score. In the group with musical stimulation heart rate decreased in T3 compared to T1 and mean RR interval increased in T2 and T3 compared to T1. SDNN and TINN indices decreased in T3 compared to T4, the RMSSD and SD1 increased in T4 compared to T1, the SD2 increased compared to T3, and LF (low frequency band) increased in T4 compared to T1 and T3. In the control group, only RMSSD and SD1 increased in T3 compared to T1. Musical auditory stimulation enhanced heart rate autonomic modulation during endodontic treatment. PMID:28182118

  2. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Milana Drumond Ramos Santana

    2017-01-01

    Full Text Available We aimed to evaluate the acute effect of musical auditory stimulation on heart rate autonomic regulation during endodontic treatment. The study included 50 subjects from either gender between 18 and 40 years old, diagnosed with irreversible pulpitis or pulp necrosis of the upper front teeth and endodontic treatment indication. HRV was recorded 10 minutes before (T1, during (T2, and immediately (T3 and T4 after endodontic treatment. The volunteers were randomly divided into two equal groups: exposed to music (during T2, T3, and T4 or not. We found no difference regarding salivary cortisol and anxiety score. In the group with musical stimulation heart rate decreased in T3 compared to T1 and mean RR interval increased in T2 and T3 compared to T1. SDNN and TINN indices decreased in T3 compared to T4, the RMSSD and SD1 increased in T4 compared to T1, the SD2 increased compared to T3, and LF (low frequency band increased in T4 compared to T1 and T3. In the control group, only RMSSD and SD1 increased in T3 compared to T1. Musical auditory stimulation enhanced heart rate autonomic modulation during endodontic treatment.

  3. Auditory training in patients with unilateral cochlear implant and contralateral acoustic stimulation

    Science.gov (United States)

    Zhang, Ting; Dorman, Michael F.; Fu, Qian-Jie; Spahr, Anthony J.

    2012-01-01

    Objectives The hypothesis of the present study was that auditory training would allow bimodal patients to better combine the low-frequency acoustic information provided by a hearing aid (HA) with the electric information provided by a cochlear implant (CI), thus maximizing the benefit of combining acoustic (A) and electric (E) stimulation (EAS). Design Performance in quiet or in the presence of a multi-talker babble at + 5 dB SNR was evaluated in seven bimodal patients before and after auditory training. The performance measures comprised identification of vowels and consonants, CNC words, sentences, voice gender, and emotion. Baseline performance was evaluated in the A-alone, E-alone, and combined EAS conditions once per week for three weeks. A phonetic-contrast training protocol was used to facilitate speech perceptual learning. Patients trained at home 1 hour/day, 5 days/week, for 4 weeks with both their CI and HA devices on. Performance was re-measured after the 4th weeks of training and one month after training stopped. Results After training, there was significant improvement in vowel, consonant, and CNC word identification in the E and EAS conditions. The magnitude of improvement in the E condition was equivalent to that in the EAS condition. The improved performance was largely retained one month after training stopped. Conclusion Auditory training, in the form administered in this study, can improve bimodal patients’ overall speech understanding by improving E-alone performance. PMID:22622705

  4. Effects of inclined treadmill walking training with rhythmic auditory stimulation on balance and gait in stroke patients

    Science.gov (United States)

    Yoon, Sung Kyeung; Kang, Soon Hee

    2016-01-01

    [Purpose] The purpose of this study was to determine if an inclined treadmill with rhythmic auditory stimulation gait training can improve balance and gait ability in stroke patients. [Subjects and Methods] Thirty participants were randomly divided into three groups: inclined treadmill with rhythmic auditory stimulation training group (n=10), inclined treadmill training group (n=10), and treadmill training group (n=10). For all groups, the training was conducted for 4 weeks, 30 minutes per session, 5 times per week. Two subjects dropped out before study completion. [Results] All variables of balance and gait, except for the timed up and go test in the treadmill group, significantly improved in all groups. Moreover, all variables showed a more significant improvement in the inclined treadmill with rhythmic auditory stimulation group when compared with the other groups. Timed up and go test, Berg balance scale, 6 m walking test, walking speed, and symmetric index were significantly improved in the inclined treadmill group when compared with the treadmill group. [Conclusion] Thus, for stroke patients receiving gait training, inclined treadmill with rhythmic auditory stimulation training was more effective in maintaining balance and gait than inclined treadmill without rhythmic auditory stimulation or only treadmill training. PMID:28174453

  5. Baseline Gamma Power during Auditory Steady-State Stimulation in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Kevin M Spencer

    2012-01-01

    Full Text Available Several studies have reported deficits in γ oscillatory activity elicited by sensory stimulation or cognitive processes in schizophrenia patients (SZ compared to healthy control subjects (HC. However, the evidence for cortical hyperexcitability and reduced function of N-methyl-D-aspartate receptors (NMDARs on parvalbumin-expressing inhibitory interneurons in schizophrenia leads to the prediction that γ activity should rather be increased in SZ, but data supporting this hypothesis have been lacking. One possibility is that baseline induced γ power is increased, an effect that might have gone unnoticed in studies of stimulus-locked oscillations. Here we addressed this question by re-analyzing the data from a previously published study on the 40 Hz auditory steady-state response (ASSR in schizophrenia in which dipole source localization was used to examine γ responses in the left and right auditory cortices. Subjects were 16 HC and 18 chronic SZ, who listened to trains of clicks presented at 40 Hz during electroencephalogram recording. Independent component analysis was used to remove ocular artifacts. Power spectra were computed for the pre-stimulus baseline period. We found that baseline power was higher in SZ than HC at 40 Hz in the left auditory cortex. Baseline 40 Hz power in the left auditory cortex was also correlated with ASSR evoked power in SZ. Thus, γ oscillation abnormalities in schizophrenia may include abnormal increases in baseline power as well as deficits in evoked oscillations. These baseline increases could be the sign of NMDAR hypofunction on parvalbumin-expressing inhibitory interneurons, which would be consistent with acute NMDAR antagonism and genetic ablation models of schizophrenia.

  6. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure.

    Science.gov (United States)

    Kumar, Vivek; Nag, Tapas Chandra; Sharma, Uma; Mewar, Sujeet; Jagannathan, Naranamangalam R; Wadhwa, Shashi

    2014-10-01

    Proper functional development of the auditory cortex (ACx) critically depends on early relevant sensory experiences. Exposure to high intensity noise (industrial/traffic) and music, a current public health concern, may disrupt the proper development of the ACx and associated behavior. The biochemical mechanisms associated with such activity dependent changes during development are poorly understood. Here we report the effects of prenatal chronic (last 10 days of incubation), 110dB sound pressure level (SPL) music and noise exposure on metabolic profile of the auditory cortex analogue/field L (AuL) in domestic chicks. Perchloric acid extracts of AuL of post hatch day 1 chicks from control, music and noise groups were subjected to high resolution (700MHz) (1)H NMR spectroscopy. Multivariate regression analysis of the concentration data of 18 metabolites revealed a significant class separation between control and loud sound exposed groups, indicating a metabolic perturbation. Comparison of absolute concentration of metabolites showed that overstimulation with loud sound, independent of spectral characteristics (music or noise) led to extensive usage of major energy metabolites, e.g., glucose, β-hydroxybutyrate and ATP. On the other hand, high glutamine levels and sustained levels of neuromodulators and alternate energy sources, e.g., creatine, ascorbate and lactate indicated a systems restorative measure in a condition of neuronal hyperactivity. At the same time, decreased aspartate and taurine levels in the noise group suggested a differential impact of prenatal chronic loud noise over music exposure. Thus prenatal exposure to loud sound especially noise alters the metabolic activity in the AuL which in turn can affect the functional development and later auditory associated behaviour.

  7. 双耳刺激听觉训练%Auditory Training with Bilateral Stimulation

    Institute of Scientific and Technical Information of China (English)

    张莉; 梁巍

    2015-01-01

    双耳刺激为听障儿童口语康复提供先决条件,通过刺激获得双耳聆听技能更有助于听障儿童语言学习。本文介绍了双耳刺激的类型与形式,并针对听障儿童接受双耳刺激后听觉训练方案及随班就读后的康复指导要点进行了介绍。%Binaural stimulation provides a prerequisite of oral rehabilitation for hearing-impaired children and binaural listening skills will help children's language development.The article introduces the type of binaural stimulation, auditory training emphasis and some guidances for inclusive education.

  8. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Directory of Open Access Journals (Sweden)

    Bryan M Krause

    2014-09-01

    Full Text Available The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce 'packets' of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013. However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC pathways sequentially activate cells in layers 4 (L4, L2/3 and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2 - 6, presumably via synapses onto dendritic processes located in L3 & L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a nonlinear amplification process, are initiated by infragranular cells and tightly regulated by feed

  9. Use of transcranial direct current stimulation for the treatment of auditory hallucinations of schizophrenia – a systematic review

    Science.gov (United States)

    Pondé, Pedro H; de Sena, Eduardo P; Camprodon, Joan A; de Araújo, Arão Nogueira; Neto, Mário F; DiBiasi, Melany; Baptista, Abrahão Fontes; Moura, Lidia MVR; Cosmo, Camila

    2017-01-01

    Introduction Auditory hallucinations are defined as experiences of auditory perceptions in the absence of a provoking external stimulus. They are the most prevalent symptoms of schizophrenia with high capacity for chronicity and refractoriness during the course of disease. The transcranial direct current stimulation (tDCS) – a safe, portable, and inexpensive neuromodulation technique – has emerged as a promising treatment for the management of auditory hallucinations. Objective The aim of this study is to analyze the level of evidence in the literature available for the use of tDCS as a treatment for auditory hallucinations in schizophrenia. Methods A systematic review was performed, searching in the main electronic databases including the Cochrane Library and MEDLINE/PubMed. The searches were performed by combining descriptors, applying terms of the Medical Subject Headings (MeSH) of Descriptors of Health Sciences and descriptors contractions. PRISMA protocol was used as a guide and the terms used were the clinical outcomes (“Schizophrenia” OR “Auditory Hallucinations” OR “Auditory Verbal Hallucinations” OR “Psychosis”) searched together (“AND”) with interventions (“transcranial Direct Current Stimulation” OR “tDCS” OR “Brain Polarization”). Results Six randomized controlled trials that evaluated the effects of tDCS on the severity of auditory hallucinations in schizophrenic patients were selected. Analysis of the clinical results of these studies pointed toward incongruence in the information with regard to the therapeutic use of tDCS with a view to reducing the severity of auditory hallucinations in schizophrenia. Only three studies revealed a therapeutic benefit, manifested by reductions in severity and frequency of auditory verbal hallucinations in schizophrenic patients. Conclusion Although tDCS has shown promising results in reducing the severity of auditory hallucinations in schizophrenic patients, this technique cannot

  10. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation

    Directory of Open Access Journals (Sweden)

    Lucas L Ferreira

    2015-01-01

    Full Text Available The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB and heavy metal (75-84 dB music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN intervals, root mean square of successive differences (RMSSD, percentage of normal-to-normal 50 (pNN50, low frequency (LF, high frequency (HF, and LF/HF ratio. SDNN, LF in absolute units (ms 2 and normalized (nu, and LF/HF ratio increased while HF index (nu decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style.

  11. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation.

    Science.gov (United States)

    Ferreira, Lucas L; Vanderlei, Luiz Carlos M; Guida, Heraldo L; de Abreu, Luiz Carlos; Garner, David M; Vanderlei, Franciele M; Ferreira, Celso; Valenti, Vitor E

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms 2 ) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 ) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style.

  12. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  13. Prenatal Loud Music and Noise: Differential Impact on Physiological Arousal, Hippocampal Synaptogenesis and Spatial Behavior in One Day-Old Chicks

    OpenAIRE

    Tania Sanyal; Vivek Kumar; Tapas Chandra Nag; Suman Jain; Vishnu Sreenivas; Shashi Wadhwa

    2013-01-01

    Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibe...

  14. The effects of auditory stimulation with music on heart rate variability in healthy women

    Directory of Open Access Journals (Sweden)

    Adriano L. Roque

    2013-07-01

    Full Text Available OBJECTIVES: There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. METHODS: We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21, who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19, who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB. A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB. The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio, low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. RESULTS: The triangular index and the standard deviation of

  15. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations.

  16. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  17. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia : A meta-analysis

    NARCIS (Netherlands)

    Aleman, Andre; Sommer, Iris E.; Kahn, Rene S.

    2007-01-01

    Objective: Slow repetitive transcranial magnetic stimulation (rTMS), at a frequency of 1 Hz, has been proposed as a treatment for auditory hallucinations. Several studies have now been reported regarding the efficacy of TMS treatment, but results were inconsistent. Therefore, meta-analytic integrati

  18. Effect of Rhythmic Auditory Stimulation on Controlling Stepping Cadence of Individuals with Mental Retardation and Cerebral Palsy

    Science.gov (United States)

    Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea

    2012-01-01

    One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…

  19. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike. ...

  20. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    Science.gov (United States)

    Horne, Colin D F; Sumner, Christian J; Seeber, Bernhard U

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  1. La estimulación prenatal: Resultados relevantes en el periparto Prenatal stimulation: Results in the peripartum period

    OpenAIRE

    M. J. Aguilar Cordero; M. Vieite Ravelo; C. A. Padilla López; N. Mur Villar; Rizo Baeza, M.; C. I. Gómez García

    2012-01-01

    Durante el proceso gestacional, el estrés prolongado y las preocupaciones que genera este período pueden alterar el desarrollo y la función del hemisferio derecho; de ahí la importancia que se atribuye a los distintos programas de estimulación temprana dirigido a las mujeres gestantes. Objetivos: Determinar los resultados perinatales en el momento del parto de las mujeres que recibieron el programa de estimulación prenatal. Material: Se realizó un estudio experimental en cinco áreas de salud ...

  2. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver

    Directory of Open Access Journals (Sweden)

    Bianca C. R. de Castro

    2014-01-01

    Full Text Available It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM. We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio. HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman′s followed by the Dunn′s posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  3. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    Science.gov (United States)

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.

  4. Noninvasive brain stimulation and auditory verbal hallucinations: new techniques and future directions

    Directory of Open Access Journals (Sweden)

    Peter eMoseley

    2016-01-01

    Full Text Available Auditory verbal hallucinations (AVHs are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localise the targeted cortical area, and the state-dependent effects of brain stimulation, as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH.

  5. Auditory maturity and hearing performance in inner ear malformations: a histological and electrical stimulation approach.

    Science.gov (United States)

    Sainz, Manuel; Garcia-Valdecasas, Juan; Fernandez, Elena; Pascual, Maria Teresa; Roda, Olga

    2012-06-01

    The objective of this study was to assess the auditory performance of the neural structures in response to controlled electrical stimulation period. A prospective cohort study focused on the intracochlear electrical stimulation parameters and hearing performance of patients suffering different cochlear malformations who were treated by cochlear implants constituted the study design. The study sample constituted 16 patients, suffering profound prelingual hearing impairment, diagnosed on the basis of radiological criteria as having an inner ear malformation, and who underwent cochlear implantation and were followed for 24 months. Patients with common cavities, characterized by fewer nerve structures involved, less epithelial penetration, and deficient cochlear tonotopy distribution showed have higher thresholds and electrical charges than patients with cochlear hypoplasia, who in turn have higher thresholds than patients with minor malformations (p malformation and was also poor in patients with cochlear hypoplasia, who were unable to discriminate more than 50% of the words and relied on visual cues as a necessary aid to communication. Better results were reached by minor malformed inner ears. To conclude, the number of nerve structures involved, epithelial penetration and deficient cochlear tonotopy are responsible of inner ear functionality.

  6. Priority of repetitive adaptation to mismatch response following undiscriminable auditory stimulation: a magnetoencephalographic study.

    Science.gov (United States)

    Hoshiyama, Minoru; Okamoto, Hidehiko; Kakigi, Ryusuke

    2007-02-01

    We analysed two different neural mechanisms related to the unconscious processing of auditory stimulation, neural adaptation and mismatch negativity (MMN), using magnetoencephalography in healthy non-musicians. Four kinds of conditioning stimulus (CS): white noise, a 675-Hz pure tone, and complex tones with six (CT6) and seven components (CT7), were used for analysing neural adaptation. The seven spectral components of CT7 were spaced by 1/7 octaves between 500 and 906 Hz on the logarithmic scale. The CT6 components contained the same spectral components as CT7, except for the center frequency, 675 kHz. Subjects could not distinguish CT6 from CT7 in a discrimination test. A test stimulus (TS), a 675-Hz tone, was presented after CS, and the effects of the presence of the same 675-Hz frequency in the CS on the magnetoencephalographic response elicited by TS was evaluated. The P2m component following CT7 was significantly smaller in current strength than that following CT6. The equivalent current dipole for P2m was located approximately 10 mm anterior to the preceding N1m. This result indicated that neural adaptation was taking place in the anterior part of the auditory cortex, even if the sound difference was subthreshold. By contrast, the magnetic counterpart of the MMN was not recorded when CT6 and CT7 were used as standard and deviant stimuli, respectively, being consistent with the discrimination test. In conclusion, neural adaptation is considered to be more sensitive than our consciousness or the MMN, or is caused by an independent mechanism.

  7. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  8. Balance control enhancement using sub-sensory stimulation and visual-auditory biofeedback strategies for amputee subjects.

    Science.gov (United States)

    Lee, Ming-Yih; Lin, Chih-Feng; Soon, Kok-Soon

    2007-12-01

    Sub-sensory electrical or mechanical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capabilities of elderly. In addition, clinical studies suggest that visual-auditory biofeedback can improve sensory compensation for the elderly. This study hypothesizes that the static balance and gait performance of single leg quiet standing and treadmill walking could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation and visual-auditory biofeedback in amputee subjects. To test this, a computerized foot pressure biofeedback sensory compensation system using sub-threshold low-level electrical stimulation combined with visual-auditory biofeedback was developed. Seven unilateral trans-tibial amputees who wore prostheses over 2 years were recruited. The subjects performed multiple single leg quiet standing trials with sub-sensory electrical stimulation applied at the quadriceps muscle during half of the trials. Static balance performance was characterized by using a Zebris motion analysis system to measure the sway distance and duration of the centre of mass on the second sacral (S2) of the subjects. In addition, multiple treadmill ambulatory trials with or without visual-auditory biofeedback was performed. Dynamic gait performance was characterized with a Zebris instrumented insole to measure the temporal responses of foot pressure sensors. Experimental results showed an improvement in three balance performance indices (Holding Time Index, HTI, Maximum Sway Distance Index, MSDI, and Average Sway Distance Index, ASDI) during single leg quiet standing by applying sub-sensory stimulation. The improvement ratio of these balance performance indices across subjects for single leg quiet standing tests resulted in 132.34% in HTI, 44.61% in MSDI, and 61.45% in ASDI. With visual-auditory biofeedback as a cue for heel contact and toe push-off condition during treadmill ambulation, the

  9. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex.

    Science.gov (United States)

    Vollmer, Maike; Beitel, Ralph E; Schreiner, Christoph E; Leake, Patricia A

    2017-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, "passive" ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944-959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423-2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus

  10. Short and Long Term Effects of Left and Bilateral Repetitive Transcranial Magnetic Stimulation in Schizophrenia Patients with Auditory Verbal Hallucinations : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Bais, Leonie; Vercammen, Ans; Stewart, Roy; van Es, Frank; Visser, Bert; Aleman, Andre; Knegtering, Henderikus

    2014-01-01

    Background: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations

  11. Short and Long Term Effects of Left and Bilateral Repetitive Transcranial Magnetic Stimulation in Schizophrenia Patients with Auditory Verbal Hallucinations : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Bais, Leonie; Vercammen, Ans; Stewart, Roy; van Es, Frank; Visser, Bert; Aleman, Andre; Knegtering, Henderikus

    2014-01-01

    Background: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal

  12. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  13. Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders.

    Science.gov (United States)

    Przybylski, Lauranne; Bedoin, Nathalie; Krifi-Papoz, Sonia; Herbillon, Vania; Roch, Didier; Léculier, Laure; Kotz, Sonja A; Tillmann, Barbara

    2013-01-01

    Children with developmental language disorders have been shown to be impaired not only in language processing (including syntax), but also in rhythm and meter perception. Our study tested the influence of external rhythmic auditory stimulation (i.e., musical rhythm) on syntax processing in children with specific language impairment (SLI; Experiment 1A) and dyslexia (Experiment 1B). Children listened to either regular or irregular musical prime sequences followed by blocks of grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Performance of all children (SLI, dyslexia, and controls) in the grammaticality judgments was better after regular prime sequences than after irregular prime sequences, as shown by d' data. The benefit of the regular prime was stronger for SLI children (partial η2 = .34) than for dyslexic children (partial η2 = .14), who reached higher performance levels. Together with previous findings on deficits in temporal processing and sequencing, as well as with the recent proposition of a temporal sampling (oscillatory) framework for developmental language disorders (U. A. Goswami, 2011, Temporal sampling framework for developmental dyslexia, Trends in Cognitive Sciences, Vol. 15, pp. 3-10), our results point to potential avenues in using rhythmic structures (even in nonverbal materials) to boost linguistic structure processing.

  14. The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women

    Directory of Open Access Journals (Sweden)

    Adriano L Roque

    2013-01-01

    Full Text Available The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. All procedures were performed in the same sound-proof room. We analyzed HRV in the time (standard deviation of normal-to-normal respiratory rate (RR intervals, root-mean square of differences between adjacent normal RR intervals in a time interval, and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms and frequency (low frequency [LF], high frequency [HF], and LF/HF ratio domains. HRV was recorded at rest for 10 min. Subsequently they were exposed to baroque or heavy metal music for 5 min through an earphone. After the first music exposure they remained at rest for more 5 min and them they were exposed again to baroque or heavy metal music. The sequence of songs was randomized for each individual. The power analysis provided a minimal number of 18 subjects. Shapiro-Wilk to verify normality of data and analysis of variance for repeated measures followed by the Bonferroni test for parametric variables and Friedman′s followed by the Dunn′s post-test for non-parametric distributions. During the analysis of the time-domain indices were not changed. In the frequency-domain analysis, the LF in absolute units was reduced during the heavy metal music stimulation compared to control. Acute exposure to heavy metal music affected the sympathetic activity in healthy women.

  15. The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women.

    Science.gov (United States)

    Roque, Adriano L; Valenti, Vitor E; Guida, Heraldo L; Campos, Mônica F; Knap, André; Vanderlei, Luiz Carlos M; Ferreira, Celso; de Abreu, Luiz Carlos

    2013-01-01

    The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. All procedures were performed in the same sound-proof room. We analyzed HRV in the time (standard deviation of normal-to-normal respiratory rate (RR) intervals, root-mean square of differences between adjacent normal RR intervals in a time interval, and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms) and frequency (low frequency [LF], high frequency [HF], and LF/HF ratio) domains. HRV was recorded at rest for 10 min. Subsequently they were exposed to baroque or heavy metal music for 5 min through an earphone. After the first music exposure they remained at rest for more 5 min and them they were exposed again to baroque or heavy metal music. The sequence of songs was randomized for each individual. The power analysis provided a minimal number of 18 subjects. Shapiro-Wilk to verify normality of data and analysis of variance for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's post-test for non-parametric distributions. During the analysis of the time-domain indices were not changed. In the frequency-domain analysis, the LF in absolute units was reduced during the heavy metal music stimulation compared to control. Acute exposure to heavy metal music affected the sympathetic activity in healthy women.

  16. Use of transcranial direct current stimulation for the treatment of auditory hallucinations of schizophrenia – a systematic review

    Directory of Open Access Journals (Sweden)

    Pondé PH

    2017-02-01

    Full Text Available Pedro H Pondé,1 Eduardo P de Sena,2 Joan A Camprodon,3 Arão Nogueira de Araújo,2 Mário F Neto,4 Melany DiBiasi,5 Abrahão Fontes Baptista,6,7 Lidia MVR Moura,8 Camila Cosmo2,3,6,9,10 1Dynamics of Neuromusculoskeletal System Laboratory, Bahiana School of Medicine and Public Health, 2Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil; 3Laboratory for Neuropsychiatry and Neuromodulation and Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 4Scientific Training Center Department, School of Medicine of Bahia, Federal University of Bahia, Salvador, Bahia, Brazil; 5Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; 6Functional Electrostimulation Laboratory, Biomorphology Department, 7Postgraduate Program on Medicine and Human Health, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil; 8Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 9Center for Technological Innovation in Rehabilitation, Federal University of Bahia, 10Bahia State Health Department (SESAB, Salvador, Bahia, Brazil Introduction: Auditory hallucinations are defined as experiences of auditory perceptions in the absence of a provoking external stimulus. They are the most prevalent symptoms of schizophrenia with high capacity for chronicity and refractoriness during the course of disease. The transcranial direct current stimulation (tDCS – a safe, portable, and inexpensive neuromodulation technique – has emerged as a promising treatment for the management of auditory hallucinations. Objective: The aim of this study is to analyze the level of evidence in the literature available for the use of tDCS as a treatment for auditory hallucinations in schizophrenia. Methods: A systematic review was performed

  17. Impact of hearing aid use on auditory perception and verbal short-term memory in children with bimodal stimulation

    Directory of Open Access Journals (Sweden)

    Ostojić Sanja

    2015-01-01

    Full Text Available Introduction: The combination of electric stimulation from cochlear implant (CI with acoustic stimulation from hearing aid (HA, otherwise known as bimodal hearing, may provide several binaural benefits including binaural summation, binaural squelch, reduction of the head shadow effect, and improved localization. Purpose: This study investigated the influence of preoperative rehabilitation and bilateral HA use, bimodal stimulation post-implantation (CI on one ear and HA on the non-implanted ear and hearing thresholds in the verbal short-term memory. Method: Immediate verbal memory test for Serbian language consisting of four subtests was used for auditory perception testing on 21 pre-lingually deaf children. Results: Duration of bimodal hearing proved to be significant in the terms of auditory perception and verbal short-term memory. Mid- and high-frequency amplified thresholds on the non-implanted ear were correlated with poorer perception and reproduction of monosyllables and nonsense words. Conclusion: Duration of bimodal hearing proved to be significant in the terms of auditory perception, speech reproduction and semantic ability. Patients with a unilateral cochlear implant who have measurable residual hearing in the non-implanted ear should be individually fitted with a hearing aid in that ear, to improve speech perception and maximize binaural sensitivity.

  18. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    Science.gov (United States)

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  19. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation

    Science.gov (United States)

    Ngo, Hong-Viet V.; Marshall, Lisa; Born, Jan; Martinetz, Thomas

    2016-01-01

    Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12–15 Hz), slow oscillations (sleep study in humans, where closed-loop auditory stimulation was applied. The model output relates directly to the EEG, which makes it a useful basis to develop new stimulation protocols. PMID:27584827

  20. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    Science.gov (United States)

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  1. The Experience of Patients with Schizophrenia Treated with Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Priya Subramanian

    2013-01-01

    Full Text Available Introduction. Auditory hallucinations are a common symptom experience of individuals with psychotic disorders and are often experienced as persistent, distressing, and disruptive. This case series examined the lived experiences of four individuals treated (successfully or unsuccessfully with low-frequency (1 Hz rTMS for auditory hallucinations. Methods. A phenomenological approach was used and modified to involve some predetermined data structuring to accommodate for expected cognitive impairments of participants and the impact of rTMS on auditory hallucinations. Data on thoughts and feelings in relation to the helpful, unhelpful, and other effects of rTMS on auditory hallucinations, on well-being, functioning, and the immediate environment were collected using semistructured interviews. Results. All four participants noted some improvements in their well-being following treatment and none reported a worsening of their symptoms. Only two participants noted an improvement in the auditory hallucinations and only one of them reported an improvement that was sustained after treatment completion. Conclusion. We suggest that there are useful findings in the study worth further exploration, specifically in relation to the role of an individual’s acceptance and ownership of the illness process in relation to this biomedical intervention. More mixed methods research is required to examine rTMS for auditory hallucinations.

  2. Comparison of the effects of auditory subliminal stimulation and rational-emotive therapy, separately and combined, on self-concept.

    Science.gov (United States)

    Möller, A T; Kotzé, H F; Sieberhagen, K J

    1993-02-01

    The present study investigated the effects on self-concept of Rational-Emotive Therapy and auditory subliminal stimulation (separately and in combination) on 141 undergraduate students with self-concept problems. They were randomly assigned to one of four groups receiving either Rational-Emotive Therapy, subliminal stimulation, both, or a placebo treatment. Rational-Emotive Therapy significantly improved scores on all the dependent measures (cognition, self-concept, self-esteem, anxiety), except for behavior. Results for the subliminal stimulation group were similar to those of the placebo treatment except for a significant self-concept improvement and a decline in self-concept related irrational cognitions. The combined treatment yielded results similar to those of Rational-Emotive Therapy, with tentative indications of continued improvement in irrational cognitions and self-concept from posttest to follow-up.

  3. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    Science.gov (United States)

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring.

  5. Space distribution of EEG responses to hanoi-moving visual and auditory stimulation with Fourier Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Shijun eLi

    2015-07-01

    Full Text Available Background and objective: The relationship between EEG source signals and action-related visual and auditory stimulation is still not well understood. The objective of this study was to identify EEG source signals and their associated action-related visual and auditory responses, especially independent components of EEG.Methods: A hand-moving-Hanoi video paradigm was used to study neural correlates of the action-related visual and auditory information processing determined by mu rhythm (8-12 Hz in 16 healthy young subjects. Independent component analysis (ICA was applied to identify separate EEG sources, and further computed in the frequency domain by applying-Fourier transform ICA (F-ICA.Results: F-ICA found more sensory stimuli-related independent components located within the sensorimotor region than ICA did. The total number of independent components of interest from F-ICA was 768, twice that of 384 from traditional time-domain ICA (p0.05.Conclusions: These results support the hypothesis that mu rhythm was sensitive to detection of the cognitive expression, which could be reflected by the function in the parietal lobe sensory-motor region. The results of this study could potentially be applied into early diagnosis for those with visual and hearing impairments in the future.

  6. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  7. 体感刺激激活人脑听觉皮层%Somatosensory stimulation activates human auditory cortex

    Institute of Scientific and Technical Information of China (English)

    蒋宇钢; 周倩; 张明铭

    2011-01-01

    目的 初步探讨体感刺激是否可以激活听觉皮层,为听觉皮层作为多重感觉皮层提供证据.方法 5例颞叶占位的患者术中暴露颞上回后,分别接受声音(100 dB)和体感刺激,通过光学成像在红光下(610±10)nm观察初级、次级听觉皮层(BA41、42)反射内源光信号变化特征.结果 红光(610±lO)nm下我们观察到听觉刺激后听觉皮层(BA41、42)明显激活(n=5),体感刺激后可观察到和听觉刺激时相似区域的激活,且响应的方式与听觉刺激无明显差异(n=4).结论 体感刺激可激活听觉皮层,这可能是听觉皮层作为多重感觉皮层的一个证据.%Objective This paper is to explore whether somatosensory stimulation could activate human auditory cortex (AI) and provide a new evidence for the multisensory center.Methods Intrinsic optical signals from the superior temporal gyrus were measured intraoperatively in five anesthetized patients with temporal lobe tumors.We detected the activation of the auditory cortex ( BA41、42) during auditory and somatosensory stimuli respectively under red illuminating light (610 ± 10 ) nm.Results Under the illumination of red light wavelength we clearly detected hemodynamic responses in the primary and secondary auditory cortex ( BA 41,42) by the stimulus of the 100 dB clicks ( n =5) and similar response area during the somatosensory paradigm ( n =4).Conclusion Somatosensory stimulation can activate the auditory cortex which may be a new evidence of the multisensory center.

