WorldWideScience

Sample records for premotor neurons encode

  1. View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex.

    Science.gov (United States)

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Pomper, Joern K; Thier, Peter; Giese, Martin A; Casile, Antonino

    2011-01-25

    Converging experimental evidence indicates that mirror neurons in the monkey premotor area F5 encode the goals of observed motor acts [1-3]. However, it is unknown whether they also contribute to encoding the perspective from which the motor acts of others are seen. In order to address this issue, we recorded the visual responses of mirror neurons of monkey area F5 by using a novel experimental paradigm based on the presentation of movies showing grasping motor acts from different visual perspectives. We found that the majority of the tested mirror neurons (74%) exhibited view-dependent activity with responses tuned to specific points of view. A minority of the tested mirror neurons (26%) exhibited view-independent responses. We conclude that view-independent mirror neurons encode action goals irrespective of the details of the observed motor acts, whereas the view-dependent ones might either form an intermediate step in the formation of view independence or contribute to a modulation of view-dependent representations in higher-level visual areas, potentially linking the goals of observed motor acts with their pictorial aspects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Neural encoding of auditory discrimination in ventral premotor cortex

    Science.gov (United States)

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    Monkeys have the capacity to accurately discriminate the difference between two acoustic flutter stimuli. In this task, monkeys must compare information about the second stimulus to the memory trace of the first stimulus, and must postpone the decision report until a sensory cue triggers the beginning of the decision motor report. The neuronal processes associated with the different components of this task have been investigated in the primary auditory cortex (A1); but, A1 seems exclusively associated with the sensory and not with the working memory and decision components of this task. Here, we show that ventral premotor cortex (VPC) neurons reflect in their activities the current and remembered acoustic stimulus, their comparison, and the result of the animal's decision report. These results provide evidence that the neural dynamics of VPC is involved in the processing steps that link sensation and decision-making during auditory discrimination. PMID:19667191

  3. Neurons controlling voluntary vocalization in the macaque ventral premotor cortex.

    Directory of Open Access Journals (Sweden)

    Gino Coudé

    Full Text Available The voluntary control of phonation is a crucial achievement in the evolution of speech. In humans, ventral premotor cortex (PMv and Broca's area are known to be involved in voluntary phonation. In contrast, no neurophysiological data are available about the role of the oro-facial sector of nonhuman primates PMv in this function. In order to address this issue, we recorded PMv neurons from two monkeys trained to emit coo-calls. Results showed that a population of motor neurons specifically fire during vocalization. About two thirds of them discharged before sound onset, while the remaining were time-locked with it. The response of vocalization-selective neurons was present only during conditioned (voluntary but not spontaneous (emotional sound emission. These data suggest that the control of vocal production exerted by PMv neurons constitutes a newly emerging property in the monkey lineage, shedding light on the evolution of phonation-based communication from a nonhuman primate species.

  4. Processing of Own Hand Visual Feedback during Object Grasping in Ventral Premotor Mirror Neurons.

    Science.gov (United States)

    Maranesi, Monica; Livi, Alessandro; Bonini, Luca

    2015-08-26

    Mirror neurons (MNs) discharge during action execution as well as during observation of others' actions. Our own actions are those that we have the opportunity to observe more frequently, but no study thus far to our knowledge has addressed the issue of whether, and to what extent, MNs can code own hand visual feedback (HVF) during object grasping. Here, we show that MNs of the ventral premotor area F5 of macaque monkeys are particularly sensitive to HVF relative to non-MNs simultaneously recorded in the same penetrations. Importantly, the HVF effect is more evident on MN activity during hand-object interaction than during the hand-shaping phase. Furthermore, the increase of MN activity induced by HVF and others' actions observed from a subjective perspective were positively correlated. These findings indicate that at least part of ventral premotor MNs can process the visual information coming from own hand interacting with objects, likely playing a role in self-action monitoring. We show that mirror neurons (MNs) of area F5 of the macaque, in addition to encoding others' observed actions, are particularly sensitive, relative to simultaneously recorded non-MNs, to the sight of the monkey's own hand during object grasping, likely playing a role in self-action monitoring. Copyright © 2015 the authors 0270-6474/15/3511824-06$15.00/0.

  5. Calretinin as a marker for premotor neurons involved in upgaze in human brainstem

    Directory of Open Access Journals (Sweden)

    Christopher eAdamczyk

    2015-12-01

    Full Text Available Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF, which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of calretinin input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and calretinin may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and calretinin positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan component of perineuronal nets, parvalbumin or calretinin and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without calretinin coexpression, which were intermingled. The parvalbumin/calretinin positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking calretinin are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as

  6. Space-dependent representation of objects and other's action in monkey ventral premotor grasping neurons.

    Science.gov (United States)

    Bonini, Luca; Maranesi, Monica; Livi, Alessandro; Fogassi, Leonardo; Rizzolatti, Giacomo

    2014-03-12

    The macaque ventral premotor area F5 hosts two types of visuomotor grasping neurons: "canonical" neurons, which respond to visually presented objects and underlie visuomotor transformation for grasping, and "mirror" neurons, which respond during the observation of others' action, likely playing a role in action understanding. Some previous evidence suggested that canonical and mirror neurons could be anatomically segregated in different sectors of area F5. Here we investigated the functional properties of single neurons in the hand field of area F5 using various tasks similar to those originally designed to investigate visual responses to objects and actions. By using linear multielectrode probes, we were able to simultaneously record different types of neurons and to precisely localize their cortical depth. We recorded 464 neurons, of which 243 showed visuomotor properties. Canonical and mirror neurons were often present in the same cortical sites; and, most interestingly, a set of neurons showed both canonical and mirror properties, discharging to object presentation as well as during the observation of experimenter's goal-directed acts (canonical-mirror neurons). Typically, visual responses to objects were constrained to the monkey peripersonal space, whereas action observation responses were less space-selective. Control experiments showed that space-constrained coding of objects mostly relies on an operational (action possibility) rather than metric (absolute distance) reference frame. Interestingly, canonical-mirror neurons appear to code object as target for both one's own and other's action, suggesting that they could play a role in predictive representation of others' impending actions.

  7. Mirror Neurons of Ventral Premotor Cortex Are Modulated by Social Cues Provided by Others' Gaze.

    Science.gov (United States)

    Coudé, Gino; Festante, Fabrizia; Cilia, Adriana; Loiacono, Veronica; Bimbi, Marco; Fogassi, Leonardo; Ferrari, Pier Francesco

    2016-03-16

    Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual. We recorded single-unit activity in macaque PMv while the monkey was observing an experimenter performing a grasping action and orienting his gaze either toward (congruent gaze condition) or away (incongruent gaze condition) from a target object. The results showed that one-half of the recorded MNs were modulated by the gaze direction of the human agent. These gaze-modulated neurons were evenly distributed between those preferring a gaze direction congruent with the direction where the grasping action was performed and the others that preferred an incongruent gaze. Whereas the presence of congruent responses is in line with the usual coupling of hand and gaze in both executed and observed actions, the incongruent responses can be explained by the long exposure of the monkeys to this condition. Our results reveal that the representation of observed actions in PMv is influenced by contextual information not only extracted from physical cues, but also from cues endowed with biological or social value. In this study, we present the first evidence showing that social cues modulate MNs in the monkey ventral premotor cortex. These data suggest that there is an integrated representation of other's hand actions and gaze direction at the single neuron level in the ventral premotor cortex, and support the hypothesis of a functional role of MNs in decoding actions and understanding motor intentions. Copyright © 2016 the authors 0270-6474/16/363145-12$15.00/0.

  8. [Neurons that encode sound direction].

    Science.gov (United States)

    Peña, J L

    In the auditory system, the inner ear breaks down complex signals into their spectral components, and encodes the amplitude and phase of each. In order to infer sound direction in space, a computation on each frequency component of the sound must be performed. Space specific neurons in the owl s inferior colliculus respond only to sounds coming from a particular direction and represent the results of this computation. The interaural time difference (ITD) and interaural level difference (ILD define the auditory space for the owl and are processed in separate neural pathways. The parallel pathways that process these cues merge in the external nucleus of the inferior colliculus where the space specific neurons are selective to combinations of ITD and ILD. How do inputs from the two sources interact to produce combination selectivity to ITD ILD pairs? A multiplication of postsynaptic potentials tuned to ITD and ILD can account for the subthreshold responses of these neurons to ITD ILD pairs. Examples of multiplication by neurons or neural circuits are scarce, but many computational models assume the existence of this basic operation. The owl s auditory system uses such operation to create a 2 dimensional map of auditory space. The map of space in the owl s auditory system shows important similarities with representations of space in the cerebral cortex and other sensory systems. In encoding space or other stimulus features, individual neurons appear to possess analogous functional properties related to the synthesis of high order receptive fields.

  9. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    Science.gov (United States)

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.

  10. Spatial and viewpoint selectivity for others' observed actions in monkey ventral premotor mirror neurons.

    Science.gov (United States)

    Maranesi, Monica; Livi, Alessandro; Bonini, Luca

    2017-08-15

    The spatial location and viewpoint of observed actions are closely linked in natural social settings. For example, actions observed from a subjective viewpoint necessarily occur within the observer's peripersonal space. Neurophysiological studies have shown that mirror neurons (MNs) of the monkey ventral premotor area F5 can code the spatial location of live observed actions. Furthermore, F5 MN discharge can also be modulated by the viewpoint from which filmed actions are seen. Nonetheless, whether and to what extent MNs can integrate viewpoint and spatial location of live observed actions remains unknown. We addressed this issue by comparing the activity of 148 F5 MNs while macaque monkeys observed an experimenter grasping in three different combinations of viewpoint and spatial location, namely, lateral view in the (1) extrapersonal and (2) peripersonal space and (3) subjective view in the peripersonal space. We found that the majority of MNs were space-selective (60.8%): those selective for the peripersonal space exhibited a preference for the subjective viewpoint both at the single-neuron and population level, whereas space-unselective neurons were view invariant. These findings reveal the existence of a previously neglected link between spatial and viewpoint selectivity in MN activity during live-action observation.

  11. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    Science.gov (United States)

    Krutki, Piotr; Jelen, Sabina; Jankowska, Elzbieta

    2011-04-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons.

  12. Single neurons in M1 and premotor cortex directly reflect behavioral interference.

    Directory of Open Access Journals (Sweden)

    Neta Zach

    Full Text Available Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models.

  13. Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys.

    Science.gov (United States)

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Thier, Peter; Casile, Antonino

    2009-04-17

    Actions performed by others may have different relevance for the observer, and thus lead to different behavioral responses, depending on the regions of space in which they are executed. We found that in rhesus monkeys, the premotor cortex neurons activated by both the execution and the observation of motor acts (mirror neurons) are differentially modulated by the location in space of the observed motor acts relative to the monkey, with about half of them preferring either the monkey's peripersonal or extrapersonal space. A portion of these spatially selective mirror neurons encode space according to a metric representation, whereas other neurons encode space in operational terms, changing their properties according to the possibility that the monkey will interact with the object. These results suggest that a set of mirror neurons encodes the observed motor acts not only for action understanding, but also to analyze such acts in terms of features that are relevant to generating appropriate behaviors.

  14. Population Encoding With Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Lazar, Aurel A

    2010-02-01

    The recovery of (weak) stimuli encoded with a population of Hodgkin-Huxley neurons is investigated. In the absence of a stimulus, the Hodgkin-Huxley neurons are assumed to be tonically spiking. The methodology employed calls for 1) finding an input-output (I/O) equivalent description of the Hodgkin-Huxley neuron and 2) devising a recovery algorithm for stimuli encoded with the I/O equivalent neuron(s). A Hodgkin-Huxley neuron with multiplicative coupling is I/O equivalent with an Integrate-and-Fire neuron with a variable threshold sequence. For bandlimited stimuli a perfect recovery of the stimulus can be achieved provided that a Nyquist-type rate condition is satisfied. A Hodgkin-Huxley neuron with additive coupling and deterministic conductances is first-order I/O equivalent with a Project-Integrate-and-Fire neuron that integrates a projection of the stimulus on the phase response curve. The stimulus recovery is formulated as a spline interpolation problem in the space of finite length bounded energy signals. A Hodgkin-Huxley neuron with additive coupling and stochastic conductances is shown to be first-order I/O equivalent with a Project-Integrate-and-Fire neuron with random thresholds. For stimuli modeled as elements of Sobolev spaces the reconstruction algorithm minimizes a regularized quadratic optimality criterion. Finally, all previous recovery results of stimuli encoded with Hodgkin-Huxley neurons with multiplicative and additive coupling, and deterministic and stochastic conductances are extended to stimuli encoded with a population of Hodgkin-Huxley neurons.

  15. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  16. Amygdala neurons differentially encode motivation and reinforcement.

    Science.gov (United States)

    Tye, Kay M; Janak, Patricia H

    2007-04-11

    Lesion studies demonstrate that the basolateral amygdala complex (BLA) is important for assigning motivational significance to sensory stimuli, but little is known about how this information is encoded. We used in vivo electrophysiology procedures to investigate how the amygdala encodes motivating and reinforcing properties of cues that induce reinstatement of reward-seeking behavior. Two groups of rats were trained to respond to a sucrose reward. The "paired" group was trained with a reward-predictive cue, whereas the "unpaired" group was trained with a randomly presented cue. Both groups underwent identical extinction and reinstatement procedures during which the reward was withheld. The proportion of neurons that were phasically cue responsive during reinstatement was significantly higher in the paired group (46 of 100) than in the unpaired group (8 of 112). Cues that induce reward-seeking behavior can do so by acting as incentives or reinforcers. Distinct populations of neurons responded to the cue in trials in which the cue acted as an incentive, triggering a motivated reward-seeking state, or as a reinforcer, supporting continued instrumental responding. The incentive motivation-encoding population of neurons (34 of 46 cue-responsive neurons; 74%) extinguished in temporal agreement with a decrease in the rate of instrumental responding. The conditioned reinforcement-encoding population of neurons (12 of 46 cue-responsive neurons; 26%) maintained their response for the duration of cue-reinforced instrumental responding. These data demonstrate that separate populations of cue-responsive neurons in the BLA encode the motivating or reinforcing properties of a cue previously associated with a reward.

  17. Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo

    NARCIS (Netherlands)

    Canto, Cathrin B; Witter, L.; De Zeeuw, C.I.

    2016-01-01

    Cerebellar nuclei neurons integrate sensorimotor information and form the final output of the cerebellum, projecting to premotor brainstem targets. This implies that, in contrast to specialized neurons and interneurons in cortical regions, neurons within the nuclei encode and integrate complex

  18. Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of Visual Causality Perception.

    Science.gov (United States)

    Caggiano, Vittorio; Fleischer, Falk; Pomper, Joern K; Giese, Martin A; Thier, Peter

    2016-11-21

    Humans derive causality judgments reliably from highly abstract stimuli, such as moving discs that bump into each other [1]. This fascinating visual capability emerges gradually during human development [2], perhaps as consequence of sensorimotor experience [3]. Human functional imaging studies suggest an involvement of the "action observation network" in the processing of such stimuli [4, 5]. In addition, theoretical studies suggest a link between the computational mechanisms of action and causality perception [6, 7], consistent with the fact that both functions require an analysis of sequences of spatiotemporal relationships between interacting stimulus elements. Single-cell correlates of the perception of causality are completely unknown. In order to find such neural correlates, we investigated the responses of "mirror neurons" in macaque premotor area F5 [8, 9]. These neurons respond during the observation as well as during the execution of actions and show interesting invariances, e.g., with respect to the stimulus view [10], occlusions [11], or whether an action is really executed or suppressed [12]. We investigated the spatiotemporal properties of the visual responses of mirror neurons to naturalistic hand action stimuli and to abstract stimuli, which specified the same causal relationships. We found a high degree of generalization between these two stimulus classes. In addition, many features that strongly reduced the similarity of the response patterns coincided with the ones that also destroy the perception of causality in humans. This implies an overlap of neural structures involved in the processing of actions and the visual perception of causality at the single-cell level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mirror neurons encode the subjective value of an observed action.

    Science.gov (United States)

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A; Thier, Peter

    2012-07-17

    Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer.

  20. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    Science.gov (United States)

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.

  1. Neuronal encoding of texture in the whisker sensory pathway.

    Directory of Open Access Journals (Sweden)

    Ehsan Arabzadeh

    2005-01-01

    Full Text Available A major challenge of sensory systems neuroscience is to quantify brain activity underlying perceptual experiences and to explain this activity as the outcome of elemental neuronal response properties. Rats make extremely fine discriminations of texture by "whisking" their vibrissae across an object's surface, yet the neuronal coding underlying texture sensations remains unknown. Measuring whisker vibrations during active whisking across surfaces, we found that each texture results in a unique "kinetic signature" defined by the temporal profile of whisker velocity. We presented these texture-induced vibrations as stimuli while recording responses of first-order sensory neurons and neurons in the whisker area of cerebral cortex. Each texture is encoded by a distinctive, temporally precise firing pattern. To look for the neuronal coding properties that give rise to texture-specific firing patterns, we delivered horizontal and vertical whisker movements that varied randomly in time ("white noise" and found that the response probabilities of first-order neurons and cortical neurons vary systematically according to whisker speed and direction. We applied the velocity-tuned spike probabilities derived from white noise to the sequence of velocity features in the texture to construct a simulated texture response. The close match between the simulated and real responses indicates that texture coding originates in the selectivity of neurons to elemental kinetic events.

  2. Parvalbumin-positive projection neurons characterise the vocal premotor pathway in male, but not female, zebra finches.

    Science.gov (United States)

    Wild, J M; Williams, M N; Suthers, R A

    2001-11-02

    Parvalbumin (PV) and calbindin (CB) immunoreactivities were assessed in nucleus robustus archistriatalis (RA) of male and female zebra finches, together with retrograde labelling of RA neurons. The results of double and triple labelling experiments suggested that, in males, moderately and faintly PV-positive neurons were projection neurons, but that all intensely PV-positive cells were not. The latter, which are presumably interneurons, were also intensely CB-positive, and may correspond to the GABAergic inhibitory interneurons identified by others. In addition, the complete RA pathway and its terminal fields in the respiratory-vocal nuclei of the brainstem were strongly PV-positive. In female zebra finches, which do not sing, no evidence was found that PV-positive RA cells were projection neurons, yet the pattern of projections of RA neurons, as determined by anterograde transport of biotinylated dextran amine, was very similar to that of RA in males. Moreover, in females, RA neurons retrogradely labelled from injections of cholera toxin B-chain into the tracheosyringeal nucleus (XIIts) were abundant and included, in the lateral part of the nucleus, a population of cells that were as large as those in the male RA. Parvalbumin immunoreactivity was also present in RA and its projections in males of several other songbird species (northern cardinal, brown headed cowbird, canary) and in the female cardinal, which sings to some extent, but the labelling was not as intense as that in male zebra finches.

  3. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2016-06-01

    Full Text Available Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

  4. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons

    Science.gov (United States)

    Nikitin, Evgeny S.; Bal, Natalia V.; Malyshev, Aleksey; Ierusalimsky, Victor N.; Spivak, Yulia; Balaban, Pavel M.; Volgushev, Maxim

    2017-01-01

    The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11–25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation. PMID

  5. Rule activity related to spatial and numerical magnitudes: comparison of prefrontal, premotor, and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2014-05-01

    In everyday situations, quantitative rules, such as "greater than/less than," need to be applied to a multitude of magnitude comparisons, be they sensory, spatial, temporal, or numerical. We have previously shown that rules applied to different magnitudes are encoded in the lateral PFC. To investigate if and how other frontal lobe areas also contribute to the encoding of quantitative rules applied to multiple magnitudes, we trained monkeys to switch between "greater than/less than" rules applied to either line lengths (spatial magnitudes) or dot numerosities (discrete numerical magnitudes). We recorded single-cell activity from the dorsal premotor cortex (dPMC) and cingulate motor cortex (CMA) and compared it with PFC activity. We found the largest proportion of quantitative rule-selective cells in PFC (24% of randomly selected cells), whereas neurons in dPMC and CMA rarely encoded the rule (6% of the cells). In addition, rule selectivity of individual cells was highest in PFC neurons compared with dPMC and CMA neurons. Rule-selective neurons that simultaneously represented the "greater than/less than" rules applied to line lengths and numerosities ("rule generalists") were exclusively present in PFC. In dPMC and CMA, however, neurons primarily encoded rules applied to only one of the two magnitude types ("rule specialists"). Our data suggest a special involvement of PFC in representing quantitative rules at an abstract level, both in terms of the proportion of neurons engaged and the coding capacities.