  8. THE IMPACT OF PRENATAL EDUCATION THROUGH STIMULATING QURAN’S RECITATION ON CHILD’S GROWTH

    OpenAIRE

    Suciati Suciati

    2015-01-01

    A child is the greatest gift from the God after marriage. Giving the best to him is a must. Parents are always selective in giving education. That education can be started since they are still in the womb. It is named prenatal education. Although a fetus or baby is still in the womb, his hearing and understanding develop well because of stimulus from outside. Giving education is not just for intelectual, but also for mental and spiritual. A mother should know and give the best thing for her b...

  9. Mapping the Tonotopic Organization in Human Auditory Cortex with Minimally Salient Acoustic Stimulation

    NARCIS (Netherlands)

    Langers, Dave R. M.; van Dijk, Pim

    2012-01-01

    Despite numerous neuroimaging studies, the tonotopic organization in human auditory cortex is not yet unambiguously established. In this functional magnetic resonance imaging study, 20 subjects were presented with low-level task-irrelevant tones to avoid spread of cortical activation. Data-driven an

  10. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model

    NARCIS (Netherlands)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about th

  11. Location of the auditory cortex in the Mongolian gerbil as determined by click stimulation.

    Science.gov (United States)

    Gillette, R G

    1978-07-01

    An investigation was made of the auditory projection area in the cerebral cortex of the Mongolian gerbil (Meriones unguiculatus) using clicks at a standard intensity to map the cerebral hemisphere by the evoked potential method. The major results can be summarized as follows: (1) As is typical for other mammals, click-evoked responses characterizing the gerbil auditory area were initially surface-positive potentials (amplitudes ranging between 0.1 and 1.7 mV) with peak latencies ranging between 13 and 32 msec. (2) Only one click-responsive field was found in the temporal area. However, the data suggest that this area may actually represent two separate projections to the cortex, since a small subarea characterized by longer response latencies was located posteriorally and laterally within the click field in the majority of animals investigated. (3) The size (5 mm long by 4 mm wide) and location (temporal neocortex below the middle cerebral artery) of the gerbil auditory cortex are consistent with mapping results obtained in other rodent species. (4) The validity of the surface maps was confirmed in four cases by demonstrating that the evoked response reversed polarity between the cortical surface and underlying white matter. The reversal was demonstrated by recording with a penetrating microelectrode at representative points "bordering" the auditory projection area.

  12. Contributions from eye movement potentials to stimulus preceding negativity during anticipation of auditory stimulation

    DEFF Research Database (Denmark)

    Engdahl, Lis; Bjerre, Vicky K; Christoffersen, Gert R J

    2007-01-01

    Cognitive anticipation of a stimulus has been associated with an ERP called "stimulus preceding negativity" (SPN). A new auditory delay task without stimulus-related motor activity demonstrated a prefrontal SPN, present during attentive anticipation of sounds with closed eyes, but absent during...

  13. Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Kumar, V; Nag, T C; Sharma, U; Jagannathan, N R; Wadhwa, S

    2014-06-06

    Proper development of the auditory cortex depends on early acoustic experience that modulates the balance between excitatory and inhibitory (E/I) circuits. In the present social and occupational environment exposure to chronic loud sound in the form of occupational or recreational noise, is becoming inevitable. This could especially disrupt the functional auditory cortex development leading to altered processing of complex sound and hearing impairment. Here we report the effects of prenatal chronic loud sound (110-dB sound pressure level (SPL)) exposure (rhythmic [music] and arrhythmic [noise] forms) on the molecular components involved in regulation of the E/I balance in the developing auditory cortex analog/Field L (AuL) in domestic chicks. Noise exposure at 110-dB SPL significantly enhanced the E/I ratio (increased expression of AMPA receptor GluR2 subunit and glutamate with decreased expression of GABA(A) receptor gamma 2 subunit and GABA), whereas loud music exposure maintained the E/I ratio. Expressions of markers of synaptogenesis, synaptic stability and plasticity i.e., synaptophysin, PSD-95 and gephyrin were reduced with noise but increased with music exposure. Thus our results showed differential effects of prenatal chronic loud noise and music exposures on the E/I balance and synaptic function and stability in the developing auditory cortex. Loud music exposure showed an overall enrichment effect whereas loud noise-induced significant alterations in E/I balance could later impact the auditory function and associated cognitive behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.

    Science.gov (United States)

    Miller, Charles A; Hu, Ning; Zhang, Fawen; Robinson, Barbara K; Abbas, Paul J

    2008-03-01

    Most auditory prostheses use modulated electric pulse trains to excite the auditory nerve. There are, however, scant data regarding the effects of pulse trains on auditory nerve fiber (ANF) responses across the duration of such stimuli. We examined how temporal ANF properties changed with level and pulse rate across 300-ms pulse trains. Four measures were examined: (1) first-spike latency, (2) interspike interval (ISI), (3) vector strength (VS), and (4) Fano factor (FF, an index of the temporal variability of responsiveness). Data were obtained using 250-, 1,000-, and 5,000-pulse/s stimuli. First-spike latency decreased with increasing spike rate, with relatively small decrements observed for 5,000-pulse/s trains, presumably reflecting integration. ISIs to low-rate (250 pulse/s) trains were strongly locked to the stimuli, whereas ISIs evoked with 5,000-pulse/s trains were dominated by refractory and adaptation effects. Across time, VS decreased for low-rate trains but not for 5,000-pulse/s stimuli. At relatively high spike rates (>200 spike/s), VS values for 5,000-pulse/s trains were lower than those obtained with 250-pulse/s stimuli (even after accounting for the smaller periods of the 5,000-pulse/s stimuli), indicating a desynchronizing effect of high-rate stimuli. FF measures also indicated a desynchronizing effect of high-rate trains. Across a wide range of response rates, FF underwent relatively fast increases (i.e., within 100 ms) for 5,000-pulse/s stimuli. With a few exceptions, ISI, VS, and FF measures approached asymptotic values within the 300-ms duration of the low- and high-rate trains. These findings may have implications for designs of cochlear implant stimulus protocols, understanding electrically evoked compound action potentials, and interpretation of neural measures obtained at central nuclei, which depend on understanding the output of the auditory nerve.

  15. Change of pulsatility index of the fetal middle cerebral artery after auditory stimulation in no risk pregnancies and in pregnancies with gestational hypertension.

    Science.gov (United States)

    Plesinac, Snezana; Jankovic, Svetlana; Plecas, Darko; Antonovic, Olga; Adamovic, Tatijana; Sovilj, Mirjana

    2013-01-01

    An aim was to determine the degree and the mode of variation of PI of middle cerebral artery in no risk pregnancies and in pregnancies with gestational hypertension, after the constant sound stimuli. Study included 343 patients divided in two groups. Group 1: low risk pregnancies and group 2: gestational hypertension. Ultrasound prenatal auditory screening was performed after the 27th week of gestation. The percentage of fetuses with increase of cerebral blood flow was slightly higher in the pregnancies with hypertension. An average change of PI of median cerebral artery was higher in this group.

  16. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Science.gov (United States)

    Maïza, Olivier; Hervé, Pierre-Yve; Etard, Olivier; Razafimandimby, Annick; Montagne-Larmurier, Aurélie; Dollfus, Sonia

    2013-01-01

    Several cross-sectional functional Magnetic Resonance Imaging (fMRI) studies reported a negative correlation between auditory verbal hallucination (AVH) severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS). Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS) and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz) rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS) cluster, considered henceforward as a functional region of interest (fROI). After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities. PMID:24961421

  17. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Sonia Dollfus

    2013-04-01

    Full Text Available Several cross-sectional functional Magnetic Resonance Imaging (fMRI studies reported a negative correlation between auditory verbal hallucination (AVH severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS. Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS cluster, considered henceforward as a functional region of interest (fROI. After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities.

  18. Effect of auditory stimulation on traumatic coma duration in intensive care unit of Medical Sciences University of Mazandarn, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Heidari Gorji

    2014-01-01

    Full Text Available Background: Sensory deprivation is one of the common complications of coma patients in the intensive care unit (ICU. The purpose of this study was to investigate the impact of a familiar voice to consciousness level in coma patients. Methods: A total of 13 patients with traumatic coma (8 ≥ Glasgow′s coma scale [GCS] admitted in ICU ward were randomly assigned to control and experimental groups. The experimental group was treated twice a daily each time 15 min with a familiar recorded MP3 sound for 2 weeks. The control group received only natural voices of environment. GCS applied to evaluate patients′ level of consciousness. Finding: Findings showed that duration to reach GCS = 15 was significantly shorter in the experimental group (χ 2 = 12/96, P < 0/001. Conclusion: These findings imply that providing familiar auditory stimulation programs for coma patients in the ICU could be effective.

  19. THE IMPACT OF PRENATAL EDUCATION THROUGH STIMULATING QURAN’S RECITATION ON CHILD’S GROWTH

    Directory of Open Access Journals (Sweden)

    Suciati Suciati

    2015-08-01

    Full Text Available A child is the greatest gift from the God after marriage. Giving the best to him is a must. Parents are always selective in giving education. That education can be started since they are still in the womb. It is named prenatal education. Although a fetus or baby is still in the womb, his hearing and understanding develop well because of stimulus from outside. Giving education is not just for intelectual, but also for mental and spiritual. A mother should know and give the best thing for her baby. Quran is the basic thing for moslems’ life. A pregnant woman who listens, reads, or recites Quran feels comfort. Her baby will feel the same because mother’s condition influences baby’s condition. Various researchers showed that pregnant women who read, recite or listen to the Quran can give good impact to the fetus or baby in the womb. It does not just influence the baby’s Intelligence Quotient (IQ and Emotional Quotient (EQ, but it also gives Spiritual Quotient (SQ to the baby.

  20. Priming does not enhance the efficacy of 1 Hertz repetitive transcranial magnetic stimulation for the treatment of auditory verbal hallucinations : Results of a randomized controlled study

    NARCIS (Netherlands)

    Slotema, Christina Wilhelmina; Blom, Jan Dirk; de Weijer, Antoin Dave; Hoek, Hans Wijbrand; Sommer, Iris Else

    2012-01-01

    Background Low-frequency repetitive transcranial magnetic stimulation (rTMS) applied to the left temporoparietal area (TP) has been investigated as a treatment method for auditory verbal hallucinations (AVH) yielding inconsistent results. In vitro studies have indicated that the effects of low-frequ

  1. Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations : Update and effects after one month

    NARCIS (Netherlands)

    Slotema, C. W.; Aleman, A.; Daskalakis, Z. J.; Sommer, I. E.

    2012-01-01

    Objective: Several meta-analyses considering repetitive transcranial magnetic stimulation (rTMS) for auditory verbal hallucinations (AVH) have been performed with moderate to high mean weighted effect sizes. Since then several negative findings were reported in relatively large samples. The aim of t

  2. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Science.gov (United States)

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  3. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  4. Auditory beat stimulation and its effects on cognition and mood States

    National Research Council Canada - National Science Library

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P; Fell, Juergen

    2015-01-01

    .... Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS.

  5. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    Science.gov (United States)

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  6. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    Science.gov (United States)

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  7. Prenatal stimulation program to enhance postnatal bonding / Melissa Martina van der Walt

    OpenAIRE

    Van der Walt, Melissa Martina

    2014-01-01

    Background: The bonding process can start to develop as early as the planning of a pregnancy and can affect the relationship between mother and child through childhood. If proper bonding is not established, the child can present symptoms of depression, failure to thrive or delays in social and emotional, language or motor development. Stimulation programs implemented during pregnancy may positively affect the bonding process that act as a protective factor against negative outcomes in childho...

  8. Role of sound stimulation in reprogramming brain connectivity

    Indian Academy of Sciences (India)

    Sraboni Chaudhury; Tapas C Nag; Suman Jain; Shashi Wadhwa

    2013-09-01

    Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.

  9. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  10. Short and long term effects of left and bilateral repetitive transcranial magnetic stimulation in schizophrenia patients with auditory verbal hallucinations: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Leonie Bais

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations, no studies have used bilateral stimulation. Moreover, little is known about durability effects. We studied the short and long term effects of 1 Hz treatment of the left temporo-parietal junction area in schizophrenia patients with persistent auditory verbal hallucinations, compared to sham stimulation, and added an extra treatment arm of bilateral TPJ area stimulation. METHODS: In this randomized controlled trial, 51 patients diagnosed with schizophrenia and persistent auditory verbal hallucinations were randomly allocated to treatment of the left or bilateral temporo-parietal junction area or sham treatment. Patients were treated for six days, twice daily for 20 minutes. Short term efficacy was measured with the Positive and Negative Syndrome Scale (PANSS, the Auditory Hallucinations Rating Scale (AHRS, and the Positive and Negative Affect Scale (PANAS. We included follow-up measures with the AHRS and PANAS at four weeks and three months. RESULTS: The interaction between time and treatment for Hallucination item P3 of the PANSS showed a trend for significance, caused by a small reduction of scores in the left group. Although self-reported hallucination scores, as measured with the AHRS and PANAS, decreased significantly during the trial period, there were no differences between the three treatment groups. CONCLUSION: We did not find convincing evidence for the efficacy of left-sided rTMS, compared to sham rTMS. Moreover, bilateral rTMS was not superior over left rTMS or sham in improving AVH. Optimizing treatment parameters may result in stronger evidence for the efficacy of rTMS treatment of AVH. Moreover, future research should consider

  11. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    Science.gov (United States)

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  12. Personality and Augmenting/Reducing (A/R) in auditory event-related potentials (ERPs) during emotional visual stimulation

    Science.gov (United States)

    De Pascalis, Vilfredo; Fracasso, Francesca; Corr, Philip J.

    2017-01-01

    An auditory augmenting/reducing ERP paradigm recorded for 5 intensity tones with emotional visual stimulation was used, for the first time, to test predictions derived from the revised Reinforcement Sensitivity Theory (rRST) of personality with respect to two major factors: behavioral inhibition system (BIS), fight/flight/freeze system (FFFS). Higher BIS and FFFS scores were negatively correlated with N1/P2 slopes at central sites (C3, Cz, C4). Conditional process analysis revealed that the BIS was a mediator of the association between the N1/P2 slope and the FFFS scores. An analysis of covariance showed that lower BIS scorers exhibited larger N1/P2 amplitudes across all tone intensities while watching negative, positive and neutral pictures. Additionally, lower FFFS scorers compared to higher FFFS scorers disclosed larger N1/P2 amplitudes to the highest tone intensities and these differences were even more pronounced while watching positive emotional pictures. Findings were explained assuming the operation of two different, but related processes: transmarginal inhibition for the BIS; the attention/emotional gating mechanism regulating cortical sensory input for the FFFS trait. These findings appear consistent with predictions derived from the rRST, which traced fear and anxiety to separate but interacting neurobehavioural systems. PMID:28164996

  13. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations.

    Science.gov (United States)

    Blais, Mélody; Albaret, Jean-Michel; Tallet, Jessica

    2015-11-01

    The purpose of this study was to test how the sensory modality of rhythmic stimuli affects the production of bimanual coordination patterns. To this aim, participants had to synchronize the taps of their two index fingers with auditory and visual stimuli presented separately (auditory or visual) or simultaneously (audio-visual). This kind of task requires two levels of coordination: (1) sensorimotor coordination, which can be measured by the mean asynchrony between the beat of the stimulus and the corresponding tap and by mean asynchrony stability, and (2) inter-manual coordination, which can be assessed by the accuracy and stability of the relative phase between the right-hand and left-hand taps. Previous studies show that sensorimotor coordination is better during the synchronization with auditory or audio-visual metronomes than with visual metronome, but it is not known whether inter-manual coordination is affected by stimulation modalities. To answer this question, 13 participants were required to tap their index fingers in synchrony with the beat of auditory and/or visual stimuli specifying three coordination patterns: two preferred inphase and antiphase patterns and a non-preferred intermediate pattern. A first main result demonstrated that inphase tapping had the best inter-manual stability, but the worst asynchrony stability. The second main finding revealed that for all patterns, audio-visual stimulation improved the stability of sensorimotor coordination but not of inter-manual coordination. The combination of visual and auditory modalities results in multisensory integration, which improves sensorimotor coordination but not inter-manual coordination. Both results suggest that there is dissociation between processes underlying sensorimotor synchronization (anticipation or reactivity) and processes underlying inter-manual coordination (motor control). This finding opens new perspectives to evaluate separately the possible sensorimotor and inter

  14. Effects of prenatal music stimulation on fetal cardiac state, newborn anthropometric measurements and vital signs of pregnant women: A randomized controlled trial.

    Science.gov (United States)

    García González, J; Ventura Miranda, M I; Manchon García, F; Pallarés Ruiz, T I; Marin Gascón, M L; Requena Mullor, M; Alarcón Rodriguez, R; Parron Carreño, T

    2017-05-01

    Music has been used for medicinal purposes throughout history due to its variety of physiological, psychological and social effects. To identify the effects of prenatal music stimulation on the vital signs of pregnant women at full term, on the modification of fetal cardiac status during a fetal monitoring cardiotocograph, and on anthropometric measurements of newborns taken after birth. A randomized controlled trial was implemented. The four hundred and nine pregnant women coming for routine prenatal care were randomized in the third trimester to receive either music (n = 204) or no music (n = 205) during a fetal monitoring cardiotocograph. All of the pregnant women were evaluated by measuring fetal cardiac status (basal fetal heart rate and fetal reactivity), vital signs before and after a fetal monitoring cardiotocograph (maternal heart rate and systolic and diastolic blood pressure), and anthropometric measurements of the newborns were taken after birth (weight, height, head circumference and chest circumference). The strip charts showed a significantly increased basal fetal heart rate and higher fetal reactivity, with accelerations of fetal heart rate in pregnant women with music stimulation. After the fetal monitoring cardiotocograph, a statistically significant decrease in systolic blood pressure, diastolic blood pressure and heart rate in women receiving music stimulation was observed. Music can be used as a tool which improves the vital signs of pregnant women during the third trimester, and can influence the fetus by increasing fetal heart rate and fetal reactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Difference in the Profile of Working Memory, Auditory Working Memory, and Spatial Working Memory between Drug, Stimulant, and Methadone Abusers and Normal People

    Directory of Open Access Journals (Sweden)

    Ahmad Alipour

    2015-06-01

    Full Text Available Objective: The present study was an attempt to examine the difference in the profile of working memory, auditory working memory, and spatial working memory between drug, stimulant, and methadone abusers and normal people. Method: This study was a causal-comparative one with between-group comparison methodology. All the individuals addicted to opiates, stimulants, and methadone who had referred to Khomeini treatment centers of the city from September 2013 to February 2014 constituted the statistical population of the study. The number of 154 abusers (54 drug abusers, 50 stimulant abusers, and 50 methadone abusers and the number of 50 normal participants were chosen as the sample of the study by purposive sampling method. The participants responded to Wechsler Memory Scale—third edition (WMS-III. Results: There was a significant difference between the normal group and drug, stimulant, and methadone abusers in terms of working memory, auditory working memory, and spatial working memory. Conclusion: Drug and stimulant use leads to sustained damage in cognitive processes such as working memory. However, research indicates that these cognitive processes will improve with the passage of time.

  16. Review of pulsed infrared laser stimulating auditory nerves%脉冲红外激光刺激听神经研究综述

    Institute of Scientific and Technical Information of China (English)

    王健; 关添; 吴默村; 彭保

    2015-01-01

    相比于电刺激,红外激光刺激技术具有显著的优越性。本文综述了近年来脉冲红外激光刺激听觉系统的研究,主要包括:激光触发听觉冲动的可行性、空间选择性、安全性、生理机制、刺激参数的影响、致聋时长的影响等。最后,本文展望了红外激光刺激技术在光学耳蜗方向的应用和未来的研究方向。%Compared to electrical stimulation, infrared laser stimulation technique has significant advantages. This paper reviewed relative research focusing on pulsed infrared laser stimulation of the auditory system in recent years. The main contents include:feasibility of laser triggering auditory impulse, spatial selectivity, security, physiological mechanisms, the effect of stimulation parameters, and the effect of time duration of deafness. Finally, this paper prospected the application of infrared laser stimulation technology on optical cochlear, proposing potential research directions in the future.

  17. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study.

    Directory of Open Access Journals (Sweden)

    Debra S Karhson

    Full Text Available Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS to the right inferior parietal cortex. Subjects (n = 16 listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90° and responded to stimuli at one target location (-90°, +90°, separate blocks. ERPs as a function of non-target location were examined before (baseline and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230-340, parietal 400-460, frontal 550-750 ms. Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity.

  18. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    Science.gov (United States)

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  19. Signaled two-way avoidance learning using electrical stimulation of the inferior colliculus as negative reinforcement: effects of visual and auditory cues as warning stimuli

    Directory of Open Access Journals (Sweden)

    A.C. Troncoso

    1998-03-01

    Full Text Available The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P0.05 in both cases. Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala

  20. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  1. β2-adrenoceptor stimulation restores frontal cortex plasticity and improves visuospatial performance in hidden-prenatally-malnourished young-adult rats.

    Science.gov (United States)

    Sáez-Briones, Patricio; Soto-Moyano, Rubén; Burgos, Héctor; Castillo, Amparo; Valladares, Luis; Morgan, Carlos; Pérez, Hernán; Barra, Rafael; Constandil, Luis; Laurido, Claudio; Hernández, Alejandro

    2015-03-01

    Moderate reduction in dietary protein composition of pregnant rats from 25% to 8% casein, calorically compensated by carbohydrates, has been described as a "hidden malnutrition" because it does not alter body and brain weights of pups at birth. However, this dietary treatment leads to altered central noradrenergic systems, impaired cortical long-term potentiation (LTP) and worsened visuo-spatial memory performance. Given the increasing interest on the role played by β2-adrenoceptors (β2-ARs) on brain plasticity, the present study aimed to address the following in hidden-malnourished and eutrophic control rats: (i) the expression levels of β2-ARs in the frontal cortex determined by immunohistochemistry, and (ii) the effect of the β2 selective agonist clenbuterol on both LTP elicited in vivo in the prefrontal cortex and visuospatial performance measured in an eight-arm radial maze. Our results showed that, prenatally malnourished rats exhibited a significant reduction of neocortical β2-AR expression in adulthood. Concomitantly, they were unable to elicit and maintain prefrontal cortex LTP and exhibited lower visuospatial learning performance. Administration of clenbuterol (0.019, 0.038 and 0.075 mg/kg i.p.) enhanced LTP in malnourished and control animals and restored visuospatial learning performance in malnourished but not in normal rats, in a dose-dependent manner. The results suggest that decreased density of neocortical β2-ARs during postnatal life, subsequent to hidden prenatal malnutrition might affect some synaptic networks required to elicit neocortical LTP and form visuospatial memory, since those neuroplastic deficits were counteracted by β2-AR stimulation.

  2. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study.

    Science.gov (United States)

    Collignon, O; Davare, M; Olivier, E; De Volder, A G

    2009-05-01

    It is well known that, following an early visual deprivation, the neural network involved in processing auditory spatial information undergoes a profound reorganization. In particular, several studies have demonstrated an extensive activation of occipital brain areas, usually regarded as essentially "visual", when early blind subjects (EB) performed a task that requires spatial processing of sounds. However, little is known about the possible consequences of the activation of occipitals area on the function of the large cortical network known, in sighted subjects, to be involved in the processing of auditory spatial information. To address this issue, we used event-related transcranial magnetic stimulation (TMS) to induce virtual lesions of either the right intra-parietal sulcus (rIPS) or the right dorsal extrastriate occipital cortex (rOC) at different delays in EB subjects performing a sound lateralization task. Surprisingly, TMS applied over rIPS, a region critically involved in the spatial processing of sound in sighted subjects, had no influence on the task performance in EB. In contrast, TMS applied over rOC 50 ms after sound onset, disrupted the spatial processing of sounds originating from the contralateral hemifield. The present study shed new lights on the reorganisation of the cortical network dedicated to the spatial processing of sounds in EB by showing an early contribution of rOC and a lesser involvement of rIPS.

  3. Effect of transcranial direct current stimulation on prefrontal inhibition in schizophrenia patients with persistent auditory hallucinations: A study on antisaccade task performance

    Directory of Open Access Journals (Sweden)

    Aditi Subramaniam

    2015-01-01

    Full Text Available Background: Deficient prefrontal cortex inhibitory control is of particular interest with regard to the pathogenesis of auditory hallucinations (AHs in schizophrenia. Antisaccade task performance is a sensitive index of prefrontal inhibitory function and has been consistently found to be abnormal in schizophrenia. Methods: This study investigated the effect of transcranial direct current stimulation (tDCS on antisaccade performance in 13 schizophrenia patients. Results: The tDCS resulted in significant reduction in antisaccade error percentage (t = 3.4; P = 0.005, final eye position gain (t = 2.3; P = 0.042, and AHs severity (t = 4.1; P = 0.003. Conclusion: Our results raise the possibility that improvement in antisaccade performance and severity of AH may be mechanistically related.

  4. Prenatal parenting.

    Science.gov (United States)

    Glover, Vivette; Capron, Lauren

    2017-06-01

    Parenting begins before birth. This includes prenatal maternal and paternal bonding with the baby, and biological effects on fetal development. Recent research has confirmed how prenatal maternal stress can alter the development of the fetus and the child, and that this can persist until early adulthood. Children are affected in different ways depending, in part, on their own genetic makeup. The fetus may also have a direct effect on prenatal maternal mood and later parenting behaviour via the placenta. The father is important prenatally too. An abusive partner can increase the mother's prenatal stress and alter fetal development, but he can also be an important source of emotional support. New research suggests the potential benefits of prenatal interventions, including viewing of prenatal scans and cognitive behavioural therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  6. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  7. Study on mechanisms of hypertension in rat adult offspring following prenatal exposure to immuno-inflammatory stimulants

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-zhi; LI Xiao-hui

    2008-01-01

    Objective Essential hypertension (EH) is one of the most common cardiovascular disease and the main causes of human fatility. Recently significant progress has been made in our lab, it was found that exterior stimulation during pregnancy may play a key role in chronicle adult disease. However, what factors affect the growth of fetus after those exterior stimulation and why has not been reported. Based on our previous finding, this study intends to investigate how immuno-inflammatory stimulation affect the development of embryo. Methods 1. Sprague-Dawley (SD) rats, dams in each group received i.p. injections of 0.79 mg· kg-1 LPS, 8 mg·kg-1 zymosan or sterile saline respectively on their gestational days 8, 10, and 12.2. The serums were collected in tail nick at 2 h after the last injection, and the amniotic fluid was mixed at 2, 12, 24,48 h after the last injection. TNF-α and IL-6 levels of serum and amniotic fluid were measured by RIA method. 3. TNF-α and IL-6 mRNA levels were quantitated in amnion, placenta, amniotic fluid, Embryo and maerophage by real-time fluorescent quantitative-PCR. Results 1. The serum level of TNF-α and IL-6 in LPS group and zymosan group was higher than that in control group (P<0.01). It showed that there was immuno-imflammatory response after LPS or zymosan injection in rats. The mRNA levels of TNF-α and IL-6 was very higher in macrophage than in other organization. 2. In embryo, the mRNA level of IL-6 was more than other organization, but the mRNA level of TNF-α was lower than other organization. However, the IL-6 mRNA level of LPS group and zymosan group was higher several dozens times than control group on 24 h and 48 h. Conclusions It suggested that IL-6 was important in the model that prenatalexposure to immuno-inflammatory stimulant results in increases of blood pressure and body weight in rats.

  8. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks.

    Directory of Open Access Journals (Sweden)

    Tania Sanyal

    Full Text Available Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.

  9. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks.

    Science.gov (United States)

    Sanyal, Tania; Kumar, Vivek; Nag, Tapas Chandra; Jain, Suman; Sreenivas, Vishnu; Wadhwa, Shashi

    2013-01-01

    Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.

  10. Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Ozge Ozalp Yuregir

    2012-02-01

    Full Text Available Prenatal diagnosis is the process of determining the health or disease status of the fetus or embryo before birth. The purpose is early detection of diseases and early intervention when required. Prenatal genetic tests comprise of cytogenetic (chromosome assessment and molecular (DNA mutation analysis tests. Prenatal testing enables the early diagnosis of many diseases in risky pregnancies. Furthermore, in the event of a disease, diagnosing prenatally will facilitate the planning of necessary precautions and treatments, both before and after birth. Upon prenatal diagnosis of some diseases, termination of the pregnancy could be possible according to the family's wishes and within the legal frameworks. [Archives Medical Review Journal 2012; 21(1.000: 80-94

  11. FPGA-based programmable visual, auditory evoked potential stimulator%基于FPGA的可编程视觉、听觉诱发电位刺激器

    Institute of Scientific and Technical Information of China (English)

    范松; 潘旭; 张鹏飞

    2013-01-01

      Evoked potential is a specific electrical response after the nervous system accept a variety of external stimulates.Due to the time locked relationship with the stimulation,it can be detected in the corresponding parts of the central nervous system and peripheral nervous system,with the characteristics of quantitative and positioning,often has a more stable result than conventional electroencephalogram (EEG),therefore it plays an important role in the diagnosis and the study of various parts of nerve electrophysiology change of nervous system.This project aim at evoking human brain engenders potential change through produce the auditory and visual stimulation signal of a specific frequency.So that health care workers can get more information from the evoked potentials,and help to better diagnosis of the disease.The stimulator can produce audio stimulation and video stimulation, audio stimulation including issue a short sound,pure tone and self recorded sound,and video stimulation including checkerboard flip.One of the advantages of the stimulator is that time length and frequency can be reset.The project mainly based on FPGA chip.Use ALTERA DE2 development platform.%  诱发电位是神经系统接受各种外界刺激后所产生的特异性电反应。它在中枢神经系统及周围神经系统的相应部位被检出,与刺激有锁时关系的电位变化,具有能定量及定位的特点,往往较常规脑电图检查有更稳定的效果,从而在诊断及研究神经系统各部位神经电生理变化方面,有重要作用。本项目通过产生特定频率的听觉和视觉刺激信号,使人脑产生诱发电位。医护人员可从诱发脑电中获取更多信息,并帮助其更好地对病情进行确诊。本刺激器可产生音频刺激和视频刺激,其中音频刺激包括发出短声、纯音、自己录制的声音等;视频刺激包括棋盘格翻转。刺激的时长、频率都可设定。本项目主要通

  12. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.

    Science.gov (United States)

    Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M

    2007-01-01

    The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.

  13. Control Prenatal

    National Research Council Canada - National Science Library

    P. Susana Aguilera, DRA; M.D. Peter Soothill, MR

    2014-01-01

    Los principales objetivos del control prenatal son identificar aquellos pacientes de mayor riesgo, con el fin de realizar intervenciones en forma oportuna que permitan prevenir dichos riesgos y así...

  14. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  15. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson's Disease.

    Science.gov (United States)

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson's disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1-3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments.

  16. Auditory-olfactory synesthesia coexisting with auditory-visual synesthesia.

    Science.gov (United States)

    Jackson, Thomas E; Sandramouli, Soupramanien

    2012-09-01

    Synesthesia is an unusual condition in which stimulation of one sensory modality causes an experience in another sensory modality or when a sensation in one sensory modality causes another sensation within the same modality. We describe a previously unreported association of auditory-olfactory synesthesia coexisting with auditory-visual synesthesia. Given that many types of synesthesias involve vision, it is important that the clinician provide these patients with the necessary information and support that is available.

  17. Linking Prenatal Experience to the Emerging Musical Mind

    Directory of Open Access Journals (Sweden)

    Sangeeta eUllal

    2013-09-01

    Full Text Available The musical brain is built over time through experience with a multitude of sounds in the auditory environment. However, learning the melodies, timbres, and rhythms unique to the music and language of one’s culture begins already within the mother’s womb during the third trimester of human development. We review evidence that the intrauterine auditory environment plays a key role in shaping later auditory development and musical preferences. We describe evidence that externally and internally generated sounds influence the developing fetus, and argue that such prenatal auditory experience may set the trajectory for the development of the musical mind.

  18. The effect in premature infants of prenatal corticosteroids on endogenous surfactant synthesis as measured with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik); V.P. Carnielli (Virgilio); J.L.D. Wattimena (Josias); W.C.J. Hop (Wim); P.J.J. Sauer (Pieter); L.J.I. Zimmermann (Luc)

    2000-01-01

    textabstractMost in vitro studies show that prenatal administration of corticosteroids stimulates the synthesis of surfactant phosphatidylcholine (PC), but studies in animals are controversial. Whether prenatal corticosteroids stimulate surfactant PC synthesis in humans

  19. Prenatal Care.

    Science.gov (United States)

    Health Resources and Services Administration (DHHS/PHS), Rockville, MD. Office for Maternal and Child Health Services.

    This booklet is the first in a series of publications designed to provide parents with useful information about childrearing. Contents are organized into three parts. Part I focuses on the pregnancy, prenatal care, development of the baby, pregnant lifestyles, nutrition, common discomforts, and problems of pregnancy. Part II provides information…

  20. EFFECT OF AUDITORY & VISUAL BIOFEEDBACK WITH ELECTRICAL STIMULATION OF THE TIBIALIS ANTERIOR MUSCLE ON ACTIVE ROM & SELECTIVE MOTOR CONTROL OF ANKLE OF CHILDREN WITH SPASTIC CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Mayuri Sharma

    2015-06-01

    Full Text Available Background & Objective: Cerebral palsy (CP is the most common cause of movement disability in childhood, with an incidence of 1.5–2.5 per 1000 live born children. It is a non-progressive disorder that covers a number of neurological conditions, resulting in an abnormal development of movement and postural control. It is believed that an inability to maximally activate their muscles contributed to this weakness. Visual and auditory feedback cues have been shown to improve ROM & VMC in patients with movement disorders. The aim of this work was to investigate the efficacy of using biofeedback and neuromuscular electrical stimulation applied on tibialis anterior in children with cerebral palsy. The present work was designed to compare the effect of treatment with or without biofeedback applied to children with diplegic CP. Materials and Method: The 30 children with CP were divided in to 2 groups(experimental & control.The control group received NMES on tibialis anterior for 20 min. a day ,6 days in a week for a period of 6 weeks.the experimental group received NMES +biofeedback +conventional treatment.pre and post treatment evaluation included range of motion ,VMC and GMFM scoring. Results: Results showed that there was main effect for time, f(1,28;0.05=4.37, p<0.046 & a main effect for time, f(1,28;0.05=1.30, p<0.00,however there main effects were qualified by a group × time interaction, f (1,28;0.05=219.37, p<0.00.There was main effect for time, f(1,28;0.05=4.64. p<0.04 & a main effect for group, f(1,28;0.05=485.96, p<0.00,however there main effects were qualified by a group × time interaction, f (1,28;0.05=65.96, p <0.00 in right and left ankle joint. Conclusion: A significant improvement in range of motion, VMC & GMFM in experimental group as compare to control group. The study determined that biofeedback have positive clinical effects on the ROM & VMC of ankle of spastic diplegic.

  1. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Membrane potential characteristics of intracellular responses of rat primary auditory cortex neurons to acoustic stimulation in vivo%大鼠初级听皮层神经元对声刺激反应的膜电位特征

    Institute of Scientific and Technical Information of China (English)

    韩磊; 张永海; 肖雄健; 熊鹰

    2011-01-01

    Objective To investigate the membrane potential characteristics of intracellular responses of individual rat primary auditory cortex neurons to the acoustic stimulation in vivo. Methods The intracellu lar responses of individual primary auditory cortex neurons to the acoustic stimulation in vivo were observed in anesthetized rats using the intracellular microelectrode recording technique. Results Sixty-four neurons were recorded in the primary auditory cortex of rats, of which thirty-three responded to the acoustic stimulation with excitatory auditory responses, twenty-four with inhibitory auditory responses, two with on-off auditory responses, and the remaining five without obvious responses. According to the characteristics of sound-evoked excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) as well as action potential (AP), theexcitatory auditory responses could be classified into 4 patterns: long-term EPSP pattern, short-term EPSP pattern, regular spike pattern and subthreshold EPSP pattern; the inhibitory auditory responses could also be classified into 4 patterns: AP-IPSP pattern, EPSP-IPSP pattern, IPSP pattern and AP-hyperpolarization pattern. The latency [(46.3 ± 20.5 ) ms]and rising phase duration [( 10.1 ± 4.4) ms]of sound-evoked IPSP were significantly longer than those [( 15.1 ± 4.7) ms, (6.1 ± 3.5 ) ms]of EPSP ( P < 0. 05, P < 0. 01 ). The spike intervals and sound durations of on-off auditory responses were in a phase-locking mode. Conclusion Different patterns of auditory responses can be induced in the primary auditory cortex neurons of rats by the same natural acoustic stimulation. Besides, the components and membrane potential characteristics of each pattern are various, which may lay a basis for the functional diversity of primary auditory cortex neurons.%目的 探讨大鼠初级听皮层单个神经元对声刺激反应的膜电位特征.方法 运用在体细胞内微电极记录技术观察麻醉大鼠

  3. The effects of polarity of click stimulation on auditory brainstem responses (ABR in patients with cochlear and retro-cochlear disorders in Amiralam and Resalat Hospitals 1995-97

    Directory of Open Access Journals (Sweden)

    Soltani AH

    2002-08-01

    Full Text Available Background: Auditory brainstem response (A.B.R is one of the most important electrophysiological tests in evaluating of auditory system, especially for diagnosing of auditory nerve and brainstem disorders. It is a non-invasive test and has reliability and validity characteristic. There is no contra-indication for this test. One of the most important of stimulation parameters of A.B.R is click polarity (rarefaction, condensation and alternative. Some of the investigators believed that different polarities have no effects on A.B.R are affected by different polarities. Materials and Methods: In this study, the results of ABR of 148 patients (296 ears were compared with three different polarities of rarefaction, condensation and alternative half click stimuli. The cases were categorized in three groups of normal (60 cases, cochlear (62 cases and retro-cochlear (17 cases. This classification were done according to the hearing level in pure tone audiometry results in three frequencies of 1000, 2000, 4000 Hz and to the site of the their disorders. The mean absolute latencies of waves I, III and V were obtained for each polarity. Inter-peak latency (I.P.L of wave also measured in three groups (normal, cochlear and retro-cochlear. Results: The results were showed a significant difference between absolute latency of wave I among different polarities on three above mentioned groups (P0.05. Conclusion: It was concluded that rarefaction polarity has better and more stable results of ABR tests.

  4. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments.

  5. Treatment of Alice in Wonderland Syndrome and Verbal Auditory Hallucinations Using Repetitive Transcranial Magnetic Stimulation : A Case Report with fMRI Findings

    NARCIS (Netherlands)

    Blom, Jan Dirk; Looijestijn, Jasper; Goekoop, Rutger; Diederen, Kelly M. J.; Rijkaart, Anne-Marije; Slotema, Christina W.; Sommer, Iris E. C.

    2011-01-01

    Background: Alice in Wonderland syndrome (AIWS) is a rare cluster of CNS symptoms characterized by visual distortions (i.e. metamorphopsias), body image distortions, time distortions, and deja experiences. Verbal auditory hallucinations (VAHs) are the most prevalent type of hallucination in adults

  6. Auditory adaptation improves tactile frequency perception.

    Science.gov (United States)

    Crommett, Lexi E; Pérez-Bellido, Alexis; Yau, Jeffrey M

    2017-01-11

    Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals shape tactile processing is unclear: perceptual interactions between contemporaneous sounds and vibrations are consistent with multiple neural mechanisms. Here we used a crossmodal adaptation paradigm, which separated auditory and tactile stimulation in time, to test the hypothesis that tactile frequency perception depends on neural circuits that also process auditory frequency. We reasoned that auditory adaptation effects would transfer to touch only if signals from both senses converge on common representations. We found that auditory adaptation can improve tactile frequency discrimination thresholds. This occurred only when adaptor and test frequencies overlapped. In contrast, auditory adaptation did not influence tactile intensity judgments. Thus, auditory adaptation enhances touch in a frequency- and feature-specific manner. A simple network model in which tactile frequency information is decoded from sensory neurons that are susceptible to auditory adaptation recapitulates these behavioral results. Our results imply that the neural circuits supporting tactile frequency perception also process auditory signals. This finding is consistent with the notion of supramodal operators performing canonical operations, like temporal frequency processing, regardless of input modality.

  7. Control Prenatal

    Directory of Open Access Journals (Sweden)

    P. Susana Aguilera, DRA.

    2014-11-01

    Full Text Available Los principales objetivos del control prenatal son identificar aquellos pacientes de mayor riesgo, con el fin de realizar intervenciones en forma oportuna que permitan prevenir dichos riesgos y así lograr un buen resultado perinatal. Esto se realiza a través de la historia médica y reproductiva de la mujer, el examen físico, la realización de algunos exámenes de laboratorio y exámenes de ultrasonido. Además es importante promover estilos de vida saludables, la suplementación de ácido fólico, una consejería nutricional y educación al respecto.

  8. Righting elicited by novel or familiar auditory or vestibular stimulation in the haloperidol-treated rat: rat posturography as a model to study anticipatory motor control.

    Science.gov (United States)

    Clark, Callie A M; Sacrey, Lori-Ann R; Whishaw, Ian Q

    2009-09-15

    External cues, including familiar music, can release Parkinson's disease patients from catalepsy but the neural basis of the effect is not well understood. In the present study, posturography, the study of posture and its allied reflexes, was used to develop an animal model that could be used to investigate the underlying neural mechanisms of this sound-induced behavioral activation. In the rat, akinetic catalepsy induced by a dopamine D2 receptor antagonist (haloperidol 5mg/kg) can model human catalepsy. Using this model, two experiments examined whether novel versus familiar sound stimuli could interrupt haloperidol-induced catalepsy in the rat. Rats were placed on a variably inclined grid and novel or familiar auditory cues (single key jingle or multiple key jingles) were presented. The dependent variable was movement by the rats to regain equilibrium as assessed with a movement notation score. The sound cues enhanced movements used to regain postural stability and familiar sound stimuli were more effective than unfamiliar sound stimuli. The results are discussed in relation to the idea that nonlemniscal and lemniscal auditory pathways differentially contribute to behavioral activation versus tonotopic processing of sound.

  9. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  10. Later Prenatal Checkups

    Science.gov (United States)

    ... report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Last reviewed: May, 2011 Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  11. Prenatal Care Checkup

    Science.gov (United States)

    ... report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  12. Prenatal ultrasound - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series—Procedure, part 1 To use the sharing ... Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is accredited by ...

  13. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    Directory of Open Access Journals (Sweden)

    Masataka Nishimura

    Full Text Available Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1. Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  14. Evaluation of the influence of prenatal transportation stress on GnRH-stimulated luteinizing hormone and testosterone secretion in sexually mature Brahman bulls.

    Science.gov (United States)

    Littlejohn, B P; Roberts, M C; Bedenbaugh, M N; Lewis, A W; Neuendorff, D A; Riley, D G; Carroll, J A; Vann, R C; Amstalden, M; Randel, R D; Welsh, T H

    2017-01-01

    This study examined the relationship of prenatal transportation stress (PNS) with exogenous GnRH-induced LH and testosterone secretion in sexually mature Brahman bulls. Brahman cows (n = 96; 48 were stressed by transportation at 5 stages of gestation and 48 were controls) produced a calf crop of 85 calves. All bulls (n = 46) from this calf crop were electroejaculated every 2 wk beginning at a scrotal circumference of 24 cm until sexual maturity (SM; i.e., 500 million sperm/ejaculate). The initial 11 control and 12 PNS bulls to reach SM were selected for the experiment. Within 7-21 d after reaching SM, bulls were fitted with jugular cannulas, from which blood samples were collected at 15-min intervals for 6 h prior to exogenous GnRH administration (10 ng/kg BW; i.v.) and for 6 h after GnRH. Serum concentrations of LH, testosterone, and cortisol were determined by RIA. Age and body weight did not differ ( > 0.1) between PNS and control bulls at the time of the experiment. All bulls responded similarly to exogenous GnRH, indicating no influence of PNS on LH or testosterone response to GnRH. More ( < 0.01) PNS (9 of 11) than control (3 of 12) bulls exhibited an endogenous pre-GnRH LH pulse, and more ( = 0.02) PNS (9 of 11) than control bulls (4 of 12) exhibited a pre-GnRH testosterone response to LH. The average concentration of testosterone during the 60 min (time -60, -45, -30, -15, and 0 min relative to GnRH) immediately preceding GnRH, tended to be greater ( = 0.07) in PNS (1.46 ± 0.30 ng/mL) than control (0.68 ± 0.28 ng/mL) bulls. During that time span serum cortisol was lower ( < 0.01) in PNS (4.00 ± 0.91 ng/mL) than control (7.8 ± 0.87 ng/mL) bulls. A treatment by time interaction ( = 0.03) affected testosterone concentrations from time -240 to 360 min relative to GnRH. Results from this study indicate that PNS did not affect pituitary responsiveness to GnRH or testicular responsiveness to GnRH-induced LH secretion.

  15. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  16. 电刺激听神经诱发小鼠脑干神经元活动的光信号特征%Optical mapping of brainstem neuronal activity evoked by auditory electro-stimulation in rats

    Institute of Scientific and Technical Information of China (English)

    蔡竖平; 沈静; 土井直

    2005-01-01

    刺激听神经诱发的脑干光学信号及其特征:刺激听神经诱发的光学信号以时间-空间分布的形式被记录.在同侧耳蜗核,光学信号的潜伏期为(4.63±1.01)ms,前庭核的峰潜伏期为(6.00±0.89)ms.每一个光学信号分为两个成分:快的峰电位样反应及慢的长时程反应.快电位的起始相具有突触前性质,晚期相具有突触后性质;慢的长时程反应可能与多突触传递有关.②γ-氨基丁酸和荷包牡丹碱光学反应记录结果:灌流液中加入50 μmol/Lγ-氨基丁酸可最大限度地降低听神经诱发的脑干神经元信号的幅度,快反应起始相的潜伏期没有延长,但幅度有所降低,晚期相以及慢反应的幅度被明显抑制;而灌流液中加入50μmol/Lγ-氨基丁酸、200 μmol/L荷包牡丹碱后则可部分逆转γ-氨基丁酸对此信号的作用,快的峰电位样反应和慢反应的幅度有部分恢复.结论:多部位的光学记录系统可以收集电刺激听神经的诱发反应,光学信号显示了时间-空间分布的类型.γ-氨基丁酸能够使电刺激听神经诱发的脑干神经元信号的幅度明显降低,而γ-氨基丁酸A受体拮抗剂荷包牡丹碱可以竞争性地对抗部分而非全部的γ-氨基丁酸的抑制作用,提示γ-氨基丁酸能神经元对听神经诱发冲动的抑制作用除部分通过γ-氨基丁酸A受体实现外,还涉及其他亚型的γ-氨基丁酸受体.%BACKGROUND: Optical mapping technique is a novel electrophysiological detection method in which voltage-sensitivity dye is medium and silicon photoelectrical diode transforming technology is characteristic, used for analyzing the spatial-temporal distribution of membrane potential in complex neural system.OBJECTIVE: To observe the spatial-temporal changes of brainstem auditory electro-stimulation evoked potential by using optical mapping technology, so as to probe into the influence of γ-Aminobutyric acid (GABA) and γ-GABA receptor

  17. The hemispheric lateralization of the auditory cortex after being stimulated by pure tone: a 1H-MRS study%听觉中枢纯音处理偏侧性质子磁共振波谱研究

    Institute of Scientific and Technical Information of China (English)

    梁永辉; 陈贤明; 陈自谦; 倪萍

    2011-01-01

    目的 利用质子磁共振波谱(proton magnetic resonance spectroscopy,1H-MRS)技术观察纯音刺激后正常人左右半球听皮层代谢物偏侧性变化.方法 12例健康受试者听皮层在纯音刺激前后各接受一次多体素磁共振波谱检查.刺激声音为声强90dB、频率1000Hz的正弦波纯音脉冲.观察双侧听皮层N-乙酰天门冬氨酸(NAA)、肌酸(Cr)、胆碱(Cho)、谷氨酰胺和谷氨酸(Glx)、GABA等代谢物的波峰变化,并进行半定量分析,比较刺激前后听皮层代谢物左右半球偏侧性变化.结果 纯音刺激后左侧听皮层NAA/(Cho+Cr)、GABA/Cr比值[分别为(1.28±0.14),(0.21±0.08)],高于刺激前[分别为(1.02±0.18),(0.10±0.05)],Glx/Cr比值[(0.03±0.02)]明显低于刺激前[(0.10±0.04)],差异均有统计学意义(P0.05);GABA/Cr比值[(0.01±0.11)]明显低于刺激前[(0.11±0.07)],差异有显著性(P0.05). There were statistically significant differences in the Glx/Cr ratio of the auditory cortex between two sides after being stimulated by the pure tone. Conclusion The metabolic lateralization exists in auditory cortex of normal human brain after being stimulated by the pure tone, which may be the bases of the functional asymmetry.

  18. Os efeitos da polaridade do estímulo nos Potenciais Evocados Auditivos de Tronco Encefálico Polarity stimulation effects on brainstem auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Janaina Patricio de Lima

    2008-10-01

    Full Text Available Os Potenciais Evocados Auditivos de Tronco Encefálico (PEATE são considerados potenciais exógenos, ou seja, as respostas obtidas são altamente dependentes da característica do estímulo utilizado para evocá-los. OBJETIVO: Averiguar a influência da polaridade do estímulo clique na pesquisa dos PEATE em diferentes intensidades, utilizando-se fone de inserção. FORMA DE ESTUDO: Clínico. MATERIAL E MÉTODO: 33 indivíduos, idade entre 18 e 28 anos, sem alteração auditiva foram submetidos à pesquisa dos PEATE, com estímulo clique nas polaridades de rarefação, condensação e alternada, em diferentes intensidades. RESULTADOS: As latências absolutas da onda V mostraram-se menores na polaridade de rarefação quando comparadas às demais e na intensidade de 80 dBnHL houve diferença significante entre a rarefação e as demais polaridades para as latências interpicos III-V e I-V. Houve alta correlação entre as polaridades de condensação e alternada para as latências absolutas e interpicos na intensidade de 80 dBnHL. CONCLUSÃO: A polaridade do estímulo clique influência significativamente nos PEATE. Na rotina em que se utiliza o fone TDH 39, com apresentação de polaridade alternada, sugere-se que o uso da polaridade de condensação seja mais adequado para efeitos de comparação padronizada, devido à maior semelhança das latências encontradas nesse estudo com fone de inserção.Brainstem Auditory Evoked Potentials are considered exogenous potentials, that is, the responses obtained are highly dependent upon the characteristic of the stimulus used to evoke them. AIM: To investigate the influence of the click stimulus polarity in the study of Brainstem Evoked Response Audiometry (BERA at different intensities, using insertion-canal earphones. TYPE OF STUDY: Clinical. MATERIALS AND METHODS: 33 individuals, aged between 18 and 28, with no auditory alteration were submitted to BERA testing, with click stimulus on the

  19. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells.

    Science.gov (United States)

    Uchiyama, Masateru; Jin, Xiangyuan; Zhang, Qi; Hirai, Toshihito; Amano, Atsushi; Bashuda, Hisashi; Niimi, Masanori

    2012-03-23

    Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Naïve CBA mice (H2k) underwent transplantation of a C57BL/6 (B6, H2b) heart and were exposed to one of three types of music--opera (La Traviata), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to that from splenocytes of

  20. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    Directory of Open Access Journals (Sweden)

    Uchiyama Masateru

    2012-03-01

    Full Text Available Abstract Background Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Methods Naïve CBA mice (H2k underwent transplantation of a C57BL/6 (B6, H2b heart and were exposed to one of three types of music--opera (La Traviata, classical (Mozart, and New Age (Enya--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. Results CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively, whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively. Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively. Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively. Proliferation of splenocytes, interleukin (IL-2 and interferon (IFN-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased

  1. The Effects of Intracochlear Electrical Stimulation on the Learning and Memory Abilities of Auditory-deprived Rats%耳蜗电刺激对听觉剥夺幼鼠学习记忆能力的实验研究

    Institute of Scientific and Technical Information of China (English)

    王淑玉; 李晓明; 李建红

    2012-01-01

    Objective To establish an auditory deprivation and intracochlear electrical stimulation model, and to explore the influence of hearing impairment and intracochlear electrical stimulation on the cognitive function of young rats. Methods The young Sprague-Dawley rats were randomly divided into four groups:Auditory deprivation group(group Ⅰ), auditory deprivation and early intracochlear electrical stimulation group(ICES1, group Ⅱ ), auditory deprivation and late intracochlear electrical stimulation group (ICES2, group Ⅲ ) and normal control group (NC,group Ⅳ). Groups Ⅰ,Ⅱ and Ⅲ were deafened by aminoglycoside intoxication. Amikacin was administered subcutaneously at a dosage of 500 mg/kg, from the seventh (P7)to the 16th (P16) postnatal day. Normal control group were injected saline intraperitoneally (I.p) at the same dosage and for the same course. In group II and III, animals were implanted at P3w and P7w respectively to receive intracochlear electrical stimulation. The duration of the stimulation was 3 hours each day at the same time for 7 days. Morris Water Maze (MWM) test was conducted at P4w, P8w and 1 week after electrically stimulated. Results (1) Place navigation results in MWM test: The mean escape latencies of group Ⅱ(ICES1 ) had no significant difference with the normal control group on the third and the fourth day(P>0.05)and were significantly shorter than the auditory deprivation group(P0.05).Conclusion The learning and memory abilities of rats are impaired after auditory deprivation, while the early intracochlear electrical stimulation can help improve these abilities.%目的 建立听力障碍和耳蜗电刺激模型,探讨听力障碍及耳蜗电刺激对幼鼠认知功能的影响.方法 选用健康SD幼鼠随机分成4组:①听觉剥夺组(auditory deprivation,AD);②听觉剥夺+早期耳蜗电刺激组(early intracochlear electrical stimulation,ICES1);③听觉剥夺+晚期耳蜗电刺激组(late intracochlearelectrical

  2. Diagnóstico Prenatal

    OpenAIRE

    2010-01-01

    Diagnóstico Prenatal/ propósitos del diagnóstico prenatal/ Tamizaje a partir del Control Prenatal/ Pacientes de bajo riesgo/ Tamizaje bioquímico/ Pacientes de alto riesgo/ Pruebas invasivas y no invasivas

  3. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a bas

  4. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  5. [Approaches to therapy of auditory agnosia].

    Science.gov (United States)

    Fechtelpeter, A; Göddenhenrich, S; Huber, W; Springer, L

    1990-01-01

    In a 41-year-old stroke patient with bitemporal brain damage, we found severe signs of auditory agnosia 6 months after onset. Recognition of environmental sounds was extremely impaired when tested in a multiple choice sound-picture matching task, whereas auditory discrimination between sounds and picture identifications by written names was almost undisturbed. In a therapy experiment, we tried to enhance sound recognition via semantic categorization and association, imitation of sound and analysis of auditory features, respectively. The stimulation of conscious auditory analysis proved to be increasingly effective over a 4-week period of therapy. We were able to show that the patient's improvement was not only a simple effect of practicing, but it was stable and carried over to nontrained items.

  6. Auditory neuroplasticity, hearing loss and cochlear implants.

    Science.gov (United States)

    Ryugo, David

    2015-07-01

    Data from our laboratory show that the auditory brain is highly malleable by experience. We establish a base of knowledge that describes the normal structure and workings at the initial stages of the central auditory system. This research is expanded to include the associated pathology in the auditory brain stem created by hearing loss. Utilizing the congenitally deaf white cat, we demonstrate the way that cells, synapses, and circuits are pathologically affected by sound deprivation. We further show that the restoration of auditory nerve activity via electrical stimulation through cochlear implants serves to correct key features of brain pathology caused by hearing loss. The data suggest that rigorous training with cochlear implants and/or hearing aids offers the promise of heretofore unattained benefits.

  7. Prenatal exercise research.

    Science.gov (United States)

    Field, Tiffany

    2012-06-01

    In this review of recent research on prenatal exercise, studies from several different countries suggest that only approximately 40% of pregnant women exercise, even though about 92% are encouraged by their physicians to exercise, albeit with some 69% of the women being advised to limit their exercise. A moderate exercise regime reputedly increases infant birthweight to within the normal range, but only if exercise is decreased in late pregnancy. Lower intensity exercise such as water aerobics has decreased low back pain more than land-based physical exercise. Heart rate and blood pressure have been lower following yoga than walking, and complications like pregnancy-induced hypertension with associated intrauterine growth retardation and prematurity have been less frequent following yoga. No studies could be found on tai chi with pregnant women even though balance and the risk of falling are great concerns during pregnancy, and tai chi is one of the most effective forms of exercise for balance. Potential underlying mechanisms for exercise effects are that stimulating pressure receptors during exercise increases vagal activity which, in turn, decreases cortisol, increases serotonin and decreases substance P, leading to decreased pain. Decreased cortisol is particularly important inasmuch as cortisol negatively affects immune function and is a significant predictor of prematurity. Larger, more controlled trials are needed before recommendations can be made about the type and amount of pregnancy exercise.

  8. Auditory Imagery: Empirical Findings

    Science.gov (United States)

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  9. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  10. Mechanism of auditory hypersensitivity in human autism using autism model rats.

    Science.gov (United States)

    Ida-Eto, Michiru; Hara, Nao; Ohkawara, Takeshi; Narita, Masaaki

    2017-04-01

    Auditory hypersensitivity is one of the major complications in autism spectrum disorder. The aim of this study was to investigate whether the auditory brain center is affected in autism model rats. Autism model rats were prepared by prenatal exposure to thalidomide on embryonic day 9 and 10 in pregnant rats. The superior olivary complex (SOC), a complex of auditory nuclei, was immunostained with anti-calbindin d28k antibody at postnatal day 50. In autism model rats, SOC immunoreactivity was markedly decreased. Strength of immunostaining of SOC auditory fibers was also weak in autism model rats. Surprisingly, the size of the medial nucleus of trapezoid body, a nucleus exerting inhibitory function in SOC, was significantly decreased in autism model rats. Auditory hypersensitivity may be, in part, due to impairment of inhibitory processing by the auditory brain center. © 2016 Japan Pediatric Society.

  11. Transient human auditory cortex activation during volitional attention shifting.

    Science.gov (United States)

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues.

  12. The Paradigm of Unity in Prenatal Education and Pedagogy

    Directory of Open Access Journals (Sweden)

    Kornas-Biela Dorota

    2014-07-01

    Full Text Available The traditional approach to the relation between parents and their prenatal child presents the child as a fetus, a mainly passive recipient of the mother’s vital biological resources. Contemporary prenatal psychology and pedagogy recognizes this relationship in a quite different perspective: the prenatal child is a member of the family and may be seen as an active member of the wider family as a community, extended to grandparents and other relatives. Between parents and their child in the womb exists a reciprocal relationship at a physiological (hormonal, psychological and spiritual level. The prenatal child communicates with the parents in different ways and reacts to their stimulation (acoustic, tactile, loco-motoric, chemo-receptive, thermo-receptive, and emotional. This dialogue of the parents and their prenatal child enriches each member of the family community. In this sense, the prenatal child is a gift and a challenge for the parents to develop their personality, social competences and spiritual life. The reflections presented in this paper fit the conception of the paradigm of unity applied into the area of prenatal education and prenatal pedagogy as a new pedagogical subdisciline.

  13. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  14. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear).

  15. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  16. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  17. Prenatal Genetic Screening Tests

    Science.gov (United States)

    ... cells from the fetus or placenta obtained through amniocentesis or chorionic villus sampling (CVS) . FAQ164 “Prenatal Genetic ... should be followed by a diagnostic test with amniocentesis or CVS. The cell-free DNA screening test ...

  18. Prenatal Stress, Prematurity, and Asthma.

    Science.gov (United States)

    Medsker, Brock; Forno, Erick; Simhan, Hyagriv; Celedón, Juan C

    2015-12-01

    Asthma is the most common chronic disease of childhood, affecting millions of children in the United States and worldwide. Prematurity is a risk factor for asthma, and certain ethnic or racial minorities such as Puerto Ricans and non-Hispanic blacks are disproportionately affected by both prematurity and asthma. In this review, we examine current evidence to support maternal psychosocial stress as a putative link between prematurity and asthma, while also focusing on disruption of the hypothalamic-pituitary-adrenal (HPA) axis and immune responses as potential underlying mechanisms for stress-induced "premature asthma." Prenatal stress may cause not only abnormalities in the HPA axis but also epigenetic changes in the fetal glucocorticoid receptor gene (NR3C1), leading to impaired glucocorticoid metabolism. Moreover, maternal stress can alter fetal cytokine balance, favoring TH2 (allergic) immune responses characteristic of atopic asthma: interleukin 6 (IL-6), which has been associated with premature labor, can promote TH2 responses by stimulating production of IL-4 and IL-13. Given a link among stress, prematurity, and asthma, future research should include birth cohorts aimed at confirming and better characterizing "premature asthma." If confirmed, clinical trials of prenatal maternal stress reduction would be warranted to reduce the burden of these common comorbidities. While awaiting the results of such studies, sound policies to prevent domestic and community violence (eg, from firearms) are justified, not only by public safety but also by growing evidence of detrimental effects of violence-induced stress on psychiatric and somatic health.

  19. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning.

    Science.gov (United States)

    Suga, Nobuo

    2012-02-01

    The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.