  6. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde

  7. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-04-01

    Full Text Available Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively as words with length equal to three. Then the frequency of each word (here eight words is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.

  8. Genetically encoded tools: bridging the gap between neuronal identity and function.

    Science.gov (United States)

    Cho, Yong Ku

    2015-01-21

    Genetically encoded tools are positioned to serve a unique and critical role in bridging the gap between the genetic identity of neurons and their functional properties. However, the use of these tools is limited by our current understanding of cell-type identity. As we make technological advances that focus on capturing functional aspects of neurons such as connectivity, activity, and metabolic states, our understanding of neuronal identity will deepen and may enable the use of genetically encoded tools for modulating disease-specific circuits for therapeutic purposes.

  9. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.

  10. Distinct neuronal populations in the basal forebrain encode motivational salience and movement

    Directory of Open Access Journals (Sweden)

    Irene eAvila

    2014-12-01

    Full Text Available Basal forebrain (BF is one of the largest cortically-projecting neuromodulatory systems in the mammalian brain, and plays a key role in attention, arousal, learning and memory. The cortically projecting BF neurons, comprised of mainly magnocellular cholinergic and GABAergic neurons, are widely distributed across several brain regions that spatially overlap with the ventral striatopallidal system at the ventral pallidum (VP. As a first step toward untangling the respective functions of spatially overlapping BF and VP systems, the goal of this study was to comprehensively characterize the behavioral correlates and physiological properties of heterogeneous neuronal populations in the BF region. We found that, while rats performed a reward-biased simple reaction time task, distinct neuronal populations encode either motivational salience or movement information. The motivational salience of attended stimuli is encoded by phasic bursting activity of a large population of slow-firing neurons that have large, broad, and complex action potential waveforms. In contrast, two other separate groups of neurons encode movement-related information, and respectively increase and decrease firing rates while rats maintained fixation. These two groups of neurons mostly have higher firing rates and small, narrow action potential waveforms. These results support the conclusion that multiple neurophysiologically distinct neuronal populations in the BF region operate independently of each other as parallel functional circuits. These observations also caution against interpreting neuronal activity in this region as a homogeneous population reflecting the function of either BF or VP alone. We suggest that salience- and movement-related neuronal populations likely correspond to BF corticopetal neurons and VP neurons, respectively.

  11. Activity in a premotor cortical nucleus of zebra finches is locally organized and exhibits auditory selectivity in neurons but not in glia.

    Directory of Open Access Journals (Sweden)

    Michael H Graber

    Full Text Available Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations.

  12. Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea.

    Science.gov (United States)

    Dergacheva, Olga; Weigand, Letitia A; Dyavanapalli, Jhansi; Mares, Jacquelyn; Wang, Xin; Mendelowitz, David

    2014-01-01

    Parasympathetic cardiac vagal neurons (CVNs) in the brainstem dominate the control of heart rate. Previous work has determined that these neurons are inherently silent, and their activity is largely determined by synaptic inputs to CVNs that include four major types of synapses that release glutamate, GABA, glycine, or serotonin. Whereas prior reviews have focused on glutamatergic, GABAergic and glycinergic pathways, and the receptors in CVNs activated by these neurotransmitters, this review focuses on the alterations in CVN activity with hypoxia-, sleep-, and sleep-related cardiovascular diseases including obstructive sleep apnea.

  13. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi

    2015-05-01

    Full Text Available Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed.

  14. Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability

    Science.gov (United States)

    Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.

    2016-11-01

    How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.

  15. Restoring the encoding properties of a stochastic neuron model by an exogenous noise.

    Science.gov (United States)

    Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela

    2015-01-01

    Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed.

  16. Can we image premotor Parkinson disease?

    Science.gov (United States)

    Marek, Kenneth; Jennings, Danna

    2009-02-17

    Pathology and imaging studies have shown that patients with Parkinson disease (PD) have a prolonged period of uncertain duration when vulnerable neuronal populations are degenerating, but typical motor symptoms have not yet developed. This provides both an opportunity-it may be best to test new medications and, ultimately, treat PD patients during this early phase of disease--and a challenge--how to find these premotor PD subjects? Imaging biomarkers targeting the premotor period are critical to elucidate both the onset and progression of premotor PD. Widespread data have demonstrated that dopaminergic imaging can detect PD subjects at the motor symptom threshold. Novel strategies combining dopaminergic imaging with known genetic mutations for PD or early clinical signs and PD-associated symptoms, such as olfactory loss and sleep disturbances like REM behavior disorder, have begun to be used to identify individuals at risk for PD before motor symptoms become manifest. Early studies also have used imaging targeting norepinephrine, serotonin, cholinergic, or other neuronal systems to focus on early cardiac, cognitive, and behavioral symptoms. Imaging of nondopaminergic targets such as inflammation or alpha-synuclein deposition may provide further insight into the etiology of PD. Given the multiple genetic etiologies for PD already identified, the marked variability in the loss of dopaminergic markers measured by imaging at motor symptom onset, and the clear heterogeneity of clinical symptoms at PD onset, it is certain that many imaging biomarkers with a focus ranging from clinical symptoms to PD pathobiology to molecular genetic mechanisms, will be necessary to fully map PD risk.

  17. Rapid Encoding of New Memories by Individual Neurons in the Human Brain.

    Science.gov (United States)

    Ison, Matias J; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-07-01

    The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories.

  18. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  19. Dopamine neurons modulate neural encoding and expression of depression-related behaviour.

    Science.gov (United States)

    Tye, Kay M; Mirzabekov, Julie J; Warden, Melissa R; Ferenczi, Emily A; Tsai, Hsing-Chen; Finkelstein, Joel; Kim, Sung-Yon; Adhikari, Avishek; Thompson, Kimberly R; Andalman, Aaron S; Gunaydin, Lisa A; Witten, Ilana B; Deisseroth, Karl

    2013-01-24

    Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.

  20. Separate populations of neurons in ventral striatum encode value and motivation.

    Directory of Open Access Journals (Sweden)

    Gregory B Bissonette

    Full Text Available Neurons in the ventral striatum (VS fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.

  1. Separate populations of neurons in ventral striatum encode value and motivation.

    Science.gov (United States)

    Bissonette, Gregory B; Burton, Amanda C; Gentry, Ronny N; Goldstein, Brandon L; Hearn, Taylor N; Barnett, Brian R; Kashtelyan, Vadim; Roesch, Matthew R

    2013-01-01

    Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.

  2. Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons.

    Science.gov (United States)

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-05-03

    The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca(2+) event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly

  3. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  4. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  5. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  6. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.

    Science.gov (United States)

    Vedder, Lindsey C; Miller, Adam M P; Harrison, Marc B; Smith, David M

    2016-07-29

    The retrosplenial cortex (RSC) plays an important role in memory and spatial navigation. It shares functional similarities with the hippocampus, including the presence of place fields and lesion-induced impairments in spatial navigation, and the RSC is an important source of visual-spatial input to the hippocampus. Recently, the RSC has been the target of intense scrutiny among investigators of human memory and navigation. fMRI and lesion data suggest an RSC role in the ability to use landmarks to navigate to goal locations. However, no direct neurophysiological evidence of encoding navigational cues has been reported so the specific RSC contribution to spatial cognition has been uncertain. To examine this, we trained rats on a T-maze task in which the reward location was explicitly cued by a flashing light and we recorded RSC neurons as the rats learned. We found that RSC neurons rapidly encoded the light cue. Additionally, RSC neurons encoded the reward and its location, and they showed distinct firing patterns along the left and right trajectories to the goal. These responses may provide key information for goal-directed navigation, and the loss of these signals may underlie navigational impairments in subjects with RSC damage.

  7. A shared representation of the space near oneself and others in the human premotor cortex.

    Science.gov (United States)

    Brozzoli, Claudio; Gentile, Giovanni; Bergouignan, Loretxu; Ehrsson, H Henrik

    2013-09-23

    Interactions between people require shared high-level cognitive representations of action goals, intentions, and mental states, but do people also share their representation of space? The human ventral premotor (PMv) and parietal cortices contain neuronal populations coding for the execution and observation of actions, analogous to the mirror neurons identified in monkeys. This neuronal system is tuned to the location of the acting person relative to the observer and the target of the action. Therefore, it can be theorized that the observer's brain constructs a low-level, body-centered representation of the space around others similar to one's own peripersonal space representation. Single-cell recordings have reported that parietal visuotactile neurons discharge for objects near specific parts of a monkey's own body and near the corresponding body parts of another individual. In humans, no neuroimaging study has investigated this issue. Here, we identified neuronal populations in the human PMv that encode the space near both one's own hand and another person's hand. The shared peripersonal space representation could support social interactions by coding sensory events, actions, and cognitive processes in a common spatial reference frame.

  8. Encoding of social state information by neuronal activities in the macaque caudate nucleus.

    Science.gov (United States)

    Santos, Gustavo S; Nagasaka, Yasuo; Fujii, Naotaka; Nakahara, Hiroyuki

    2012-01-01

    Social animals adjust their behavior according to social relationships and momentary circumstances. Dominant-submissive relationships modulate, but do not completely determine, their competitive behaviors. For example, a submissive monkey's decision to retrieve food depends not only on the presence of dominant partners but also on their observed behavior. Thus, behavioral expression requires a dynamic evaluation of reward outcome and momentary social states. The neural mechanisms underlying this evaluation remain elusive. The caudate nucleus (CN) plays a pivotal role in representing reward expectation and translating it into action selection. To investigate whether their activities encode social state information, we recorded from CN neurons in monkeys while they performed a competitive food-grab task against a dominant competitor. We found two groups of CN neurons: one primarily responded to reward outcome, while the other primarily tracked the monkey's social state. These social state-dependent neurons showed greater activity when the monkeys freely retrieved food without active challenges from the competitor and reduced activity when the monkeys were in a submissive state due to the competitor's active behavior. These results indicate that different neuronal activities in the CN encode social state information and reward-related information, which may contribute to adjusting competitive behavior in dynamic social contexts.

  9. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Alberto Mazzoni

    2008-12-01

    Full Text Available Recordings of local field potentials (LFPs reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory-excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus-neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.

  10. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals.

    Science.gov (United States)

    Ohkura, Masamichi; Sasaki, Takuya; Sadakari, Junko; Gengyo-Ando, Keiko; Kagawa-Nagamura, Yuko; Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Imaging the activities of individual neurons with genetically encoded Ca(2+) indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca(2+) signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (F(max)/F(min) = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca(2+) imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca(2+) responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.

  11. Decision-making in the ventral premotor cortex harbinger of action

    Directory of Open Access Journals (Sweden)

    José L. ePardo-Vázquez

    2011-09-01

    Full Text Available Although the premotor cortex (PM was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor cortex (PMv, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute and evaluate the outcomes of the subjects’ choices.

  12. Premotor Diagnosis of Parkinson's Disease.

    Science.gov (United States)

    Reichmann, Heinz

    2017-08-03

    Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression may antecede these motor symptoms for years. It would be ideal, if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD). Thus, it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD, if there is a high amout of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein. This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.

  13. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  14. Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals.

    Science.gov (United States)

    Gai, Yan; Doiron, Brent; Rinzel, John

    2010-06-24

    Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise, phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR) like effect differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system, phasic models are most sensitive to the signal's rising and falling phases where the slopes are steep. This finding is consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular biological mechanism.

  15. Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals.

    Directory of Open Access Journals (Sweden)

    Yan Gai

    2010-06-01

    Full Text Available Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise, phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR like effect differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system, phasic models are most sensitive to the signal's rising and falling phases where the slopes are steep. This finding is consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular biological mechanism.

  16. Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus

    Science.gov (United States)

    Dodson, Paul D.; Larvin, Joseph T.; Duffell, James M.; Garas, Farid N.; Doig, Natalie M.; Kessaris, Nicoletta; Duguid, Ian C.; Bogacz, Rafal; Butt, Simon J.B.; Magill, Peter J.

    2015-01-01

    Summary Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. PMID:25843402

  17. Explicit encoding of multimodal percepts by single neurons in the human brain.

    Science.gov (United States)

    Quian Quiroga, Rodrigo; Kraskov, Alexander; Koch, Christof; Fried, Itzhak

    2009-08-11

    Different pictures of Marilyn Monroe can evoke the same percept, even if greatly modified as in Andy Warhol's famous portraits. But how does the brain recognize highly variable pictures as the same percept? Various studies have provided insights into how visual information is processed along the "ventral pathway," via both single-cell recordings in monkeys and functional imaging in humans. Interestingly, in humans, the same "concept" of Marilyn Monroe can be evoked with other stimulus modalities, for instance by hearing or reading her name. Brain imaging studies have identified cortical areas selective to voices and visual word forms. However, how visual, text, and sound information can elicit a unique percept is still largely unknown. By using presentations of pictures and of spoken and written names, we show that (1) single neurons in the human medial temporal lobe (MTL) respond selectively to representations of the same individual across different sensory modalities; (2) the degree of multimodal invariance increases along the hierarchical structure within the MTL; and (3) such neuronal representations can be generated within less than a day or two. These results demonstrate that single neurons can encode percepts in an explicit, selective, and invariant manner, even if evoked by different sensory modalities.

  18. Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.

    Science.gov (United States)

    Gai, Yan; Doiron, Brent; Kotak, Vibhakar; Rinzel, John

    2009-12-01

    Phasic neurons, which do not fire repetitively to steady depolarization, are found at various stages of the auditory system. Phasic neurons are commonly described as band-pass filters because they do not respond to low-frequency inputs even when the amplitude is large. However, we show that phasic neurons can encode low-frequency inputs when noise is present. With a low-threshold potassium current (I(KLT)), a phasic neuron model responds to rising and falling phases of a subthreshold low-frequency signal with white noise. When the white noise was low-pass filtered, the phasic model also responded to the signal's trough but still not to the peak. In contrast, a tonic neuron model fired mostly to the signal's peak. To test the model predictions, whole cell slice recordings were obtained in the medial (MSO) and lateral (LSO) superior olivary neurons in gerbil from postnatal day 10 (P10) to 22. The phasic MSO neurons with strong I(KLT), mostly from gerbils aged P17 or older, showed firing patterns consistent with the preceding predictions. Moreover, injecting a virtual I(KLT) into weak-phasic MSO and tonic LSO neurons with putative weak or no I(KLT) (from gerbils younger than P17) shifted the neural response from the signal's peak to the rising phase. These findings advance our knowledge about how noise gates the signal pathway and how phasic neurons encode slow envelopes of sounds with high-frequency carriers.

  19. Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input

    Directory of Open Access Journals (Sweden)

    Stephanie eRatté

    2015-01-01

    Full Text Available Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons.

  20. Injection of fully-defined signal mixtures: a novel high-throughput tool to study neuronal encoding and computations.

    Directory of Open Access Journals (Sweden)

    Vladimir Ilin

    Full Text Available Understanding of how neurons transform fluctuations of membrane potential, reflecting input activity, into spike responses, which communicate the ultimate results of single-neuron computation, is one of the central challenges for cellular and computational neuroscience. To study this transformation under controlled conditions, previous work has used a signal immersed in noise paradigm where neurons are injected with a current consisting of fluctuating noise that mimics on-going synaptic activity and a systematic signal whose transmission is studied. One limitation of this established paradigm is that it is designed to examine the encoding of only one signal under a specific, repeated condition. As a result, characterizing how encoding depends on neuronal properties, signal parameters, and the interaction of multiple inputs is cumbersome. Here we introduce a novel fully-defined signal mixture paradigm, which allows us to overcome these problems. In this paradigm, current for injection is synthetized as a sum of artificial postsynaptic currents (PSCs resulting from the activity of a large population of model presynaptic neurons. PSCs from any presynaptic neuron(s can be now considered as "signal", while the sum of all other inputs is considered as "noise". This allows us to study the encoding of a large number of different signals in a single experiment, thus dramatically increasing the throughput of data acquisition. Using this novel paradigm, we characterize the detection of excitatory and inhibitory PSCs from neuronal spike responses over a wide range of amplitudes and firing-rates. We show, that for moderately-sized neuronal populations the detectability of individual inputs is higher for excitatory than for inhibitory inputs during the 2-5 ms following PSC onset, but becomes comparable after 7-8 ms. This transient imbalance of sensitivity in favor of excitation may enhance propagation of balanced signals through neuronal networks. Finally, we

  1. Bivariate cumulative probit model for the comparison of neuronal encoding hypotheses.

    Science.gov (United States)

    Hillmann, Julia; Kneib, Thomas; Koepcke, Lena; Juárez Paz, León M; Kretzberg, Jutta

    2014-01-01

    Understanding the way stimulus properties are encoded in the nerve cell responses of sensory organs is one of the fundamental scientific questions in neurosciences. Different neuronal coding hypotheses can be compared by use of an inverse procedure called stimulus reconstruction. Here, based on different attributes of experimentally recorded neuronal responses, the values of certain stimulus properties are estimated by statistical classification methods. Comparison of stimulus reconstruction results then allows to draw conclusions about relative importance of covariate features. Since many stimulus properties have a natural order and can therefore be considered as ordinal, we introduce a bivariate ordinal probit model to obtain classifications for the combination of light intensity and velocity of a visual dot pattern based on different covariates extracted from recorded spike trains. For parameter estimation, we develop a Bayesian Gibbs sampler and incorporate penalized splines to model nonlinear effects. We compare the classification performance of different individual cell covariates and simple features of groups of neurons and find that the combination of at least two covariates increases the classification performance significantly. Furthermore, we obtain a non-linear effect for the first spike latency. The model is compared to a naïve Bayesian stimulus estimation method where it yields comparable misclassification rates for the given dataset. Hence, the bivariate ordinal probit model is shown to be a helpful tool for stimulus reconstruction particularly thanks to its flexibility with respect to the number of covariates as well as their scale and effect type. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Vertical binocular disparity is encoded implicitly within a model neuronal population tuned to horizontal disparity and orientation.

    Directory of Open Access Journals (Sweden)

    Jenny C A Read

    2010-04-01

    Full Text Available Primary visual cortex is often viewed as a "cyclopean retina", performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea, the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations.

  3. Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation

    Science.gov (United States)

    Read, Jenny C. A.

    2010-01-01

    Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations. PMID:20421992

  4. MOLECULAR-BIOLOGY OF CLOSTRIDIAL TOXINS - EXPRESSION OF MESSENGER-RNAS ENCODING TETANUS AND BOTULINUM NEUROTOXINS IN APLYSIA NEURONS

    NARCIS (Netherlands)

    MOCHIDA, S; POULAIN, B; EISEL, U; BINZ, T; KURAZONO, H; NIEMANN, H; TAUC, L

    1990-01-01

    mRNAs encoding the light chain of tetanus and botulinum neurotoxins were transcribed, in vitro, from the cloned and specifically truncated genes of Clostridium tetani and Clostridium botulinum, respectively, and injected into presynaptic identified cholinergic neurons of the buccal ganglia of

  5. MOLECULAR-BIOLOGY OF CLOSTRIDIAL TOXINS - EXPRESSION OF MESSENGER-RNAS ENCODING TETANUS AND BOTULINUM NEUROTOXINS IN APLYSIA NEURONS

    NARCIS (Netherlands)

    MOCHIDA, S; POULAIN, B; EISEL, U; BINZ, T; KURAZONO, H; NIEMANN, H; TAUC, L

    1990-01-01

    mRNAs encoding the light chain of tetanus and botulinum neurotoxins were transcribed, in vitro, from the cloned and specifically truncated genes of Clostridium tetani and Clostridium botulinum, respectively, and injected into presynaptic identified cholinergic neurons of the buccal ganglia of Aplysi

  6. Cue combination encoding via contextual modulation of V1 and V2 neurons

    Directory of Open Access Journals (Sweden)

    Zarella MD

    2016-10-01

    Full Text Available Mark D Zarella, Daniel Y Ts’o Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA Abstract: Neurons in early visual cortical areas encode the local properties of a stimulus in a number of different feature dimensions such as color, orientation, and motion. It has been shown, however, that stimuli presented well beyond the confines of the classical receptive field can augment these responses in a way that emphasizes these local attributes within the greater context of the visual scene. This mechanism imparts global information to cells that are otherwise considered local feature detectors and can potentially serve as an important foundation for surface segmentation, texture representation, and figure–ground segregation. The role of early visual cortex toward these functions remains somewhat of an enigma, as it is unclear how surface segmentation cues are integrated from multiple feature dimensions. We examined the impact of orientation- and motion-defined surface segmentation cues in V1 and V2 neurons using a stimulus in which the two features are completely separable. We find that, although some cells are modulated in a cue-invariant manner, many cells are influenced by only one cue or the other. Furthermore, cells that are modulated by both cues tend to be more strongly affected when both cues are presented together than when presented individually. These results demonstrate two mechanisms by which cue combinations can enhance salience. We find that feature-specific populations are more frequently encountered in V1, while cue additivity is more prominent in V2. These results highlight how two strongly interconnected areas at different stages in the cortical hierarchy can potentially contribute to scene segmentation. Keywords: striate, extrastriate, extraclassical, texture, segmentation

  7. Neuronal encoding of sound, gravity, and wind in the fruit fly.

    Science.gov (United States)

    Matsuo, Eriko; Kamikouchi, Azusa

    2013-04-01

    The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.

  8. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    Science.gov (United States)

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  9. The human premotor cortex is 'mirror' only for biological actions.

    Science.gov (United States)

    Tai, Yen F; Scherfler, Christoph; Brooks, David J; Sawamoto, Nobukatsu; Castiello, Umberto

    2004-01-20

    Previous work has shown that both human adults and children attend to grasping actions performed by another person but not necessarily to those made by a mechanical device. According to recent neurophysiological data, the monkey premotor cortex contains "mirror" neurons that discharge both when the monkey performs specific manual grasping actions and when it observes another individual performing the same or similar actions. However, when a human model uses tools to perform grasping actions, the mirror neurons are not activated. A similar "mirror" system has been described in humans, but whether or not it is also tuned specifically to biological actions has never been tested. Here we show that when subjects observed manual grasping actions performed by a human model a significant neural response was elicited in the left premotor cortex. This activation was not evident for the observation of grasping actions performed by a robot model commanded by an experimenter. This result indicates for the first time that in humans the mirror system is biologically tuned. This system appears to be the neural substrate for biological preference during action coding.

  10. α-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects.

    Science.gov (United States)

    Kim, Joong-Seok; Park, In-Seok; Park, Hyung-Eun; Kim, Su-Young; Yun, Jung A; Jung, Chan Kwon; Sung, Hye-Young; Lee, Jin-Kwon; Kang, Won-Kyung

    2017-01-01

    Extranigral non-motor signs precede the first motor manifestations of Parkinson's disease by many years in some patients. The presence of α-synuclein deposition within colon tissues in patients with Parkinson's disease can aid in identifying early neuropathological changes prior to disease onset. In the present study, we evaluated the roles of non-motor symptoms and signs and imaging biomarkers of nigral neuronal changes and α-synuclein accumulation in the colon. Twelve subjects undergoing colectomy for primary colon cancer were recruited for this study. Immunohistochemical staining for α-synuclein in normal and phosphorylated forms was performed in normally appearing colonic tissue. We evaluated 16 candidate premotor risk factors in this study cohort. Among them, ten subjects showed positive immunostaining with normal- and phosphorylated-α-synuclein. An accumulation of premotor markers in each subject was accompanied with positive normal- and phosphorylated-α-synuclein immunostaining, ranging from 2 to 7 markers per subject, whereas the absence of Lewy bodies in the colon was associated with relative low numbers of premotor signs. A principal component analysis and a cluster analysis of these premotor markers suggest that urinary symptoms were commonly clustered with deposition of peripheral phosphorylated-α-synuclein. Among other premotor marker, color vision abnormalities were related to non-smoking. This mathematical approach confirmed the clustering of premotor markers in preclinical stage of Parkinson's disease. This is the first report showing that α-synuclein in the colon and other premotor markers are related to each other in neurologically normal subjects.

  11. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.

  12. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval

    Science.gov (United States)

    Morikawa, Shota; Ikegaya, Yuji; Narita, Minoru; Tamura, Hideki

    2017-01-01

    Perineuronal nets (PNNs), proteoglycan-rich extracellular matrix structures, are thought to be expressed around inhibitory neurons and contribute to critical periods of brain function and synaptic plasticity. However, in some specific brain regions such as the amygdala, PNNs were predominantly expressed around excitatory neurons. These neurons were recruited during auditory fear conditioning and memory retrieval. Indeed, the activation of PNN-expressing excitatory neurons predicted cognitive performance. PMID:28378772

  13. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  14. The Novel Neuronal Ceroid Lipofuscinosis Gene MFSD8 Encodes a Putative Lysosomal Transporter

    Science.gov (United States)

    Siintola, Eija ; Topcu, Meral ; Aula, Nina ; Lohi, Hannes ; Minassian, Berge A. ; Paterson, Andrew D. ; Liu, Xiao-Qing ; Wilson, Callum ; Lahtinen, Ulla ; Anttonen, Anna-Kaisa ; Lehesjoki, Anna-Elina 

    2007-01-01

    The late-infantile–onset forms are the most genetically heterogeneous group among the autosomal recessively inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses (NCLs). The Turkish variant was initially considered to be a distinct genetic entity, with clinical presentation similar to that of other forms of late-infantile–onset NCL (LINCL), including age at onset from 2 to 7 years, epileptic seizures, psychomotor deterioration, myoclonus, loss of vision, and premature death. However, Turkish variant LINCL was recently found to be genetically heterogeneous, because mutations in two genes, CLN6 and CLN8, were identified to underlie the disease phenotype in a subset of patients. After a genomewide scan with single-nucleotide–polymorphism markers and homozygosity mapping in nine Turkish families and one Indian family, not linked to any of the known NCL loci, we mapped a novel variant LINCL locus to chromosome 4q28.1-q28.2 in five families. We identified six different mutations in the MFSD8 gene (previously denoted “MGC33302”), which encodes a novel polytopic 518–amino acid membrane protein that belongs to the major facilitator superfamily of transporter proteins. MFSD8 is expressed ubiquitously, with several alternatively spliced variants. Like the majority of the previously identified NCL proteins, MFSD8 localizes mainly to the lysosomal compartment. However, the function of MFSD8 remains to be elucidated. Analysis of the genome-scan data suggests the existence of at least three more genes in the remaining five families, further corroborating the great genetic heterogeneity of LINCLs. PMID:17564970

  15. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories.

    Science.gov (United States)

    Kim, Hyoung F; Ghazizadeh, Ali; Hikosaka, Okihide

    2014-01-01

    Dopamine (DA) neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do DA neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta) receive inputs from the same or different DA neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of DA neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of DA neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of DA neurons selectively guide learning of flexible (short-term) and stable (long-term) memories of object values.

  16. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  17. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Science.gov (United States)

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  18. A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons.

    Science.gov (United States)

    Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B

    2016-09-01

    Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function.

  19. Interaction of short-term depression and firing dynamics in shaping single neuron encoding

    Directory of Open Access Journals (Sweden)

    Ashutosh eMohan

    2013-04-01

    Full Text Available We investigated how the two properties short-term synaptic depression of afferent input and postsynaptic firing dynamics combine to determine the operating mode of a neuron. While several computational roles have been ascribed to either, their interaction has not been studied. We considered two types of short-term synaptic dynamics (release-dependent and release-independent depression and two classes of firing dynamics (regular firing and firing with spike-frequency adaptation. The input-output transformation of the four possible combinations of pre- and postsynaptic dynamics was characterized. Adapting neurons receiving input from release-dependent synapses functioned largely as coincidence detectors. The other three configurations showed properties consistent with integrators, each with distinct features. These results suggest that the operating mode of a neuron is determined by both the pre- and postsynaptic dynamics and that studying them together is necessary to understand emergent properties and their implications for neuronal coding.

  20. Networks of VTA Neurons Encode Real-Time Information about Uncertain Numbers of Actions Executed to Earn a Reward

    Directory of Open Access Journals (Sweden)

    Jesse Wood

    2017-08-01

    Full Text Available Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA. We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.

  1. Networks of VTA Neurons Encode Real-Time Information about Uncertain Numbers of Actions Executed to Earn a Reward.

    Science.gov (United States)

    Wood, Jesse; Simon, Nicholas W; Koerner, F Spencer; Kass, Robert E; Moghaddam, Bita

    2017-01-01

    Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA). We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.

  2. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  3. Dynamic properties of the action potential encoder in an insect mechanosensory neuron.

    Science.gov (United States)

    French, A S

    1984-08-01

    A variety of sensory receptors show adaptation to dynamic stimuli that can be well characterized as fractional differentiation of the input signal. The cause of this behavior is unknown, but because it can be represented by linear systems theory, it has been assumed to arise during early linear processes of transduction or adaptation, rather than during the nonlinear process of action potential encoding. I measured the action potential encoding properties of an insect mechanoreceptor by direct electrical stimulation of the sensory cell axon and found a dynamic response that is identical to the response given by mechanical stimulation. This indicates that the fractional differentiation is a property of the encoder rather than the transducer.

  4. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  5. Primate Prefrontal Neurons Encode the Association of Paired Visual Stimuli during the Pair-Association Task

    Science.gov (United States)

    Andreau, Jorge Mario; Funahashi, Shintaro

    2011-01-01

    The prefrontal cortex (PFC) is known to contribute to memory processes such as encoding representations into long-term-memory (LTM) and retrieving these representations from LTM. However, the details of the PFC's contribution to LTM processes are not well known. To examine the characteristics of the PFC's contribution to LTM processes, we analyzed…

  6. Primate Prefrontal Neurons Encode the Association of Paired Visual Stimuli during the Pair-Association Task

    Science.gov (United States)

    Andreau, Jorge Mario; Funahashi, Shintaro

    2011-01-01

    The prefrontal cortex (PFC) is known to contribute to memory processes such as encoding representations into long-term-memory (LTM) and retrieving these representations from LTM. However, the details of the PFC's contribution to LTM processes are not well known. To examine the characteristics of the PFC's contribution to LTM processes, we analyzed…

  7. Prefrontal Neurons Encode a Solution to the Credit-Assignment Problem.

    Science.gov (United States)

    Asaad, Wael F; Lauro, Peter M; Perge, János A; Eskandar, Emad N

    2017-07-19

    To adapt successfully to our environments, we must use the outcomes of our choices to guide future behavior. Critically, we must be able to correctly assign credit for any particular outcome to the causal features which preceded it. In some cases, the causal features may be immediately evident, whereas in others they may be separated in time or intermingled with irrelevant environmental stimuli, creating a potentially nontrivial credit-assignment problem. We examined the neuronal representation of information relevant for credit assignment in the dorsolateral prefrontal cortex (dlPFC) of two male rhesus macaques performing a task that elicited key aspects of this problem. We found that neurons conveyed the information necessary for credit assignment. Specifically, neuronal activity reflected both the relevant cues and outcomes at the time of feedback and did so in a manner that was stable over time, in contrast to prior reports of representational instability in the dlPFC. Furthermore, these representations were most stable early in learning, when credit assignment was most needed. When the same features were not needed for credit assignment, these neuronal representations were much weaker or absent. These results demonstrate that the activity of dlPFC neurons conforms to the basic requirements of a system that performs credit assignment, and that spiking activity can serve as a stable mechanism that links causes and effects.SIGNIFICANCE STATEMENT Credit assignment is the process by which we infer the causes of our successes and failures. We found that neuronal activity in the dorsolateral prefrontal cortex conveyed the necessary information for performing credit assignment. Importantly, while there are various potential mechanisms to retain a "trace" of the causal events over time, we observed that spiking activity was sufficiently stable to act as the link between causes and effects, in contrast to prior reports that suggested spiking representations were

  8. Head position signals used by parietal neurons to encode locations of visual stimuli.

    Science.gov (United States)

    Brotchie, P R; Andersen, R A; Snyder, L H; Goodman, S J

    1995-05-18

    The mechanism for object location in the environment, and the perception of the external world as stable when eyes, head and body are moved, have long been thought to be centred on the posterior parietal cortex. However, head position signals, and their integration with visual and eye position signals to form a representation of space referenced to the body, have never been examined in any area of the cortex. Here we show that the visual and saccadic activities of parietal neurons are strongly affected by head position. The eye and head position effects are equivalent for individual neurons, indicating that the modulation is a function of gaze direction, regardless of whether the eyes or head are used to direct gaze. These data are consistent with the idea that the posterior parietal cortex contains a distributed representation of space in body-centred coordinates.

  9. Nucleus accumbens core neurons encode value-independent associations necessary for sensory preconditioning.

    Science.gov (United States)

    Cerri, Domenic H; Saddoris, Michael P; Carelli, Regina M

    2014-10-01

    Reinforcement-based learning models predict that the strength of association between cues and outcomes is driven by aspects of outcome value. However, animals routinely make associations between contingent stimuli in the world, even if those associations hold no value to the organism. At the neural level, the nucleus accumbens (NAc) is known to encode associative information, but it is not known whether this encoding is specific for value-based information (consistent with reinforcement-based models) or if the NAc additionally plays a more general role in forming predictive associations, independent of outcome value. To test this, we employed a sensory preconditioning (SPC) task where rats initially (Preconditioning) received either contingent pairings of 2 neutral stimuli (e.g., tone [A] and light [X]; "Paired"), or random noncontingent presentations ("Unpaired"). After cue X was subsequently conditioned with food (First-Order Conditioning), the effect of preconditioning was assessed in Phase 3 (Test) by presentations of cue A alone. Electrophysiological recordings from the NAc core showed significant increases in phasic encoding for the stimuli in the Paired (but not Unpaired) condition as well as during test. Further, these effects were only seen in Paired rats that showed successful behavior during test (Good Learners), but not those who did not (Poor Learners) or Unpaired controls. These findings reveal a role for the NAc in the encoding of associative contingencies independent of value, and suggest that this structure also plays a more general role in forming associations necessary for predictive behavior. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Mahmut [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey); Laboratory of Neurophysics and Physiology, UMR 8119 CNRS, Universite Paris Descartes, 45 rue des Saint-Peres, 75006 Paris (France)], E-mail: mahmutozer2002@yahoo.com; Uzuntarla, Muhammet [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey); Kayikcioglu, Temel [Karadeniz Technical University, Department of Electrical and Electronics Engineering, Trabzon (Turkey); Graham, Lyle J. [Laboratory of Neurophysics and Physiology, UMR 8119 CNRS, Universite Paris Descartes, 45 rue des Saint-Peres, 75006 Paris (France)

    2008-10-20

    We study the collective temporal coherence of a small-world network of coupled stochastic Hodgkin-Huxley neurons. Previous reports have shown that network coherence in response to a subthreshold periodic stimulus, thus subthreshold signal encoding, is maximal for a specific range of the fraction of randomly added shortcuts relative to all possible shortcuts, p, added to an initially locally connected network. We investigated this behavior further as a function of channel noise, stimulus frequency and coupling strength. We show that temporal coherence peaks when the frequency of the external stimulus matches that of the intrinsic subthreshold oscillations. We also find that large values of the channel noise, corresponding to small cell sizes, increases coherence for optimal values of the stimulus frequency and the topology parameter p. For smaller values of the channel noise, thus larger cell sizes, network coherence becomes insensitive to these parameters. Finally, the degree of coupling between neurons in the network modulates the sensitivity of coherence to topology, such that for stronger coupling the peak coherence is achieved with fewer added short cuts.

  11. A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons.

    Directory of Open Access Journals (Sweden)

    Jianjie Mi

    Full Text Available Filament bundles (rods of cofilin and actin (1:1 form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30-60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.

  12. Differential activation of the lateral premotor cortex during action observation

    Directory of Open Access Journals (Sweden)

    Stark Rudolf

    2010-07-01

    Full Text Available Abstract Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice in ballroom dancing and the visual viewpoint (internal vs. external viewpoint influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

  13. Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Alaburda, Aidas; Hounsgaard, Jørn Dybkjær

    2013-01-01

    Intrinsic response properties of neurons change during network activity. These changes may reinforce the initiation of particular forms of network activity. If so, the involvement of neurons in particular behaviors in multifunctional networks could be determined by up or down regulation...... of their intrinsic excitability. Here we employed an experimental paradigm of protracted scratch initiation in the integrated carapace-spinal cord preparation of adult turtles (Chrysemys scripta elegans). The protracted initiation of scratch network activity allows us to investigate the excitability of motoneurons...... and pre-motor network activity in the time interval from the start of sensory stimulation until the onset of scratch activity. Our results suggest that increased activity in the pre-motor network facilitates the onset of scratch episodes but does not change the excitability of motoneurons at the onset...

  14. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  15. Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment.

    Science.gov (United States)

    Craciunas, Sorin C; Brooks, William M; Nudo, Randolph J; Popescu, Elena A; Choi, In-Young; Lee, Phil; Yeh, Hung-Wen; Savage, Cary R; Cirstea, Carmen M

    2013-06-01

    Although functional imaging and neurophysiological approaches reveal alterations in motor and premotor areas after stroke, insights into neurobiological events underlying these alterations are limited in human studies. We tested whether cerebral metabolites related to neuronal and glial compartments are altered in the hand representation in bilateral motor and premotor areas and correlated with distal and proximal arm motor impairment in hemiparetic persons. In 20 participants at >6 months postonset of a subcortical ischemic stroke and 16 age- and sex-matched healthy controls, the concentrations of N-acetylaspartate and myo-inositol were quantified by proton magnetic resonance spectroscopy. Regions of interest identified by functional magnetic resonance imaging included primary (M1), dorsal premotor (PMd), and supplementary (SMA) motor areas. Relationships between metabolite concentrations and distal (hand) and proximal (shoulder/elbow) motor impairment using Fugl-Meyer Upper Extremity (FMUE) subscores were explored. N-Acetylaspartate was lower in M1 (P = .04) and SMA (P = .004) and myo-inositol was higher in M1 (P = .003) and PMd (P = .03) in the injured (ipsilesional) hemisphere after stroke compared with the left hemisphere in controls. N-Acetylaspartate in ipsilesional M1 was positively correlated with hand FMUE subscores (P = .04). Significant positive correlations were also found between N-acetylaspartate in ipsilesional M1, PMd, and SMA and in contralesional M1 and shoulder/elbow FMUE subscores (P = .02, .01, .02, and .02, respectively). Our preliminary results demonstrated that proton magnetic resonance spectroscopy is a sensitive method to quantify relevant neuronal changes in spared motor cortex after stroke and consequently increase our knowledge of the factors leading from these changes to arm motor impairment.

  16. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    Science.gov (United States)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  17. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  18. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    Science.gov (United States)

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  19. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).

    Science.gov (United States)

    Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin

    2016-11-30

    Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate.

  20. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  1. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  2. The Mirror Neuron System: A Fresh View

    Science.gov (United States)

    Casile, Antonino; Caggiano, Vittorio; Ferrari, Pier Francesco

    2013-01-01

    Mirror neurons are a class of visuomotor neurons in the monkey premotor and parietal cortices that discharge during the execution and observation of goal-directed motor acts. They are deemed to be at the basis of primates’ social abilities. In this review, the authors provide a fresh view about two still open questions about mirror neurons. The first question is their possible functional role. By reviewing recent neurophysiological data, the authors suggest that mirror neurons might represent a flexible system that encodes observed actions in terms of several behaviorally relevant features. The second question concerns the possible developmental mechanisms responsible for their initial emergence. To provide a possible answer to question, the authors review two different aspects of sensorimotor development: facial and hand movements, respectively. The authors suggest that possibly two different “mirror” systems might underlie the development of action understanding and imitative abilities in the two cases. More specifically, a possibly prewired system already present at birth but shaped by the social environment might underlie the early development of facial imitative abilities. On the contrary, an experience-dependent system might subserve perception-action couplings in the case of hand movements. The development of this latter system might be critically dependent on the observation of own movements. PMID:21467305

  3. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice

    Directory of Open Access Journals (Sweden)

    Henry Lütcke

    2010-04-01

    Full Text Available Fluorescent calcium (Ca2+ indicator proteins (FCIPs are promising tools for functional imaging of cellular activity in living animals. However, they have still not reached their full potential for in vivo imaging of neuronal activity due to limitations in expression levels, dynamic range, and sensitivity for reporting action potentials. Here, we report that viral expression of the ratiometric Ca2+ sensor yellow cameleon 3.60 (YC3.60 in pyramidal neurons of mouse barrel cortex enables in vivo measurement of neuronal activity with high dynamic range and sensitivity across multiple spatial scales. By combining juxtacellular recordings and two-photon imaging in vitro and in vivo, we demonstrate that YC3.60 can resolve single action potential (AP-evoked Ca2+ transients and reliably reports bursts of APs with negligible saturation. Spontaneous and whisker-evoked Ca2+ transients were detected in individual apical dendrites and somata as well as in local neuronal populations. Moreover, bulk measurements using wide-field imaging or fiber-optics revealed sensory-evoked YC3.60 signals in large areas of the barrel field. Fiber-optic recordings in particular enabled measurements in awake, freely moving mice and revealed complex Ca2+ dynamics, possibly reflecting different behavior-related brain states. Viral expression of YC3.60 - in combination with various optical techniques - thus opens a multitude of opportunities for functional studies of the neural basis of animal behavior, from dendrites to the levels of local and large-scale neuronal populations.