  20. 节奏性听觉刺激对脑卒中偏瘫患者步态的效果%Effect of Rhythmic Auditory Stimulation on Gait of Stroke Hemiplegic Patients

    Institute of Scientific and Technical Information of China (English)

    张玉阁; 张通; 刘丽旭

    2016-01-01

    Objective To observe the effect of rhythmic auditory stimulation (RAS) on gait of stroke hemiplegic patients. Methods From April, 2014 to April, 2015, eleven stroke hemiplegic patients were divided into RAS group (n=6) and control group (n=5) randomly. Both groups accepted routine rehabilitation, and the RAS group accepted RAS walking exercise, while the control group accepted verbal in-structed walking exercise. They were tested with Brunnstrom's Stage and gait analysis before and three weeks after training. Results There was no significant increase in Brunnstrom's Stage (Z0.05) in both groups after training. The RAS group increased in stride length, velocity and cadence (t>4.829, P0.05). Conclusion Walking exercise under RAS facilitates to improve gait in stroke hemiplegic patients.%目的:探讨在患者进行步行训练时给予节奏性听觉刺激(RAS),对脑卒中偏瘫患者步态的影响。方法2014年4月~2015年4月,11例脑卒中偏瘫患者随机分为试验组(n=6)和对照组(n=5)。在常规康复训练基础上,试验组接受RAS步行训练,对照组接受口头指令步行训练。分别于训练前及训练3周后用Brunnstrom分期、步态分析对患者进行评定。结果训练后,试验组和对照组Brunnstrom分期均无明显变化(Z0.05);试验组跨步长、步速、步频明显提高(t>4.829, P0.05)。结论 RAS步行训练有助于改善脑卒中偏瘫患者步态。

  1. Significance evaluation of thyroid stimulating hormone in prenatal screening%早孕期孕妇促甲状腺激素检测临床意义研究

    Institute of Scientific and Technical Information of China (English)

    黄之虎; 黄翠波; 黄小明; 贾绍府

    2014-01-01

    目的:探讨孕21-三体综合征胎儿、孕18-三体综合征胎儿和孕健康胎儿孕妇早孕期血清促甲状腺激素(TSH)水平和游离β-人绒毛膜促性腺激素(β-hCG)之间的关系,评价TSH用于早孕期产前筛查的临床价值。方法分别比较26例孕21-三体综合征胎儿、19例孕18-三体综合征胎儿和6782例孕健康胎儿孕妇孕11~13周时的血清TSH和游离β-hCG水平。结果孕21-三体综合征胎儿孕妇血清 TSH 水平较低(0.72±0.31MoM),而孕18-三体综合征胎儿孕妇血清TSH水平较高(1.48±0.57 MoM)。孕健康胎儿孕妇血清TSH和游离β-hCG水平具有负相关性(r=-0.214,P<0.05),但在孕染色体非整倍体胎儿孕妇体内,二者无相关性(孕21-三体综合征胎儿孕妇:r=-0.157,P>0.05;孕18-三体综合征胎儿孕妇:r=-0.176,P>0.05)。结论早孕期筛查 TSH 并不能有效提高21-三体综合征胎儿和18-三体综合征胎儿的检出率。%Objective To explore the relationship between thyroid stimulating hormone (TSH)and freeβ-hu-man chorionic gonadotropin (β-hCG)in maternal serum of trisomy 2 1 ,trisomy 1 8 and euploid pregnancies at 1 1-1 3 weeks and evaluate the potential value of TSH in first-trimester prenatal screening.Methods Maternal serum levels of TSH and freeβ-hCG at 11-13 weeks in 26 cases of trisomy 21 and 19 cases of trisomy 18 pregnancies were com-pared with levels in 6 782 cases of unaffected pregnancies.Results The trisomy 21 pregnancies were with lower ma-ternal serum levels of TSH (0.72±0.31 MoM)and the trisomy 18 pregnancies were with higher maternal serum levels of TSH (1.48 ±0.57 MoM).There were significant associations between TSH and freeβ-hCG in the unaf-fected pregnancies (r=-0.214,P0.05)or trisomy 18 (r=-0.176,P>0.05).Conclusion Measurement of TSH could not improve the performance of screening for tri-somy 21 and trisomy 18.

  2. Early Experience of Sex Hormones as a Predictor of Reading, Phonology, and Auditory Perception

    Science.gov (United States)

    Beech, John R.; Beauvois, Michael W.

    2006-01-01

    Previous research has indicated possible reciprocal connections between phonology and reading, and also connections between aspects of auditory perception and reading. The present study investigates these associations further by examining the potential influence of prenatal androgens using measures of digit ratio (the ratio of the lengths of the…

  3. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  4. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  5. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...

  6. Your First Prenatal Care Checkup

    Science.gov (United States)

    ... report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Last reviewed: May, 2011 Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  7. Prenatal Care: Third Trimester Visits

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week During the third trimester, prenatal care might include vaginal exams to check the baby's ... 2015 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/in-depth/prenatal-care/art- ...

  8. Prenatal Care: Second Trimester Visits

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week During the second trimester, prenatal care includes routine lab tests and measurements of your ... 2015 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/in-depth/prenatal-care/art- ...

  9. Otoacoustic Emissions, Auditory Evoked Potentials and Self-Reported Gender in People Affected by Disorders of Sex Development (DSD)

    OpenAIRE

    Wisniewski, Amy B.; Espinoza-Varas, Blas; Christopher E Aston; Edmundson, Shelagh; Champlin, Craig A.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) – (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46, XY DSD including prenatal androgen exposure who developed a male gender de...

  10. Infección prenatal

    OpenAIRE

    Pastor Durán, Xavier

    1986-01-01

    Protocolos terapeuticos. Infección prenatal. Riesgo de infección prenatal. La infección prenatal requiere un alto índice de sospecha, ya que no siempre, los antecedentes se hallan presentes bien porque faltan o bien porque hayan pasado desapercibidos. Dentro del concepto de infección prenatal se encuentran las englobadas en el acrónimo Torches (toxoplasmosis, rubeola, citomegalovirosis, herpes o sífilis) )...

  11. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Directory of Open Access Journals (Sweden)

    Crystal T Engineer

    2014-08-01

    Full Text Available Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  12. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Science.gov (United States)

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.

    2014-01-01

    Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133

  13. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  14. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  15. Investigative effects of low frequency repetitive transcranial magnetic stimulation combined with drugs on obstinate auditory hallucinations and cognitive function in patients with schizophrenia%低频重复经颅刺激联合药物干预对精神分裂症患者顽固性幻听和认知功能的影响效果探析

    Institute of Scientific and Technical Information of China (English)

    马继东; 潘赞; 田洪伟; 王朝

    2015-01-01

    Objective To explore the clinical value of low frequency repetitive transcranial magnetic stimulation in improving obstinate auditory hallucinations and cognitive function in patients with schizophrenia. Methods According to visiting order number, 128 patients with schizophrenia were divided into control group and observation group.The observation group was treated by low frequency repetitive transcranial magnetic stimulation combined with risperidone, the control group was treated with risperidone.Before and after treatment, the patients were evaluated, by auditory hallucinations rating scale( AHRS) and assessment of verbal fluency and trail making were performed in patients.Results There was no significant difference in AHRS scores, VFT scores and trail making between the two groups before treatment (P>0.05).After treatment, the AHRS scores in the observation group were lower than that in the control group, the VFT scores in the observation group were higher than that in the control group, with statistical significance between two groups (P0.05).治疗后,观察组AHRS评分低于对照组,VFT评分则升高明显,差异具统计学意义( P<0.05). 结论 低频重复经颅刺激联合药物干预可较好的改善精神分裂症患者顽固性幻听,以及语言方面的认知功能.

  16. Functional outcome of auditory implants in hearing loss.

    Science.gov (United States)

    Di Girolamo, S; Saccoccio, A; Giacomini, P G; Ottaviani, F

    2007-01-01

    The auditory implant provides a new mechanism for hearing when a hearing aid is not enough. It is the only medical technology able to functionally restore a human sense i.e. hearing. The auditory implant is very different from a hearing aid. Hearing aids amplify sound. Auditory implants compensate for damaged or non-working parts of the inner ear because they can directly stimulate the acoustic nerve. There are two principal types of auditory implant: the cochlear implant and the auditory brainstem implant. They have common basic characteristics, but different applications. A cochlear implant attempts to replace a function lost by the cochlea, usually due to an absence of functioning hair cells; the auditory brainstem implant (ABI) is a modification of the cochlear implant, in which the electrode array is placed directly into the brain when the acoustic nerve is not anymore able to carry the auditory signal. Different types of deaf or severely hearing-impaired patients choose auditory implants. Both children and adults can be candidates for implants. The best age for implantation is still being debated, but most children who receive implants are between 2 and 6 years old. Earlier implantation seems to perform better thanks to neural plasticity. The decision to receive an implant should involve a discussion with many medical specialists and an experienced surgeon.

  17. Estimulação eletroacústica do sistema auditivo: técnica cirúrgica UNICAMP Electro acoustic stimulation of the auditory system: UNICAMP's surgical approach

    Directory of Open Access Journals (Sweden)

    Guilherme Machado de Carvalho

    2012-02-01

    Full Text Available A reabilitação auditiva entrou numa nova era com o desenvolvimento e aperfeiçoamento de próteses implantáveis, principalmente com a associação do conceito de a estimulação eletroacústica (EAS e implante coclear. A EAS é indicada para pacientes com audição residual nas baixas frequências e disacusia grave/profunda nas médias e altas frequências. Esses pacientes não teriam indicação para o implante coclear convencional e teriam dificuldades na adaptação com o aparelho de amplificação sonoro individual. A técnica cirúrgica utilizada deve-se basear nos conceitos de preservação auditiva e é fundamental nesse processo. OBJETIVOS: Descrever a técnica cirúrgica para procedimento de implante coclear MED-EL Mand FlexEAS, com intuito de preservar o resíduo auditivo e reabilitar satisfatoriamente a audição deteriorada, sendo o primeiro centro a realizar tal tratamento no Brasil. MATERIAL E MÉTODOS: Descrição de técnica cirúrgica utilizada pelo serviço de otologia de hospital terciário por meio de estudo de caso. RESULTADOS: Procedimentos realizados sem intercorrências. A técnica utilizada segue passos que objetivam a preservação auditiva. CONCLUSÃO: Descrevemos a técnica utilizada para implantes com EAS realizados no nosso serviço. A técnica cirúrgica é complexa e inclui passos que visam à preservação auditiva.A new era has arrived in auditory rehabilitation with the introduction of new technologies such as electroacoustic stimulation (EAS. EAS is indicated for patients with residual hearing at low frequencies and severe or profound hearing loss at high frequencies. These patients have no indication for conventional cochlear implant and have difficulties in adapting to individual sound amplification devices. Preservation of hearing is vital in this process; the surgical technique must be based on this concept. OBJECTIVES: To present the cochlear implant surgical technique with MED-EL Mand FlexEAS to

  18. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  19. 术中经蜗窗龛电刺激记录听性脑干反应方法的建立及初步应用%Establishment and rudimentary application of the method of recording auditory brainstem responses electrically stimulated via round-window niche in cochlear implants

    Institute of Scientific and Technical Information of China (English)

    程靖宁; 曹克利; 魏朝刚; 杨立军; 栾岚; 李欢; 李原; 张秋航

    2008-01-01

    目的 建立人工耳蜗手术中经蜗窗龛电刺激记录听性脑干反应的方法.方法 应用自制铂铱合金球形电极作为刺激电极,改装的人工耳蜗植入体连接体外言语处理器作为电刺激仪及Bio-logic Navigator Pro诱发电位仪,对17例不同病因(包括听神经病2例、耳蜗骨化1例、内耳畸形5例、脑白质异常1例,原因不明8例),不同年龄的人工耳蜗植入患者在手术中进行测试.植入人工耳蜗装置前,将刺激电极放置在蜗窗龛内,用电荷平衡双相脉冲电流经蜗窗龛进行电刺激,记录电诱发听性脑干反应.结果 17例患者均记录到明确的电诱发听性脑干反应波形,Ⅲ波和Ⅴ波的潜伏期分别为(2.12±0.18)ms 和(4.18±0.19)ms,阈值为(220.00±16.04)CL.其中2例听神经病、5例内耳畸形、1例耳蜗骨化、1例脑白质异常患者均记录到分化良好的波形.结论 电诱发听性脑干反应是一项能够较准确地反映听觉传导通路功能完整性的客观神经电生理测试方法,对于判断人工耳蜗植入后患者能否获得听性反应,具有重要的应用价值.本研究方法的安全性符合要求,听性反应的引出率高,值得推广应用.%Objective To establish the method of recording auditory bralnstem responseselectrically stimulated via round·window niche in cochlear implants.Methods Self-made phfinum iridiumauoy as a spherical electrode stimulation electrode,modified cochlear implants connected to in vitro speech processor 88 a electro·stimulator and evoke potential instrument for Bio-logic Navigator Pro,17 cechlear implant patients with various ages and of d~erent CaUlS,including auditory neuropathy(2 CS84gS),08si6ed cochlea(1 case),inner ear malformation(5 cases),leukodystrophy(1 case),unknown and reason(8 cases)were investigated during cochlear implant surgery.Before cochlear implantation,stimulation electrode was placod in the round.wiMow niche while charge balanced biphasic constant

  20. Prenatal screening and genetics

    NARCIS (Netherlands)

    Alderson, P.; Aro, A.R.; Dragonas, T.; Ettorre, E.; Hemminki, E.; Jalinoja, P.; Santalahti, P.; Tijmstra, T.

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we

  1. Prenatal stress in pigs

    NARCIS (Netherlands)

    Kranendonk, Godelieve

    2006-01-01

    Studies in many species, including humans, have demonstrated that stress during gestation can have long-term developmental, neuroendocrine, and behavioural effects on the offspring. Because pregnant sows can be subjected to regular stressful situations, it is relevant to study whether prenatal stres

  2. Prenatal screening and genetics

    NARCIS (Netherlands)

    Alderson, P.; Aro, A.R.; Dragonas, T.; Ettorre, E.; Hemminki, E.; Jalinoja, P.; Santalahti, P.; Tijmstra, T.

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we exami

  3. Prenatal stress in pigs

    NARCIS (Netherlands)

    Kranendonk, Godelieve

    2006-01-01

    Studies in many species, including humans, have demonstrated that stress during gestation can have long-term developmental, neuroendocrine, and behavioural effects on the offspring. Because pregnant sows can be subjected to regular stressful situations, it is relevant to study whether prenatal stres

  4. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we ex...

  5. [Which colours can we hear?: light stimulation of the hearing system].

    Science.gov (United States)

    Wenzel, G I; Lenarz, T; Schick, B

    2014-02-01

    The success of conventional hearing aids and electrical auditory prostheses for hearing impaired patients is still limited in noisy environments and for sounds more complex than speech (e. g. music). This is partially due to the difficulty of frequency-specific activation of the auditory system using these devices. Stimulation of the auditory system using light pulses represents an alternative to mechanical and electrical stimulation. Light is a source of energy that can be very exactly focused and applied with little scattering, thus offering perspectives for optimal activation of the auditory system. Studies investigating light stimulation of sectors along the auditory pathway have shown stimulation of the auditory system is possible using light pulses. However, further studies and developments are needed before a new generation of light stimulation-based auditory prostheses can be made available for clinical application.

  6. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  7. 穴位电刺激对豚鼠听皮质中潜伏期诱发电位波幅的影响%EFFECT OF ELECTRO-STIMULATION OF POINTS ON AMPLITUDES OF AUDITORY MIDDLE LATENCY RESPONSE IN GUINEA PIGS

    Institute of Scientific and Technical Information of China (English)

    周庆辉; 曾兆麟; 等

    2001-01-01

    Objective:To study the effect of electro-stimulation of points on amplitudes of auditory middle latency response in guinea pigs.Method:Electro-acupuncture stimulation(unsynchronous with the click) and repetitive electrical stimulation(synchronized with the click) of points on foreleg(Waiguan and Zhongzhu)were administered to guinea pigs of two groups respectively.Auditory middle latency responses evoked by click were recorded before and after the stimulation,and the different effects of these two electro-stimulation modalities on the amplitudes of the evoked response were analyzed.Result:The amplitudes of the evoked response decreased greatly during the electro-acupuncture period when electro-acupuncture of points on foreleg was administered,while the amplitudes increased greatly with the administration of repetitive electrical stimulation.Conclusion:It is not proper to assess the excitability of the cerebral cortex only by the changes of the amplitudes of the evoked potential during electro-acupuncture.%目的:观察穴位电刺激对豚鼠听皮质中潜伏期诱发电位波幅的影响。方法:分别以电针和重复电脉冲刺激豚鼠前肢的外关、中渚穴,刺激前后记录短声诱发的听皮质中潜伏期诱发电位,并分析两种电刺激方式对诱发电位波幅的不同影响。结果:电针前肢穴时,电针期间诱发电位波幅明显减小,而重复电脉冲刺激前肢穴时,波幅明显增大。结论:不能仅以电针期间诱发电位波幅大小的变化来衡量皮质兴奋性的变化。

  8. Auditory hallucinations induced by trazodone.

    Science.gov (United States)

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-04-03

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients.

  9. Human prenatal diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Filkins, K.; Russo, R.J.

    1985-01-01

    The multiauthor text is written as a ''guide to rationalize and clarify certain aspects of diagnosis, general counseling and intervention'' for ''health professionals who provide care to pregnant women.'' The text is not aimed at the ultrasonographer but rather at the physicians who are clinically responsible for patient management. Chapters of relevance to radiologists include an overview of prenatal screening and counseling, diagnosis of neural tube defects, ultrasonographic (US) scanning of fetal disorders in the first and second trimesters of pregnancy, US scanning in the third trimester, multiple gestation and selective termination, fetal echo and Doppler studies, and fetal therapy. Also included are overviews of virtually all currently utilized prenatal diagnostic techniques including amniocentesis, fetal blood sampling, fetoscopy, recombinant DNA detection of hemoglobinopathies, chorionic villus sampling, embryoscopy, legal issues, and diagnosis of Mendelian disorders by DNA analysis.

  10. Prenatal testosterone and stuttering.

    Science.gov (United States)

    Montag, Christian; Bleek, Benjamin; Breuer, Svenja; Prüss, Holger; Richardt, Kirsten; Cook, Susanne; Yaruss, J Scott; Reuter, Martin

    2015-01-01

    The prevalence of stuttering is much higher in males compared to females. The biological underpinnings of this skewed sex-ratio is poorly understood, but it has often been speculated that sex hormones could play an important role. The present study investigated a potential link between prenatal testosterone and stuttering. Here, an indirect indicator of prenatal testosterone levels, the Digit Ratio (2D:4D) of the hand, was used. As numerous studies have shown, hands with more "male" characteristics (putatively representing greater prenatal testosterone levels) are characterized by a longer ring finger compared to the index finger (represented as a lower 2D:4D ratio) in the general population. We searched for differences in the 2D:4D ratios between 38 persons who stutter and 36 persons who do not stutter. In a second step, we investigated potential links between the 2D:4D ratio and the multifaceted symptomatology of stuttering, as measured by the Overall Assessment of the Speaker's Experience of Stuttering (OASES), in a larger sample of 44 adults who stutter. In the first step, no significant differences in the 2D:4D were observed between individuals who stutter and individuals who do not stutter. In the second step, 2D:4D correlated negatively with higher scores of the OASES (representing higher negative experiences due to stuttering), and this effect was more pronounced for female persons who stutter. The findings indicate for the first time that prenatal testosterone may influence individual differences in psychosocial impact of this speech disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Auditory distraction transmitted by a cochlear implant alters allocation of attentional resources

    Directory of Open Access Journals (Sweden)

    Mareike eFinke

    2015-03-01

    Full Text Available Cochlear implants (CIs are auditory prostheses which restore hearing via electrical stimulation of the auditory nerve. The successful adaptation of auditory cognition to the CI input depends to a substantial degree on individual factors. We pursued an electrophysiological approach towards an analysis of cortical responses that reflect perceptual processing stages and higher-level responses to CI input. Performance and event-related potentials on two cross-modal discrimination-following-distraction tasks from CI users and normal-hearing (NH individuals were compared. The visual-auditory distraction task combined visual distraction with following auditory discrimination performance. Here, we observed similar cortical responses to visual distractors (Novelty-N2 and slowed, less accurate auditory discrimination performance in CI users when compared to NH individuals. Conversely, the auditory-visual distraction task was used to combine auditory distraction with visual discrimination performance. In this task we found attenuated cortical responses to auditory distractors (Novelty-P3, slowed visual discrimination performance, and attenuated cortical P3-responses to visual targets in CI users compared to NH individuals. These results suggest that CI users process auditory distractors differently than NH individuals and that the presence of auditory CI input has an adverse effect on the processing of visual targets and the visual discrimination ability in implanted individuals. We propose that this attenuation of the visual modality occurs through the allocation of neural resources to the CI input.

  12. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    Science.gov (United States)

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  13. Congenital dacryocystocele: prenatal MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Zeynep [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Uludag University, Department of Radiology, Faculty of Medicine, Bursa (Turkey); Kline-Fath, Beth M.; Rubio, Eva I.; Calvo-Garcia, Maria A.; Linam, Leann E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Yazici, Bulent [Uludag University, Department of Ophthalmology, Faculty of Medicine, Bursa (Turkey)

    2010-12-15

    Congenital dacryocystocele can be diagnosed prenatally by imaging. Prenatal MRI is increasingly utilized for fetal diagnosis. To present the radiological and clinical features of seven fetuses with congenital dacryocystocele diagnosed with prenatal MRI. The institutional database of 1,028 consecutive prenatal MR examinations performed during a period of 4 years was reviewed retrospectively. The cases of congenital dacryocystocele were identified by reading the report of each MRI study. The incidence of dacryocystocele diagnosed with prenatal MRI was 0.7% (n=7/1,028). The dacryocystocele was bilateral in three fetuses. Mean gestational age at the time of diagnosis was 31 weeks. The indication for prenatal MRI was the presence or the suspicion of central nervous system abnormality in six fetuses and diaphragmatic hernia in one. Dacryocystocele was associated with an intranasal cyst in six of ten eyes. Prenatal sonography revealed dacryocystocele in only two of seven fetuses. Of eight eyes with postnatal follow-up, four did not have any lacrimal symptoms. Prenatal MRI can delineate congenital dacryocystocele more clearly and in a more detailed fashion than ultrasonography. Presence of dacryocystocele was symptomatic in only 50% of our patients, supporting that prenatal diagnosis of dacryocystocele might follow a benign course. (orig.)

  14. 听觉剥夺及耳蜗内电刺激幼鼠听皮层和下丘核CREB 和 NMDAR1蛋白表达变化%Variation of CREB and NMDAR1 Proteins Induced by Auditory Deprivation and Intracochlear Electrical Stimulation in Infant Rats

    Institute of Scientific and Technical Information of China (English)

    樊碧云; 卢振东; 程岚; 杨军

    2016-01-01

    the expression of cAMP -response element binding protein (CREB) and N-methyl-D-aspartic acid receptor (NMDA ) after intracochlear electrical stimulation in the auditory cortex and inferior colliculus in infant rats with auditory deprivation .Methods Sixty six SD infant rats were randomly divided into 6 groups (11 rats each group):4 weeks ,and 6 weeks after injection of ototoxic drug ,the control group ,and 3 weeks and 5 weeks after injection of ototoxic drug with intra -cochlear electrical stimulation for one week .Gentami-cin sulphate (350 mg/kg body weight) and frusemide (200 mg/kg body weight) were injected subcutaneously in the skin folds on the lateral abdominal side and the dorsal neck area ,respectively .The expression of CREB and NMDAR1protein were detected by immunohistological staining .Results The results of immunohisto -chemistry revealed that protein expression of CREB and NMDAR1 in 4 week group of injection increased as compared to the control group ,while decreasing as compared to intracochlear electrical stimulation group ,significantly .However ,protein expression of CREB and NMDAR1 in 6 week group of injection decreased as compared to the control group and in-tracochlear electrical stimulation group ,significantly .Conclusion Auditory deprivation could result in the expres-sion of protein of CREB and NMDAR1 in auditory cortex and inferior colliculus increasing in an early stage and then de-creasing in infant rats .Intracochlear electrical stimulation could result in the expression of proteins of CREB and NMDAR 1 in auditory cortex and inferior colliculus increasing in infant rats .The dynamic variation of CREB and NMDAR1 expression in rat auditory cortex and inferior colliculus reflects synaptic plasticity in neurons of auditory pathway .

  15. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'.

  16. Contextual modulation of primary visual cortex by auditory signals

    Science.gov (United States)

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  17. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  18. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    The auditory evoked potential (AEP) is an electrical signal that can be recorded from electrodes attached to the scalp of a human subject when a sound is presented. The signal is considered to reflect neural activity in response to the acoustic stimulation and is a well established clinical...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...... to simulate auditory brainstem responses (ABRs) evoked by classic stimuli like clicks, tone bursts and chirps. The ABRs to these simple stimuli were compared to literature data and the model was shown to predict the frequency dependence of tone-burst ABR wave-V latency and the level-dependence of ABR wave...

  19. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  20. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    OpenAIRE

    Ioannaou, Christos I; Pereda, Ernesto; Lindsen, Job P.; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In ...

  1. The place of prenatal clases.

    Science.gov (United States)

    Enkin, M W

    1978-11-01

    The past 20 years has shown an exponential rise in both obstetrical intervention and family centred maternity care. Prenatal classes, although not as yet fully integrated into prenatal care, fill a vital role in teaching couples the information, skills, and attitudes required to participate actively in their reproductive care, and to recognize both their rights and their responsibilities.

  2. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new si

  3. Virtual Auditory Displays

    Science.gov (United States)

    2000-01-01

    timbre , intensity, distance, room modeling, radio communication Virtual Environments Handbook Chapter 4 Virtual Auditory Displays Russell D... musical note “A” as a pure sinusoid, there will be 440 condensations and rarefactions per second. The distance between two adjacent condensations or...and complexity are pitch, loudness, and timbre respectively. This distinction between physical and perceptual measures of sound properties is an

  4. Effects of prenatal exposure to chronic mild stress and toluene in rats

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Andersen, Maud Bering; Hansen, A. M.

    2005-01-01

    The aim of the present study was to elucidate whether prenatal chronic stress, in combination with exposure to a developmental neurotoxicant, would increase effects in the offspring compared with the effects of either exposure alone. Development and neurobehavioral effects were investigated...... in female offspring of pregnant rats (Mol:WIST) exposed to chronic mild stress (CMS) during gestational days (GD) 9-20, or 1500 ppm toluene, 6 h/day during gestational days 7-20, or a combination of the two. Prenatal CMS was associated with decreased thymic weight and increased auditory startle response...... function due to CMS were observed. In the present experimental setting, there was no indication of the two exposures potentiating each other with respect to adverse effects on the nervous system. However, the effects of prenatal CMS indicate that stress during fetal life may interfere with the development...

  5. Vibrotactile activation of the auditory cortices in deaf versus hearing adults.

    Science.gov (United States)

    Auer, Edward T; Bernstein, Lynne E; Sungkarat, Witaya; Singh, Manbir

    2007-05-07

    Neuroplastic changes in auditory cortex as a result of lifelong perceptual experience were investigated. Adults with early-onset deafness and long-term hearing aid experience were hypothesized to have undergone auditory cortex plasticity due to somatosensory stimulation. Vibrations were presented on the hand of deaf and normal-hearing participants during functional MRI. Vibration stimuli were derived from speech or were a fixed frequency. Higher, more widespread activity was observed within auditory cortical regions of the deaf participants for both stimulus types. Life-long somatosensory stimulation due to hearing aid use could explain the greater activity observed with deaf participants.

  6. The neglected neglect: auditory neglect.

    Science.gov (United States)

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  7. Audiological assessment value of click-evoked auditory brainstem response combined with single stimulation of the auditory steady-state evoked response on normal young people%听性脑干诱发电位结合单刺激听觉稳态诱发反应对正常青年人听阈正常值评估的探讨

    Institute of Scientific and Technical Information of China (English)

    李倩庆; 宋江顺; 刘文婷

    2013-01-01

    目的 分析正常青年人多频刺激听觉稳态诱发电位(multiple stimuli auditory steady-state response,m-ASSR)、单频刺激听觉稳态诱发电位(single stimulusauditory steady-state response,s-ASSR)、听性脑干诱发电位(click-evoked auditory brain stem response,CABR)、纯音听力测试(pure tone auditory,PTA)阈值,探讨C-ABR结合0.5、1 kHz s-ASSR在正常青年人中反应阈的正常值.方法 对听力正常青年人(43人,共86耳)分别行PTA、m-ASSR、0.5、1.0 kHz s-ASSR、C-ABR检查.将PTA、m-ASSR、听力测试组合(C-ABR结合0.5、1 kHzs-ASSR反应阈)结果行f检验、线性回归分析等统计学分析.结果 ①0.5、1、2、4 kHz处,听力测试组合反应阈高于PTA;除1 kHz外其他频率均较m-ASSR反应阈接近PTA;②0.5、1、2、4 kHz处,听力测试组合反应阈预测PTA的回归方程分别为:y=0.75x-4.53,y=0.56x-4.46,y=0.62x-7.70和y=0.92x-12.66.结论 正常青年人中ASSR反应阈与PTA、C-ABR V波反应阈有一定的差值;听力测试组合较m-ASSR更接近PTA;听力测试组合可以更准确、更可靠评估正常成年人听阈水平.

  8. Prenatal diagnosis of hemimegalencephaly.

    Science.gov (United States)

    Lang, Shih-Shan; Goldberg, Ethan; Zarnow, Deborah; Johnson, Mark P; Storm, Phillip B; Heuer, Gregory G

    2014-01-01

    In recent literature, there have been case reports of prenatal diagnosis of hemimegalencephaly, an extremely rare entity characterized by enlargement of all or portions of 1 cerebral hemisphere and intractable seizures. A unique case is presented of hemimegalencephaly of a fetus diagnosed in utero. A 27-year-old woman presented at 32 weeks' gestation for fetal magnetic resonance imaging after an abnormal fetal ultrasound. Fetal magnetic resonance imaging showed hemimegalencephaly of the left cerebral hemisphere with abnormal gyration. The patient was born via cesarean section at 39 weeks' gestation. He had continuous infantile spasms and partial-onset seizures starting on day 1 of life, and electroencephalography showed burst suppression. The patient's seizures were initially managed with antiepileptics, prednisolone, and a ketogenic diet; however, he was hospitalized multiple times because of status epilepticus. At 6 months of age, he underwent a successful anatomic left hemispherectomy. In utero diagnosis of complex developmental brain anomalies allows a multidisciplinary approach to provide optimal prenatal patient treatment and parental counseling. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  10. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants.

    Science.gov (United States)

    Venail, Frederic; Mura, Thibault; Akkari, Mohamed; Mathiolon, Caroline; Menjot de Champfleur, Sophie; Piron, Jean Pierre; Sicard, Marielle; Sterkers-Artieres, Françoise; Mondain, Michel; Uziel, Alain

    2015-01-01

    The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement), electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device). The electrical response, measured using auto-NRT (neural responses telemetry) algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = -0.11 ± 0.02, P < 0.01), the scalar placement of the electrodes (β = -8.50 ± 1.97, P < 0.01), and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF). Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  11. The use of visual stimuli during auditory assessment.