  4. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism.

    Directory of Open Access Journals (Sweden)

    Simon Edvardson

    Full Text Available Parkinson disease is caused by neuronal loss in the substantia nigra which manifests by abnormality of movement, muscle tone, and postural stability. Several genes have been implicated in the pathogenesis of Parkinson disease, but the underlying molecular basis is still unknown for ∼70% of the patients. Using homozygosity mapping and whole exome sequencing we identified a deleterious mutation in DNAJC6 in two patients with juvenile parkinsonism. The mutation was associated with abnormal transcripts and marked reduced DNAJC6 mRNA level. DNAJC6 encodes the HSP40 Auxilin, a protein which is selectively expressed in neurons and confers specificity to the ATPase activity of its partner Hcs70 in clathrin uncoating. In Auxilin null mice it was previously shown that the abnormally increased retention of assembled clathrin on vesicles and in empty cages leads to impaired synaptic vesicle recycling and perturbed clathrin mediated endocytosis. Endocytosis function, studied by transferring uptake, was normal in fibroblasts from our patients, likely because of the presence of another J-domain containing partner which co-chaperones Hsc70-mediated uncoating activity in non-neuronal cells. The present report underscores the importance of the endocytic/lysosomal pathway in the pathogenesis of Parkinson disease and other forms of parkinsonism.

  5. Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (macaca mulatta).

    Science.gov (United States)

    Distler, Claudia; Hoffmann, Klaus-Peter

    2015-11-01

    The dorsal premotor cortex (PMd) is part of the cortical network for arm movements during reach-related behavior. Here we investigate the neuronal projections from the PMd to the midbrain superior colliculus (SC), which also contains reach-related neurons, to investigate how the SC integrates into a cortico-subcortical network responsible for initiation and modulation of goal-directed arm movements. By using anterograde transport of neuronal tracers, we found that the PMd projects most strongly to the deep layers of the lateral part of the SC and the underlying reticular formation corresponding to locations where reach-related neurons have been recorded, and from where descending tectofugal projections arise. A somewhat weaker projection targets the intermediate layers of the SC. By contrast, terminals originating from prearcuate area 8 mainly project to the intermediate layers of the SC. Thus, this projection pattern strengthens the view that different compartments in the SC are involved in the control of gaze and in the control or modulation of reaching movements. The PMD-SC projection assists in the participation of the SC in the skeletomotor system and provides the PMd with a parallel path to elicit forelimb movements.

  6. Differential encoding of information about progress through multi-trial reward schedules by three groups of ventral striatal neurons.

    Science.gov (United States)

    Shidara, Munetaka; Richmond, Barry J

    2004-07-01

    In the course of daily activity we continually judge whether the goal sought is worth the work that must be done to obtain it. The ventral striatum is thought to play a central role in making such judgments. When reward schedules are used to investigate these judgments ventral striatum neurons show responses near the time of the cue, the bar-release, and/or the reward delivery. We evaluated the type of coding that occurs at these three time points by using codes or factorizations with: (1) two states for reward versus non-reward, (2) four states for the progress in the reward schedule, and (3) six states for all of the states of the schedule, quantified using information theory and ANOVA. For the bar-release- and reward-related responses the percent variance explained was as high for the two states code as with the six states code. The information for the four state code rose slightly but significantly for the bar-release-related neurons. For the cue-related neurons the code with six states carried more information than the simpler codes. Thus, responses at different times appear to play different roles. Responses occurring early in trials differentiate all states, i.e., the path to a reward, whereas those late in trials code knowledge of impending reward.

  7. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty.

    Science.gov (United States)

    Carnevale, Federico; de Lafuente, Victor; Romo, Ranulfo; Barak, Omri; Parga, Néstor

    2015-05-20

    Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.

  8. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  9. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  10. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  11. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879

  12. Haploinsufficiency of Dmxl2, Encoding a Synaptic Protein, Causes Infertility Associated with a Loss of GnRH Neurons in Mouse

    Science.gov (United States)

    Jacquier, Sandrine; Csaba, Zsolt; Genin, Emmanuelle; Meyer, Vincent; Leka, Sofia; Dupont, Joelle; Charles, Perrine; Chevenne, Didier; Carel, Jean-Claude; Léger, Juliane; de Roux, Nicolas

    2014-01-01

    Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological

  13. Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse.

    Directory of Open Access Journals (Sweden)

    Brooke Tata

    2014-09-01

    Full Text Available Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH and follicle-stimulating hormone (FSH within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a

  14. Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse.

    Science.gov (United States)

    Tata, Brooke; Huijbregts, Lukas; Jacquier, Sandrine; Csaba, Zsolt; Genin, Emmanuelle; Meyer, Vincent; Leka, Sofia; Dupont, Joelle; Charles, Perrine; Chevenne, Didier; Carel, Jean-Claude; Léger, Juliane; de Roux, Nicolas

    2014-09-01

    Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological

  15. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis.

    Science.gov (United States)

    Boassa, Daniela; Berlanga, Monica L; Yang, Mary Ann; Terada, Masako; Hu, Junru; Bushong, Eric A; Hwang, Minju; Masliah, Eliezer; George, Julia M; Ellisman, Mark H

    2013-02-06

    Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinson's disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.

  16. Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: Implications for Parkinson’s disease pathogenesis

    Science.gov (United States)

    Boassa, D.; Berlanga, M.L.; Yang, M.-L.; Terada, M.; Hu, J.; Bushong, E.A.; Hwang, M.; Masliah, E.; George, J.M.; Ellisman, M.H.

    2013-01-01

    Modifications to the gene encoding human alpha-synuclein have been linked to development of Parkinson’s disease. The highly conserved structure of alpha-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human alpha-synuclein including new genetic tags developed for correlated LM and EM (the tetracysteine-biarsenical labeling system or the new fluorescent protein for EM, MiniSOG), we determined the distribution of alpha-synuclein when over-expressed in primary neurons at supramolecular and cellular scales, in three dimensions (3D). We observed specific association of alpha-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, alpha-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice over-expressing human alpha-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. 3D electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulo-vesicular structures similar to what observed in vitro. We propose that alpha-synuclein over-expression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that alpha- synuclein is involved in processes associated with the sorting, channeling, packaging and transport of synaptic material destined for degradation. PMID:23392688

  17. SK channels modulate the excitability and firing precision of projection neurons in the robust nucleus of the arcopallium in adult male zebra finches

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Hou; Xuan Pan; Cong-Shu Liao; Song-Hua Wang; Dong-Feng Li

    2012-01-01

    [Objective] Motor control is encoded by neuronal activity.Small conductance Ca2+-activated Kˉ channels (SK channels) maintain the regularity and precision of firing by contributing to the afterhyperpolarization (AHP) of the action potential in mammals.However,it is not clear how SK channels regulate the output of the vocal motor system in songbirds.The premotor robust nucleus of the arcopallium (RA) in the zebra finch is responsible for the output of song information.The temporal pattern of spike bursts in RA projection neurons is associated with the timing of the acoustic features of birdsong.[Methods] The firing properties of RA projection neurons were analyzed using patch clamp wholecell and cell-attached recording techniques.[Results] SK channel blockade by apamin decreased the AHP amplitude and increased the evoked firing rate in RA projection neurons.It also caused reductions in the regularity and precision of firing.RA projection neurons displayed regular spontaneous action potentials,while apamin caused irregular spontaneous firing but had no effect on the firing rate.In the absence of synaptic inputs,RA projection neurons still had spontaneous firing,and apamin had an evident effect on the firing rate,but caused no significant change in the firing regularity,compared with apamin application in the presence of synaptic inputs.[Conclusion]SK channels contribute to the maintenance of firing regularity in RA projection neurons whichrequires synaptic activity,and consequently ensures the precision of song encoding.

  18. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex.

    Science.gov (United States)

    Chambers, Christopher D; Bellgrove, Mark A; Gould, Ian C; English, Therese; Garavan, Hugh; McNaught, Elizabeth; Kamke, Marc; Mattingley, Jason B

    2007-12-01

    Intelligent behavior depends on the ability to suppress inappropriate actions and resolve interference between competing responses. Recent clinical and neuroimaging evidence has demonstrated the involvement of prefrontal, parietal, and premotor areas during behaviors that emphasize conflict and inhibition. It remains unclear, however, whether discrete subregions within this network are crucial for overseeing more specific inhibitory demands. Here we probed the functional specialization of human prefrontal cortex by combining repetitive transcranial magnetic stimulation (rTMS) with integrated behavioral measures of response inhibition (stop-signal task) and response competition (flanker task). Participants undertook a combined stop-signal/flanker task after rTMS of the inferior frontal gyrus (IFG) or dorsal premotor cortex (dPM) in each hemisphere. Stimulation of the right IFG impaired stop-signal inhibition under conditions of heightened response competition but did not influence the ability to suppress a competing response. In contrast, stimulation of the right dPM facilitated execution but had no effect on inhibition. Neither of these results was observed during rTMS of corresponding left-hemisphere regions. Overall, our findings are consistent with existing evidence that the right IFG is crucial for inhibitory control. The observed double dissociation of neurodisruptive effects between the right IFG and right dPM further implies that response inhibition and execution rely on distinct neural processes despite activating a common cortical network.

  19. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  20. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.

    NARCIS (Netherlands)

    Munchau, A.; Bloem, B.R.; Irlbacher, K.; Trimble, M.R.; Rothwell, J.C.

    2002-01-01

    Connections between the premotor cortex and the primary motor cortex are dense and are important in the visual guidance of arm movements. We have shown previously that it is possible to engage these connections in humans and to measure the net amount of inhibition/facilitation from premotor to motor

  1. Premotor biomarkers for Parkinson's disease - a promising direction of research

    Directory of Open Access Journals (Sweden)

    Haas Brian R

    2012-05-01

    Full Text Available Abstract The second most serious neurodegenerative disease is Parkinson’s disease (PD. Over the past several decades, a strong body of evidence suggests that PD can begin years before the hallmark clinical motor symptoms appear. Biomarkers for PD are urgently needed to differentiate between neurodegenerative disorders, screen novel therapeutics, and predict eventual clinical PD before the onset of symptoms. Some clinical evaluations and neuroimaging techniques have been developed in the last several years with some success in this area. Moreover, other strategies have been utilized to identify biochemical and genetic markers associated with PD leading to the examination of PD progression and pathogenesis in cerebrospinal fluid, blood, or saliva. Finally, interesting results are surfacing from preliminary studies using known PD-associated genetic mutations to assess potential premotor PD biomarkers. The current review highlights recent advances and underscores areas of potential advancement.

  2. What we know currently about mirror neurons.

    Science.gov (United States)

    Kilner, J M; Lemon, R N

    2013-12-02

    Mirror neurons were discovered over twenty years ago in the ventral premotor region F5 of the macaque monkey. Since their discovery much has been written about these neurons, both in the scientific literature and in the popular press. They have been proposed to be the neuronal substrate underlying a vast array of different functions. Indeed so much has been written about mirror neurons that last year they were referred to, rightly or wrongly, as "The most hyped concept in neuroscience". Here we try to cut through some of this hyperbole and review what is currently known (and not known) about mirror neurons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  4. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    M. T. Tadaiesky

    2010-01-01

    Full Text Available A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease.

  5. Effective connectivity analysis demonstrates involvement of premotor cortex during speech perception.

    Science.gov (United States)

    Osnes, Berge; Hugdahl, Kenneth; Specht, Karsten

    2011-02-01

    Several reports of premotor cortex involvement in speech perception have been put forward. Still, the functional role of premotor cortex is under debate. In order to investigate the functional role of premotor cortex, we presented parametrically varied speech stimuli in both a behavioral and functional magnetic resonance imaging (fMRI) study. White noise was transformed over seven distinct steps into a speech sound and presented to the participants in a randomized order. As control condition served the same transformation from white noise into a music instrument sound. The fMRI data were modelled with Dynamic Causal Modeling (DCM) where the effective connectivity between Heschl's gyrus, planum temporale, superior temporal sulcus and premotor cortex were tested. The fMRI results revealed a graded increase in activation in the left superior temporal sulcus. Premotor cortex activity was only present at an intermediate step when the speech sounds became identifiable but were still distorted but was not present when the speech sounds were clearly perceivable. A Bayesian model selection procedure favored a model that contained significant interconnections between Heschl's gyrus, planum temporal, and superior temporal sulcus when processing speech sounds. In addition, bidirectional connections between premotor cortex and superior temporal sulcus and from planum temporale to premotor cortex were significant. Processing non-speech sounds initiated no significant connections to premotor cortex. Since the highest level of motor activity was observed only when processing identifiable sounds with incomplete phonological information, it is concluded that premotor cortex is not generally necessary for speech perception but may facilitate interpreting a sound as speech when the acoustic input is sparse.

  6. Use of genetically encoded calcium indicators (GECIs combined with advanced motion tracking techniques to examine the behavior of neurons and glia in the enteric nervous system of the intact murine colon

    Directory of Open Access Journals (Sweden)

    Grant Willem Hennig

    2015-11-01

    Full Text Available Genetically encoded Ca2+ indicators (GECIs have been used extensively in many body systems to detect Ca2+ transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca2+ indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors. We developed several GCaMP3 mice: 1 Wnt1-GCaMP3, all enteric neurons and glia; 2 GFAP-GCaMP3, enteric glia; 3 nNOS-GaMP3, enteric nitrergic neurons, and 4 ChAT-GCaMP3, enteric cholinergic neurons. These mice allowed us to study the behavior of the enteric neurons in the intact colon maintained at a physiological temperature, especially during the colonic migrating motor complex (CMMC, using low power Ca2+ imaging. In this preliminary study, we observed neuronal and glial cell Ca2+ transients in specific cells in both the myenteric and submucous plexus in all of the transgenic mice variants. The number of cells that could be simultaneously imaged at low power (100-1000 active cells through the undissected gut required advanced motion tracking and analysis routines. The pattern of Ca2+ transients in myenteric neurons showed significant differences in response to spontaneous, oral or anal stimulation. Brief anal elongation or mucosal stimulation, which evokes a CMMC, were the most effective stimuli and elicited a powerful synchronized and prolonged burst of Ca2+ transients in many myenteric neurons, especially when compared with the same neurons during a spontaneous CMMC. In contrast, oral elongation, which normally inhibits CMMCs, appeared to suppress Ca2+ transients some of the neurons active during a spontaneous or an anally evoked CMMC. The activity in glial networks appeared to follow neural

  7. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Siebner, Hartwig R; Hulme, Oliver J

    2014-01-01

    ), lateral premotor cortex (lPM), supplementary motor area (SMA) and primary motor cortex (M1). Dynamic causal modelling was used to characterize task-related oscillatory coupling between prefrontal and premotor cortical areas. Healthy participants showed task-induced coupling from PFC to SMA, which...... was modulated within the γ-band. In the OFF state, PD patients did not express any frequency-specific coupling between prefrontal and premotor areas. Application of levodopa reinstated task-related coupling from PFC to SMA, which was expressed as high-β-γ coupling. Additionally, strong within-frequency γ...

  8. Transcallosal connection patterns of opposite dorsal premotor regions support a lateralized specialization for action and perception

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R. E.; de Jong, Bauke M.

    Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information

  9. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  10. Mirror neurons and mirror systems in monkeys and humans.

    Science.gov (United States)

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  11. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  12. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat

    Directory of Open Access Journals (Sweden)

    Kurt F Ahrens

    2012-03-01

    Full Text Available A fluorescent voltage sensor protein Flare was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular visual crescent in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo.

  14. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat

    Science.gov (United States)

    Ahrens, Kurt F.; Heider, Barbara; Lee, Hanson; Isacoff, Ehud Y.; Siegel, Ralph M.

    2012-01-01

    A fluorescent voltage sensor protein “Flare” was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular region of visual cortex in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo. PMID:22461770

  15. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    Science.gov (United States)

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  16. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Science.gov (United States)

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of

  17. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Directory of Open Access Journals (Sweden)

    Yuki Itakura

    Full Text Available Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs. Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons, that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs. We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged

  18. Nerve growth factor treatment of sensory neuron primary cultures causes elevated levels of the mRNA encoding the ATP synthase beta-subunit as detected by a novel PCR-based differential cloning method.

    Science.gov (United States)

    Kendall, G; Ensor, E; Crankson, H D; Latchman, D S

    1996-03-01

    The mRNA encoding the rat ATP synthase beta-subunit was rapidly induced by nerve growth factor, within 60 min, in cultured adult rat dorsal root ganglion neurons. ATP synthase beta-subunit cDNA clones were isolated from a lambda library. The library was constructed using rat dorsal root ganglion mRNA that was differentially screened with cDNA-derived probes from untreated and nerve-growth-factor-treated primary cultures of adult rat dorsal root ganglion sensory neurons. Radiolabelled probes were made from submicrogram quantities of RNA, by a novel PCR-based technique, which allows small amounts of primary tissue to be used for library screening. The use of this technique in isolating novel differentially expressed mRNAs is discussed.

  19. Cardiovascular physiology in premotor Parkinson's disease: a neuroepidemiologic study.

    Science.gov (United States)

    Jain, Samay; Ton, Thanh G; Perera, Subashan; Zheng, Yan; Stein, Phyllis K; Thacker, Evan; Strotmeyer, Elsa S; Newman, Anne B; Longstreth, Will T

    2012-07-01

    Changes in cardiovascular physiology in Parkinson's disease (PD) are common and may occur prior to diagnostic parkinsonian motor signs. We investigated associations of electrocardiographic (ECG) abnormalities, orthostasis, heart rate variability, and carotid stenosis with the risk of PD diagnosis in the Cardiovascular Health Study, a community-based cohort of older adults. ECG abnormality, orthostasis (symptomatic or asymptomatic), heart rate variability (24-hour Holter monitoring), and any carotid stenosis (≥1%) by ultrasound were modeled as primary predictors of incident PD diagnosis using multivariable logistic regression. Incident PD cases were identified by at least 1 of the following: self-report, antiparkinsonian medication use, and ICD-9. If unadjusted models were significant, they were adjusted or stratified by age, sex, and smoking status, and those in which predictors were still significant (P ≤ .05) were also adjusted for race, diabetes, total cholesterol, low-density lipoprotein, blood pressure, body mass index, physical activity, education level, stroke, and C-reactive protein. Of 5888 participants, 154 incident PD cases were identified over 14 years of follow-up. After adjusting models with all covariates, those with any ECG abnormality (odds ratio [OR], 1.45; 95% CI, 1.02-2.07; P = .04) or any carotid stenosis (OR, 2.40; 95% CI, 1.40-4.09; P = .001) at baseline had a higher risk of incident PD diagnosis. Orthostasis and heart rate variability were not significant predictors. This exploratory study suggests that carotid stenosis and ECG abnormalities occur prior to motor signs in PD, thus serving as potential premotor features or risk factors for PD diagnosis. Replication is needed in a population with more thorough ascertainment of PD onset.

  20. Writer's cramp: increased dorsal premotor activity during intended writing.

    Science.gov (United States)

    Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan

    2013-03-01

    Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing.

  1. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  2. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron.

    Science.gov (United States)

    Luthman, Johannes; Hoebeek, Freek E; Maex, Reinoud; Davey, Neil; Adams, Rod; De Zeeuw, Chris I; Steuber, Volker

    2011-12-01

    Neurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.

  3. The importance of premotor cortex for supporting speech production after left capsular-putaminal damage.

    Science.gov (United States)

    Seghier, Mohamed L; Bagdasaryan, Juliana; Jung, Dorit E; Price, Cathy J

    2014-10-22

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. Copyright © 2014 Seghier et al.

  4. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    NARCIS (Netherlands)

    J. Luthman (Johannes); F.E. Hoebeek (Freek); R. Maex (Reinoud); N. Davey (Neil); R. Adams (Rod); C.I. de Zeeuw (Chris); V. Steuber (Volker)

    2011-01-01

    textabstractNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is

  5. Mirror Neurons in Humans: Consisting or Confounding Evidence?

    Science.gov (United States)

    Turella, Luca; Pierno, Andrea C.; Tubaldi, Federico; Castiello, Umberto

    2009-01-01

    The widely known discovery of mirror neurons in macaques shows that premotor and parietal cortical areas are not only involved in executing one's own movement, but are also active when observing the action of others. The goal of this essay is to critically evaluate the substance of functional magnetic resonance imaging (fMRI) and positron emission…

  6. Mirror Neurons in Humans: Consisting or Confounding Evidence?

    Science.gov (United States)

    Turella, Luca; Pierno, Andrea C.; Tubaldi, Federico; Castiello, Umberto

    2009-01-01

    The widely known discovery of mirror neurons in macaques shows that premotor and parietal cortical areas are not only involved in executing one's own movement, but are also active when observing the action of others. The goal of this essay is to critically evaluate the substance of functional magnetic resonance imaging (fMRI) and positron emission…

  7. Haploinsufficiency of Dmxl2, Encoding a Synaptic Protein, Causes Infertility Associated with a Loss of GnRH Neurons in Mouse

    OpenAIRE

    Brooke Tata; Lukas Huijbregts; Sandrine Jacquier; Zsolt Csaba; Emmanuelle Genin; Vincent Meyer; Sofia Leka; Joelle Dupont; Perrine Charles; Didier Chevenne; Jean-Claude Carel; Juliane Léger; Nicolas Roux

    2014-01-01

    International audience; Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and rep...

  8. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    Science.gov (United States)

    Márkus, Nóra M; Hasel, Philip; Qiu, Jing; Bell, Karen F S; Heron, Samuel; Kind, Peter C; Dando, Owen; Simpson, T Ian; Hardingham, Giles E

    2016-01-01

    Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  9. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    Directory of Open Access Journals (Sweden)

    Nóra M Márkus

    Full Text Available Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs, however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes, differing neuronal subtype (CA3 vs. CA1 hippocampus and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  10. Regulation of Notch-mediated transcription by a bovine herpesvirus 1 encoded protein (ORF2) that is expressed in latently infected sensory neurons.

    Science.gov (United States)

    Liu, Yilin; Jones, Clinton

    2016-08-01

    Bovine herpesvirus 1 (BoHV-1) is an Alphaherpesvirinae subfamily member that establishes life-long latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed during latency. An LR mutant virus containing stop codons at the amino-terminus of open reading frame (ORF)2 does not reactivate from latency and replicates less efficiently in tonsils and trigeminal ganglia. ORF2 inhibits apoptosis, interacts with Notch family members, and interferes with Notch-dependent transcription suggesting ORF2 expression enhances survival of infected neurons. The Notch signaling pathway is crucial for neuronal differentiation and survival suggesting that interactions between ORF2 and Notch family members regulate certain aspects of latency. Consequently, for this study, we compared whether ORF2 interfered with the four mammalian Notch family members. ORF2 consistently interfered with Notch1-3-mediated transactivation of three cellular promoters. Conversely, Notch4-mediated transcription was not consistently inhibited by ORF2. Electrophoretic shift mobility assays using four copies of a consensus-DNA binding site for Notch/CSL (core binding factor (CBF)-1, Suppressor of Hairless, Lag-2) as a probe revealed ORF2 interfered with Notch1 and 3 interactions with a CSL family member bound to DNA. Additional studies demonstrated ORF2 enhances neurite sprouting in mouse neuroblastoma cells that express Notch1-3, but not Notch4. Collectively, these studies indicate that ORF2 inhibits Notch-mediated transcription and signaling by interfering with Notch interacting with CSL bound to DNA.

  11. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube.

    Science.gov (United States)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore; Hedderich, Marie; Parain, Karine; Van Driessche, Benoit; Brandão, Karina De Oliveira; Kricha, Sadia; Jorgensen, Mette C; Grapin-Botton, Anne; Serup, Palle; Van Lint, Carine; Perron, Muriel; Pieler, Tomas; Henningfeld, Kristine A; Bellefroid, Eric J

    2014-02-15

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.

  12. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram;

    2014-01-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive...

  13. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  14. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    2009-01-01

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  15. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie

    2010-01-01

    In 19 healthy volunteers, we used transcranial magnetic stimulation (TMS) to probe the excitability in pathways linking the left dorsal premotor cortex and right primary motor cortex and those linking the left and right motor cortex during the response delay and the reaction time period while sub...

  16. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    DEFF Research Database (Denmark)

    Michael, John; Sandberg, Kristian; Skewes, Joshua

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used offline continuous theta-burst stimulation (cTBS) to investigate...

  17. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right-handed ...

  18. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    DEFF Research Database (Denmark)

    Michael, John; Sandberg, Kristian; Skewes, Joshua

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used offline continuous theta-burst stimulation (cTBS) to investigate t...

  19. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Lim Qing-En

    2010-01-01

    Full Text Available Abstract Background Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs, β-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions. Results Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder. Conclusions The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes

  20. [What mirror neurons have revealed: revisited].

    Science.gov (United States)

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  1. Decreased premotor cortex volume in victims of urban violence with posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Vanessa Rocha-Rego

    Full Text Available BACKGROUND: Studies addressing posttraumatic stress disorder (PTSD have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? METHODOLOGY/PRINCIPAL FINDINGS: Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. CONCLUSIONS: Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events.

  2. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex.

    Science.gov (United States)

    Callan, Daniel E; Jones, Jeffery A; Callan, Akiko

    2014-01-01

    Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action ("Mirror System" properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with

  3. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study.

    Science.gov (United States)

    Grafton, S T; Fagg, A H; Arbib, M A

    1998-02-01

    Positron emission tomography (PET) brain mapping was used to investigate whether or not human dorsal premotor cortex is involved in selecting motor acts based on arbitrary visual stimuli. Normal subjects performed four movement selection tasks. A manipulandum with three graspable stations was used. An imperative visual cue (LEDs illuminated in random order) indicated which station to grasp next with no instructional delay period. In a power task, a large aperture power grip was used for all trials, irrespective of the LED color. In a precision task, a pincer grasp of thumb and index finger was used. In a conditional task, the type of grasp (power or precision) was randomly determined by LED color. Comparison of the conditional selection task versus the average of the power and precision tasks revealed increased blood flow in left dorsal premotor cortex and superior parietal lobule. The average rate of producing the different grasp types and transport to the manipulandum stations was equivalent across this comparison, minimizing the contribution of movement attributes such as planning the individual movements (as distinct from planning associated with use of instructional stimuli), kinematics, or direction of target or limb movement. A comparison of all three movement tasks versus a rest task identified movement related activity involving a large area of central, precentral and postcentral cortex. In the region of the precentral sulcus movement related activity was located immediately caudal to the area activated during selection. The results establish a role for human dorsal premotor cortex and superior parietal cortex in selecting stimulus guided movements and suggest functional segregation within dorsal premotor cortex.

  4. Exploring the contributions of premotor and parietal cortex to spatial compatibility using image-guided TMS.

    Science.gov (United States)

    Koski, Lisa; Molnar-Szakacs, Istvan; Iacoboni, Marco

    2005-01-15

    Functional brain imaging studies have demonstrated increased activity in dorsal premotor and posterior parietal cortex when performing spatial stimulus-response compatibility tasks (SRC). We tested the specific role of these regions in stimulus-response mapping using single-pulse transcranial magnetic stimulation (TMS). Subjects were scanned using functional magnetic resonance imaging (fMRI) prior to the TMS session during performance of a task in which spatial compatibility was manipulated. For each subject, the area of increased signal within the regions of interest was registered onto their own high-resolution T1-weighted anatomic scan. TMS was applied to these areas for each subject using a frameless stereotaxic system. Task accuracy and reaction time (RT) were measured during blocks of compatible or incompatible trials and during blocks of real TMS or sham stimulation. On each trial, a single TMS pulse was delivered at 50, 100, 150, or 200 ms after the onset of the stimulus in the left or right visual field. TMS over the left premotor cortex produced various facilitatory effects, depending on the timing of the stimulation. At short intervals, TMS appeared to prime the left dorsal premotor cortex to select a right-hand response more quickly, regardless of stimulus-response compatibility. The strongest effect of stimulation, however, occurred at the 200-ms interval, when TMS facilitated left-hand responses during the incompatible condition. Facilitation of attention to the contralateral visual hemifield was observed during stimulation over the parietal locations. We conclude that the left premotor cortex is one of the cortical regions responsible for overriding automatic stimulus-response associations.

  5. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  6. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  7. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward.

    Science.gov (United States)

    Shimada, Sotaro; Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-03-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock-Paper-Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player's success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness.

  8. Mapping the flow of information within the putative mirror neuron system during gesture observation

    NARCIS (Netherlands)

    Schippers, Marleen B.; Keysers, Christian

    2011-01-01

    The putative mirror neuron system may either function as a strict feed-forward system or as a dynamic control system. A strict feed-forward system would predict that action observation leads to a predominantly temporal -> parietal -> premotor flow of information in which a visual representation is t

  9. Mirror Neurons, the Representation of Word meaning, and the Foot of the Third Left Frontal Convolution

    Science.gov (United States)

    de Zubicaray, Greig; Postle, Natasha; McMahon, Katie; Meredith, Matthew; Ashton, Roderick

    2010-01-01

    Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror…

  10. Mirror Neurons, the Representation of Word meaning, and the Foot of the Third Left Frontal Convolution

    Science.gov (United States)

    de Zubicaray, Greig; Postle, Natasha; McMahon, Katie; Meredith, Matthew; Ashton, Roderick

    2010-01-01

    Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror…

  11. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    Science.gov (United States)

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  12. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    Science.gov (United States)

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  13. Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    were common to repetition in both modalities. We thus obtained three seed regions: the bilateral pre-SMA, left dorsal premotor cortex (PMd), and left ventral premotor cortex that were used to test 63 different models of effective connectivity in the premotor network for pseudoword relative to word...... repetition. The optimal model was identified with Bayesian model selection and reflected a network with driving input to pre-SMA and an increase in facilitatory drive from pre-SMA to PMd during repetition of pseudowords. The task-specific increase in effective connectivity from pre-SMA to left PMd suggests...... that the pre-SMA plays a supervisory role in the generation and subsequent sequencing of motor plans. Diffusion tensor imaging-based fiber tracking in another group of healthy volunteers showed that the functional connection between both regions is underpinned by a direct cortico-cortical anatomical connection....

  14. Effect of moxonidine on putative sympathetic neurons in the rostral ventrolateral medulla of the rat.

    Science.gov (United States)

    Granata, Antonio R

    2004-01-01

    We used an intracellular recording technique in vitro to investigate the effects of moxonidine on neurons in the rostral ventrolateral medulla (RVLM) with electrophysiological properties similar to premotor sympathetic neurons in vivo. These neurons were classified as firing regularly and irregularly, according to previous reports. Moxonidine is a sympathoinhibitory and antihypertensive agent that is thought to be a ligand of alpha(2)-adrenergic receptors and imidazoline type-1 receptors in the RVLM. Moxonidine (2-10 microM) was applied to the perfusate on 4 irregularly firing neurons, and 2 regularly firing neurons. Moxonidine (2 microM) produced only minor depolarization in 2 of these neurons. However, on 4 tested neurons, moxonidine (10 microM) elicited a profound inhibitory effect with hyperpolarization (near -20 mV); these neurons practically ceased firing. These changes were partially reversible. The results would indicate that neurons in the RVLM, recorded in vitro and with similar electrophysiological characteristics to a group of neurons previously identified in vivo in the same bulbar region as barosensitive premotor sympathetic neurons, can be modulated by imidazoline-derivative adrenergic agonists. These results could help to understand the hypotensive effects of moxonidine.

  15. Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery.

    Science.gov (United States)

    Schubotz, Ricarda I; von Cramon, D Yves

    2004-06-16

    Activation triggered by either observed or imagined actions suggests that the ventral premotor cortex (PMv) provides an action vocabulary that allows us to detect and anticipate basically invariant perceptual states in observed actions. In the present study, we tested the hypothesis that the same PMv region is also recruited by nonbiological (abstract) stimulus sequences as long as the temporal order of stimuli has to be processed. Using functional magnetic resonance imaging, we instructed participants to assess expected outcomes in observed actions [external biological cues (EB)], motor imagery [internal biological cues (IB)], or geometrical figure sequences [external nonbiological cues (EN)]. As hypothesized, we found that each condition elicited significant activation within PMv [left hemisphere, Brodman Area (BA) 6], in contrast to a sequential target detection control task. In addition, cue-specific activations were identified in areas that were only engaged for biologically (action) cued (EB, IB) and nonbiologically cued (EN) tasks. Biologically cued tasks elicited activations within inferior frontal gyri adjacent to PMv (BA 44/45), in the frontomedian wall, the extrastriate body area, posterior superior temporal sulci, somatosensory cortices, and the amygdala-hippocampal-area, whereas the nonbiologically cued task engaged presupplementary motor area, middle frontal gyri, intraparietal sulci, and caudate nuclei of the basal ganglia. In sum, findings point to a basic premotor contribution to the representation or processing of sequentially structured events, supplemented by different sets of areas in the context of either biological or nonbiological cues.

  16. MEG premotor abnormalities in children with Asperger's syndrome: determinants of social behavior?

    Science.gov (United States)

    Hauswald, Anne; Weisz, Nathan; Bentin, Shlomo; Kissler, Johanna

    2013-07-01

    Children with Asperger's syndrome show deficits in social functioning while their intellectual and language development is intact suggesting a specific dysfunction in mechanisms mediating social cognition. An action observation/execution matching system might be one such mechanism. Recent studies indeed showed that electrophysiological modulation of the "Mu-rhythm" in the 10-12Hz range is weaker when individuals with Asperger's syndrome observe actions performed by others compared to controls. However, electrophysiological studies typically fall short in revealing the neural generators of this activity. To fill this gap we assessed magnetoencephalographic Mu-modulations in Asperger's and typically developed children, while observing grasping movements. Mu-power increased at frontal and central sensors during movement observation. This modulation was stronger in typical than in Asperger children. Source localization revealed stronger sources in premotor cortex, the intraparietal lobule (IPL) and the mid-occipito-temporal gyrus (MOTG) and weaker sources in prefrontal cortex in typical participants compared to Asperger. Activity in premotor regions, IPL and MOTG correlated positively with social competence, whereas prefrontal Mu-sources correlated negatively with social competence. No correlation with intellectual ability was found at any of these sites. These findings localize abnormal Mu-activity in the brain of Asperger children providing evidence which associates motor-system abnormalities with social-function deficits.

  17. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2015-10-01

    Full Text Available Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG during stabilized and normal walking.Subjects walked on a treadmill in two conditions, each lasting 10 minutes; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e. lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability.

  18. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain.

    Science.gov (United States)

    Gibson, Erin M; Purger, David; Mount, Christopher W; Goldstein, Andrea K; Lin, Grant L; Wood, Lauren S; Inema, Ingrid; Miller, Sarah E; Bieri, Gregor; Zuchero, J Bradley; Barres, Ben A; Woo, Pamelyn J; Vogel, Hannes; Monje, Michelle

    2014-05-01

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.

  20. Imaging calcium in neurons.

    Science.gov (United States)

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  1. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division

    DEFF Research Database (Denmark)

    Petersen, Peter C; Vestergaard, Mikkel; Reveles Jensen, Kristian

    2014-01-01

    Direct measurements of synaptic inhibition (I) and excitation (E) to spinal motoneurons can provide an important insight into the organization of premotor networks. Such measurements of flexor motoneurons participating in motor patterns in turtles have recently demonstrated strong concurrent E an...

  2. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement

    NARCIS (Netherlands)

    Potgieser, A. R. E.; de Jong, B. M.

    2011-01-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in th

  3. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement

    NARCIS (Netherlands)

    Potgieser, A. R. E.; de Jong, B. M.

    2011-01-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in th

  4. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal...

  5. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Marco eZanon

    2013-11-01

    Full Text Available The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG. Towards this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 msec to about 200 msec after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 msec after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 msec. Finally, a likely rebounding activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans.

  6. Modulatory Effects of the Ipsi and Contralateral Ventral Premotor Cortex (PMv) on the Primary Motor Cortex (M1) Outputs to Intrinsic Hand and Forearm Muscles in Cebus apella.

    Science.gov (United States)

    Quessy, Stephan; Côté, Sandrine L; Hamadjida, Adjia; Deffeyes, Joan; Dancause, Numa

    2016-10-01

    The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles. © The Author 2016. Published by Oxford University Press.

  7. Anatomical and functional pathways of rhythmogenic inspiratory premotor information flow originating in the pre-Bötzinger complex in the rat medulla.

    Science.gov (United States)

    Koshiya, N; Oku, Y; Yokota, S; Oyamada, Y; Yasui, Y; Okada, Y

    2014-05-30

    The pre-Bötzinger complex (preBötC) of the ventrolateral medulla is the kernel for inspiratory rhythm generation. However, it is not fully understood how inspiratory neural activity is generated in the preBötC and propagates to other medullary regions. We analyzed the detailed anatomical connectivity to and from the preBötC and functional aspects of the inspiratory information propagation from the preBötC on the transverse plane of the medulla oblongata. Tract-tracing with immunohistochemistry in young adult rats demonstrated that neurokinin-1 receptor- and somatostatin-immunoreactive neurons in the preBötC, which could be involved in respiratory rhythmogenesis, are embedded in the plexus of axons originating in the contralateral preBötC. By voltage-imaging in rhythmically active slices of neonatal rats, we analyzed origination and propagation of inspiratory neural activity as depolarizing wave dynamics on the entire transverse plane as well as within the preBötC. Novel combination of pharmacological blockade of glutamatergic transmission and mathematical subtraction of the video images under blockade from the control images enabled to extract glutamatergic signal propagations. By ultra-high-speed voltage-imaging we first demonstrated the inter-preBötC conduction process of inspiratory action potentials. Intra-preBötC imaging with high spatiotemporal resolution during a single spontaneous inspiratory cycle unveiled deterministic nonlinearities, i.e., chaos, in the population recruitment. Collectively, we comprehensively elucidated the anatomical pathways to and from the preBötC and dynamics of inspiratory neural information propagation: (1) From the preBötC in one side to the contralateral preBötC, which would synchronize the bilateral rhythmogenic kernels, (2) from the preBötC directly to the bilateral hypoglossal premotor and motor areas as well as to the nuclei tractus solitarius, and (3) from the hypoglossal premotor areas toward the hypoglossal

  8. Kappe neurons, a novel population of olfactory sensory neurons

    Science.gov (United States)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  9. Neurally Encoding Time for Olfactory Navigation.

    Directory of Open Access Journals (Sweden)

    In Jun Park

    2016-01-01

    Full Text Available Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.

  10. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    Science.gov (United States)

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  11. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation.

    Science.gov (United States)

    Thioux, Marc; Keysers, Christian

    2015-01-15

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modeling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject's capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others' actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The mirror neuron system and the strange case of Broca's area.