    Science.gov (United States)

    Pearlman, R C; Cunningham, D R; Williamson, D G; Amerman, J D

    1975-01-01

    Two groups of male subjects beyond 50 years of age were given audiometric tasks with and without visual stimulation to determine if visual stimuli changed auditory perception. The first group consisted of 10 subjects with normal auditory acuity; the second, 10 with sensorineural hearing losses greater than 30 decibels. The rate of presentation of the visual stimuli, consisting of photographic slides of various subjects, was determined in experiment I of the study. The subjects, while viewing the slides at their own rate, took an audiotry speech discrimination test. Advisedly they changed the slides at a speed which they felt facilitated attention while performing the auditory task. The mean rate of slide-changing behavior was used as the "optimum" visual stimulation rate in experiment II, which was designed to explore the interaction of the bisensory presentation of stimuli. Bekesy tracings and Rush Hughes recordings were administered without and with visual stimuli, the latter presented at the mean rate of slide changes found in experiment I. Analysis of data indicated that (1) no statistically significant difference exists between visual and nonvisual conditions during speech discrimination and Bekesy testing; and (2) subjects did not believe that visual stimuli as presented in this study helped them to listen more effectively. The experimenter concluded that the various auditory stimuli encountered in the auditory test situation may actually be a deterrent to boredom because of the variety of tasks required in a testing situation.

  12. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  13. Animal models for auditory streaming.

    Science.gov (United States)

    Itatani, Naoya; Klump, Georg M

    2017-02-19

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.

  14. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  15. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  16. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  17. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study.

    Science.gov (United States)

    Leitão, Joana; Thielscher, Axel; Werner, Sebastian; Pohmann, Rolf; Noppeney, Uta

    2013-04-01

    Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual inputs (and vice versa). This concurrent transcranial magnetic stimulation-functional magnetic resonance imaging (TMS-fMRI) study applied repetitive TMS trains at no, low, and high intensity over right intraparietal sulcus (IPS) and vertex to investigate top-down influences on visual and auditory cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state-dependent fashion: it deactivated the visual cortex under no and auditory stimulation but amplified the BOLD response to visual stimulation. However, only the response amplification to visual stimulation was selective for IPS-TMS, while the deactivations observed for IPS- and Vertex-TMS resulted from crossmodal deactivations induced by auditory activity to TMS sounds. TMS to IPS may increase the responses in visual (or auditory) cortices to visual (or auditory) stimulation via a gain control mechanism or crossmodal interactions. Collectively, our results demonstrate that understanding TMS effects on (uni)sensory processing requires a multisensory perspective.

  18. The study on the targets of the optical evoked auditory brainstem response on the cochlea of guinea pig stimulating by infrared laser%红外线激光刺激豚鼠耳蜗诱发听性脑干反应作用靶点的实验研究

    Institute of Scientific and Technical Information of China (English)

    谢冰斌; 李华伟; 戴春富

    2016-01-01

    Objective To identify the targets of the infrared laser stimulating on the cochlea of guinea pig which evoked auditory brainstem response (oABR),and explore the mechanisms of the infrared neurostimulation.Methods A polished optical fiber with 200 μm diameter (NA =0.22) was planted into the scala tympani of guinea pigs to stimulate the cochlea of both the normal hearing and acute deafened guinea pigs.The direction of the fiber distal was changed to radiate different regions of the scala tympani,recording the oABR respectively.Differences of energy thresholds and amplitudes of oABR between normal hearing and acute deafened animals was concerned,and different responses were recorded as the optical path of laser fiber being changed to investigate the targets of the infrared laser stimulation.Immunofluorescence was used to detect the changes of inner and outer hair cells,and spiral ganglion neurons 7 days postdeafening,to looking for the probable association with the oABR changes at the same stimulus.SPSS 18.0 software was used to analyze the data.Results Inner and outer hair cells were damaged in basal and middle turn,butresidual hair cells were observed in apical turn.Only when the optical fiber pointed to Rosenthal's canal stimulated the spiral ganglion region directly could the oABR be evoked.No response was recorded while the fiber pointed to other directions.Conclusion Infrared laser stimulates cochlea evoked oABR generats from the response of spiral ganglion directly,the spiral ganglion neurons are the target of infrared stimulation.%目的 研究红外线激光刺激豚鼠耳蜗诱发听性脑干反应(optical evoled auditory brainstem response,oABR)的作用靶点,探讨激光刺激的作用机制.方法 对正常听力豚鼠及急性耳蜗损伤豚鼠耳蜗植入直径200μm的光纤(NA =0.22),光纤末端对准鼓阶不同部位进行激光刺激,记录并比较不同刺激角度下oABR的反应情况及正常听力与急性耳蜗损伤豚鼠oABR阈值和

  19. Prenatal management of anencephaly.

    Science.gov (United States)

    Cook, Rebecca J; Erdman, Joanna N; Hevia, Martin; Dickens, Bernard M

    2008-09-01

    About a third of anencephalic fetuses are born alive, but they are not conscious or viable, and soon die. This neural tube defect can be limited by dietary consumption of foliates, and detected prenatally by ultrasound and other means. Many laws permit abortion, on this indication or on the effects of pregnancy and prospects of delivery on a woman's physical or mental health. However, abortion is limited under some legal systems, particularly in South America. To avoid criminal liability, physicians will not terminate pregnancies, by induced birth or abortion, without prior judicial approval. Argentinian courts have developed means to resolve these cases, but responses of Brazilian courts are less clear. Ethical concerns relate to late-term abortion, meaning after the point of fetal viability, but since anencephalic fetuses are nonviable, many ethical concerns are overcome. Professional guidance is provided by several professional and institutional codes on management of anencephalic pregnancies.

  20. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    Science.gov (United States)

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  1. Brain prediction of auditory emphasis by facial expressions during audiovisual continuous speech.

    Science.gov (United States)

    Strelnikov, Kuzma; Foxton, Jessica; Marx, Mathieu; Barone, Pascal

    2015-05-01

    The visual cues involved in auditory speech processing are not restricted to information from lip movements but also include head or chin gestures and facial expressions such as eyebrow movements. The fact that visual gestures precede the auditory signal implicates that visual information may influence the auditory activity. As visual stimuli are very close in time to the auditory information for audiovisual syllables, the cortical response to them usually overlaps with that for the auditory stimulation; the neural dynamics underlying the visual facilitation for continuous speech therefore remain unclear. In this study, we used a three-word phrase to study continuous speech processing. We presented video clips with even (without emphasis) phrases as the frequent stimuli and with one word visually emphasized by the speaker as the non-frequent stimuli. Negativity in the resulting ERPs was detected after the start of the emphasizing articulatory movements but before the auditory stimulus, a finding that was confirmed by the statistical comparisons of the audiovisual and visual stimulation. No such negativity was present in the control visual-only condition. The propagation of this negativity was observed between the visual and fronto-temporal electrodes. Thus, in continuous speech, the visual modality evokes predictive coding for the auditory speech, which is analysed by the cerebral cortex in the context of the phrase even before the arrival of the corresponding auditory signal.

  2. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  3. What Happens during Prenatal Visits?

    Science.gov (United States)

    ... at risk for complications? How does stress affect pregnancy? NICHD Research Information Clinical Trials Resources and Publications What happens during prenatal visits? Skip sharing on social media links Share this: Page Content What happens during ...

  4. Preconception Care and Prenatal Care

    Science.gov (United States)

    ... at risk for complications? How does stress affect pregnancy? NICHD Research Information Clinical Trials Resources and Publications Preconception Care and Prenatal Care: Condition Information Skip sharing on social media links Share this: Page Content What is preconception ...

  5. Prenatal Tests for Down Syndrome

    Science.gov (United States)

    ... PRENATAL TESTS FOR DOWN SYNDROME What Is Down Syndrome? Down syndrome is a common birth defect that includes mental retardation and— often— heart problems. Children with Down syndrome have round faces and almond-shaped eyes that ...

  6. Discrimination of auditory stimuli during isoflurane anesthesia.

    Science.gov (United States)

    Rojas, Manuel J; Navas, Jinna A; Greene, Stephen A; Rector, David M

    2008-10-01

    Deep isoflurane anesthesia initiates a burst suppression pattern in which high-amplitude bursts are preceded by periods of nearly silent electroencephalogram. The burst suppression ratio (BSR) is the percentage of suppression (silent electroencephalogram) during the burst suppression pattern and is one parameter used to assess anesthesia depth. We investigated cortical burst activity in rats in response to different auditory stimuli presented during the burst suppression state. We noted a rapid appearance of bursts and a significant decrease in the BSR during stimulation. The BSR changes were distinctive for the different stimuli applied, and the BSR decreased significantly more when stimulated with a voice familiar to the rat as compared with an unfamiliar voice. These results show that the cortex can show differential sensory responses during deep isoflurane anesthesia.

  7. Behind the Scenes of Auditory Perception

    OpenAIRE

    Shamma, Shihab A.; Micheyl, Christophe

    2010-01-01

    Auditory scenes” often contain contributions from multiple acoustic sources. These are usually heard as separate auditory “streams”, which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the last two years indicate that both cortical and sub-cortical processes contribute to the formation of auditory streams, and they raise importan...

  8. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  9. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular

  10. Robust speech features representation based on computational auditory model

    Institute of Scientific and Technical Information of China (English)

    LU Xugang; JIA Chuan; DANG Jianwu

    2004-01-01

    A speech signal processing and features extracting method based on computational auditory model is proposed. The computational model is based on psychological, physiological knowledge and digital signal processing methods. In each stage of a hearing perception system, there is a corresponding computational model to simulate its function. Based on this model, speech features are extracted. In each stage, the features in different kinds of level are extracted. A further processing for primary auditory spectrum based on lateral inhibition is proposed to extract much more robust speech features. All these features can be regarded as the internal representations of speech stimulation in hearing system. The robust speech recognition experiments are conducted to test the robustness of the features. Results show that the representations based on the proposed computational auditory model are robust representations for speech signals.

  11. Auditory aura in frontal opercular epilepsy: sounds from afar.

    Science.gov (United States)

    Thompson, Stephen A; Alexopoulos, Andreas; Bingaman, William; Gonzalez-Martinez, Jorge; Bulacio, Juan; Nair, Dileep; So, Norman K

    2015-06-01

    Auditory auras are typically considered to localize to the temporal neocortex. Herein, we present two cases of frontal operculum/perisylvian epilepsy with auditory auras. Following a non-invasive evaluation, including ictal SPECT and magnetoencephalography, implicating the frontal operculum, these cases were evaluated with invasive monitoring, using stereoelectroencephalography and subdural (plus depth) electrodes, respectively. Spontaneous and electrically-induced seizures showed an ictal onset involving the frontal operculum in both cases. A typical auditory aura was triggered by stimulation of the frontal operculum in one. Resection of the frontal operculum and subjacent insula rendered one case seizure- (and aura-) free. From a hodological (network) perspective, we discuss these findings with consideration of the perisylvian and insular network(s) interconnecting the frontal and temporal lobes, and revisit the non-invasive data, specifically that of ictal SPECT.

  12. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    Science.gov (United States)

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  13. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket.

    Science.gov (United States)

    Hoy, R R; Nolen, T G; Casaday, G C

    1985-11-01

    We examined the effect of chronic afferent deprivation on an identified interneuron (Int-1) in the auditory system of the Australian field cricket Teleogryllus oceanicus. In normal intact crickets, the auditory afferents from each ear terminate ipsilaterally onto a single Int-1. Each bilaterally paired Int-1 is excited by ultrasound stimulation of its ipsilateral ear but not by the contralateral ear. Unilateral removal of an ear early in postembryonic development deprives the developing Int-1 of ipsilateral auditory innervation. Consequently, the ipsilateral dendrites of the deprived interneuron sprout, grow aberrantly across the ganglionic midline, and terminate specifically in the intact auditory neuropile of the contralateral (unlesioned) side, where they form functional synapses with the contralateral afferents. This unusual compensatory dendritic sprouting restores auditory function to the neuron. Thus, it is demonstrated that the dendritic shape of an identified Int, as well as its synaptic connectivity, is altered as a consequence of chronic sensory deprivation.

  14. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    Science.gov (United States)

    Afra, Pegah; Funke, Michael; Matsuo, Fumisuke

    2009-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms. PMID:22110319

  15. Pitch-induced responses in the right auditory cortex correlate with musical ability in normal listeners.

    Science.gov (United States)

    Puschmann, Sebastian; Özyurt, Jale; Uppenkamp, Stefan; Thiel, Christiane M

    2013-10-23

    Previous work compellingly shows the existence of functional and structural differences in human auditory cortex related to superior musical abilities observed in professional musicians. In this study, we investigated the relationship between musical abilities and auditory cortex activity in normal listeners who had not received a professional musical education. We used functional MRI to measure auditory cortex responses related to auditory stimulation per se and the processing of pitch and pitch changes, which represents a prerequisite for the perception of musical sequences. Pitch-evoked responses in the right lateral portion of Heschl's gyrus were correlated positively with the listeners' musical abilities, which were assessed using a musical aptitude test. In contrast, no significant relationship was found for noise stimuli, lacking any musical information, and for responses induced by pitch changes. Our results suggest that superior musical abilities in normal listeners are reflected by enhanced neural encoding of pitch information in the auditory system.

  16. Perirhinal cortex relays auditory information to the frontal motor cortices in the rat.

    Science.gov (United States)

    Kyuhou, Shin-ichi; Matsuzaki, Ryuichi; Gemba, Hisae

    2003-12-26

    Auditory evoked potentials (AEPs) were recorded in the motor cortices (MC) with chronically implanted electrodes in the rat. Some of the AEPs in the MC, namely negative potentials on the surface and positive ones at a depth of 2 mm at latencies of about 50-150 ms, were abolished by limited bilateral lesions of the anterior perirhinal cortex (PERa) which was responsive to auditory stimulus, indicating that the AEPs in the MC were at least partially relayed in the PERa. The auditory response in the MC was prominently enhanced when water was supplied or the medial forebrain bundle was stimulated after auditory stimulus. These results indicate that the MC receives the reward associated auditory information from the PERa.

  17. Auditory-visual integration of emotional signals in a virtual environment for cynophobia.

    Science.gov (United States)

    Taffou, Marine; Chapoulie, Emmanuelle; David, Adrien; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2012-01-01

    Cynophobia (dog phobia) has both visual and auditory relevant components. In order to investigate the efficacy of virtual reality (VR) exposure-based treatment for cynophobia, we studied the efficiency of auditory-visual environments in generating presence and emotion. We conducted an evaluation test with healthy participants sensitive to cynophobia in order to assess the capacity of auditory-visual virtual environments (VE) to generate fear reactions. Our application involves both high fidelity visual stimulation displayed in an immersive space and 3D sound. This specificity enables us to present and spatially manipulate fearful stimuli in the auditory modality, the visual modality and both. Our specific presentation of animated dog stimuli creates an environment that is highly arousing, suggesting that VR is a promising tool for cynophobia treatment and that manipulating auditory-visual integration might provide a way to modulate affect.

  18. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  19. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  20. Prenatal Testing: Is It Right for You?

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week Prenatal testing, including screening and diagnostic tests, can provide valuable information about your baby's ... 2015 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/in-depth/prenatal-testing/art- ...

  1. Neurodevelopmental Outcomes of Prenatal Stress

    Directory of Open Access Journals (Sweden)

    M. Genco Usta

    2012-03-01

    Full Text Available The influence of prenatal stress on psychopathology has been observed in many animal and human studies. In many studies, stress during prenatal period has been shown to result in negative feedback dysregulation and hyperactivity of hypothalamo-pituitary-adrenocortical axis. Prenatal stres also may cause increased risk of birth complications, startle or distress in response to novel and surprising stimuli during infancy; lower Full Scale IQs, language abilities and attention deficiency in period of 3-5 years; increased risk of attention deficit hyperactivity syndrome, anxiety symptoms, depressive disorder and impulsivity during adolescence. Additionally, timing of prenatal stress is also important and 12-22 weeks of gestation seems to be the most vulnerable period. The results underline the need for early prevention and intervention programs for highly anxious women during pregnancy. Administration of prenatal stress monitoring to public health programs or removing pregnant women who have been exposed to life events such as natural disaster, terror attack to secure areas that provide basic needs may be crucial.

  2. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  3. Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations.

    Science.gov (United States)

    Mørch-Johnsen, Lynn; Nesvåg, Ragnar; Jørgensen, Kjetil N; Lange, Elisabeth H; Hartberg, Cecilie B; Haukvik, Unn K; Kompus, Kristiina; Westerhausen, René; Osnes, Kåre; Andreassen, Ole A; Melle, Ingrid; Hugdahl, Kenneth; Agartz, Ingrid

    2017-01-01

    Neuroimaging studies have demonstrated associations between smaller auditory cortex volume and auditory hallucinations (AH) in schizophrenia. Reduced cortical volume can result from a reduction of either cortical thickness or cortical surface area, which may reflect different neuropathology. We investigate for the first time how thickness and surface area of the auditory cortex relate to AH in a large sample of schizophrenia spectrum patients. Schizophrenia spectrum (n = 194) patients underwent magnetic resonance imaging. Mean cortical thickness and surface area in auditory cortex regions (Heschl's gyrus [HG], planum temporale [PT], and superior temporal gyrus [STG]) were compared between patients with (AH+, n = 145) and without (AH-, n = 49) a lifetime history of AH and 279 healthy controls. AH+ patients showed significantly thinner cortex in the left HG compared to AH- patients (d = 0.43, P = .0096). There were no significant differences between AH+ and AH- patients in cortical thickness in the PT or STG, or in auditory cortex surface area in any of the regions investigated. Group differences in cortical thickness in the left HG was not affected by duration of illness or current antipsychotic medication. AH in schizophrenia patients were related to thinner cortex, but not smaller surface area of the left HG, a region which includes the primary auditory cortex. The results support that structural abnormalities of the auditory cortex underlie AH in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Prenatal chemical exposures and child language development.

    Science.gov (United States)

    Dzwilewski, Kelsey L C; Schantz, Susan L

    2015-01-01

    The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals, both manmade (insulating materials, flame retardants, pesticides) and naturally occurring (e.g., lead, mercury), may be associated with delays or impairments in language development. We focus primarily on a subset of more extensively studied chemicals-polychlorinated biphenyls (PCBs), lead, and methyl mercury-for which a reasonable body of literature on neurodevelopmental outcomes is available. We also briefly summarize the smaller body of evidence for other chemicals including polybrominated diphenyl ether flame retardants (PBDEs) and organophosphate pesticides. Very few studies have used specific assessments of language development and function. Therefore, we included discussion of aspects of cognitive development such as overall intellectual functioning and verbal abilities that rely on language, as well as aspects of cognition such as verbal and auditory working memory that are critical underpinnings of language development. A high percentage of prospective birth cohort studies of PCBs, lead, and mercury have reported exposure-related reductions in overall IQ and/or verbal IQ that persist into middle or late childhood. Given these findings, it is important that clinicians and researchers in communication sciences and disorders are aware of the potential for environmental chemicals to impact language development. The goal of this review is to summarize the evidence that prenatal and/or early postnatal exposure to certain chemicals may be associated with delays or impairments in language development. Readers will gain an understanding of the literature suggesting that early exposure to polychlorinated biphenyls (PCBs), lead, and mercury may be associated with decrements in cognitive domains that depend on language or are critical for language development. We also briefly summarize the smaller body of evidence regarding polybrominated diphenyl

  5. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  6. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    Science.gov (United States)

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line

  7. Update on prenatal care.

    Science.gov (United States)

    Zolotor, Adam J; Carlough, Martha C

    2014-02-01

    Many elements of routine prenatal care are based on tradition and lack a firm evidence base; however, some elements are supported by more rigorous studies. Correct dating of the pregnancy is critical to prevent unnecessary inductions and to allow for accurate treatment of preterm labor. Physicians should recommend folic acid supplementation to all women as early as possible, preferably before conception, to reduce the risk of neural tube defects. Administration of Rho(D) immune globulin markedly decreases the risk of alloimmunization in an RhD-negative woman carrying an RhD-positive fetus. Screening and treatment for iron deficiency anemia can reduce the risks of preterm labor, intrauterine growth retardation, and perinatal depression. Testing for aneuploidy and neural tube defects should be offered to all pregnant women with a discussion of the risks and benefits. Specific genetic testing should be based on the family histories of the patient and her partner. Physicians should recommend that pregnant women receive a vaccination for influenza, be screened for asymptomatic bacteriuria, and be tested for sexually transmitted infections. Testing for group B streptococcus should be performed between 35 and 37 weeks' gestation. If test results are positive or the patient has a history of group B streptococcus bacteriuria during pregnancy, intrapartum antibiotic prophylaxis should be administered to reduce the risk of infection in the infant. Intramuscular or vaginal progesterone should be considered in women with a history of spontaneous preterm labor, preterm premature rupture of membranes, or shortened cervical length (less than 2.5 cm). Screening for diabetes should be offered using a universal or a risk-based approach. Women at risk of preeclampsia should be offered low-dose aspirin prophylaxis, as well as calcium supplementation if dietary calcium intake is low. Induction of labor may be considered between 41 and 42 weeks' gestation.

  8. [Communication skills for prenatal counselling].

    Science.gov (United States)

    Bitzer, J; Tschudin, S; Holzgreve, W; Tercanli, S

    2007-04-18

    Prenatal counselling is characterized by specific characteristics: A):The communication is about the values of the pregnant woman and her relationship with the child to be. B) The communication deals with patient's images and emotions. C) It is a communication about risks, numbers and statistics. D) Physician and patient deal with important ethical issues. In this specific setting of prenatal diagnosis and care physicians should therefore learn to apply basic principles of patient-centred communication with elements of non directive counselling, patient education and shared decision making. These elements are integrated into a process which comprises the following "steps": 1. Clarification of the patient's objectives and the obstetrician's mandate. 2. The providing of individualized information and education about prenatal tests and investigations. 3. Shared decision making regarding tests and investigations 4. Eventually Breaking (bad, ambivalent) news. 5. Caring for patients with an affected child.

  9. Prenatal treatment prevents learning deficit in Down syndrome model.

    Directory of Open Access Journals (Sweden)

    Maddalena Incerti

    Full Text Available Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP and SALLRSIPA (SAL respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection on pregnancy days 8 through 12 with saline (placebo or peptides (NAP 20 µg +SAL 20 µg daily. Learning was assessed in the offspring (8-10 months using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning. The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome or euploid (control after completion of all tests.two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome-placebo; n = 11 did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10 learned significantly better than Down syndrome-placebo (p<0.01, and similar to control-placebo (n = 33 and control-peptide (n = 30. In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.

  10. PRENATAL DIAGNOSIS IN ORGANIC ACIDEMIA

    Directory of Open Access Journals (Sweden)

    Hedieh SANEIFARD

    2012-03-01

    Full Text Available Organic acidemias are the group of metabolic disorders which define by high anion gap metabolic acidosis, hypo or hyperglycemia & hyperammonemia.Because of the severity of disease in children and its fatality in severe form of disease and also need for life long treatment, prenatal diagnosis is an important diagnostic tool.Three approaches to prenatal diagnosis may be possible, including measurement of analytes in amniotic fluid or use of cells obtained by Choronic Villus sampling (CVS or amniocentesis to either assay enzyme activity or extract DNA for molecular genetic testing.Biochemical genetic testing: Prenatal diagnosis for pregnancies at increased risk for propionic acidemia, methylmalonic acidemia, biotin-unresponsive3-methylcrotonyl-CoA carboxylase deficiency, glutaric acidemia type 1, ketothiolase deficiency, methylmalonic aciduria and homocystinuria, cblC type, and isovaleric acidemia is possible by analysis of amniotic fluid if highly accurate quantitative methods are used to measure the appropriate analytes. Amniocentesis is usually performed at approximately 15 to 18 weeks gestation.Prenatal diagnosis for pregnancies at increased risk for MSUD is possible by measurement of enzyme activity in fetal cells obtained by chorionic villous sampling(CVS at approximately ten to 12 weeks gestation or amniocentesis usually performed at approximately 15 to 18 weeks gestation.(If cells from CVS are used, extreme care must be taken to assure that they are fetal rather than maternal cells.Molecular genetic testing:Prenatal diagnosis for pregnancies at increased risk for all disorders is possible by analysis of DNA extracted from fetal cells obtained by amniocentesis usually performed at approximately 15 to 18 weeks of gestation or chorionic villous sampling (CVS at approximately ten to 12 weeks of gestation. Both disease-causing allels of an affected family member must be identified before prenatal testing.Preimplantation genetic diagnosis (PGD

  11. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual integra

  12. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory...... of tone-pulse evoked wave-V latency with frequency but underestimates the level dependency of the tone-pulse as well as click-evoked latency values. Furthermore, the model correctly predicts the nonlinear wave-V amplitude behavior in response to the chirp stimulation both as a function of chirp sweeping...... rate and level. Overall, the results support the hypothesis that the pattern of ABR generation is strongly affected by the nonlinear and dispersive processes in the cochlea....

  13. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  14. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  15. Prenatal prediction of pulmonary hypoplasia.

    Science.gov (United States)

    Triebwasser, Jourdan E; Treadwell, Marjorie C

    2017-03-15

    Pulmonary hypoplasia, although rare, is associated with significant neonatal morbidity and mortality. Conditions associated with pulmonary hypoplasia include those which limit normal thoracic capacity or movement, including skeletal dysplasias and abdominal wall defects; those with mass effect, including congenital diaphragmatic hernia and pleural effusions; and those with decreased amniotic fluid, including preterm, premature rupture of membranes, and genitourinary anomalies. The ability to predict severe pulmonary hypoplasia prenatally aids in family counseling, as well as obstetric and neonatal management. The objective of this review is to outline the imaging techniques that are widely used prenatally to assess pulmonary hypoplasia and to discuss the limitations of these methods.

  16. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Facilitating access to emotions: neural signature of EMDR stimulation.

    Directory of Open Access Journals (Sweden)

    Deborah Herkt

    Full Text Available Eye Movement Desensitisation and Reprocessing (EMDR is a method in psychotherapy effective in treating symptoms of posttraumatic stress disorder. The client attends to alternating bilateral visual, auditory or sensory stimulation while confronted with emotionally disturbing material. It is thought that the bilateral stimulation as a specific element of EMDR facilitates accessing and processing of negative material while presumably creating new associative links. We hypothesized that the putatively facilitated access should be reflected in increased activation of the amygdala upon bilateral EMDR stimulation even in healthy subjects.We investigated 22 healthy female university students (mean 23.5 years with fMRI. Subjects were scanned while confronted with blocks of disgusting and neutral picture stimuli. One third of the blocks was presented without any additional stimulation, one third with bilateral simultaneous auditory stimulation, and one third with bilateral alternating auditory stimulation as used in EMDR.Contrasting disgusting vs. neutral picture stimuli confirmed the expected robust effect of amygdala activation for all auditory stimulation conditions. The interaction analysis with the type of auditory stimulation revealed a specific increase in activation of the right amygdala for the bilateral alternating auditory stimulation. Activation of the left dorsolateral prefrontal cortex showed the opposite effect with decreased activation.We demonstrate first time evidence for a putative neurobiological basis of the bilateral alternating stimulation as used in the EMDR method. The increase in limbic processing along with decreased frontal activation is in line with theoretical models of how bilateral alternating stimulation could help with therapeutic reintegration of information, and present findings may pave the way for future research on EMDR in the context of posttraumatic stress disorder.

  18. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  19. Auditory Neuropathy - A Case of Auditory Neuropathy after Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaher Yazdi

    2007-12-01

    Full Text Available Background and Aim: Auditory neuropathy is an hearing disorder in which peripheral hearing is normal, but the eighth nerve and brainstem are abnormal. By clinical definition, patient with this disorder have normal OAE, but exhibit an absent or severely abnormal ABR. Auditory neuropathy was first reported in the late 1970s as different methods could identify discrepancy between absent ABR and present hearing threshold. Speech understanding difficulties are worse than can be predicted from other tests of hearing function. Auditory neuropathy may also affect vestibular function. Case Report: This article presents electrophysiological and behavioral data from a case of auditory neuropathy in a child with normal hearing after bilirubinemia in a 5 years follow-up. Audiological findings demonstrate remarkable changes after multidisciplinary rehabilitation. Conclusion: auditory neuropathy may involve damage to the inner hair cells-specialized sensory cells in the inner ear that transmit information about sound through the nervous system to the brain. Other causes may include faulty connections between the inner hair cells and the nerve leading from the inner ear to the brain or damage to the nerve itself. People with auditory neuropathy have OAEs response but absent ABR and hearing loss threshold that can be permanent, get worse or get better.

  20. Prenatal care effectiveness and utilization in Brazil.

    Science.gov (United States)

    Wehby, George L; Murray, Jeffrey C; Castilla, Eduardo E; Lopez-Camelo, Jorge S; Ohsfeldt, Robert L

    2009-05-01

    The impact of prenatal care use on birth outcomes has been understudied in South American countries. This study assessed the effects of various measures of prenatal care use on birth weight (BW) and gestational age outcomes using samples of infants born without and with common birth defects from Brazil, and evaluated the demand for prenatal care. Prenatal visits improved BW in the group without birth defects through increasing both fetal growth rate and gestational age, but prenatal care visits had an insignificant effect on BW in the group with birth defects when adjusting for gestational age. Prenatal care delay had no effects on BW in both infant groups but increased preterm birth risk in the group without birth defects. Inadequate care versus intermediate care also increased LBW risk in the group without birth effects. Quantile regression analyses revealed that prenatal care visits had larger effects at low compared with high BW quantiles. Several other prenatal factors and covariates such as multivitamin use and number of previous live births had significant effects on the studied outcomes. The number of prenatal care visits was significantly affected by several maternal health and fertility indicators. Significant geographic differences in utilization were observed as well. The study suggests that more frequent use of prenatal care can increase BW significantly in Brazil, especially among pregnancies that are uncomplicated with birth defects but that are at high risk for low birth weight. Further research is needed to understand the effects of prenatal care use for pregnancies that are complicated with birth defects.

  1. Use of auditory learning to manage listening problems in children

    National Research Council Canada - National Science Library

    David R Moore; Lorna F Halliday; Sygal Amitay

    2009-01-01

    .... It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications...

  2. Across-ear stimulus-specific adaptation in the auditory cortex

    Directory of Open Access Journals (Sweden)

    Xinxiu eXu

    2014-07-01

    Full Text Available The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other, rare stimuli, a phenomenon called stimulus-specific adaptation (SSA. Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons.