    Science.gov (United States)

    Cerri, Gabriella; Cabinio, Monia; Blasi, Valeria; Borroni, Paola; Iadanza, Antonella; Fava, Enrica; Fornia, Luca; Ferpozzi, Valentina; Riva, Marco; Casarotti, Alessandra; Martinelli Boneschi, Filippo; Falini, Andrea; Bello, Lorenzo

    2015-03-01

    Mirror neurons, originally described in the monkey premotor area F5, are embedded in a frontoparietal network for action execution and observation. A similar Mirror Neuron System (MNS) exists in humans, including precentral gyrus, inferior parietal lobule, and superior temporal sulcus. Controversial is the inclusion of Broca's area, as homologous to F5, a relevant issue in light of the mirror hypothesis of language evolution, which postulates a key role of Broca's area in action/speech perception/production. We assess "mirror" properties of this area by combining neuroimaging and intraoperative neurophysiological techniques. Our results show that Broca's area is minimally involved in action observation and has no motor output on hand or phonoarticulatory muscles, challenging its inclusion in the MNS. The presence of these functions in premotor BA6 makes this area the likely homologue of F5 suggesting that the MNS may be involved in the representation of articulatory rather than semantic components of speech. © 2014 Wiley Periodicals, Inc.

  13. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J;

    2009-01-01

    OBJECTIVE: In macaques, intracortical electrical stimulation of ventral premotor cortex (PMv) can modulate ipsilateral primary motor cortex (M1) excitability at short interstimulus intervals (ISIs). METHODS: Adopting the same conditioning-test approach, we used bifocal transcranial magnetic...

  14. Role of human premotor dorsal region in learning a conditional visuomotor task.

    Science.gov (United States)

    Parikh, Pranav J; Santello, Marco

    2017-01-01

    Conditional learning is an important component of our everyday activities (e.g., handling a phone or sorting work files) and requires identification of the arbitrary stimulus, accurate selection of the motor response, monitoring of the response, and storing in memory of the stimulus-response association for future recall. Learning this type of conditional visuomotor task appears to engage the premotor dorsal region (PMd). However, the extent to which PMd might be involved in specific or all processes of conditional learning is not well understood. Using transcranial magnetic stimulation (TMS), we demonstrate the role of human PMd in specific stages of learning of a novel conditional visuomotor task that required subjects to identify object center of mass using a color cue and to apply appropriate torque on the object at lift onset to minimize tilt. TMS over PMd, but not vertex, increased error in torque exerted on the object during the learning trials. Analyses of digit position and forces further revealed that the slowing in conditional visuomotor learning resulted from impaired monitoring of the object orientation during lift, rather than stimulus identification, thus compromising the ability to accurately reduce performance error across trials. Importantly, TMS over PMd did not alter production of torque based on the recall of learned color-torque associations. We conclude that the role of PMd for conditional learning is highly sensitive to the stage of learning visuomotor associations.

  15. Psychosocial risk factors, pre-motor symptoms and first-time hospitalization with Parkinson's disease

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Ritz, B; Prescott, E;

    2013-01-01

    BACKGROUND AND PURPOSE: Experimental studies support a link between stress and development of parkinsonian symptoms, but prospective population studies are lacking. The aim of the current study is to determine the effects of several psychosocial factors on the risk of Parkinson's disease (PD), as...... PD. Vital exhaustion may be useful for screening aimed at early detection and when considering disease-modifying therapies in people at high risk of clinical PD.......BACKGROUND AND PURPOSE: Experimental studies support a link between stress and development of parkinsonian symptoms, but prospective population studies are lacking. The aim of the current study is to determine the effects of several psychosocial factors on the risk of Parkinson's disease (PD......), as well as to identify potential pre-motor symptoms for PD in a large prospective cohort study. METHODS: In 1991-1993, a total of 9955 women and men free of PD from the Copenhagen City Heart Study were asked about major life events, economic hardship, social network, impaired sleep and vital exhaustion...

  16. Modulation of physiological mirror activity with transcranial direct current stimulation over dorsal premotor cortex.

    Science.gov (United States)

    Beaulé, Vincent; Tremblay, Sara; Lafleur, Louis-Philippe; Ferland, Marie C; Lepage, Jean-François; Théoret, Hugo

    2016-11-01

    Humans have a natural tendency towards symmetrical movements, which rely on a distributed cortical network that allows for complex unimanual movements. Studies on healthy humans using rTMS have shown that disruption of this network, and particularly the dorsal premotor cortex (dPMC), can result in increased physiological mirror movements. The aim of the present set of experiments was to further investigate the role of dPMC in restricting motor output to the contralateral hand and determine whether physiological mirror movements could be decreased in healthy individuals. Physiological mirror movements were assessed before and after transcranial direct current stimulation (tDCS) over right and left dPMC in three conditions: bilateral, unilateral left and unilateral right stimulation. Mirror EMG activity was assessed immediately before, 0, 10 and 20 min after tDCS. Results show that physiological mirroring increased significantly in the hand ipsilateral to cathodal stimulation during bilateral stimulation of the dPMC, 10 and 20 min after stimulation compared to baseline. There was no significant modulation of physiological mirroring in the hand ipsilateral to anodal stimulation in the bilateral condition or following unilateral anodal or unilateral cathodal stimulation. The present data further implicate the dPMC in the control of unimanual hand movements and show that physiological mirroring can be increased but not decreased with dPMC tDCS.

  17. Reduced parietal connectivity with a premotor writing area in writer's cramp.

    Science.gov (United States)

    Delnooz, Cathérine C S; Helmich, Rick C; Toni, Ivan; van de Warrenburg, Bart P C

    2012-09-15

    Writer's cramp is a task-specific form of dystonia with symptoms characterized by abnormal movements and postures of the hand and arm evident only during writing. Its pathophysiology has been related to faulty sensorimotor integration, abnormal sensory processing, and impaired motor planning. Its symptoms might appear when the computational load of writing pushes a tonically altered circuit outside its operational range. Using resting-state fMRI, we tested whether writer's cramp patients have altered intrinsic functional connectivity in the premotor-parietal circuit. Sixteen patients with right-sided writer's cramp and 19 control subjects were studied. We show that writer's cramp patients have reduced connectivity between the superior parietal lobule and a dorsal precentral region that controls writing movements. This difference between patients and controls occurred in the absence of writing and only in the hemisphere contralateral to the affected hand. This finding adds a novel element to the pathophysiological substrate for writer's cramp, namely, task-independent alterations within a writing-related circuit.

  18. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference.

  19. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients.

    Science.gov (United States)

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P

    2013-03-01

    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  20. Risk of premotor symptoms in patients with newly diagnosed PD: a nationwide, population-based, case-control study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Wu

    Full Text Available To evaluate the risk of premotor symptoms, namely rapid eye movement behavior disorder (RBD, constipation, and depression among patients with newly diagnosed Parkinson disease (PD.A total of 705 PD patients and 2,820 control subjects were selected from the Taiwan National Health Insurance Research Database. Patients were traced back for a maximum of 14 years to determine the diagnoses of RBD, depression, and constipation. Logistic regression analysis was used to identify risk of premotor symptoms for PD. Moreover, subgroup analyses were performed by dividing the patients into a middle-age onset group (≤ 64 years and an old-age onset group (≥ 65 years. The associations between these premotor symptoms and age of PD onset were further examined.An association was found between a history of premotor symptoms and newly diagnosed PD in which a high occurrence of premotor symptoms was identified in PD patients as compared to selected controls (4.3% vs. 1.2% for RBD, 40.4% vs. 24.0% for constipation, and 13.0% vs. 5.1% for depression. The strength of this association remained statistically significant after adjustment for potential confounders (3.69 fold risk for RBD, 2.36 for constipation, and 2.82 for depression, all p < 0.0001. The average interval between premotor symptoms and PD ranged from 4.5 to 6.2 years. RBD and depression carried higher risks for PD in the middle-age onset group than in the old-age onset group (7.20- vs. 2.24-fold risk for RBD, 6.06 vs. 1.40 for depression.The prevalence of premotor symptoms was higher among the PD patients than in the controls. Premotor symptoms appeared to be associated with a higher risk for PD in subjects with an earlier age of onset.

  1. Intraoperative identification of the negative motor network during awake surgery to prevent deficit following brain resection in premotor regions.

    Science.gov (United States)

    Rech, F; Duffau, H; Pinelli, C; Masson, A; Roublot, P; Billy-Jacques, A; Brissart, H; Civit, T

    2017-06-01

    Surgical resection in premotor areas can lead to supplementary motor area syndrome as well as a permanent deficit. However, recent findings suggest a putative role of the negative motor network in those dysfunctions. Our objective was to compare the functional results in two groups of adult patients who underwent the resection of a frontal glioma with and without resection of the negative motor networks. Twelve patients (total of 13 surgeries) were selected for awake surgery for a frontal glioma. Negative motor responses were monitored during surgery at the cortical and subcortical levels. Sites eliciting negative motor responses were first identified then spared (n=8) or removed (n=5) upon oncological requirements. In the group with removal of the negative motor network (n=5), all patients presented a complete supplementary motor area syndrome with akinesia and mutism. At 3months, they all presented bimanual coordination dysfunction and fine movement disorders. In the group with preservation of the negative motor network (n=8), all patients presented transient and slight disorders of speech or upper limb, they all recovered completely at 3months. The negative motor network is a part of a modulatory motor network involved in the occurrence of the supplementary motor area syndrome and the permanent deficit after resection in premotor areas. Then, intraoperative functional cortico-subcortical mapping using direct electrostimulation under awake surgery seems mandatory to avoid deficit in bimanual coordination and fine movements during surgery in premotor areas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy.

    Science.gov (United States)

    Chen, Joyce L; Schlaug, Gottfried

    2016-03-16

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery.

  3. Interaction between the premotor processes of eye and hand movements: possible mechanism underlying eye-hand coordination.

    Science.gov (United States)

    Hiraoka, Koichi; Kurata, Naoatsu; Sakaguchi, Masato; Nonaka, Kengo; Matsumoto, Naoto

    2014-03-01

    Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye-hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye-hand coordination tasks during which both processes proceed.

  4. 帕金森病运动前期研究进展%Premotor Phase of Early Parkinson Disease (review)

    Institute of Scientific and Technical Information of China (English)

    焦淑军; 袁红

    2011-01-01

    Clinical, neuroimaging, and pathologic studies suggested that a variety of nonmotor symptoms, such as olfactory dysfunction, dysautonomia, and mood and sleep disorders, can precede the typic motor features of Parkinson disease (PD) by years and, perhaps, even decades.The period when these symptoms arise can be referred as the premotor phase of the disease.This paper reviewed the conception, clinical manifestation, pathology, diogose of the premotor phase of early Parkinson disease.%临床症状学及神经影像学、病理学的资料均提示各种帕金森病(PD)非运动症状(NMS),如嗅觉障碍、自主神经机能异常、情感障碍、睡眠紊乱等,先于运动症状出现数年至十数年,这段时期称为运动前期(premotor phase).本文对帕金森病运动前期概念、临床表现、病理基础、诊断的研究进展做一综述.

  5. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy

    Science.gov (United States)

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  6. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube

    DEFF Research Database (Denmark)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore

    2014-01-01

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing gene...... and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube....... and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural...... tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic...

  7. Neurons Are Recruited to a Memory Trace Based on Relative Neuronal Excitability Immediately before Training

    NARCIS (Netherlands)

    A.P. Yiu (Adelaide); V. Mercaldo (Valentina); C. Yan (Chen); B. Richards (Blake); M.U. Rashid (Muhammad); H.L. Hsiang (Hwa); J. Pressey (Jessica); V. Mahadevan (Vivek); M.M. Tran (Matthew); S.A. Kushner (Steven); M.A. Woodin (Melanie); P.W. Frankland (Paul); S.A. Josselyn (Sheena)

    2014-01-01

    textabstractMemories are thought to be sparsely encoded in neuronal networks, but little is known about why a given neuron is recruited or allocated to a particular memory trace. Previous research shows that in the lateral amygdala (LA), neurons with increased CREB are selectively recruited to a fea

  8. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  9. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  10. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.

    Science.gov (United States)

    Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg

    2015-01-21

    Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans.

  11. Cardiovascular physiology in pre-motor Parkinson disease: A Neuroepidemiologic study

    Science.gov (United States)

    Jain, S; Ton, TG; Perera, S; Zheng, Y; Stein, PK; Thacker, EL; Strotmeyer, ES; Newman, AB; Longstreth, WT

    2013-01-01

    Background Changes in cardiovascular physiology in PD are common and may occur prior to diagnostic Parkinsonian motor signs. We investigated associations of electrocardiographic (ECG) abnormalities, orthostasis, heart rate variability or carotid stenosis with the risk of Parkinson disease (PD) diagnosis in the Cardiovascular Health Study, a community-based cohort of older adults. Methods ECG abnormality, orthostasis (symptomatic or asymptomatic), heart rate variability (24-hour Holter monitoring) or any carotid stenosis (≥1%) by ultrasound were modeled as primary predictors for incident PD diagnosis using multivariable logistic regression. Incident PD cases were identified by at least one of the following: self-report, anti-Parkinsonian medication use, or ICD9. If unadjusted models were significant, they were adjusted or stratified for age, sex and smoking status and those in which predictors were still significant (p≤0.05) were additionally adjusted for race, diabetes, total cholesterol, low density lipoprotein, blood pressure, body mass index, physical activity, education level, stroke and C-reactive protein. Results Of 5,888 participants, 154 incident PD cases were identified over 14 years of follow-up. After adjusting models with all covariates, those with any ECG abnormality (Odds Ratio: 1.45, 95% CI: 1.02-2.07,p=0.04) or any carotid stenosis (OR: 2.40, 95% CI (1.40-4.09,p=0.001) at baseline had a higher risk of incident PD diagnosis. Orthostasis and heart rate variability were not significant predictors. Conclusions This exploratory study suggests that carotid stenosis and ECG abnormalities occur prior to motor signs in PD, thus serving as potential pre-motor features or risk factors for PD diagnosis. Replication is needed in a population with more thorough ascertainment of PD onset. PMID:22700356

  12. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  13. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B.

    Directory of Open Access Journals (Sweden)

    Marco eLanzilotto

    2015-01-01

    Full Text Available The Supplementary Eye Field (SEF and the Frontal Eye Field (FEF have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance and during the execution of a visual fixation task (VFT. In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey’s head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze

  14. Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex.

    Science.gov (United States)

    Mochizuki, Hitoshi; Huang, Ying-Zu; Rothwell, John C

    2004-11-15

    We used transcranial magnetic stimulation (TMS) in a paired pulse protocol to investigate interhemispheric interactions between the right dorsal premotor (dPM) and left primary motor cortex (M1) using interstimulus intervals of 4, 6, 8, 10, 12, 16 and 20 ms in ten healthy subjects. A conditioning stimulus over right dPM at an intensity of either 90 or 110% resting motor threshold (RMT) suppressed motor-evoked potentials (MEPs) evoked in the first dorsal interosseous (FDI) muscle by stimulation of left M1. Maximum effects occurred for interstimulus intervals (ISIs) of 8-10 ms. There was no effect if the conditioning stimulus was applied 2.5 cm lateral, anterior or medial to dPM. The effect differed from previously described M1 interhemispheric inhibition in that the threshold for the latter was greater than 90% RMT, whereas stimulation of the dPM at the same intensity led to significant inhibition. In addition, voluntary contraction of the left FDI (i.e. contralateral to the conditioning TMS) enhanced interhemispheric inhibition from right M1 but had no effect on the inhibition from right dPM. Finally, conditioning to right dPM at 90% RMT reduced short-interval intracortical inhibition (SICI; at ISI = 2 ms) in left M1 whilst there was no effect if the conditioning stimulus was applied to right M1. We conclude that conditioning TMS over dPM has effects that differ from the previous pattern of interhemispheric inhibition described between bilateral M1s. This may reflect the existence of commissural fibres between dPM and contralateral M1 that may play a role in bimanual coordination.

  15. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Science.gov (United States)

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  16. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    Science.gov (United States)

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for.

  17. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    Institute of Scientific and Technical Information of China (English)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands,we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers.We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence.Furthermoremore,the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same,regardless of the neuron numbers in the neuronal networks.Therefore for all the neuronal networks with different neuron numbers in the brain,relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding.

  18. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism.

    Science.gov (United States)

    van Nuenen, Bart F L; Helmich, Rick C; Ferraye, Murielle; Thaler, Avner; Hendler, Talma; Orr-Urtreger, Avi; Mirelman, Anat; Bressman, Susan; Marder, Karen S; Giladi, Nir; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan

    2012-12-01

    Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's disease, namely carriers of a leucine-rich repeat kinase 2-G2019S mutation associated with dominantly inherited parkinsonism. Functional magnetic resonance imaging was used to examine cerebral activity evoked during internal selection of motor representations, a core motor deficit in clinically overt Parkinson's disease. Thirty-nine healthy first-degree relatives of Ashkenazi Jewish patients with Parkinson's disease, who carry the leucine-rich repeat kinase 2-G2019S mutation, participated in this study. Twenty-one carriers of the leucine-rich repeat kinase 2-G2019S mutation and 18 non-carriers of this mutation were engaged in a motor imagery task (laterality judgements of left or right hands) known to be sensitive to motor control parameters. Behavioural performance of both groups was matched. Mutation carriers and non-carriers were equally sensitive to the extent and biomechanical constraints of the imagined movements in relation to the current posture of the participants' hands. Cerebral activity differed between groups, such that leucine-rich repeat kinase 2-G2019S carriers had reduced imagery-related activity in the right caudate nucleus and increased activity in the right dorsal premotor cortex. More severe striatal impairment was associated with stronger effective connectivity between the right dorsal premotor cortex and the right extrastriate body area. These findings suggest that altered movement-related activity in the caudate nuclei of leucine-rich repeat kinase 2-G2019S carriers might remain behaviourally latent by virtue of cortical compensatory mechanisms involving long-range connectivity between the dorsal premotor cortex and posterior sensory regions. These

  19. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    Science.gov (United States)

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  20. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Science.gov (United States)

    Batista, Larissa M.; Nogueira, Lídia L. R. F.; de Oliveira, Eliane A.; de Carvalho, Antonio G. C.; Lima, Soriano S.; Santana, Jordânia R. M.; de Lima, Emerson C. C.; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561). PMID:28250992

  1. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Andrade, Suellen M; Batista, Larissa M; Nogueira, Lídia L R F; de Oliveira, Eliane A; de Carvalho, Antonio G C; Lima, Soriano S; Santana, Jordânia R M; de Lima, Emerson C C; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561).

  2. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  3. Neuronal avalanches in spontaneous activity in vivo.

    Science.gov (United States)

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  4. Reflections of other minds: how primate social cognition can inform the function of mirror neurons

    Science.gov (United States)

    Lyons, Derek E; Santos, Laurie R; Keil, Frank C

    2006-01-01

    Mirror neurons, located in the premotor cortex of macaque monkeys, are activated both by the performance and the passive observation of particular goal-directed actions. Although this property would seem to make them the ideal neural substrate for imitation, the puzzling fact is that monkeys simply do not imitate. Indeed, imitation appears to be a uniquely human ability. We are thus left with a fascinating question: if not imitation, what are mirror neurons for? Recent advances in the study of non-human primate social cognition suggest a surprising potential answer. PMID:16564687

  5. Mapping the flow of information within the putative mirror neuron system during gesture observation.

    Science.gov (United States)

    Schippers, Marleen B; Keysers, Christian

    2011-07-01

    The putative mirror neuron system may either function as a strict feed-forward system or as a dynamic control system. A strict feed-forward system would predict that action observation leads to a predominantly temporal→parietal→premotor flow of information in which a visual representation is transformed into motor-programs which contribute to action understanding. Instead, a dynamic feedback control system would predict that the reverse direction of information flow predominates because of a combination of inhibitory forward and excitatory inverse models. Here we test which of these conflicting predictions best matches the information flow within the putative mirror neuron system (pMNS) and between the pMNS and the rest of the brain during the observation of comparatively long naturalistic stretches of communicative gestures. We used Granger causality to test the dominant direction of influence. Our results fit the predictions of the dynamic feedback control system: we found predominantly an information flow within the pMNS from premotor to parietal and middle temporal cortices. This is more pronounced during an active guessing task than while passively reviewing the same gestures. In particular, the ventral premotor cortex sends significantly more information to other pMNS areas than it receives during active guessing than during passive observation.

  6. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-10-15

    Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands.

  7. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement.