  3. Auditory verbal hallucinations: neuroimaging and treatment.

    Science.gov (United States)

    Bohlken, M M; Hugdahl, K; Sommer, I E C

    2017-01-01

    Auditory verbal hallucinations (AVH) are a frequently occurring phenomenon in the general population and are considered a psychotic symptom when presented in the context of a psychiatric disorder. Neuroimaging literature has shown that AVH are subserved by a variety of alterations in brain structure and function, which primarily concentrate around brain regions associated with the processing of auditory verbal stimuli and with executive control functions. However, the direction of association between AVH and brain function remains equivocal in certain research areas and needs to be carefully reviewed and interpreted. When AVH have significant impact on daily functioning, several efficacious treatments can be attempted such as antipsychotic medication, brain stimulation and cognitive-behavioural therapy. Interestingly, the neural correlates of these treatments largely overlap with brain regions involved in AVH. This suggests that the efficacy of treatment corresponds to a normalization of AVH-related brain activity. In this selected review, we give a compact yet comprehensive overview of the structural and functional neuroimaging literature on AVH, with a special focus on the neural correlates of efficacious treatment.

  4. Prenatal meditation influences infant behaviors.

    Science.gov (United States)

    Chan, Ka Po

    2014-11-01

    Meditation is important in facilitating health. Pregnancy health has been shown to have significant consequences for infant behaviors. In view of limited studies on meditation and infant temperament, this study aims to explore the effects of prenatal meditation on these aspects. The conceptual framework was based on the postulation of positive relationships between prenatal meditation and infant health. A randomized control quantitative study was carried out at Obstetric Unit, Queen Elizabeth Hospital in Hong Kong. 64 pregnant Chinese women were recruited for intervention and 59 were for control. Outcome measures were cord blood cortisol, infant salivary cortisol, and Carey Infant Temperament Questionnaire. Cord blood cortisol level of babies was higher in the intervention group (pmeditation can influence fetal health. Carey Infant Temperament Questionnaire showed that the infants of intervention group have better temperament (pmeditation in relation to child health. Present study concludes the positive effects of prenatal meditation on infant behaviors and recommends that pregnancy care providers should provide prenatal meditation to pregnant women.

  5. Prenatal diagnosis of 47,XXX.

    Science.gov (United States)

    Khoury-Collado, Fady; Wehbeh, Ammar N; Fisher, Allan J; Bombard, Allan T; Weiner, Zeev

    2005-05-01

    We report 2 cases of 47,XXX that were diagnosed prenatally and were screened positive for trisomy 21 by biochemical and ultrasound markers. These cases underline the importance of discussing the sex chromosome abnormalities during the genetic counseling after an abnormal triple screen test or ultrasound examination.

  6. Prenatal diagnosis of congenital diseases

    NARCIS (Netherlands)

    M.F. Niermeijer (Martinus)

    1975-01-01

    textabstractPrenatal diagnosis of a number of congenital diseases is possible by amniocentesis in the 14th - 16th week of pregnancy and subsequent analysis of cultured amniotic fluid cells or amniotic fluid supernatant. Parents at risk for a child with a chromosomal disorder, an X-linked disease, a

  7. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... CAPD often have trouble maintaining attention, although health, motivation, and attitude also can play a role. Auditory ... programs. Several computer-assisted programs are geared toward children with APD. They mainly help the brain do ...

  8. Electrostimulation mapping of comprehension of auditory and visual words.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.

  9. Sacculo-collic pathway dysfunction accompanying auditory neuropathy.

    Science.gov (United States)

    Sheykholeslami, Kianoush; Schmerber, Sébastien; Habiby Kermany, Mohammad; Kaga, Kimitaka

    2005-07-01

    In a patient with bilateral auditory neuropathy (AN), the vestibular-evoked myogenic potential (VEMP) was probably absent because of a neuropathy involving the inferior vestibular nerve and/or its end organ, the saccule. Our result can therefore be interpreted as a concomitant unilateral sacculo-collic neuropathy. We suggest the use of more precise terms to characterize AN patients with involvement of different parts of the inner ear and its innervations. We encourage detailed vestibular assessment in patients with AN in order to assess the co-existence of any symptomatic or asymptomatic vestibular disorder. Information such as that provided in this report will be valuable for clinicians caring for this group of patients. AN is a disorder characterized by the absence or severe impairment of auditory brainstem responses in the presence of normal cochlear outer hair cell function as revealed by otoacoustic emissions (OAEs) and/or electrocochleography (ECoG). A variety of processes and etiologies are thought to be involved in its pathophysiology. In most literature reports the auditory profile of patients with AN is discussed. However, the extent of vestibular involvement, especially that involving the saccule, is not known. We performed vestibular tests to assess the status of the saccule in a patient with AN. One patient with AN was studied. The patient was a right-handed 21-year-old female with chief complaints of hearing loss and speech perception difficulty. The auditory test results were consistent with the diagnosis of AN, i.e. absent auditory brainstem responses, moderate hearing loss, an inappropriately profound speech discrimination score and the presence of OAEs and measurable cochlear microphonics on ECoG. On neurological examination, gait and balance tests were normal. Ice-water caloric testing induced a sensation of dizziness in both ears. Short tone-burst VEMPs showed no response on left-ear stimulation and a biphasic response with normal latency and

  10. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.

  11. [Neurotoxic effect of toluene on background of prenatal hypoxic brain damage to white rats].

    Science.gov (United States)

    Vokina, V A; Sosedova, L M; Rukavishnikov, V S; Iakimova, N L; Lizarev, A V

    2014-01-01

    Comparative study covered influence of toluene on behavioral parameters, cognitive abilities and brain bioelectric activity in white rats with normal embryonic development or with prenatal hypoxia. Prenatal hypoxia was simulated by subcutaneous injection of 50 mg/kg sodium nitrite into female white rats on day 13-14 of gestation. The offspring at the age of 2, 5-3 months was exposed to toluene (concentration of 560 mg/m3, 4 hours per day, 5 days per week, over 4 weeks). After the exposure, the animals were estimated for individual and intraspecific behaviour in "open fields and "resident-intruder" tests, for cognitive abilities in "radial maze" training, EEG with visual and auditory evoked potentials. Acute hypoxia at early stages of organogenesis appeared to be burdening factor and to influence consequences of toluene intoxication.

  12. Research of Visual and Auditory Stimulation Based on Environment Reset on Hemi-spatial Neglect in Patients with Cerebral Apoplexy%基于环境重置的视听觉刺激在脑卒中偏侧忽略的护理研究

    Institute of Scientific and Technical Information of China (English)

    韩宇花; 陶希; 邓景贵; 刘佳; 宋涛; 何娟

    2014-01-01

    目的:探讨基于环境重置的视听觉刺激对脑卒中偏侧忽略( hemispatial neglect, HSN)的影响。方法2010年3月-2012年9月收治的脑卒中HSN 49例随机分为观察组27例和对照组22例。两组均给予常规治疗,对照组对病房及康复环境不做要求,观察组对病房床位及康复环境进行重新设置。于治疗前、治疗4周及治疗8周时分别行直线二等分( LB)测试和线段划消( LC)测试评估HSN的程度,以美国国立研究院脑卒中评定量表( NIHSS)评定神经功能缺损和改良Barthel Index( MBI)评估日常生活活动能力( ADL)。结果治疗4、8周时两组LB、LC及NIHSS评分均低于治疗前,MBI评分均高于治疗前(P<0.05)。治疗8周时两组LB、NIHSS评分和观察组LC均较治疗4周时降低,MBI评分较治疗4周时升高,观察组LB、LC低于对照组,MBI评分高于对照组(P<0.05)。结论基于环境重置的视听觉刺激对脑卒中HSN患者有益,可提高ADL能力,但对神经功能缺损影响可能不大。%Objective To explore the effect of visual and auditory stimulation based on environment reset on he-mi-spatial neglect ( HSN) in patients with cerebral apoplexy. Methods A total of 49 patients with cerebral apoplexy combined with HSN during March 2010 and September 2012 were randomly divided into control group (n=22) and ob-servation group (n=27). Conventional therapy was performed in the two groups. Wards and rehabilitation environment for patients in control group had no special requirement, while wards and rehabilitation environment for patients were rese-ted regularly. HSN degrees were assessed by test of line bisection ( LB) and line cancellation ( LC);scores of neurologic impairment were evaluated with National Institute of Health stroke scale ( NIHSS) , and abilities of activity of daily living ( ADL) were evaluated with modified Barthel index ( MBI) before treatment, after treatment for 4 weeks and 8 weeks. Results Compared with those before

  13. Hearing Restoration with Auditory Brainstem Implant

    Science.gov (United States)

    NAKATOMI, Hirofumi; MIYAWAKI, Satoru; KIN, Taichi; SAITO, Nobuhito

    2016-01-01

    Auditory brainstem implant (ABI) technology attempts to restore hearing in deaf patients caused by bilateral cochlear nerve injury through the direct stimulation of the brainstem, but many aspects of the related mechanisms remain unknown. The unresolved issues can be grouped into three topics: which patients are the best candidates; which type of electrode should be used; and how to improve restored hearing. We evaluated our experience with 11 cases of ABI placement. We found that if at least seven of eleven electrodes of the MED-EL ABI are effectively placed in a patient with no deformation of the fourth ventricle, open set sentence recognition of approximately 20% and closed set word recognition of approximately 65% can be achieved only with the ABI. Appropriate selection of patients for ABI placement can lead to good outcomes. Further investigation is required regarding patient selection criteria and methods of surgery for effective ABI placement. PMID:27464470

  14. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    Science.gov (United States)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  15. Facial nerve stimulation after cochlear implantation: our experience

    OpenAIRE

    BERRETTINI, S.; De Vito, A.; Bruschini, L.; PASSETTI, S.; Forli, F.

    2011-01-01

    SUMMARY Post-implantation facial nerve stimulation is one of the best known and most frequent complications of the cochlear implant procedure. Some conditions, such as otosclerosis and cochlear malformations, as well as high stimulation levels that may be necessary in patients with long auditory deprivation, expose patients to a higher risk of developing post-implant facial nerve stimulation. Facial nerve stimulation can frequently be resolved with minimal changes in speech processor fitting ...

  16. Prenatal and postnatal maternal contributions in the infection model of schizophrenia.

    Science.gov (United States)

    Meyer, Urs; Schwendener, Severin; Feldon, Joram; Yee, Benjamin K

    2006-08-01

    Epidemiological studies have indicated that the risk of schizophrenia is enhanced by prenatal maternal infection with viral or bacterial pathogens. Recent experimentation in rodents has yielded additional support for a causal relationship between prenatal immune challenge and the emergence of psychosis-related abnormalities in brain and behaviour in later life. However, little is known about the putative roles of maternal postnatal factors in triggering and modulating the emergence of psychopathology following prenatal immunological stimulation. Here, we aimed to dissect the relative contributions of prenatal inflammatory events and postnatal maternal factors in precipitating juvenile and adult psychopathology in the resulting offspring with a cross-fostering design. Pregnant mice were exposed to the viral mimic, polyriboinosinic-polyribocytidilic acid (PolyI:C; at 5 mg/kg, intravenously), or vehicle treatment on gestation day 9, and offspring born to PolyI:C- and vehicle-treated dams were then simultaneously cross-fostered to surrogate rearing mothers, which had either experienced inflammatory or vehicle treatment during pregnancy. Prenatal PolyI:C administration did not affect the expression of latent inhibition (LI) at a juvenile stage of development, but led to the post-pubertal emergence of LI disruption in both aversive classical and instrumental conditioning regardless of the postnatal rearing condition. In addition, deficits in conditioning as such led to a pre- and post-pubertal loss of LI in prenatal control animals that were adopted by PolyI:C-treated surrogate mothers. Our findings thus indicate that the adoption of prenatally immune-challenged neonates by control surrogate mothers does not possess any protective effects against the subsequent emergence of psychopathology in adulthood. At the same time, however, the present study highlights for the first time that the adoption of prenatal control animals by immune-challenged rearing mothers is

  17. Prenatal education for congenital toxoplasmosis.

    Science.gov (United States)

    Di Mario, Simona; Basevi, Vittorio; Gagliotti, Carlo; Spettoli, Daniela; Gori, Gianfranco; D'Amico, Roberto; Magrini, Nicola

    2015-10-23

    Congenital toxoplasmosis is considered a rare but potentially severe infection. Prenatal education about congenital toxoplasmosis could be the most efficient and least harmful intervention, yet its effectiveness is uncertain. To assess the effects of prenatal education for preventing congenital toxoplasmosis. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015), and reference lists of relevant papers, reviews and websites. Randomized and quasi-randomized controlled trials of all types of prenatal education on toxoplasmosis infection during pregnancy. Cluster-randomized trials were eligible for inclusion. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. Two cluster-randomized controlled trials (RCTs) (involving a total of 5455 women) met the inclusion criteria. The two included trials measured the effectiveness of the intervention in different ways, which meant that meta-analysis of the results was not possible. The overall quality of the two studies, as assessed using the GRADE approach, was low, with high risk of detection and attrition bias in both included trials.One trial (432 women enrolled) conducted in Canada was judged of low methodological quality. This trial did not report on any of the review's pre-specified primary outcomes and the secondary outcomes reported results only as P values. Moreover, losses to follow-up were high (34%, 147 out of 432 women initially enrolled). The authors concluded that prenatal education can effectively change pregnant women's behavior as it increased pet, personal and food hygiene. The second trial conducted in France was also judged of low methodological quality. Losses to follow-up were also high (44.5%, 2233 out of 5023 women initially enrolled) and differential (40% in the intervention group and 52% in the control group). The authors concluded that prenatal education for congenital toxoplasmoses has a

  18. Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study.

    Directory of Open Access Journals (Sweden)

    Lei Han

    Full Text Available Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC. In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.

  19. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  1. Neuronal representations of distance in human auditory cortex.

    Science.gov (United States)

    Kopčo, Norbert; Huang, Samantha; Belliveau, John W; Raij, Tommi; Tengshe, Chinmayi; Ahveninen, Jyrki

    2012-07-03

    Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.

  2. Attention fine-tunes auditory-motor processing of speech sounds.

    Science.gov (United States)

    Möttönen, Riikka; van de Ven, Gido M; Watkins, Kate E

    2014-03-12

    The earliest stages of cortical processing of speech sounds take place in the auditory cortex. Transcranial magnetic stimulation (TMS) studies have provided evidence that the human articulatory motor cortex contributes also to speech processing. For example, stimulation of the motor lip representation influences specifically discrimination of lip-articulated speech sounds. However, the timing of the neural mechanisms underlying these articulator-specific motor contributions to speech processing is unknown. Furthermore, it is unclear whether they depend on attention. Here, we used magnetoencephalography and TMS to investigate the effect of attention on specificity and timing of interactions between the auditory and motor cortex during processing of speech sounds. We found that TMS-induced disruption of the motor lip representation modulated specifically the early auditory-cortex responses to lip-articulated speech sounds when they were attended. These articulator-specific modulations were left-lateralized and remarkably early, occurring 60-100 ms after sound onset. When speech sounds were ignored, the effect of this motor disruption on auditory-cortex responses was nonspecific and bilateral, and it started later, 170 ms after sound onset. The findings indicate that articulatory motor cortex can contribute to auditory processing of speech sounds even in the absence of behavioral tasks and when the sounds are not in the focus of attention. Importantly, the findings also show that attention can selectively facilitate the interaction of the auditory cortex with specific articulator representations during speech processing.

  3. Slow modulation of ongoing activity in the auditory cortex during an interval-discrimination task

    Directory of Open Access Journals (Sweden)

    Juan M. Abolafia

    2011-10-01

    Full Text Available In this study, we recorded the single unit activity from rat auditory cortex while the animals performed an interval-discrimination task. The animals had to decide whether two auditory stimuli were separated by either 150 or 300 ms, and go to the left or right nose-poke accordingly. Spontaneous firing in between auditory responses was compared in the attentive versus non-attentive brain states. We describe the firing rate modulation detected during intervals while there was no auditory stimulation. Nearly 18% of neurons (n=14 showed a prominent neuronal discharge during the interstimulus interval, in the form of a upward or downward ramp towards the second auditory stimulus. These patterns of spontaneous activity were often modulated in the attentive versus passive trials. Modulation of the spontaneous firing rate during the task was observed not only between auditory stimuli, but also in the interval preceding the stimulus. This slow modulatory components could be locally generated or the result of a top-down influence originated in higher associative association areas. Such a neuronal discharge may be related to the computation of the interval time and contribute to the perception of the auditory stimulus.

  4. Prenatal diagnosis of cloacal malformation.

    Science.gov (United States)

    Peiro, Jose L; Scorletti, Federico; Sbragia, Lourenco

    2016-04-01

    Persistent cloaca malformation is the most severe type of anorectal and urogenital malformation. Decisions concerning the surgical treatment for this condition are taken during the first hours of life and may determine the quality of life of these patients. Thus, prenatal diagnosis becomes important for a prompt and efficient management of the fetus and newborn, and accurate counseling of the parents regarding its consequences and the future of the baby. Careful evaluation by ultrasonography, and further in-depth analysis with MRI, allow prenatal detection of characteristic findings, which can lead to diagnose or at least suspect this condition. We reviewed our experience and the literature in order to highlight the most important clues that can guide the physician in the differential diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Prenatal screening methods for aneuploidies

    Directory of Open Access Journals (Sweden)

    Madhusudan Dey

    2013-01-01

    Full Text Available Aneuploidies are a major cause of perinatal morbidity and mortality. Therefore, it is the most common indication for invasive prenatal diagnosis. Initially, screening for aneuploidies started with maternal age risk estimation. Later on, serum testing for biochemical markers and ultrasound markers were added. Women detected to be at high-risk for aneuploidies were offered invasive testing. New research is now focusing on non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. The advantage of this technique is the ability to reduce the risk of miscarriage associated with invasive diagnostic procedures. However, this new technique has its own set of technical limitations and ethical issues at present and careful consideration is required before broad implementation

  6. Prenatal diagnosis of arachnoid cyst

    Directory of Open Access Journals (Sweden)

    Korkut Daglar

    2016-12-01

    Full Text Available Arachnoid cysts are rare, usually benign, space-occupying central nervous system lesion. They are the results of an accumulation of cerebrospinal-like fluid between the cerebral meninges and diagnosed prenatally as a unilocular, simple, echolucent area within the fetal head. They may be primary (congenital (maldevelopment of the meninges or secondary (acquired (result of infection trauma, or hemorrhage. The primary ones typically dont communicate with the subarachnoid space whereas acquired forms usually communicate. In recent years, with the development of radiological techniques, the clinical detectability of arachnoid cysts seems to have increased. We report a case of primary arachnoid cyst that were diagnosed prenatally by using ultrasonography and magnetic resonance imaging . [Cukurova Med J 2016; 41(4.000: 792-795

  7. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain.

    Science.gov (United States)

    Cheng, L; Mei, H-X; Tang, J; Fu, Z-Y; Jen, P H-S; Chen, Q-C

    2013-04-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from a variety of lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in the modulation of frequency-domain signal processing of mice using electrophysiological recording and focal electrical stimulation. Focal electrical stimulation of neurons in one IC produces widespread inhibition and focused facilitation of responses of neurons in the other IC. This bilateral collicular interaction decreases the response magnitude and lengthens the response latency of inhibited IC neurons but produces an opposite effect on the response of facilitated IC neurons. In the frequency domain, the focal electrical stimulation of one IC sharpens or expands the frequency tuning curves (FTCs) of neurons in the other IC to improve frequency sensitivity and the frequency response range. The focal electrical stimulation also produces a shift in the best frequency (BF) of modulated IC (ICMdu) neurons toward that of electrically stimulated IC (ICES) neurons. The degree of bilateral collicular interaction is dependent upon the difference in the BF between the ICES neurons and ICMdu neurons. These data suggest that bilateral collicular interaction is a part of dynamic acoustic signal processing that adjusts and improves signal processing as well as reorganizes collicular representation of signal parameters according to the acoustic experience.

  8. Ovarian cysts on prenatal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Ursula [Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Nemec, Stefan F., E-mail: stefan.nemec@meduniwien.ac.at [Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Medical Genetics Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, PACT Suite 400, Los Angeles, CA 90048 (United States); Bettelheim, Dieter [Department of Obstetrics and Gynaecology, Division of Prenatal Diagnosis and Therapy, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University Vienna, Waehringerstrasse 13, A-1090 Vienna (Austria); Horcher, Ernst [Department of Pediatric Surgery, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schoepf, Veronika [Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Graham, John M.; Rimoin, David L. [Medical Genetics Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, PACT Suite 400, Los Angeles, CA 90048 (United States); Weber, Michael; Prayer, Daniela [Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-08-15

    Objective: Ovarian cysts are the most frequently encountered intra-abdominal masses in females in utero. They may, at times, require perinatal intervention. Using magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US) in prenatal diagnosis, we sought to demonstrate the ability to visualize ovarian cysts on prenatal MRI. Materials and methods: This retrospective study included 17 fetal MRI scans from 16 female fetuses (23-37 gestational weeks) with an MRI diagnosis of ovarian cysts after suspicious US findings. A multiplanar MRI protocol was applied to image and to characterize the cysts. The US and MRI findings were compared, and the prenatal findings were compared with postnatal imaging findings or histopathology. Results: Simple ovarian cysts were found in 10/16 cases and complex cysts in 7/16 cases, including one case with both. In 11/16 (69%) cases, US and MRI diagnoses were in agreement, and, in 5/16 (31%) cases, MRI specified or expanded the US diagnosis. In 6/16 cases, postnatal US showed that the cysts spontaneously resolved or decreased in size, and in 1/16 cases, postnatal imaging confirmed a hemorrhagic cyst. In 4/16 cases, the prenatal diagnoses were confirmed by surgery/histopathology, and for the rest, postnatal correlation was not available. Conclusion: Our results illustrate the MRI visualization of ovarian cysts in utero. In most cases, MRI will confirm the US diagnosis. In certain cases, MRI may provide further diagnostic information, additional to US, which is the standard technique for diagnosis, monitoring, and treatment planning.

  9. A Program of Stimulation for Infants Born Prematurely.

    Science.gov (United States)

    Barnard, Kathryn

    Examined was the effect of low frequency auditory and kinesthetic stimulation on the sleep behavior of seven premature normal infants. Stimulation consisted of positioning in a rockerbed and exposure to a recorded heartbeat for 15 minutes an hour. Measured were Ss's sleep wakefulness, weight change, and gestational development. Analysis of the…

  10. Prenatal Diagnosis of Arachnoid Cysts

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-09-01

    Full Text Available Arachnoid cysts are a rare central nervous system malformation, representing only 1% of all intracranial masses in newborns. Primary (congenital arachnoid cysts are benign accumulation of clear fluid between the dura and the brain substance throughout the cerebrospinal axis in relation to the arachnoid membrane and do not communicate with the subarachnoid space. Secondary (acquired arachnoid cysts result from hemorrhage, trauma, and infection and usually communicate with the subarachnoid space. The common locations of arachnoid cysts are the surface of the brain at the level of main brain fissures, such as sylvian, rolandic and interhemispheric fissures, sella turcica, the anterior cranial fossa, and the middle cranial fossa. Arachnoid cysts may be associated with ventriculomegaly and dysgenesis of corpus callosum. Prenatal ultrasound and magnetic resonance imaging have led to the increased diagnosis of fetal arachnoid cysts. This article provides a thorough review of fetal arachnoid cysts, including prenatal diagnosis, differential diagnosis and associated chromosomal abnormalities, as well as comprehensive illustrations of perinatal imaging findings of fetal arachnoid cysts. Prenatal diagnosis of intracranial hypoechoic lesions should include a differential diagnosis of arachnoid cysts and prompt genetic investigations.

  11. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Jill B Firszt

    2013-12-01

    Full Text Available Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants, less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type

  12. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  13. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    Science.gov (United States)

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  14. Effects of Auditory Input in Individuation Tasks

    Science.gov (United States)

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2008-01-01

    Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…

  15. Functional reorganization of the auditory pathways (or lack thereof) in callosal agenesis is predicted by monaural sound localization performance.

    Science.gov (United States)

    Paiement, Philippe; Champoux, François; Bacon, Benoit A; Lassonde, Maryse; Mensour, Boualem; Leroux, Jean-Maxime; Lepore, Franco

    2010-01-01

    Neuroimaging studies show that permanent peripheral lesions such as unilateral deafness cause functional reorganization in the auditory pathways. However, functional reorganization of the auditory pathways as a result of higher-level damage or abnormalities remains poorly investigated. A relatively recent behavioural study points to functional changes in the auditory pathways in some, but interestingly not in all, of the acallosal individuals that were tested. The present study uses fMRI to investigate auditory activities in both cerebral hemispheres in those same acallosal subjects in order to directly investigate the contributions of ipsilateral and contralateral functional pathways reorganization. Predictions were made that functional reorganization could be predicted from behavioural performance. As reported previously in a number of neuroimaging studies, results showed that in neurologically intact subjects, binaural stimulation induced balanced activities between both hemispheres, while monaural stimulation induced strong contralateral activities and weak ipsilateral activities. In accordance with behavioural predictions, some acallosal subjects showed patterns of auditory cortical activities that were similar to those observed in neurologically intact subjects while others showed functional reorganization of the auditory pathways. Essentially they showed a significant increase and a significant decrease of neural activities in the contralateral and/or ipsilateral pathways, respectively. These findings indicate that at least in some acallosal subjects, functional reorganization inside the auditory pathways does contribute to compensate for the absence of the corpus callosum.

  16. Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks.

    Science.gov (United States)

    Van Meir, Vincent; Boumans, Tiny; De Groof, Geert; Van Audekerke, Johan; Smolders, Alain; Scheunders, Paul; Sijbers, Jan; Verhoye, Marleen; Balthazart, Jacques; Van der Linden, Annemie

    2005-05-01

    Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition and development of musical skills. The present study introduces this tool in a well-documented animal model for vocal learning, the songbird, and provides fundamental insight in the main technical issues associated with auditory fMRI in these songbirds. Stimulation protocols with various listening tasks lead to appropriate activation of successive relays in the songbirds' auditory pathway. The elicited BOLD response is also region and stimulus specific, and its temporal aspects provide accurate measures of the changes in brain physiology induced by the acoustic stimuli. Extensive repetition of an identical stimulus does not lead to habituation of the response in the primary or secondary telencephalic auditory regions of anesthetized subjects. The BOLD signal intensity changes during a stimulation and subsequent rest period have a very specific time course which shows a remarkable resemblance to auditory evoked BOLD responses commonly observed in human subjects. This observation indicates that auditory fMRI in the songbird may establish a link between auditory related neuro-imaging studies done in humans and the large body of neuro-ethological research on song learning and neuro-plasticity performed in songbirds.

  17. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  18. Assessment and Preservation of Auditory Nerve Integrity in the Deafened Guinea Pig

    NARCIS (Netherlands)

    Ramekers, D.

    2014-01-01

    Profound hearing loss is often caused by cochlear hair cell loss. Cochlear implants (CIs) essentially replace hair cells by encoding sound and conveying the signal by means of pulsatile electrical stimulation to the spiral ganglion cells (SGCs) which form the auditory nerve. SGCs progressively degen

  19. An EMG Study of the Lip Muscles during Covert Auditory Verbal Hallucinations in Schizophrenia

    Science.gov (United States)

    Rapin, Lucile; Dohen, Marion; Polosan, Mircea; Perrier, Pascal; Loevenbruck, Hélène

    2013-01-01

    Purpose: "Auditory verbal hallucinations" (AVHs) are speech perceptions in the absence of external stimulation. According to an influential theoretical account of AVHs in schizophrenia, a deficit in inner-speech monitoring may cause the patients' verbal thoughts to be perceived as external voices. The account is based on a…

  20. Prenatal Maternal Stress Programs Infant Stress Regulation

    Science.gov (United States)

    Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

    2011-01-01

    Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

  1. Prenatal Maternal Stress Programs Infant Stress Regulation

    Science.gov (United States)

    Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

    2011-01-01

    Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

  2. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U;

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  3. Prenatal Yoga: What You Need to Know

    Science.gov (United States)

    ... promote your baby's health? Before you start prenatal yoga, understand the range of possible benefits, as well as what a typical class entails ... centering and focused breathing. Research suggests that prenatal yoga is safe ... many benefits for pregnant women and their babies. Research suggests ...

  4. Conceptions of Prenatal Development: Behavioral Embryology

    Science.gov (United States)

    Gottlieb, Gilbert

    1976-01-01

    Describes recent progress in research on prenatal behavioral development and in a systematic fashion the various ways in which prenatal experience can affect the development of behavior in the neonate as well as in the embryo and fetus. (Author/RK)

  5. Prenatal exclusion of the HHH syndrome.

    Science.gov (United States)

    Gray, R G; Green, A; Hall, S; McKeown, C

    1995-05-01

    Prenatal diagnosis of the hyperornithinaemia, hyperammonaemia, and homocitrullinuria syndrome is described by the analysis of ornithine incorporation in second-trimester cultured amniotic fluid cells. An unaffected fetus was predicted and confirmed in the newborn child. This is the third reported prenatal diagnosis for this disorder and the second predicting an unaffected fetus.

  6. Pai syndrome: challenging prenatal diagnosis and management

    Energy Technology Data Exchange (ETDEWEB)

    Blouet, Marie [Centre Hospitalier Universitaire de Caen, Department of Radiology, Caen (France); University of Lower Normandie, Caen (France); Belloy, Frederique [Centre Hospitalier Universitaire de Caen, Department of Radiology, Caen (France); Jeanne-Pasquier, Corinne [Centre Hospitalier Universitaire de Caen, Department of Pathology, Caen (France); Leporrier, Nathalie [University of Lower Normandie, Caen (France); Centre Hospitalier Universitaire de Caen, Department of Genetics, Caen (France); Benoist, Guillaume [University of Lower Normandie, Caen (France); Centre Hospitalier Universitaire, Pole Femmes-Enfants, Department of Obstetrics and Gynecology, Caen (France)

    2014-09-15

    Pai syndrome is a rare disorder that includes midline cleft lip, pericallosal lipoma and cutaneous polyp of the face. We report a case of prenatal diagnosis using sonography and MRI. We emphasize the importance of facial examination with prenatal association of midline cleft lip and pericallosal lipoma in making the diagnosis of Pai syndrome. (orig.)

  7. Perception of Complex Auditory Scenes

    Science.gov (United States)

    2014-07-02

    facility is a 4.3-m diameter geodesic sphere housed in an anechoic chamber. 277 Bose 11-cm full –range loudspeakers are mounted on the surface of the...conduction to loudness judgments, hearing damage risk criteria, and auditory localization. The purpose of this line of research was to develop and

  8. Auditory Hallucinations Nomenclature and Classification

    NARCIS (Netherlands)

    Blom, Jan Dirk; Sommer, Iris E. C.

    2010-01-01

    Introduction: The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an

  9. Auditory Temporal Conditioning in Neonates.

    Science.gov (United States)

    Franz, W. K.; And Others

    Twenty normal newborns, approximately 36 hours old, were tested using an auditory temporal conditioning paradigm which consisted of a slow rise, 75 db tone played for five seconds every 25 seconds, ten times. Responses to the tones were measured by instantaneous, beat-to-beat heartrate; and the test trial was designated as the 2 1/2-second period…

  10. Nigel: A Severe Auditory Dyslexic

    Science.gov (United States)

    Cotterell, Gill

    1976-01-01

    Reported is the case study of a boy with severe auditory dyslexia who received remedial treatment from the age of four and progressed through courses at a technical college and a 3-year apprenticeship course in mechanics by the age of eighteen. (IM)

  11. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Auditory Hallucinations Nomenclature and Classification

    NARCIS (Netherlands)

    Blom, Jan Dirk; Sommer, Iris E. C.

    Introduction: The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an

  13. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  14. Molecular approach of auditory neuropathy

    Directory of Open Access Journals (Sweden)

    Magali Aparecida Orate Menezes da Silva

    2015-06-01

    Full Text Available INTRODUCTION: Mutations in the otoferlin gene are responsible for auditory neuropathy. OBJECTIVE: To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. METHODS: This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. RESULTS: The 16 index cases included nine (56% females and seven (44% males. The 13 deaf patients comprised seven (54% males and six (46% females. Among the 20 normal-hearing subjects, 13 (65% were males and seven were (35% females. Thirteen (81% index cases had wild-type genotype (AA and three (19% had the heterozygous AG genotype for IVS8-2A-G (intron 8 mutation. The 5473C-G (exon 44 mutation was found in a heterozygous state (CG in seven (44% index cases and nine (56% had the wild-type allele (CC. Of these mutants, two (25% were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%. CONCLUSION: There are differences at the molecular level in patients with and without auditory neuropathy.

  15. Preliminary framework for Familiar Auditory Sensory Training (FAST) provided during coma recovery

    OpenAIRE

    Theresa Louise-Bender Pape, DrPH, MA, CCC-SLP/L; Joshua M. Rosenow, MD, FACS; Brett Harton, BS; Vijaya Patil, MD; Ann Guernon, MS; Todd Parrish, PhD; Kathleen Froehlich, OTR/L; Catherine Burress, DPT; Shane McNamee, MD; Amy A. Herrold, PhD; Bessie Weiss, RN, MS, CCNS, CCRN, CNRN; Xue Wang, PhD

    2012-01-01

    Since there remains a need to examine the nature of the neural effect and therapeutic efficacy/effectiveness of sensory stimulation provided to persons in states of seriously impaired consciousness, a passive sensory stimulation intervention, referred to as the Familiar Auditory Sensory Training (FAST) protocol, was developed for examination in an ongoing, double-blind, randomized clinical trial (RCT). The FAST protocol is described in this article according to the preliminary framework, whic...

  16. Temporal Resolution of ChR2 and Chronos in an Optogenetic-based Auditory Brainstem Implant Model: Implications for the Development and Application of Auditory Opsins

    Science.gov (United States)

    Hight, A. E.; Kozin, Elliott D.; Darrow, Keith; Lehmann, Ashton; Boyden, Edward; Brown, M. Christian; Lee, Daniel J.

    2015-01-01

    The contemporary auditory brainstem implant (ABI) performance is limited by reliance on electrical stimulation with its accompanying channel cross talk and current spread to non-auditory neurons. A new generation ABI based on optogenetic-technology may ameliorate limitations fundamental to electrical neurostimulation. The most widely studied opsin is channelrhodopsin-2 (ChR2); however, its relatively slow kinetic properties may prevent the encoding of auditory information at high stimulation rates. In the present study, we compare the temporal resolution of light-evoked responses of a recently developed fast opsin, Chronos, to ChR2 in a murine ABI model. Viral mediated gene transfer via a posterolateral craniotomy was used to express Chronos or ChR2 in the mouse nucleus (CN). Following a four to six week incubation period, blue light (473 nm) was delivered via an optical fiber placed directly on the surface of the infected CN, and neural activity was recorded in the contralateral inferior colliculus (IC). Both ChR2 and Chronos evoked sustained responses to all stimuli, even at high driven rates. In addition, optical stimulation evoked excitatory responses throughout the tonotopic axis of the IC. Synchrony of the light-evoked response to stimulus rates of 14–448 pulses/s was higher in Chronos compared to ChR2 mice (p<0.05 at 56, 168, and 224 pulses/s). Our results demonstrate that Chronos has the ability to drive the auditory system at higher stimulation rates than ChR2 and may be a more ideal opsin for manipulation of auditory pathways in future optogenetic-based neuroprostheses. PMID:25598479

  17. Prenatal Diagnosis of Congenital Dermal Sinus

    Directory of Open Access Journals (Sweden)

    Sharif Sakr

    2015-04-01

    Full Text Available Background - Congenital dermal sinus (CDS is an uncommon form of spinal dysraphism. Although postdelivery identification in the neonate is aided by several associated physical examination findings, establishing this diagnosis prenatally has proven to be elusive. Case Report - We present a case of CDS where the prenatal findings at 20 weeks gestation led to the diagnosis, which was confirmed postnatally. The associated protrusion of fibrotic membranes through the sinus tract helped in the identification of this lesion prenatally, but created confusion with a more common type of lesion, an open neural tube defect. This is the first case report in the literature describing prenatal diagnosis of fetal CDS. Conclusion - Prenatal diagnosis with postnatal confirmation of CDS leads to early intervention, better long-term outcomes, and lesser complications.

  18. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    Science.gov (United States)

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm(2). And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  19. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties.

    Science.gov (United States)

    Hoffmann, Susanne; Firzlaff, Uwe; Radtke-Schuller, Susanne; Schwellnus, Britta; Schuller, Gerd

    2008-07-14

    The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae). The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 mum and a medio-lateral distance of about 7000 mum on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the

  1. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties

    Directory of Open Access Journals (Sweden)

    Schwellnus Britta

    2008-07-01

    Full Text Available Abstract Background The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae. Results The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. Conclusion The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The

  2. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    Directory of Open Access Journals (Sweden)

    Pegah Afra

    2009-01-01

    Full Text Available Pegah Afra, Michael Funke, Fumisuke MatsuoDepartment of Neurology, University of Utah, Salt Lake City, UT, USAAbstract: Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms.Keywords: synesthesia, auditory-visual, cross modal

  3. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors.

    Science.gov (United States)

    Papesh, Melissa A; Hurley, Laura M

    2016-02-01

    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  4. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  5. Early Hearing-Impairment Results in Crossmodal Reorganization of Ferret Core Auditory Cortex

    Directory of Open Access Journals (Sweden)

    M. Alex Meredith

    2012-01-01

    Full Text Available Numerous investigations of cortical crossmodal plasticity, most often in congenital or early-deaf subjects, have indicated that secondary auditory cortical areas reorganize to exhibit visual responsiveness while the core auditory regions are largely spared. However, a recent study of adult-deafened ferrets demonstrated that core auditory cortex was reorganized by the somatosensory modality. Because adult animals have matured beyond their critical period of sensory development and plasticity, it was not known if adult-deafening and early-deafening would generate the same crossmodal results. The present study used young, ototoxically-lesioned ferrets (n=3 that, after maturation (avg. = 173 days old, showed significant hearing deficits (avg. threshold = 72 dB SPL. Recordings from single-units (n=132 in core auditory cortex showed that 72% were activated by somatosensory stimulation (compared to 1% in hearing controls. In addition, tracer injection into early hearing-impaired core auditory cortex labeled essentially the same auditory cortical and thalamic projection sources as seen for injections in the hearing controls, indicating that the functional reorganization was not the result of new or latent projections to the cortex. These data, along with similar observations from adult-deafened and adult hearing-impaired animals, support the recently proposed brainstem theory for crossmodal plasticity induced by hearing loss.

  6. Are sound abatement measures necessary in the cytology reading room? A study of auditory distraction.

    Science.gov (United States)

    Evered, A; Watt, A; Perham, N

    2017-09-07

    Listening to music and other auditory material during microscopy work is common practice among cytologists. While many cytologists would claim several benefits of such activity, research in other fields suggests that it might adversely affect diagnostic performance. Using a cross-modal distraction paradigm, the aim of the present study was to investigate the effect of auditory stimulation on the visual interpretation of cell images. Following initial training, 34 participants undertook cell interpretation tests under four auditory conditions (liked music, disliked music, speech and silence) in a counterbalanced repeated-measures study. Error rate, area under the receiver operating characteristic curve, criterion and response time were measured for each condition. There was no significant effect of auditory stimulation on the accuracy or speed with which cell images were interpreted, mirroring the results of a previous visual distraction study. To the extent that the experiment reflects clinical practice, listening to music or other forms of auditory material whilst undertaking microscopy duties is unlikely to be a source of distraction in the cytopathology reading room. From a cognitive perspective, the results are consistent with the notion that high focal-task engagement may have blocked any attentional capture the sound may otherwise have produced. © 2017 John Wiley & Sons Ltd.

  7. Prenatal diagnosis in multiple pregnancy.

    Science.gov (United States)

    Taylor, M J; Fisk, N M

    2000-08-01

    Fetal abnormality is more common in multiple than in singleton pregnancies. This, together with the requirement to consider the risks with at least two babies to sample correctly each fetus and to undertake accurately-targeted selective termination, amounts to a major challenge for obstetricians involved in prenatal diagnosis. Early determination of chorionicity should be routine, since this influences not only the genetic risks but also the invasive procedure chosen for karyotyping or genotyping. Assessment of nuchal translucency identifies individual fetuses at risk of trisomy. Contrary to expectation, invasive procedures in twins appear to have procedure-related miscarriage rates that are similar to those in singletons. Instead, contamination remains a concern at chorionic villus sampling. Elective late karyotyping of fetuses may have a role in some countries. Whereas management options for discordant fetal abnormality are relatively straightforward in dichorionic pregnancies, monochorionic pregnancies are at risk of co-twin sequelae after any single intrauterine death. Techniques have now been developed to occlude completely the cord vasculature by laser and/or ultrasound guided bipolar diathermy. Given the complexities associated with prenatal diagnosis, all invasive procedures in multiple pregnancies should be performed in tertiary referral centres. Copyright 2000 Harcourt Publishers Ltd.

  8. Prenatal Diagnosis of WAGR Syndrome

    Directory of Open Access Journals (Sweden)

    Berrin Tezcan

    2015-01-01

    Full Text Available Wilm’s tumour, aniridia, genitourinary abnormalities, and mental retardation (WAGR syndrome is a rare genetic disorder with an estimated prevalence of 1 in 500,000 to 1 million. It is a contiguous gene syndrome due to deletion at chromosome 11p13 in a region containing WT1 and PAX6 genes. Children with WAGR syndrome mostly present in the newborn/infancy period with sporadic aniridia. The genotypic defects in WAGR syndrome have been well established. However, antenatal ultrasonographic presentation of this syndrome has never been reported. Prenatal diagnosis of this condition is possible in some cases with careful ultrasound examination of classical and nonclassical manifestations of this syndrome. The key point for this rare diagnosis was the decision to perform chromosomal microarray analysis after antenatal diagnosis of absent corpus callosum and absent cavum septum pellucidum, as this finding mandates search for potentially associated genetic disorders. We report a case of WAGR syndrome diagnosed prenatally at 29-week gestation. The diagnosis of the anomaly was based on two- and three-dimensional ultrasound as well as fetal MRI scan and microarray analysis. The ultrasonographic findings included borderline ventriculomegaly, absent corpus callosum, and absent cavum septum pellucidum. Cytogenetic results from the amniotic fluid confirmed WAGR syndrome. Parental karyotype was normal, with no evidence of copy number change, deletion, or rearrangement of this region of chromosome 11.

  9. Hemimegalencephaly: prenatal diagnosis and outcome.

    Science.gov (United States)

    Alvarez, Rosa María; García-Díaz, Lutgardo; Márquez, Javier; Fajardo, Manuel; Rivas, Eloy; García-Lozano, Juan Carlos; Antiñolo, Guillermo

    2011-01-01

    Hemimegalencephaly (HME) is a developmental abnormality of the central nervous system (CNS) which may present as either a syndromic or isolated case. Here, we present two cases of early prenatal diagnosis of HME. Prenatal CNS ultrasound and MRI in the first case revealed ventricular asymmetry, midline shift with displacement of the occipital lobe across the midline, large dilatation mainly at the posterior horn of the left lateral ventricle, and a head circumference in the 90th percentile without involvement of the brain stem and cerebellum, as well as abdominal lymphangioma. Right hemispherectomy was performed at 3 months of age due to intractable seizures. The pathological specimen showed findings characteristic of HME, including a disorganized cytoarchitecture with lack of neuronal lamination, focal areas of polymicrogyria, and neuronal heterotopias with dysplastic cells. In the second case, 2D and 3D neurosonography demonstrated similar findings (asymmetry of cerebral hemispheres, midline shift, and dilation of the posterior horn of the left lateral cerebral ventricle). Posterior fossa structures were unremarkable. HME was diagnosed and the pregnancy was terminated. Autopsy findings confirmed the diagnosis of HME.

  10. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    Science.gov (United States)

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and

  11. Temporally selective processing of communication signals by auditory midbrain neurons

    DEFF Research Database (Denmark)

    Elliott, Taffeta M; Christensen-Dalsgaard, Jakob; Kelley, Darcy B

    2011-01-01

    of auditory neurons in the laminar nucleus of the torus semicircularis (TS) of X. laevis specializes in encoding vocalization click rates. We recorded single TS units while pure tones, natural calls, and synthetic clicks were presented directly to the tympanum via a vibration-stimulation probe. Synthesized...... click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies...

  12. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  13. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes.

  14. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  15. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  16. Prenatal care and subsequent birth intervals.

    Science.gov (United States)

    Teitler, Julien O; Das, Dhiman; Kruse, Lakota; Reichman, Nancy E

    2012-03-01

    Prenatal care generally includes contraceptive and health education that may help women to control their subsequent fertility. However, research has not examined whether receipt of prenatal care is associated with subsequent birthspacing. Longitudinally linked birth records from 113,662 New Jersey women who had had a first birth in 1996-2000 were used to examine associations between the timing and adequacy of prenatal care prior to a woman's first birth and the timing of her second birth. Multinomial logistic regression analyses adjusted for social and demographic characteristics, hospital and year of birth. Most women (85%) had initiated prenatal care during the first trimester. Women who had not obtained prenatal care until the second or third trimester, or at all, were more likely than those who had had first-trimester care to have a second child within 18 months, rather than in 18-59 months (odds ratios, 1.2-1.6). Similarly, women whose care had been inadequate were more likely than those who had had adequate care to have a short subsequent birth interval (1.2). The associations were robust to alternative measures of prenatal care and birth intervals, and were strongest for mothers with less than 16 years of education. Providers should capitalize on their limited encounters with mothers who initiate prenatal care late or use it sporadically to ensure that these women receive information about family planning. Copyright © 2012 by the Guttmacher Institute.

  17. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  18. Stability of Auditory Discrimination and Novelty Processing in Physiological Aging

    Directory of Open Access Journals (Sweden)

    Alberto Raggi

    2013-01-01

    Full Text Available Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  19. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  20. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.

    Science.gov (United States)

    Bordure, P; Desmadryl, G; Uziel, A; Sans, A

    1989-11-01

    Short-latency potentials evoked by round window electrical stimulation were recorded in guinea pig by means of vertex-pinna skin electrodes using averaging techniques. Constant current shocks of 20 microseconds or 50 microseconds (25-300 microA) were used to evoke both auditory and vestibular brain-stem potentials. Pure auditory potentials, comparable to those evoked by acoustic clicks, were obtained by 20 microseconds electrical stimuli and disappeared during an auditory masking procedure made with a continuous white noise (110 dB SPL). Short latency potentials labeled V1, V2 and V3 were obtained by 50 microseconds electrical stimuli during an auditory masking procedure. This response disappeared after specific vestibular neurectomy, whereas the auditory response evoked by acoustic clicks or by electrical stimulation remained unchanged, suggesting that these latter potentials had a vestibular origin.

  1. Developmental programming: contribution of prenatal androgen and estrogen to estradiol feedback systems and periovulatory hormonal dynamics in sheep.

    Science.gov (United States)

    Veiga-Lopez, Almudena; Astapova, Olga I; Aizenberg, Esther F; Lee, James S; Padmanabhan, Vasantha

    2009-04-01

    Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.

  2. Prenatal methamphetamine exposure, home environment, and primary caregiver risk factors predict child behavioral problems at 5 years.

    Science.gov (United States)

    Twomey, Jean; LaGasse, Linda; Derauf, Chris; Newman, Elana; Shah, Rizwan; Smith, Lynne; Arria, Amelia; Huestis, Marilyn; DellaGrotta, Sheri; Roberts, Mary; Dansereau, Lynne; Neal, Charles; Lester, Barry

    2013-01-01

    This study investigated the prospective association between prenatal methamphetamine (MA) exposure and child behavioral problems at 5 years while also examining the home environment at 30 months and several primary caregiver (PC) risk factors. Participants were 97 MA-exposed and 117 comparison children and their PCs enrolled in the Infant Development, Environment and Lifestyle Study. Hypotheses were that child behaviors would be adversely impacted by (a) prenatal MA exposure, (b) home environments that provided less developmental stimulation and emotional responsiveness to the child, and (c) the presence of PC psychological symptoms and other risk factors. Prenatal MA exposure was associated with child externalizing behavioral problems at 5 years. Home environments that were more conducive to meeting children's developmental and emotional needs were associated with fewer internalizing and externalizing behavioral problems. Independent of prenatal MA exposure, PC parenting stress and psychological symptoms were associated with increased child behavioral problems. Findings suggest prenatal MA exposure may contribute to externalizing behavioral problems in early childhood and the importance of considering possible vulnerabilities related to prenatal MA exposure in the context of the child's caregiving environment.

  3. Barriers to adequate prenatal care utilization in American Samoa.

    Science.gov (United States)

    Hawley, Nicola L; Brown, Carolyn; Nu'usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T

    2014-12-01

    The objective of this study is to describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Using data from prenatal clinic records, women (n = 692) were categorized according to the adequacy of prenatal care utilization index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way analysis of variance and independent samples t tests. Between 2001 and 2008 85.4 % of women received inadequate prenatal care. Parity (P = 0.02), maternal unemployment (P = 0.03), and both parents being unemployed (P = 0.03) were negatively associated with the timing of prenatal care initiation. Giving birth in 2007-2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 vs. 25.12 weeks; P prenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007-2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population.

  4. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  5. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.

    Science.gov (United States)

    Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  6. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  7. Auditory evoked potentials and multiple sclerosis

    OpenAIRE

    Carla Gentile Matas; Sandro Luiz de Andrade Matas; Caroline Rondina Salzano de Oliveira; Isabela Crivellaro Gonçalves

    2010-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can affect several areas of the central nervous system. Damage along the auditory pathway can alter its integrity significantly. Therefore, it is important to investigate the auditory pathway, from the brainstem to the cortex, in individuals with MS. OBJECTIVE: The aim of this study was to characterize auditory evoked potentials in adults with MS of the remittent-recurrent type. METHOD: The study comprised 25 individuals w...

  8. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  9. Situs anomalies on prenatal MRI.

    Science.gov (United States)

    Nemec, Stefan F; Brugger, Peter C; Nemec, Ursula; Bettelheim, Dieter; Kasprian, Gregor; Amann, Gabriele; Rimoin, David L; Graham, John M; Prayer, Daniela

    2012-04-01

    Situs anomalies refer to an abnormal organ arrangement, which may be associated with severe errors of development. Due regard being given to prenatal magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US), this study sought to demonstrate the in utero visualization of situs anomalies on MRI, compared to US. This retrospective study included 12 fetuses with situs anomalies depicted on fetal MRI using prenatal US as a comparison modality. With an MRI standard protocol, the whole fetus was assessed for anomalies, with regard to the position and morphology of the following structures: heart; venous drainage and aorta; stomach and intestines; liver and gallbladder; and the presence and number of spleens. Situs inversus totalis was found in 3/12 fetuses; situs inversus with levocardia in 1/12 fetuses; situs inversus abdominis in 2/12 fetuses; situs ambiguous with polysplenia in 3/12 fetuses, and with asplenia in 2/12 fetuses; and isolated dextrocardia in 1/12 fetuses. Congenital heart defects (CHDs), vascular anomalies, and intestinal malrotations were the most frequent associated malformations. In 5/12 cases, the US and MRI diagnoses were concordant. Compared to US, in 7/12 cases, additional MRI findings specified the situs anomaly, but CHDs were only partially visualized in six cases. Our initial MRI results demonstrate the visualization of situs anomalies and associated malformations in utero, which may provide important information for perinatal management. Using a standard protocol, MRI may identify additional findings, compared to US, which confirm and specify the situs anomaly, but, with limited MRI visualization of fetal CHDs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  11. Auditory Training and Its Effects upon the Auditory Discrimination and Reading Readiness of Kindergarten Children.

    Science.gov (United States)

    Cullen, Minga Mustard

    The purpose of this investigation was to evaluate the effects of a systematic auditory training program on the auditory discrimination ability and reading readiness of 55 white, middle/upper middle class kindergarten students. Following pretesting with the "Wepman Auditory Discrimination Test,""The Clymer-Barrett Prereading Battery," and the…

  12. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  13. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  14. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  15. Prenatal Inflammation Linked to Autism Risk

    Science.gov (United States)

    ... Thursday, January 24, 2013 Prenatal inflammation linked to autism risk Maternal inflammation during early pregnancy may be related to an increased risk of autism in children, according to new findings supported by ...

  16. Prenatal genotyping of Gaucher disease in Egypt

    African Journals Online (AJOL)

    Somaya Elgawhary

    2013-07-24

    ]. ... and prenatal testing for people with family history of GD should be ... 130 children treated under the project and every year 12–15 new cases are ... or maternal trauma, infection, vaginal bleeding, feto-maternal hemorrhage ...

  17. Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati Lead Study cohort at age 5 years

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Keith, R.W. (University of Cincinnati College of Medicine, Department of Environmental Health, OH (United States))

    1992-01-01

    This analysis examined the relationship between lead exposure as registered in whole blood (PbB) and the central auditory processing abilities and cognitive developmental status of the Cincinnati cohort (N = 259) at age 5 years. Although the effects were small, higher prenatal, neonatal, and postnatal PbB levels were associated with poorer central auditory processing abilities on the Filtered Word Subtest of the SCAN (a screening test for auditory processing disorders). Higher postnatal PbB levels were associated with poorer performance on all cognitive developmental subscales of the Kaufman Assessment Battery for Children (K-ABC). However, following adjustment for measures of the home environment and maternal intelligence, few statistically or near statistically significant associations remained. Our findings are discussed in the context of the related issues of confounding and the detection of weak associations in high risk populations.

  18. DIAGNOSTICO PRENATAL DE SITUS INVERSUS TOTALIS

    OpenAIRE

    Paublo M,Mario; Bustos V.,Juan Carlos; Ramírez H,Pedro

    2002-01-01

    Se presenta un caso clínico de diagnostico prenatal por ultrasonografía de Situs Inversus completo en la Unidad de ultrasonografía del Hospital San Juan de Dios con su confirmación post natal por radiología y ultrasonografía. Es de notar la baja incidencia de esta patología y la importancia del diagnostico prenatal por las posibles múltiples malformaciones asociadas.

  19. Differential activity in Heschl's gyrus between deaf and hearing individuals is due to auditory deprivation rather than language modality.

    Science.gov (United States)

    Cardin, Velia; Smittenaar, Rebecca C; Orfanidou, Eleni; Rönnberg, Jerker; Capek, Cheryl M; Rudner, Mary; Woll, Bencie

    2016-01-01

    Sensory cortices undergo crossmodal reorganisation as a consequence of sensory deprivation. Congenital deafness in humans represents a particular case with respect to other types of sensory deprivation, because cortical reorganisation is not only a consequence of auditory deprivation, but also of language-driven mechanisms. Visual crossmodal plasticity has been found in secondary auditory cortices of deaf individuals, but it is still unclear if reorganisation also takes place in primary auditory areas, and how this relates to language modality and auditory deprivation. Here, we dissociated the effects of language modality and auditory deprivation on crossmodal plasticity in Heschl's gyrus as a whole, and in cytoarchitectonic region Te1.0 (likely to contain the core auditory cortex). Using fMRI, we measured the BOLD response to viewing sign language in congenitally or early deaf individuals with and without sign language knowledge, and in hearing controls. Results show that differences between hearing and deaf individuals are due to a reduction in activation caused by visual stimulation in the hearing group, which is more significant in Te1.0 than in Heschl's gyrus as a whole. Furthermore, differences between deaf and hearing groups are due to auditory deprivation, and there is no evidence that the modality of language used by deaf individuals contributes to crossmodal plasticity in Heschl's gyrus.

  20. Otoacoustic emissions, auditory evoked potentials and self-reported gender in people affected by disorders of sex development (DSD).

    Science.gov (United States)

    Wisniewski, Amy B; Espinoza-Varas, Blas; Aston, Christopher E; Edmundson, Shelagh; Champlin, Craig A; Pasanen, Edward G; McFadden, Dennis

    2014-08-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) - (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) - the male-typical pattern - than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.

  1. Prenatal ultrasonographic findings of cloacal anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi Jin [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To evaluate the ultrasonographic characteristic of a rare malformation comples, Cloacal anomaly on prenatal ultrasonography. From March 1991 to July 2001, eight cases with the persistent cloaca (4 cases in female and 1 case in male) and cloacal exstrophy (3 cases) diagnosed by prenatal ultrasound examination were included, and all of them were pathologically confirmed by autopsy. One radiologist retrospectively analyzed the prenatal sonographic images, including the urinary bladder, kidney, pelvic cyst, abdominal wall defect and amount of amniotic fluid. The ultrasonographic diagnosis was established at 21.8 {+-} 7.8 weeks of gestation. The prenatal ultrasonographic findings of the persistent cloaca were absent bladder (n=2), distended bladder (n=2) and small thick bladder (n=1). Sonography of the kidney showed normal (n=2), hydronephrosis (n=1), dysplasia (n=1) and unilateral hydronephrosis with absent contralateral kidney (n=1). Four fetuses showed septated pelvic cyst; three fetuses, oligohydramnios. The prenatal ultrasonographic findings of cloacal exstrophy included absent bladder (n=3), normal kidney (n=1), hydronephrosis (n=1) and absent kidney (n=1). All fetuses with cloacal exstrophy had abdominal wall defect while two of them had oligohydramnios. A prenatal diagnosis of persistent cloaca can be confidently made when there is septated pelvic cyst combined oligohydramnios, sediments within the cyst and intraluminal calcifications. Cloacal exstrophy should be included in diagnosis if there is a low abdominal wall defect with absent urinary bladder.

  2. Family structure and use of prenatal care.

    Science.gov (United States)

    Alves, Elisabete; Silva, Susana; Martins, Simone; Barros, Henrique

    2015-06-01

    This cross-sectional study intended to assess the use of prenatal care according to the family structure in a population with free universal access to prenatal care. In 2005-2006, the Portuguese birth cohort was assembled by the recruitment of puerperae at public maternity wards in Porto, Portugal. In the current analysis, 7,211 were included. Data on socio-demographic characteristics, obstetric history, and prenatal care were self-reported. Single mothers were considered as those whose household composition did not include a partner at delivery. Approximately 6% of the puerperae were single mothers. These women were more likely to have an unplanned pregnancy (OR = 6.30; 95%CI: 4.94-8.04), an inadequate prenatal care (OR = 2.30; 95%CI: 1.32-4.02), and to miss the ultrasound and the intake of folic acid supplements during the first trimester of pregnancy (OR = 1.71; 95%CI: 1.30-2.27; and OR = 1.67; 95%CI: 1.32-2.13, respectively). The adequacy and use of prenatal care was less frequent in single mothers. Educational interventions should reinforce the use and early initiation of prenatal care.

  3. Family structure and use of prenatal care

    Directory of Open Access Journals (Sweden)

    Elisabete Alves

    2015-06-01

    Full Text Available This cross-sectional study intended to assess the use of prenatal care according to the family structure in a population with free universal access to prenatal care. In 2005-2006, the Portuguese birth cohort was assembled by the recruitment of puerperae at public maternity wards in Porto, Portugal. In the current analysis, 7,211 were included. Data on socio-demographic characteristics, obstetric history, and prenatal care were self-reported. Single mothers were considered as those whose household composition did not include a partner at delivery. Approximately 6% of the puerperae were single mothers. These women were more likely to have an unplanned pregnancy (OR = 6.30; 95%CI: 4.94-8.04, an inadequate prenatal care (OR = 2.30; 95%CI: 1.32-4.02, and to miss the ultrasound and the intake of folic acid supplements during the first trimester of pregnancy (OR = 1.71; 95%CI: 1.30-2.27; and OR = 1.67; 95%CI: 1.32-2.13, respectively. The adequacy and use of prenatal care was less frequent in single mothers. Educational interventions should reinforce the use and early initiation of prenatal care.

  4. Prenatal diagnosis of 45,X/46,XX

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, L.Y.F. [New York Univ. School of Medicine, New York, NY (United States)

    1996-03-01

    I read with great interest the paper on {open_quotes}Prenatal Diagnosis of 45,X/46,XX mosaicism and 45,X: Implications for Postnatal Outcome{close_quotes} by Koeberl et al. They reported their experience with 12 prenatally diagnosed cases of 45,X/46,XX mosaicism and made a clinical comparison between those 12 cases and their own 41 postnatally diagnosed cases of 45,X/46,XX mosaicism. As expected, they found an overall milder phenotypic manifestation in the prenatal cases than in the postnatal ones. These authors report a lack of previous prognostic information on this type of prenatally diagnosis of mosaicism and offer their findings to fill this need. However, considerable information on this topic has been published. There have been >200 prenatally diagnosed cases of 45,X/46,XX. According to my data on 189 cases with a prenatal diagnosis of 45,X/46,XX mosaicism (Hsu 1992), there are 114 cases with available information on phenotypic outcome. Of these, 12 (10.5%) were reported to have some features of Turner syndrome, 4 had other anomalies probably not related to Turner syndrome, and 2 resulted in stillbirth. The overall rate for an abnormal phenotype in this category was thus 16/114 (14.03%). However, we must realize that, even in patients with a nonmosaic 45,X complement, the major features of Turner syndrome, such as short stature and sexual infantilism, are manifested only later in childhood or in adolescence. 3 refs.

  5. Barriers to adequate prenatal care utilization in American Samoa

    Science.gov (United States)

    Hawley, Nicola L; Brown, Carolyn; Nu’usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T

    2013-01-01

    Objective To describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Methods Using data from prenatal clinic records, women (n=692) were categorized according to the Adequacy of Prenatal Care Utilization Index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way Analysis of Variance (ANOVA) and independent samples t-tests. Results Between 2001 and 2008 85.4% of women received inadequate prenatal care. Parity (P=0.02), maternal unemployment (P=0.03), and both parents being unemployed (P=0.03) were negatively associated with the timing of prenatal care initation. Giving birth in 2007–2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 versus 25.12 weeks; Pprenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007–2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population. PMID:24045912

  6. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  7. Categorization of extremely brief auditory stimuli: domain-specific or domain-general processes?