    Science.gov (United States)

    Potgieser, A R E; de Jong, B M

    2011-12-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in the left (dominant) hemisphere. Pilot observations suggested that distal movements are particularly implicated in cursive writing with the right hand and proximal movements in left-hand writing, which generated ideas concerning hemisphere-specific roles of PMv and dorsal premotor cortex (PMd). Now we examined upper-limb movements in 30 right-handed participants during right- and left-hand writing, respectively. Quantitative description of distal and proximal movements demonstrated a significant difference between movements in right- and left-hand writing (pwriting with the right hand, while proximal and distal movements similarly contributed to left-hand writing. Although differences between non-language drawings were not tested, we propose that the DME in right-hand writing may reflect functional dominance of PMv in the left hemisphere. More proximal movements in left-hand writing might be related to PMd dominance in right-hemisphere motor control, logically implicated in spatial visuomotor transformations as seen in reaching.

  8. Mirror Neurons in a New World Monkey, Common Marmoset.

    Science.gov (United States)

    Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka

    2015-01-01

    Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using "in vivo" connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic "mirror" properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution.

  9. The neuronal code for number.

    Science.gov (United States)

    Nieder, Andreas

    2016-06-01

    Humans and non-human primates share an elemental quantification system that resides in a dedicated neural network in the parietal and frontal lobes. In this cortical network, 'number neurons' encode the number of elements in a set, its cardinality or numerosity, irrespective of stimulus appearance across sensory motor systems, and from both spatial and temporal presentation arrays. After numbers have been extracted from sensory input, they need to be processed to support goal-directed behaviour. Studying number neurons provides insights into how information is maintained in working memory and transformed in tasks that require rule-based decisions. Beyond an understanding of how cardinal numbers are encoded, number processing provides a window into the neuronal mechanisms of high-level brain functions.

  10. [Mirror neurons--novel data on the neurobiology of intersubjectivity].

    Science.gov (United States)

    Simon, Mária; Herold, Róbert; Fekete, Sándor; Tényi, Tamás

    2007-01-01

    Social experiences are largely intersubjective in nature, offering an abundance of pre-reflective, simulative knowledge of others' subjective experiences. In the last decades, special mirror neurons have been found in the premotor area and in the posterior parietal cortex. They directly link perception to action: the perception of actions activates the relevant parts of the observer's motor system. Emotional expressions evoke resonance states inside the observer in a similar way. Besides underscoring the prereflective and implicit nature of intersubjectivity, this can provide an access to the neuronal basis of empathy and intuition. Moreover, a new integration of psychoanalysis and neuroscience seems to be possible, which shifts the psychoanalytic technique toward non-verbal and non-interpretative methods, and can explain psychoanalytic phenomena, such as introjection, projection, transference, counter-transference, and the very complex enactments.

  11. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  12. A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Sang Seok Yeo; Sung Ho Jang

    2012-01-01

    Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.

  13. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    Science.gov (United States)

    Ward, Nick S.; Bestmann, Sven; Hartwigsen, Gesa; Weiss, Michael M.; Christensen, Lars O.D.; Frackowiak, Richard S.J.; Rothwell, John C.; Siebner, Hartwig R.

    2013-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals we applied 30 minutes of low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented one second before the target. On 20% of trials the cue was invalid requiring subjects to re-adjust their motor plan according to the target location. Compared to sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute towards dynamic control of actions, and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance. PMID:20610756

  14. Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia.

    Science.gov (United States)

    Halsband, U; Schmitt, J; Weyers, M; Binkofski, F; Grützner, G; Freund, H J

    2001-01-01

    We compared gesture comprehension and imitation in patients with lesions in the left parietal lobe (LPAR, n=5) and premotor cortex/supplementary motor area (LPMA, n=8) in patients with damage to the right parietal lobe (RPAR, n=6) and right premotor/supplementary motor area (RPMA, n=6) and in 16 non-brain damaged control subjects. Three patients with left parietal lobe damage had aphasia. Subjects were shown 136 meaningful pantomimed motor acts on a videoscreen and were asked to identify the movements and to imitate the motor acts from memory with their ipsilesional and contralesional hand or with both hands simultaneously. Motor tasks included gestures without object use (e.g. to salute, to wave) pantomimed imitation of gestures on one's own body (e.g. to comb one's hair) and pantomimed imitation of motor acts which imply tool use to an object in extrapersonal space (e.g. to hammer a nail). Videotaped test performance was analysed by two independent raters; errors were classified as spatial errors, body part as object, parapraxic performance and non-identifiable movements. In addition, action discrimination was tested by evaluating whether a complex motor sequence was correctly performed. Results indicate that LPAR patients were most severely disturbed when imitation performance was assessed. Interestingly, LPAR patients were worse when imitating gestures on their own bodies than imitating movements with reference to an external object use with most pronounced deficits in the spatial domain. In contrast to imitation, comprehension was not or only slightly disturbed and no clear correlation was found between the severity of imitation deficits and gesture comprehension. Moreover, although the three patients with aphasia imitated the movements more poorly than non-aphasic LPAR patients, the severity of comprehension errors did not differ. Whereas unimanual imitating performance and gesture comprehension of PMA patients did not differ significantly from control

  15. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    Science.gov (United States)

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  16. Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord.

    Science.gov (United States)

    Kargo, William J; Giszter, Simon F

    2008-03-05

    Complex actions may arise by combining simple motor primitives. Our studies support individual premotor drive pulses or bursts as execution primitives in spinal cord. Alternatively, the fundamental execution primitives at the segmental level could be time-varying synergies. To distinguish these hypotheses, we examined sensory feedback effects during targeted wiping organized in spinal cord. This behavior comprises three bursts. We tested (1) whether feedback altered the structure of individual premotor drive bursts or primitives, and (2) whether feedback differentially modulated different drive bursts or pulses in the three burst sequence. At least two of the three bursts would need to always be comodulated to support a time-varying synergy. We used selective muscle vibration to control spindle feedback from a single muscle (biceps/iliofibularis). The structures of premotor drive bursts were conserved. However, biceps vibration (1) scaled the amplitudes of two bursts coactivated during the initial phase of wiping independently of one another without altering their phase, and (2) independently phase regulated the third burst but preserved its amplitude. Thus, all three bursts were regulated separately. Durations were unaffected. The independent effects depended on (1) time of vibration during wiping, (2) frequency of vibration, and (3) limb configuration. Because each of the three bursts was independently modulated, these data strongly support execution using individual premotor bursts rather than time-varying synergies at the spinal level of motor organization. Our data show that both sensory feedback and central systems of the spinal cord act in concert to adjust the individual premotor bursts in support of the straight and unimodal wiping trajectory.

  17. Rhythm Synchronization of Coupled Neurons with Temporal Coding Scheme

    Institute of Scientific and Technical Information of China (English)

    SHI Xia; LU Qi-Shao

    2007-01-01

    Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.

  18. Mirror neurons

    National Research Council Canada - National Science Library

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal...

  19. Plasticity and response to action observation: a longitudinal FMRI study of potential mirror neurons in patients with subacute stroke.

    Science.gov (United States)

    Brunner, Iris C; Skouen, Jan Sture; Ersland, Lars; Grüner, Renate

    2014-01-01

    Action observation has been suggested as a possible gateway to retraining arm motor function post stroke. However, it is unclear if the neuronal response to action observation is affected by stroke and if it changes during the course of recovery. To examine longitudinal changes in neuronal activity in a group of patients with subacute stroke when observing and executing a bimanual movement task. Eighteen patients were examined twice using 3-T functional magnetic resonance imaging; 1 to 2 weeks and 3 months post stroke symptom onset. Eighteen control participants were examined once. Image time series were analyzed (SPM8) and correlated with clinical motor function scores. During action observation and execution, an overlap of neuronal activation was observed in the superior and inferior parietal lobe, precentral gyrus, insula, and inferior temporal gyrus in both control participants and patients (P neuronal response in the observation task increased from 1 to 2 weeks to 3 months after stroke. Most activated clusters were observed in the inferior temporal gyrus, the thalamus and movement-related areas, such as the premotor, supplementary and motor cortex (BA4, BA6). Increased activation of cerebellum and premotor area correlated with improved arm motor function. Most patients had regained full movement ability. Plastic changes in neurons responding to action observation and action execution occurred in accordance with clinical recovery. The involvement of motor areas when observing actions early and later after stroke may constitute a possible access to the motor system. © The Author(s) 2014.

  20. Functional clustering drives encoding improvement in a developing brain network during awake visual learning.

    Directory of Open Access Journals (Sweden)

    Kaspar Podgorski

    2012-01-01

    Full Text Available Sensory experience drives dramatic structural and functional plasticity in developing neurons. However, for single-neuron plasticity to optimally improve whole-network encoding of sensory information, changes must be coordinated between neurons to ensure a full range of stimuli is efficiently represented. Using two-photon calcium imaging to monitor evoked activity in over 100 neurons simultaneously, we investigate network-level changes in the developing Xenopus laevis tectum during visual training with motion stimuli. Training causes stimulus-specific changes in neuronal responses and interactions, resulting in improved population encoding. This plasticity is spatially structured, increasing tuning curve similarity and interactions among nearby neurons, and decreasing interactions among distant neurons. Training does not improve encoding by single clusters of similarly responding neurons, but improves encoding across clusters, indicating coordinated plasticity across the network. NMDA receptor blockade prevents coordinated plasticity, reduces clustering, and abolishes whole-network encoding improvement. We conclude that NMDA receptors support experience-dependent network self-organization, allowing efficient population coding of a diverse range of stimuli.

  1. The Golden Ratio Encoder

    CERN Document Server

    Daubechies, I; Wang, Y; Yilmaz, Ö

    2008-01-01

    This paper proposes a novel Nyquist-rate analog-to-digital (A/D) conversion algorithm which achieves exponential accuracy in the bit-rate despite using imperfect components. The proposed algorithm is based on a robust implementation of a beta-encoder where the value of the base beta is equal to golden mean. It was previously shown that beta-encoders can be implemented in such a way that their exponential accuracy is robust against threshold offsets in the quantizer element. This paper extends this result by allowing for imperfect analog multipliers with imprecise gain values as well. A formal computational model for algorithmic encoders and a general test bed for evaluating their robustness is also proposed.

  2. Correlative microscopy of densely labeled projection neurons using neural tracers.

    Science.gov (United States)

    Oberti, Daniele; Kirschmann, Moritz A; Hahnloser, Richard H R

    2010-01-01

    Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007), in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and then in the electron microscope (EM). We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide). Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  3. Correlative microscopy of densely labeled projection neurons using neural tracers

    Directory of Open Access Journals (Sweden)

    Daniele Oberti

    2010-06-01

    Full Text Available Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007, in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM and then in the electron microscope (EM. We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide. Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  4. Mirror neurons (and beyond) in the macaque brain: an overview of 20 years of research.

    Science.gov (United States)

    Casile, Antonino

    2013-04-12

    Mirror neurons are a class of neurons in the ventral pre-motor cortex (area F5) and inferior parietal lobule (area PFG) that respond during the execution as well as the observation of goal-directed motor acts. These intriguing response properties stirred an intense debate in the scientific community with respect to the possible cognitive role of mirror neurons. The aim of the present review is to contribute to this debate by providing, in a single paper, an extended summary of 20 years of neurophysiological research on mirror neurons in the macaque. To this end, I provide a comprehensive description of the methodology and the main results of each paper about mirror neurons published since their first report in 1992. Particular care was devoted in reporting the different response characteristics and the percentages of neurons exhibiting them in relation to the total number of studied neurons. Furthermore, I also discuss recent results indicating that mirror neurons might not be confined to areas F5 and PFG and that "mirroring" might not be limited to action observation. Finally, I offer a unifying framework for many of the results discussed here by speculating that a potential functional role of mirror neurons might be, during action observation, to generalize from the particular grasping movement being observed to the "concept" of grasping. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. M1 corticospinal mirror neurons and their role in movement suppression during action observation.

    Science.gov (United States)

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N; Kraskov, Alexander

    2013-02-04

    Evidence is accumulating that neurons in primary motor cortex (M1) respond during action observation, a property first shown for mirror neurons in monkey premotor cortex. We now show for the first time that the discharge of a major class of M1 output neuron, the pyramidal tract neuron (PTN), is modulated during observation of precision grip by a human experimenter. We recorded 132 PTNs in the hand area of two adult macaques, of which 65 (49%) showed mirror-like activity. Many (38 of 65) increased their discharge during observation (facilitation-type mirror neuron), but a substantial number (27 of 65) exhibited reduced discharge or stopped firing (suppression-type). Simultaneous recordings from arm, hand, and digit muscles confirmed the complete absence of detectable muscle activity during observation. We compared the discharge of the same population of neurons during active grasp by the monkeys. We found that facilitation neurons were only half as active for action observation as for action execution, and that suppression neurons reversed their activity pattern and were actually facilitated during execution. Thus, although many M1 output neurons are active during action observation, M1 direct input to spinal circuitry is either reduced or abolished and may not be sufficient to produce overt muscle activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Temporal encoding in a nervous system.

    Science.gov (United States)

    Aldworth, Zane N; Dimitrov, Alexander G; Cummins, Graham I; Gedeon, Tomáš; Miller, John P

    2011-05-01

    We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less) could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  7. Temporal encoding in a nervous system.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    2011-05-01

    Full Text Available We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  8. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  9. DNA sequences encoding erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.K.

    1987-10-27

    A purified and isolated DNA sequence is described consisting essentially of a DNA sequence encoding a polypeptide having an amino acid sequence sufficiently duplicative of that of erythropoietin to allow possession of the biological property of causing bone marrow cells to increase production of reticulocytes and red blood cells, and to increase hemoglobin synthesis or iron uptake.

  10. Time-Encoded Imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  11. The granularity of grasping. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    Science.gov (United States)

    Hamilton, Antonia F. de C.

    2015-03-01

    The idea that mirror neuron systems in the human and the macaque monkey could provide a link between perceiving an action and performing it has spurred intense research [1,2]. Hundreds of papers now examine if this link exists and what it might contribute to human behaviour. The review article from D'Ausilio et al. [3] highlights how relatively few papers have considered the granularity of coding with mirror neuron systems, and even fewer have directly tested different possibilities. Granularity refers to the critical question of what actually is encoded within the mirror system - are neurons selective for low level kinematic features such as joint angle, or for postural synergies, or for action goals? Focusing on studies of single neurons in macaques and on studies measuring the excitability of primary motor cortex with TMS, the review suggests that it is very hard to distinguish low-level kinematic from goal representations. Furthermore, these two levels are often highly correlated in real-life contexts - the kinematics needed to grasp an apple are defined by the shape of the goal (an apple tends to be a large sphere) and these kinematics differ for other possible goals (a pencil which is a narrow cylinder). In some cases, kinematics may be enough to define a goal [4]. The review suggests that it is therefore arbitrary to distinguish these levels, and that a synergy level might be a better way to understand the mirror system. Synergies are a form of coding based on commonly used hand-shapes or hand postures, which take into account the fact that some joint angles are more likely to co-occur than others. Evidence that different grasp shapes are represented separately in premotor cortex has been found [5]. These could provide an intermediate level of representation between muscle activity and goals. The review proposes that a synergy level of granularity provides the best way to consider both the motor system and the role of the mirror system in understanding

  12. Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Fabing, E-mail: fabing.duan@gmail.com [Institute of Complexity Science, Qingdao University, Qingdao 266071 (China); Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr [Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d' Angers, 62 avenue Notre Dame du Lac, 49000 Angers (France); Abbott, Derek, E-mail: derek.abbott@adelaide.edu.au [Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia)

    2016-01-08

    In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific information of responses associated with a particular stimulus. The theoretical and numerical analyses of SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure of average mutual information, can characterize the noise benefits in finer detail for describing the enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility in the design and implementation of a SSR coding scheme. - Highlights: • Evaluating the noise-enhanced encoding efficiency via stimulus-specific information. • New form of stochastic resonance based on the measure of encoding efficiency. • Analyzing neural encoding schemes from suprathreshold stochastic resonance detailedly.

  13. Parkinson disease and sleep: sleep-wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features.

    Science.gov (United States)

    Iranzo, Alex

    2013-09-01

    Parkinson disease (PD) has a premotor stage where neurodegeneration occurs before parkinsonism becomes apparent. Identification of individuals at this stage provides an opportunity to study early disease progression and test disease-modifying interventions. Hyposmia, constipation, depression and hypersomnia are part of this premotor phase and predictive of future development of PD. However, these features are common in the general population, and they are most often the result of causes other than incipient PD. In contrast, most individuals with idiopathic REM sleep behavior disorder (IRBD) eventually develop PD and other synucleinopathies. IRBD individuals with hyposmia, substantia nigra hyperechogenicity, and abnormal striatal dopamine transporter imaging findings have increased short-term risk of developing a synucleinopathy. IRBD is an optimal target to test disease-modifying agents in the PD prodromal phase. Serial dopamine transporter imaging, but not olfactory tests, may serve to monitor the disease process in future disease-modifying trials in IRBD.

  14. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  15. Extroversion-related differences in speed of premotor and motor processing as revealed by lateralized readiness potentials.

    Science.gov (United States)

    Stahl, Jutta; Rammsayer, Thomas

    2008-03-01

    To further elucidate extroversion-related differences in speed of sensorimotor processing, the authors obtained behavioral and psychophysiological measures as participants (16 introverts and 16 extroverts) performed a visual go/no-go task. Although no extroversion-related differences in reaction time emerged, introverts showed faster premotor processing but slower central and peripheral motor processing--as indicated by latencies of the lateralized readiness potential (LRP) and electromyographic (EMG) data, respectively--than extroverts did. Additional regression analyses revealed that stimulus-locked LRP latency, response-locked LRP latency, and Nl EMG amplitude accounted for 40% of overall variability in individual extroversion scores. On the basis of the present results, the authors introduce a compensation hypothesis that accounts for the common failure of researchers to demonstrate extroversion-related differences in reaction time. The present results challenge J. Brebner and C. Cooper's (1985) model of extroversion in which stimulus analysis is not slower in introverts than in extroverts. However, the present findings support the assumption of faster motor processing in extroverts.

  16. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    Science.gov (United States)

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed.

  17. Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey.

    Science.gov (United States)

    Luppino, Giuseppe; Rozzi, Stefano; Calzavara, Roberta; Matelli, Massimo

    2003-02-01

    The superior sector of Brodmann area 6 (dorsal premotor cortex, PMd) of the macaque monkey consists of a rostral and a caudal architectonic area referred to as F7 and F2, respectively. The aim of this study was to define the origin of prefrontal and agranular cingulate afferents to F7 and F2, in the light of functional and hodological evidence showing that these areas do not appear to be functionally homogeneous. Different sectors of F7 and F2 were injected with neural tracers in seven monkeys and the retrograde labelling was qualitatively and quantitatively analysed. The dorsorostral part of F7 (supplementary eye field, F7-SEF) was found to be a target of strong afferents from the frontal eye field (FEF), from the dorsolateral prefrontal regions located dorsally (DLPFd) and ventrally (DLPFv) to the principal sulcus and from cingulate areas 24a, 24b and 24c. In contrast, the remaining part of F7 (F7-non SEF) is only a target of the strong afferents from DLPFd. Finally, the ventrorostral part of F2 (F2vr), but not the F2 sector located around the superior precentral dimple (F2d), receives a minor, but significant, input from DLPFd and a relatively strong input from the cingulate gyrus (areas 24a and 24b) and area 24d. Present data provide strong hodological support in favour of the idea that areas F7 and F2 are formed by two functionally distinct sectors.

  18. Common premotor regions for the perception and production of prosody and correlations with empathy and prosodic ability.

    Directory of Open Access Journals (Sweden)

    Lisa Aziz-Zadeh

    Full Text Available BACKGROUND: Prosody, the melody and intonation of speech, involves the rhythm, rate, pitch and voice quality to relay linguistic and emotional information from one individual to another. A significant component of human social communication depends upon interpreting and responding to another person's prosodic tone as well as one's own ability to produce prosodic speech. However there has been little work on whether the perception and production of prosody share common neural processes, and if so, how these might correlate with individual differences in social ability. METHODS: The aim of the present study was to determine the degree to which perception and production of prosody rely on shared neural systems. Using fMRI, neural activity during perception and production of a meaningless phrase in different prosodic intonations was measured. Regions of overlap for production and perception of prosody were found in premotor regions, in particular the left inferior frontal gyrus (IFG. Activity in these regions was further found to correlate with how high an individual scored on two different measures of affective empathy as well as a measure on prosodic production ability. CONCLUSIONS: These data indicate, for the first time, that areas that are important for prosody production may also be utilized for prosody perception, as well as other aspects of social communication and social understanding, such as aspects of empathy and prosodic ability.