    Directory of Open Access Journals (Sweden)

    Emmanuel Bigand

    Full Text Available The present study investigated the minimum amount of auditory stimulation that allows differentiation of spoken voices, instrumental music, and environmental sounds. Three new findings were reported. 1 All stimuli were categorized above chance level with 50 ms-segments. 2 When a peak-level normalization was applied, music and voices started to be accurately categorized with 20 ms-segments. When the root-mean-square (RMS energy of the stimuli was equalized, voice stimuli were better recognized than music and environmental sounds. 3 Further psychoacoustical analyses suggest that the categorization of extremely brief auditory stimuli depends on the variability of their spectral envelope in the used set. These last two findings challenge the interpretation of the voice superiority effect reported in previously published studies and propose a more parsimonious interpretation in terms of an emerging property of auditory categorization processes.

  8. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    Science.gov (United States)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (hearing capabilities.

  9. Auditory hallucinations in nonverbal quadriplegics.

    Science.gov (United States)

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  10. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  11. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  12. High frequency rTMS; a more effective treatment for auditory verbal hallucinations?

    Science.gov (United States)

    de Weijer, Antoin D; Sommer, Iris E C; Lotte Meijering, Anne; Bloemendaal, Mirjam; Neggers, Sebastiaan F W; Daalman, Kirstin; Boezeman, Eduard H J F

    2014-12-30

    The great majority of studies on repetitive transcranial magnetic stimulation (rTMS) as a therapeutic tool for auditory verbal hallucinations (AVH) have used 1-Hz stimulation with inconsistent results. Recently, it has been suggested that 20-Hz rTMS has strong therapeutic effects. It is conceivable that this 20-Hz stimulation is more effective than 1-Hz stimulation. The aim of this preliminary study is to investigate the efficacy of 20-Hz rTMS compared with 1-Hz rTMS as a treatment for AVH. Eighteen schizophrenia patients with medication-resistant AVH were randomized over two treatment groups. Each group received either 20 min of 1-Hz rTMS or 13 trains of 20-Hz rTMS daily over 1 week. After week 1, patients received a follow-up treatment once a week for 3 weeks. Stimulation location was based on individual AVH-related activation patterns identified with functional magnetic resonance imaging. Severity of AVH was monitored with the Auditory Hallucination Rating Scale (AHRS). Both groups showed a decrease in AVH after week 1 of rTMS. This decrease was significant for the 20-Hz group and the 1-Hz group. When the two treatment types were compared, no treatment type was superior. Based on these results we cannot conclude whether high frequency rTMS is more effective against AVH than is traditional 1-Hz rTMS. More research is needed to optimize stimulation parameters and to investigate potential target locations for stimulation.

  13. Dynamic Range Adaptation to Spectral Stimulus Statistics in Human Auditory Cortex

    Science.gov (United States)

    Schlichting, Nadine; Obleser, Jonas

    2014-01-01

    Classically, neural adaptation refers to a reduction in response magnitude by sustained stimulation. In human electroencephalography (EEG), neural adaptation has been measured, for example, as frequency-specific response decrease by previous stimulation. Only recently and mainly based on animal studies, it has been suggested that statistical properties in the stimulation lead to adjustments of neural sensitivity and affect neural response adaptation. However, it is thus far unresolved which statistical parameters in the acoustic stimulation spectrum affect frequency-specific neural adaptation, and on which time scales the effects take place. The present human EEG study investigated the potential influence of the overall spectral range as well as the spectral spacing of the acoustic stimulation spectrum on frequency-specific neural adaptation. Tones randomly varying in frequency were presented passively and computational modeling of frequency-specific neural adaptation was used. Frequency-specific adaptation was observed for all presentation conditions. Critically, however, the spread of adaptation (i.e., degree of coadaptation) in tonotopically organized regions of auditory cortex changed with the spectral range of the acoustic stimulation. In contrast, spectral spacing did not affect the spread of frequency-specific adaptation. Therefore, changes in neural sensitivity in auditory cortex are directly coupled to the overall spectral range of the acoustic stimulation, which suggests that neural adjustments to spectral stimulus statistics occur over a time scale of multiple seconds. PMID:24381293

  14. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    Science.gov (United States)

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  15. Early influence of auditory stimuli on upper-limb movements in young human infants: an overview

    Directory of Open Access Journals (Sweden)

    Priscilla Augusta Monteiro Ferronato

    2014-09-01

    Full Text Available Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual and cognitive development. At-risk infants (e.g., those born preterm may display increasing central auditory processing disorders, negatively affecting early sensory-motor integration, and resulting in long-term consequences on gesturing, language development and social communication. Consequently, there is a need for more studies on such implications

  16. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus.

    Science.gov (United States)

    Venezia, Jonathan H; Vaden, Kenneth I; Rong, Feng; Maddox, Dale; Saberi, Kourosh; Hickok, Gregory

    2017-01-01

    The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

  17. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Science.gov (United States)

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  18. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  19. The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Tollkötter Melanie

    2006-08-01

    Full Text Available Abstract Background A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i the amplitude of the N1m response and (ii its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. Results Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. Conclusion These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex.

  20. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  1. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  2. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  3. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  4. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  5. Bilateral duplication of the internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu [Seoul National University College of Medicine, Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si (Korea); Koo, Ja-Won [Seoul National University College of Medicine, Department of Otolaryngology, Seoul National University Bundang Hospital, Seongnam-si (Korea)

    2007-10-15

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  6. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  7. Functional maps of human auditory cortex: effects of acoustic features and attention.

    Directory of Open Access Journals (Sweden)

    David L Woods

    Full Text Available BACKGROUND: While human auditory cortex is known to contain tonotopically organized auditory cortical fields (ACFs, little is known about how processing in these fields is modulated by other acoustic features or by attention. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging (fMRI and population-based cortical surface analysis to characterize the tonotopic organization of human auditory cortex and analyze the influence of tone intensity, ear of delivery, scanner background noise, and intermodal selective attention on auditory cortex activations. Medial auditory cortex surrounding Heschl's gyrus showed large sensory (unattended activations with two mirror-symmetric tonotopic fields similar to those observed in non-human primates. Sensory responses in medial regions had symmetrical distributions with respect to the left and right hemispheres, were enlarged for tones of increased intensity, and were enhanced when sparse image acquisition reduced scanner acoustic noise. Spatial distribution analysis suggested that changes in tone intensity shifted activation within isofrequency bands. Activations to monaural tones were enhanced over the hemisphere contralateral to stimulation, where they produced activations similar to those produced by binaural sounds. Lateral regions of auditory cortex showed small sensory responses that were larger in the right than left hemisphere, lacked tonotopic organization, and were uninfluenced by acoustic parameters. Sensory responses in both medial and lateral auditory cortex decreased in magnitude throughout stimulus blocks. Attention-related modulations (ARMs were larger in lateral than medial regions of auditory cortex and appeared to arise primarily in belt and parabelt auditory fields. ARMs lacked tonotopic organization, were unaffected by acoustic parameters, and had distributions that were distinct from those of sensory responses. Unlike the gradual adaptation seen for sensory responses

  8. Gradients and modulation of K(+ channels optimize temporal accuracy in networks of auditory neurons.

    Directory of Open Access Journals (Sweden)

    Leonard K Kaczmarek

    Full Text Available Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express "high threshold" Kv3-family channels that are required for firing at high rates (> -200 Hz. Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1-50 neurons, stimulated at rates between 100-1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K(+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment.

  9. Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain

    Science.gov (United States)

    Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai

    2012-01-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic

  10. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  11. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.

    Science.gov (United States)

    Hennig, R M

    1988-05-01

    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  12. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.

    Science.gov (United States)

    Nabatiyan, A; Poulet, J F A; de Polavieja, G G; Hedwig, B

    2003-10-01

    Auditory pattern recognition by the CNS is a fundamental process in acoustic communication. Because crickets communicate with stereotyped patterns of constant frequency syllables, they are established models to investigate the neuronal mechanisms of auditory pattern recognition. Here we provide evidence that for the neural processing of amplitude-modulated sounds, the instantaneous spike rate rather than the time-averaged neural activity is the appropriate coding principle by comparing both coding parameters in a thoracic interneuron (Omega neuron ON1) of the cricket (Gryllus bimaculatus) auditory system. When stimulated with different temporal sound patterns, the analysis of the instantaneous spike rate demonstrates that the neuron acts as a low-pass filter for syllable patterns. The instantaneous spike rate is low at high syllable rates, but prominent peaks in the instantaneous spike rate are generated as the syllable rate resembles that of the species-specific pattern. The occurrence and repetition rate of these peaks in the neuronal discharge are sufficient to explain temporal filtering in the cricket auditory pathway as they closely match the tuning of phonotactic behavior to different sound patterns. Thus temporal filtering or "pattern recognition" occurs at an early stage in the auditory pathway.

  13. Cerebral processing of auditory stimuli in patients with irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    Viola Andresen; Peter Kobelt; Claus Zimmer; Bertram Wiedenmann; Burghard F Klapp; Hubert Monnikes; Alexander Poellinger; Chedwa Tsrouya; Dominik Bach; Albrecht Stroh; Annette Foerschler; Petra Georgiewa; Marco Schmidtmann; Ivo R van der Voort

    2006-01-01

    AIM: To determine by brain functional magnetic resonance imaging (fMRI) whether cerebral processing of non-visceral stimuli is altered in irritable bowel syndrome (IBS) patients compared with healthy subjects. To circumvent spinal viscerosomatic convergence mechanisms,we used auditory stimulation, and to identify a possible influence of psychological factors the stimuli differed in their emotional quality.METHODS: In 8 IBS patients and 8 controls, fMRI measurements were performed using a block design of 4 auditory stimuli of different emotional quality (pleasant sounds of chimes, unpleasant peep (2000 Hz), neutral words, and emotional words). A gradient echo T2*-weighted sequence was used for the functional scans.Statistical maps were constructed using the general linear model.RESULTS: To emotional auditory stimuli, IBS patients relative to controls responded with stronger deactivations in a greater variety of emotional processing regions, while the response patterns, unlike in controls, did not differentiate between distressing or pleasant sounds.To neutral auditory stimuli, by contrast, only IBS patients responded with large significant activations.CONCLUSION: Altered cerebral response patterns to auditory stimuli in emotional stimulus-processing regions suggest that altered sensory processing in IBS may not be specific for visceral sensation, but might reflect generalized changes in emotional sensitivity and affectire reactivity, possibly associated with the psychological comorbidity often found in IBS patients.

  14. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Directory of Open Access Journals (Sweden)

    Liliane Aparecida Fagundes Silva

    2015-01-01

    Full Text Available The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP; speech perception tests of the Glendonald Auditory Screening Procedure (GASP; Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS; and Meaningful Use of Speech Scales (MUSS. The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms. In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms. The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI.

  15. Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party".

    Science.gov (United States)

    Zion Golumbic, Elana; Cogan, Gregory B; Schroeder, Charles E; Poeppel, David

    2013-01-23

    Our ability to selectively attend to one auditory signal amid competing input streams, epitomized by the "Cocktail Party" problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared with responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker's face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a Cocktail Party setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive.

  16. Spectral and temporal auditory processing in the superior colliculus of aged rats.

    Science.gov (United States)

    Costa, Margarida; Lepore, Franco; Guillemot, Jean-Paul

    2017-09-01

    Presbyacusis reflects dysfunctions present along the central auditory pathway. Given that the topographic representation of the auditory directional spatial map is deteriorated in the superior colliculus of aged animals, therefore, are spectral and temporal auditory processes altered with aging in the rat's superior colliculus? Extracellular single-unit recordings were conducted in the superior colliculus of anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats. In the spectral domain, level thresholds in aged rats were significantly increased when superior colliculus auditory neurons were stimulated with pure tones or Gaussian noise bursts. The sharpness of the frequency response tuning curve at 10 dB SPL above threshold was also significantly broader among the aged rats. Furthermore, in the temporal domain, the minimal silent gap thresholds to Gaussian noises were significantly longer in aged rats. Hence, these results highlight that spectral and temporal auditory processing in the superior colliculus are impaired during aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of embryonic alcoholism from auditory event-related potential in fetal rats

    Institute of Scientific and Technical Information of China (English)

    梁勇; 王正敏; 屈卫东

    2004-01-01

    @@ Auditory event-related potential (AERP) is a kind of electroencephalography that measures the responses of perception, memory and judgement to special acoustic stimulation in the auditory cortex. AERP can be recorded with not only active but also passive mode. The active and passive recording modes of AERP have been shown a possible application in animals.1,2 Alcohol is a substance that can markedly affect the conscious reaction of human. Recently, AERP has been applied to study the effects of alcohol on the auditory centers of the brain. Some reports have shown dose-dependent differences in latency, amplitude, responsibility and waveform of AERP between persons who have and have not take in alcohol.3,4 The epidemiological investigations show that the central nervous function of the offspring of alcohol users might be also affected.5,6 Because the clinic research is limited by certain factors, several animal models have been applied to examine the influences of alcohol on consciousness with AERP. In the present study, young rats were exposed to alcohol during fetal development and AERP as indicator was recorded to monitor the central auditory function, and its mechanisms and characteristics of effects of the fetal alcoholism on auditory center function in rats were analyzed and discussed.

  18. Auditory steady-state responses reveal amplitude modulation gap detection thresholds

    Science.gov (United States)

    Ross, Bernhard; Pantev, Christo

    2004-05-01

    Auditory evoked magnetic fields were recorded from the left hemisphere of healthy subjects using a 37-channel magnetometer while stimulating the right ear with 40-Hz amplitude modulated (AM) tone-bursts with 500-Hz carrier frequency in order to study the time-courses of amplitude and phase of auditory steady-state responses (ASSRs). The stimulus duration of 300 ms and the duration of the silent periods (3-300 ms) between succeeding stimuli were chosen to address the question whether the time-course of the ASSR can reflect both temporal integration and temporal resolution in the central auditory processing. Long lasting perturbations of the ASSR were found after gaps in the AM sound, even for gaps of short duration. These were interpreted as evidences for an auditory reset mechanism. Concomitant psycho-acoustical tests corroborated that gap durations perturbing the ASSR were in the same range as the threshold for AM gap detection. Magnetic source localizations estimated the ASSR sources in the primary auditory cortex, suggesting that the processing of temporal structures in the sound is performed at or below the cortical level.

  19. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    Science.gov (United States)

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  20. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  1. Prenatal Care Services in Aydin Province

    Directory of Open Access Journals (Sweden)

    Erdal BESER

    2007-04-01

    Full Text Available Aim of the study was to evaluate the quality and quantity of prenatal care in Aydin province. It was a cross-sectional study. 195 women (pregnant/women at postpartum period living in the Aydin province participated in the study. Cluster and simple random sampling method was used in the selection of women from 10 health centers (one rural-one urban health station each. Data obtained by face to face interview technique. Turkey Demografic Health Survey criteria were used for evaluation of the quantity of prenatal care as “sufficient” or “insufficient” and quality of prenatal care was scored as “1-2”(bad, “3-4”(moderate and “5-6”(good. Chi-square, Mann Whitney-U and t tests were used for analysis. One fifth of each pregnant women who were in last trimester and 11.3% of women in postpartum period stated that they were not followed up by an health personnel during pregnancy. One third of pregnant women who were in last trimester and 58.5% of women in postpartum period said they weren’t visited by an health personnel in the first trimester. Besides, quality points of prenatal care were found low, both in pregnant women and women in post partum period. It was found that living in urban areas, high education level and presence of social security effected getting adequate prenatal care. The quality and quantity of prenatal care was found less than expected in Aydin province which is located in the western region of Turkey. It is necessary that, health personnel must be more sensitive to convey “adequate” prenatal care especially women who are living in rural areas, who have low educational level and who have no social security. [TAF Prev Med Bull 2007; 6(2.000: 137-141

  2. Prenatal Care Services in Aydin Province

    Directory of Open Access Journals (Sweden)

    Erdal BESER

    2007-04-01

    Full Text Available Aim of the study was to evaluate the quality and quantity of prenatal care in Aydin province. It was a cross-sectional study. 195 women (pregnant/women at postpartum period living in the Aydin province participated in the study. Cluster and simple random sampling method was used in the selection of women from 10 health centers (one rural-one urban health station each. Data obtained by face to face interview technique. Turkey Demografic Health Survey criteria were used for evaluation of the quantity of prenatal care as “sufficient” or “insufficient” and quality of prenatal care was scored as “1-2”(bad, “3-4”(moderate and “5-6”(good. Chi-square, Mann Whitney-U and t tests were used for analysis. One fifth of each pregnant women who were in last trimester and 11.3% of women in postpartum period stated that they were not followed up by an health personnel during pregnancy. One third of pregnant women who were in last trimester and 58.5% of women in postpartum period said they weren’t visited by an health personnel in the first trimester. Besides, quality points of prenatal care were found low, both in pregnant women and women in post partum period. It was found that living in urban areas, high education level and presence of social security effected getting adequate prenatal care. The quality and quantity of prenatal care was found less than expected in Aydin province which is located in the western region of Turkey. It is necessary that, health personnel must be more sensitive to convey “adequate” prenatal care especially women who are living in rural areas, who have low educational level and who have no social security. [TAF Prev Med Bull. 2007; 6(2: 137-141

  3. Mild maternal iron deficiency anemia during pregnancy and lactation in guinea pigs causes abnormal auditory function in the offspring.

    Science.gov (United States)

    Jougleux, Jean-Luc; Rioux, France M; Church, Michael W; Fiset, Sylvain; Surette, Marc E

    2011-07-01

    Iron deficiency (ID) anemia (IDA) adversely affects different aspects of the nervous system such as myelinogenesis, neurotransmitters synthesis, brain myelin composition, and brain fatty acid and eicosanoid metabolism. Infant neurophysiological outcome in response to maternal IDA is underexplored, especially mild to moderate maternal IDA. Furthermore, most human research has focused on childhood ID rather than prenatal or neonatal ID. Thus, our study evaluated the consequences of mild maternal IDA during pregnancy and lactation on the offsprings' auditory function using the auditory brainstem response (ABR). This technique provides objective measures of auditory acuity, neural transmission times along the peripheral and brainstem portions of the auditory pathway, and postnatal brain maturation. Female guinea pigs (n = 10/group) were fed an iron sufficient diet (ISD) or an iron deficient diet (IDD) (144 and 11.7 mg iron/kg) during their acclimation, gestation, and lactation periods. From postnatal d (PNd) 9 onward, the ISD was given to all weaned offspring. ABR were collected from the offspring on PNd24 using a broad range of stimulus intensities in response to 2, 4, 8, 16, and 32 kHz tone pips. IDA siblings (n = 4), [corrected] compared with the IS siblings (n = 5), had significantly elevated ABR thresholds (hearing loss) in response to all tone pips. These physiological disturbances were primarily due to a sensorineural hearing loss, as revealed by the ABR's latency-intensity curves. These results indicate that mild maternal IDA during gestation and lactation altered the hearing and nervous system development of the young offspring.

  4. Tinnitus treatment with sound stimulation during sleep.

    Science.gov (United States)

    M, Pedemonte; D, Drexler; S, Rodio; D, Geisinger; A, Bianco; D, Pol-Fernandes; V, Bernhardt

    2010-01-01

    A new strategy for idiopathic subjective tinnitus treatment - sound stimulation during sleep - has been applied. It was based on the acknowledgement that the auditory system also works during sleep, processing the incoming information. Eleven patients were stimulated every night during 6 months. The stimulus was a sound that mimetized the tinnitus and was fixed at the same tinnitus intensity, applied through an iPod. All patients decreased their tinnitus intensity in the first month of treatment (statistically significant), most of them in the first week. Tinnitus intensity continued decreasing in the following weeks; three patients presented periods of total silence.

  5. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    Science.gov (United States)

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  6. The prenatal roots of music

    Directory of Open Access Journals (Sweden)

    David Ernest Teie

    2016-08-01

    Full Text Available Although the idea that pulse in music may be related to human pulse is ancient and has recently been promoted by researchers (Parncutt, 2006; Snowdon & Teie, 2010, there has been no ordered delineation of the characteristics of music that are based on the sounds of the womb. I describe features of music that are based on sounds that are present in the womb: tempo of pulse (pulse is understood as the regular, underlying beat that defines the meter, amplitude contour of pulse, meter, musical notes, melodic frequency range, continuity, syllabic contour, melodic rhythm, melodic accents, phrase length, and phrase contour. There are a number of features of prenatal development that allow for the formation of long-term memories of the sounds of the womb in the areas of the brain that are responsible for emotions. Taken together, these features and the similarities between the sounds of the womb and the elemental building blocks of music allow for a postulation that the fetal acoustic environment may provide the bases for the fundamental musical elements that are found in the music of all cultures. This hypothesis is supported by a one-to-one matching of the universal features of music with the sounds of the womb: 1 all of the regularly heard sounds that are present in the fetal environment are represented in the music of every culture, and 2 all of the features of music that are present in the music of all cultures can be traced to the fetal environment.

  7. Shortening of subjective visual intervals followed by repetitive stimulation.

    Directory of Open Access Journals (Sweden)

    Fuminori Ono

    Full Text Available Our previous research demonstrated that repetitive tone stimulation shortened the perceived duration of the preceding auditory time interval. In this study, we examined whether repetitive visual stimulation influences the perception of preceding visual time intervals. Results showed that a time interval followed by a high-frequency visual flicker was perceived as shorter than that followed by a low-frequency visual flicker. The perceived duration decreased as the frequency of the visual flicker increased. The visual flicker presented in one hemifield shortened the apparent time interval in the other hemifield. A final experiment showed that repetitive tone stimulation also shortened the perceived duration of preceding visual time intervals. We concluded that visual flicker shortened the perceived duration of preceding visual time intervals in the same way as repetitive auditory stimulation shortened the subjective duration of preceding tones.

  8. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  9. CONTRALATERAL SUPPRESSION OF DISTORTION PRODUCT OTOACOUSTIC EMISSION IN CHILDREN WITH AUDITORY PROCESSING DISORDERS

    Institute of Scientific and Technical Information of China (English)

    Jessica Oppee; SUN Wei; Nancy Stecker

    2014-01-01

    Previous research has demonstrated that the amplitude of evoked emissions decreases in human sub-jects when the contralateral ear is stimulated by noise. The medial olivocochlear bundle (MOCB) is be-lieved to control this phenomenon. Recent research has examined this effect in individuals with auditory pro-cessing disorders (APD), specifically with difficulty understanding speech in noise. Results showed tran-sient evoked otoacoustic emissions (TEOAEs) were not affected by contralateral stimulation in these sub-jects. Much clinical research has measured the function of the MOCB through TEOAEs.This study will use an alternative technique, distortion product otoacoustic emissions (DPOAEs), to examine this phenomenon and evaluate the function of the MOCB. DPOAEs of individuals in a control group with normal hearing and no significant auditory processing difficulties were compared to the DPOAEs of children with signifi-cant auditory processing difficulties.Results showed that the suppression effect was observed in the control group at 2 kHz with 3 kHz of narrowband noise. For the auditory processing disorders group, no significant suppression was observed.Overall, DPOAEs showed suppression with contralateral noise, while the APD group levels increased overall.These results provide further evidence that the MOCB may have reduced function in children with APD.

  10. Formation and disruption of tonotopy in a large-scale model of the auditory cortex.

    Science.gov (United States)

    Tomková, Markéta; Tomek, Jakub; Novák, Ondřej; Zelenka, Ondřej; Syka, Josef; Brom, Cyril

    2015-10-01

    There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.

  11. Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness.

    Science.gov (United States)

    Maslin, M R D; Lloyd, S K; Rutherford, S; Freeman, S; King, A; Moore, D R; Munro, K J

    2015-10-01

    Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.

  12. Auditory midbrain implant: research and development towards a second clinical trial.

    Science.gov (United States)

    Lim, Hubert H; Lenarz, Thomas

    2015-04-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients that is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. A new two-shank array, stimulation strategy, and surgical approach are planned for the AMI that are expected to improve hearing performance in the patients who will be implanted in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. This article is part of a Special Issue entitled .

  13. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  14. Use of Repetitive Transcranial Magnetic Stimulation for Treatment in Psychiatry

    NARCIS (Netherlands)

    Aleman, Andre

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory verbal hallucinations in schizophrenia.

  15. Disorganized Cortical Patches Suggest Prenatal Origin of Autism

    Science.gov (United States)

    ... 2014 Disorganized cortical patches suggest prenatal origin of autism NIH-funded study shows disrupted cell layering process ... study suggests that brain irregularities in children with autism can be traced back to prenatal development. “While ...

  16. Prenatal Vitamins: Why They Matter, How to Choose

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week Wonder if you need to take prenatal vitamins? Which brand is best? Or what ... 2016 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/in-depth/prenatal-vitamins/art- ...

  17. Informed consent: attitudes, knowledge and information concerning prenatal examination

    DEFF Research Database (Denmark)

    Dahl, Katja; Kesmodel, Ulrik; hvidman, lone

    2006-01-01

    Background: Providing women with information enabling an informed consent to prenatal examinations has been widely recommended. Objective: The primary purpose of this review is to summarise current knowledge of the pregnant woman's expectations and attitudes concerning prenatal examinations, as w...

  18. Callosal agenesis followed postnatally after prenatal diagnosis.

    Science.gov (United States)

    Imataka, George; Nakagawa, Eiji; Kuwashima, Shigeko; Watanabe, Hiroshi; Yamanouchi, Hideo; Arisaka, Osamu

    2006-09-01

    Callosal agenesis is a congenital brain anomaly caused by embryonal hypogenesis of the corpus callosum. Concerning the neurological prognosis, epilepsy and motor disturbance are noted in some cases, while many cases are asymptomatic and the prognosis is good. We report a fetus tentatively diagnosed with hydrocephaly on prenatal echo-encephalography, which was performed without adequate explanation to and understanding of the parents. The parents had not expected an abnormality before the screening, and were subsequently not psychologically prepared for the discovery of the congenital brain anomaly on imaging. Moreover, they received no guidance on how to deal with any possible abnormalities. The pregnant mother was referred to our hospital. Prenatal MRI was performed after informed consent was obtained, and the fetus was diagnosed with callosal agenesis. The patient was followed for 5 years, and neurological development was normal. However, the parents have remained anxious while raising the child. Thus, the prenatal diagnosis of callosal agenesis in this case caused unnecessary mental burden to the parents. Here, we report the course of the case, and discuss the way prenatal ultrasonography should be used as a prenatal screening method, and the importance of counseling before the test.

  19. Prenatal and newborn screening for hemoglobinopathies.

    Science.gov (United States)

    Hoppe, C C

    2013-06-01

    The hemoglobinopathies encompass a heterogeneous group of disorders associated with mutations in both the alpha-globin and beta-globin genes. Increased immigration of high-risk populations has prompted the implementation of prenatal and newborn screening programs for hemoglobinopathies across Europe and North America. In Canada, the UK, and other European countries, prenatal screening to identify hemoglobinopathy carriers and offer prenatal diagnostic testing to couples at risk is linked to newborn screening, while in the United States, it is still not universally performed. The structure of screening programs, whether prenatal or postnatal, universal or selective, varies greatly among these countries and within the United States. The laboratory methods used to identify hemoglobinopathies are based on the prevalence of hemoglobinopathies within the population and the type of screening performed. Advances in molecular testing have facilitated the diagnosis of complex thalassemias and sickling disorders observed in ethnically diverse populations. This review summarizes the current approaches and methods used for carrier detection, prenatal diagnosis, and newborn screening.

  20. Prenatal Testosterone and Preschool Disruptive Behavior Disorders.

    Science.gov (United States)

    Roberts, Bethan A; Martel, Michelle M

    2013-11-01

    Disruptive Behaviors Disorders (DBD), including Oppositional-Defiant Disorder (ODD) and Attention-Deficit/Hyperactivity Disorder (ADHD), are fairly common and highly impairing childhood behavior disorders that can be diagnosed as early as preschool. Prenatal exposure to testosterone may be particularly relevant to these early-emerging DBDs that exhibit a sex-biased prevalence rate favoring males. The current study examined associations between preschool DBD symptom domains and prenatal exposure to testosterone measured indirectly via right 2D:4D finger-length ratios. The study sample consisted of 109 preschool-age children between ages 3 and 6 (64% males;72% with DBD) and their primary caregivers. Primary caregivers completed a semi-structured interview (i.e., Kiddie Disruptive Behavior Disorder Schedule), as well as symptom questionnaires (i.e., Disruptive Behavior Rating Scale, Peer Conflict Scale); teachers and/or daycare providers completed symptom questionnaires and children provided measures of prenatal testosterone exposure, measured indirectly via finger-length ratios (i.e., right 2D:4D). Study results indicated a significant association of high prenatal testosterone (i.e., smaller right 2D:4D) with high hyperactive-impulsive ADHD symptoms in girls but not boys, suggesting that the effect may be driven by, or might only exist in, girls. The present study suggests that prenatal exposure to testosterone may increase risk for early ADHD, particularly hyperactivity-impulsivity, in preschool girls.

  1. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    Science.gov (United States)

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  2. The Impact of Monaural Beat Stimulation on Anxiety and Cognition

    OpenAIRE

    Leila Chaieb; Elke C. Wilpert; Christian Hoppe; Nikolai Axmacher; Juergen Fell

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to ...

  3. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  4. Functional connectivity of the temporo-parietal region in schizophrenia : Effects of rTMS treatment of auditory hallucinations

    NARCIS (Netherlands)

    Vercammen, Ans; Knegtering, Henderikus; Liemburg, Edith J.; den Boer, Johannes A.; Aleman, Andre

    2010-01-01

    Auditory-verbal hallucinations are a hallmark symptom of schizophrenia. In recent years, repetitive transcranial magnetic stimulation (rTMS) targeting speech perception areas has been advanced as a potential treatment of medication-resistant hallucinations. However, the underlying neural processes r

  5. 22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response

    DEFF Research Database (Denmark)

    Larsen, Kit Melissa; Pellegrino, Giovanni; Birknow, Michelle Rosgaard

    2017-01-01

    carriers (ρ = -0.487, P = .041). Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated...

  6. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Science.gov (United States)

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  7. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Science.gov (United States)

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  8. Influence of the power-spectrum of the pre-stimulus EEG on the consecutive Auditory Evoked Potential in rats.

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Quian Quiroga, R.; Rijn, C.M. van; Schaijk, W.J. van; Dirksen, R.; Coenen, A.M.L.

    2000-01-01

    Evoked Potentials (EPs) are responses that appear in the EEG due to external stimulation. Findings indicate that changes in EPs can be related to changes in frequencies of the pre-stimulus EEG. Auditory EPs of rats (n=8) were measured in reaction to tone-pip stimuli (90 dB, 10.2 kHz, ISI 2s, n=1500)

  9. Bilateral Saccadic Eye Movements and Tactile Stimulation, but Not Auditory Stimulation, Enhance Memory Retrieval

    Science.gov (United States)

    Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…

  10. Bilateral saccadic eye movements and tactile stimulation, but not auditory stimulation, enhance memory retrieval

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Elzinga, B.M.; Ras, P.H.; Berends, F.; Duijs, P.; Samara, Z.; Slagter, H.A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapi

  11. Spatial auditory processing in pinnipeds

    Science.gov (United States)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  12. Non-invasive prenatal testing for aneuploidy and beyond

    DEFF Research Database (Denmark)

    Dondorp, Wybo; d