  19. Involvement of the human dorsal premotor cortex in unimanual motor control: an interference approach using transcranial magnetic stimulation.

    Science.gov (United States)

    Cincotta, Massimo; Borgheresi, Alessandra; Balestrieri, Fabrizio; Giovannelli, Fabio; Rossi, Simone; Ragazzoni, Aldo; Zaccara, Gaetano; Ziemann, Ulf

    2004-09-02

    Unilateral movements are enabled through a distributed network of motor cortical areas but the relative contribution from the parts of this network is largely unknown. Failure of this network potentially results in mirror activation of the primary motor cortex (M1) ipsilateral to the intended movement. Here we tested the role of the right dorsal premotor cortex (dPMC) in 11 healthy subjects by disrupting its activity with 20 Hz repetitive transcranial magnetic stimulation (rTMS) whilst the subjects exerted a unilateral contraction of the left first dorsal interosseous (FDI). We found that disruption of right dPMC enhanced mirror activation of the ipsilateral left M1, as probed by motor evoked potential (MEP) amplitude to the right FDI. This was not the case with sham rTMS, when rTMS was directed to the right M1, or with rTMS of the right dPMC but without contraction of the left FDI. Findings suggest that activity in the dPMC contributes to the suppression of mirror movements during intended unilateral movements.

  20. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  1. Selective attention in an insect auditory neuron.

    Science.gov (United States)

    Pollack, G S

    1988-07-01

    Previous work (Pollack, 1986) showed that an identified auditory neuron of crickets, the omega neuron, selectively encodes the temporal structure of an ipsilateral sound stimulus when a contralateral stimulus is presented simultaneously, even though the contralateral stimulus is clearly encoded when it is presented alone. The present paper investigates the physiological basis for this selective response. The selectivity for the ipsilateral stimulus is a result of the apparent intensity difference of ipsi- and contralateral stimuli, which is imposed by auditory directionality; when simultaneous presentation of stimuli from the 2 sides is mimicked by presenting low- and high-intensity stimuli simultaneously from the ipsilateral side, the neuron responds selectively to the high-intensity stimulus, even though the low-intensity stimulus is effective when it is presented alone. The selective encoding of the more intense (= ipsilateral) stimulus is due to intensity-dependent inhibition, which is superimposed on the cell's excitatory response to sound. Because of the inhibition, the stimulus with lower intensity (i.e., the contralateral stimulus) is rendered subthreshold, while the stimulus with higher intensity (the ipsilateral stimulus) remains above threshold. Consequently, the temporal structure of the low-intensity stimulus is filtered out of the neuron's spike train. The source of the inhibition is not known. It is not a consequence of activation of the omega neuron. Its characteristics are not consistent with those of known inhibitory inputs to the omega neuron.

  2. A small-world-based population encoding model of the primary visual cortex.

    Science.gov (United States)

    Shi, Li; Niu, Xiaoke; Wan, Hong; Shang, Zhigang; Wang, Zhizhong

    2015-06-01

    A wide range of evidence has shown that information encoding performed by the visual cortex involves complex activities of neuronal populations. However, the effects of the neuronal connectivity structure on the population's encoding performance remain poorly understood. In this paper, a small-world-based population encoding model of the primary visual cortex (V1) is established on the basis of the generalized linear model (GLM) to describe the computation of the neuronal population. The model mainly consists of three sets of filters, including a spatiotemporal stimulus filter, a post-spike history filter, and a set of coupled filters with the coupling neurons organizing as a small-world network. The parameters of the model were fitted with neuronal data of the rat V1 recorded with a micro-electrode array. Compared to the traditional GLM, without considering the small-world structure of the neuronal population, the proposed model was proved to produce more accurate spiking response to grating stimuli and enhance the capability of the neuronal population to carry information. The comparison results proved the validity of the proposed model and further suggest the role of small-world structure in the encoding performance of local populations in V1, which provides new insights for understanding encoding mechanisms of a small scale population in visual system.

  3. A new supervised learning algorithm for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  4. Reading Neural Encodings using Phase Space Methods

    CERN Document Server

    Abarbanel, Henry D I; Abarbanel, Henry D I; Tumer, Evren C.

    2003-01-01

    Environmental signals sensed by nervous systems are often represented in spike trains carried from sensory neurons to higher neural functions where decisions and functional actions occur. Information about the environmental stimulus is contained (encoded) in the train of spikes. We show how to "read" the encoding using state space methods of nonlinear dynamics. We create a mapping from spike signals which are output from the neural processing system back to an estimate of the analog input signal. This mapping is realized locally in a reconstructed state space embodying both the dynamics of the source of the sensory signal and the dynamics of the neural circuit doing the processing. We explore this idea using a Hodgkin-Huxley conductance based neuron model and input from a low dimensional dynamical system, the Lorenz system. We show that one may accurately learn the dynamical input/output connection and estimate with high precision the details of the input signals from spike timing output alone. This form of "...

  5. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  6. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  7. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  8. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    OpenAIRE

    2015-01-01

    For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPAN)s, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN) that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly, or ultra-slowly adapting RAMEN, SAMEN, or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric co...

  9. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    OpenAIRE

    2015-01-01

    For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPAN)s, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN) that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly or ultra-slowly adapting RAMEN, SAMEN or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corp...

  10. A neuronal learning rule for sub-millisecond temporal coding

    OpenAIRE

    Gerstner, W.; Kempter, R.; van Hemmen, J. Leo; Wagner, H.

    1996-01-01

    An unresolved paradox exists in auditory and electrosensory neural systems {Carr93,Heiligenberg91}: they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. We take the barn owl's auditory system as an example and present a modeling study based on computer simulations of a neuron in the laminar nucleus. Three observations resolve the paradox. First, spiking of an integrate-and-fire neuron driven by excitatory p...

  11. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.

    Science.gov (United States)

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Dyson-Sutton, William; Barker, Anthony T; Woodruff, Peter W R

    2011-09-02

    Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.

  12. Joining forces: Motor control meets mirror neurons. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli, and Maffongelli

    Science.gov (United States)

    Casile, Antonino

    2015-03-01

    Several consistent and compelling experimental findings suggest that in primates the observation of actions or movements activates the observer's motor cortex (for a recent and very thorough review see [1]). One important piece of evidence was the discovery of mirror neurons, that are neurons in the macaque ventral pre-motor (area F5), motor and parietal cortices (area PFG) that respond both when the monkey executes a goal-directed motor act (e.g. breaking a peanut) or when it sees a similar action executed by others [2-5]. A similar system has been later reported also in humans ([6-8] but see also [9,10] for negative results).

  13. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex

    Science.gov (United States)

    Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.

    2017-01-01

    The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756

  14. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    Science.gov (United States)

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward.

  15. Responses of mirror neurons in area F5 to hand and tool grasping observation.

    Science.gov (United States)

    Rochat, Magali J; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo; Umiltà, Maria Alessandra

    2010-08-01

    Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template.

  16. Neuronal Complexity in Subthalamic Nucleus is Reduced in Parkinson's Disease.

    Science.gov (United States)

    Vyas, Saurabh; Huang, He; Gale, John T; Sarma, Sridevi V; Montgomery, Erwin B

    2016-01-01

    Several theories posit increased Subthalamic Nucleus (STN) activity is causal to Parkinsonism, yet in our previous study we showed that activity from 113 STN neurons from two epilepsy patients and 103 neurons from nine Parkinson's disease (PD) patients demonstrated no significant differences in frequencies or in the coefficients of variation of mean discharge frequencies per 1-s epochs. We continued our analysis using point process modeling to capture higher order temporal dynamics; in particular, bursting, beta-band oscillations, excitatory and inhibitory ensemble interactions, and neuronal complexity. We used this analysis as input to a logistic regression classifier and were able to differentiate between PD and epilepsy neurons with an accuracy of 92%. We also found neuronal complexity, i.e., the number of states in a neuron's point process model, and inhibitory ensemble dynamics, which can be interpreted as a reduction in complexity, to be the most important features with respect to classification accuracy. Even in a dataset with no significant differences in firing rate, we observed differences between PD and epilepsy for other single-neuron measures. Our results suggest PD comes with a reduction in neuronal "complexity," which translates to a neuron's ability to encode information; the more complexity, the more information the neuron can encode. This is also consistent with studies correlating disease to loss of variability in neuronal activity, as the lower the complexity, the less variability.

  17. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  18. A hierarchical neuronal model for generation and online recognition of birdsongs.

    Directory of Open Access Journals (Sweden)

    Izzet B Yildiz

    2011-12-01

    Full Text Available The neuronal system underlying learning, generation and recognition of song in birds is one of the best-studied systems in the neurosciences. Here, we use these experimental findings to derive a neurobiologically plausible, dynamic, hierarchical model of birdsong generation and transform it into a functional model of birdsong recognition. The generation model consists of neuronal rate models and includes critical anatomical components like the premotor song-control nucleus HVC (proper name, the premotor nucleus RA (robust nucleus of the arcopallium, and a model of the syringeal and respiratory organs. We use Bayesian inference of this dynamical system to derive a possible mechanism for how birds can efficiently and robustly recognize the songs of their conspecifics in an online fashion. Our results indicate that the specific way birdsong is generated enables a listening bird to robustly and rapidly perceive embedded information at multiple time scales of a song. The resulting mechanism can be useful for investigating the functional roles of auditory recognition areas and providing predictions for future birdsong experiments.

  19. Toward Better Genetically Encoded Sensors of Membrane Potential.

    Science.gov (United States)

    Storace, Douglas; Sepehri Rad, Masoud; Kang, BokEum; Cohen, Lawrence B; Hughes, Thom; Baker, Bradley J

    2016-05-01

    Genetically encoded optical sensors of cell activity are powerful tools that can be targeted to specific cell types. This is especially important in neuroscience because individual brain regions can include a multitude of different cell types. Optical imaging allows for simultaneous recording from numerous neurons or brain regions. Optical signals of membrane potential are useful because membrane potential changes are a direct sign of both synaptic and action potentials. Here we describe recent improvements in the in vitro and in vivo signal size and kinetics of genetically encoded voltage indicators (GEVIs) and discuss their relationship to alternative sensors of neural activity.

  20. Population Coding in Sparsely Connected Networks of Noisy Neurons

    Directory of Open Access Journals (Sweden)

    Bryan Patrick Tripp

    2012-05-01

    Full Text Available This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behaviour. However, population coding theory has often ignored network structure, or assumed discrete, fully-connected populations (in contrast with the sparsely connected, continuous sheet of the cortex. In this study, we model a sheet of cortical neurons with sparse, primarily local connections, and find that a network with this structure can encode multiple internal state variables with high signal-to-noise ratio. However, in our model, although connection probability varies with the distance between neurons, we find that the connections cannot be instantiated at random according to these probabilities, but must have additional structure if information is to be encoded with high fidelity.

  1. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  2. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  3. Automatically tracking neurons in a moving and deforming brain

    CERN Document Server

    Nguyen, Jeffrey P; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M

    2016-01-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-r...

  4. Brain Circuits Encoding Reward from Pain Relief

    Science.gov (United States)

    Navratilova, Edita; Atcherley, Christopher; Porreca, Frank

    2015-01-01

    Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex, activation of midbrain dopamine neurons and release of dopamine in the nucleus accumbens. Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute and chronic pain. PMID:26603560

  5. mu-Suppression during Action Observation and Execution Correlates with BOLD in Dorsal Premotor, Inferior Parietal, and SI Cortices

    NARCIS (Netherlands)

    Arnstein, Dan; Cui, Fang; Keysers, Christian; Maurits, Natasha M.; Gazzola, Valeria

    2011-01-01

    The discovery of mirror neurons in the monkey, that fire during both the execution and the observation of the same action, sparked great interest in studying the human equivalent. For over a decade, both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have been used to

  6. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    Science.gov (United States)

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  7. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  8. Compensatory movement-related recruitment in amyotrophic lateral sclerosis patients with dominant upper motor neuron signs: an EEG source analysis study.

    Science.gov (United States)

    Inuggi, Alberto; Riva, Nilo; González-Rosa, Javier J; Amadio, Stefano; Amato, Ninfa; Fazio, Raffaella; Del Carro, Ubaldo; Comi, Giancarlo; Leocani, Letizia

    2011-11-24

    Cortical reorganization to simple movement in patients with amyotrophic lateral sclerosis (ALS) has been investigated in neuroimaging studies, reporting recruitment of ipsilateral primary sensorimotor (iSMC) and premotor regions (PMd). In order to investigate the spatiotemporal pattern of such overactivation, EEG source analysis to brisk self-paced finger movements was performed in thirty-two ALS patients, able to initiate their movement as fast as controls and clustered according to their most affected motor neuron (upper or lower). Reduced activity within cortical sources in bilateral SMC and caudal mesial areas was found only in patients subgroup with extensive upper motor neuron (UMN) clinical signs and mild motor weakness (U>L). Its absence in patients with opposite clinical features (L>U) suggest that this reduction might represent a possible marker of UMN impairment, and that the lower motor neuron (LMN) degeneration in L>U patients did not exert a retrograde effect over their cortical motor neurons. An ipsilateral premotor recruitment was observed in U>L patients only and since its extent positively correlated with movement initiation speed and right hand Medical Research Council (MRC) score, it might represent a compensatory recruitment. The latter correlation might suggest that the slight motor weakness in those patients may at least partly depend from a UMN dysfunction that can be compensated by cortical recruitment.

  9. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  10. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data...

  11. Mirror neurons: from origin to function.

    Science.gov (United States)

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  12. [Neuronal network].

    Science.gov (United States)

    Langmeier, M; Maresová, D

    2005-01-01

    Function of the central nervous system is based on mutual relations among the nerve cells. Description of nerve cells and their processes, including their contacts was enabled by improvement of optical features of the microscope and by the development of impregnation techniques. It is associated with the name of Antoni van Leeuwenhoek (1632-1723), J. Ev. Purkyne (1787-1869), Camillo Golgi (1843-1926), and Ramón y Cajal (1852-1934). Principal units of the neuronal network are the synapses. The term synapse was introduced into neurophysiology by Charles Scott Sherrington (1857-1952). Majority of the interactions between nerve cells is mediated by neurotransmitters acting at the receptors of the postsynaptic membrane or at the autoreceptors of the presynaptic part of the synapse. Attachment of the vesicles to the presynaptic membrane and the release of the neurotransmitter into the synaptic cleft depend on the intracellular calcium concentration and on the presence of several proteins in the presynaptic element.

  13. PNA-encoded chemical libraries.

    Science.gov (United States)

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70.

  14. Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions.

    Science.gov (United States)

    Caggiano, Vittorio; Pomper, Joern K; Fleischer, Falk; Fogassi, Leonardo; Giese, Martin; Thier, Peter

    2013-01-01

    Repetitive presentation of the same visual stimulus entails a response decrease in the action potential discharge of neurons in various areas of the monkey visual cortex. It is still unclear whether this repetition suppression effect is also present in single neurons in cortical premotor areas responding to visual stimuli, as suggested by the human functional magnetic resonance imaging literature. Here we report the responses of 'mirror neurons' in monkey area F5 to the repeated presentation of action movies. We find that most single neurons and the population at large do not show a significant decrease of the firing rate. On the other hand, simultaneously recorded local field potentials exhibit repetition suppression. As local field potentials are believed to be better linked to the blood-oxygen-level-dependent (BOLD) signal exploited by functional magnetic resonance imaging, these findings suggest caution when trying to derive conclusions on the spiking activity of neurons in a given area based on the observation of BOLD repetition suppression.

  15. Compressed Encoding for Rank Modulation

    CERN Document Server

    Gad, Eyal En; Jiang,; Bruck, Jehoshua

    2011-01-01

    Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset - instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases.

  16. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  17. Self-Organising Stochastic Encoders

    CERN Document Server

    Luttrell, Stephen

    2010-01-01

    The processing of mega-dimensional data, such as images, scales linearly with image size only if fixed size processing windows are used. It would be very useful to be able to automate the process of sizing and interconnecting the processing windows. A stochastic encoder that is an extension of the standard Linde-Buzo-Gray vector quantiser, called a stochastic vector quantiser (SVQ), includes this required behaviour amongst its emergent properties, because it automatically splits the input space into statistically independent subspaces, which it then separately encodes. Various optimal SVQs have been obtained, both analytically and numerically. Analytic solutions which demonstrate how the input space is split into independent subspaces may be obtained when an SVQ is used to encode data that lives on a 2-torus (e.g. the superposition of a pair of uncorrelated sinusoids). Many numerical solutions have also been obtained, using both SVQs and chains of linked SVQs: (1) images of multiple independent targets (encod...

  18. Early remodeling of the neocortex upon episodic memory encoding.

    Science.gov (United States)

    Bero, Adam W; Meng, Jia; Cho, Sukhee; Shen, Abra H; Canter, Rebecca G; Ericsson, Maria; Tsai, Li-Huei

    2014-08-12

    Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal-hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.

  19. Effects of musical training and event probabilities on encoding of complex tone patterns

    OpenAIRE

    Kuchenbuch, A. (Anja); Paraskevopoulos, E. (Evangelos); Herholz, S.C. (Sibylle); Pantev, C

    2013-01-01

    Background: The human auditory cortex automatically encodes acoustic input from the environment and differentiates regular sound patterns from deviant ones in order to identify important, irregular events. The Mismatch Negativity (MMN) response is a neuronal marker for the detection of sounds that are unexpected, based on the encoded regularities. It is also elicited by violations of more complex regularities and musical expertise has been shown to have an effect on the processing of complex ...

  20. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  2. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    Science.gov (United States)

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD.

  3. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    Science.gov (United States)

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  4. The Languages of Neurons: An Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information

    Directory of Open Access Journals (Sweden)

    Morris H. Baslow

    2009-11-01

    Full Text Available In this paper evidence is provided that individual neurons possess language, and that the basic unit for communication consists of two neurons and their entire field of interacting dendritic and synaptic connections. While information processing in the brain is highly complex, each neuron uses a simple mechanism for transmitting information. This is in the form of temporal electrophysiological action potentials or spikes (S operating on a millisecond timescale that, along with pauses (P between spikes constitute a two letter “alphabet” that generates meaningful frequency-encoded signals or neuronal S/P “words” in a primary language. However, when a word from an afferent neuron enters the dendritic-synaptic-dendritic field between two neurons, it is translated into a new frequency-encoded word with the same meaning, but in a different spike-pause language, that is delivered to and understood by the efferent neuron. It is suggested that this unidirectional inter-neuronal language-based word translation step is of utmost importance to brain function in that it allows for variations in meaning to occur. Thus, structural or biochemical changes in dendrites or synapses can produce novel words in the second language that have changed meanings, allowing for a specific signaling experience, either external or internal, to modify the meaning of an original word (learning, and store the learned information of that experience (memory in the form of an altered dendritic-synaptic-dendritic field.

  5. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  6. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Science.gov (United States)

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  7. General artificial neuron

    Science.gov (United States)

    Degeratu, Vasile; Schiopu, Paul; Degeratu, Stefania

    2007-05-01

    In this paper the authors present a model of artificial neuron named the general artificial neuron. Depending on application this neuron can change self number of inputs, the type of inputs (from excitatory in inhibitory or vice versa), the synaptic weights, the threshold, the type of intensifying functions. It is achieved into optoelectronic technology. Also, into optoelectronic technology a model of general McCulloch-Pitts neuron is showed. The advantages of these neurons are very high because we have to solve different applications with the same neural network, achieved from these neurons, named general neural network.

  8. In vivo neuronal calcium imaging in C. elegans.

    Science.gov (United States)

    Chung, Samuel H; Sun, Lin; Gabel, Christopher V

    2013-04-10

    The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.

  9. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  10. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Neuronal correlates of voluntary facial movements.

    Science.gov (United States)

    Krippl, Martin; Karim, Ahmed A; Brechmann, André

    2015-01-01

    Whereas the somatotopy of finger movements has been extensively studied with neuroimaging, the neural foundations of facial movements remain elusive. Therefore, we systematically studied the neuronal correlates of voluntary facial movements using the Facial Action Coding System (FACS, Ekman et al., 2002). The facial movements performed in the MRI scanner were defined as Action Units (AUs) and were controlled by a certified FACS coder. The main goal of the study was to investigate the detailed somatotopy of the facial primary motor area (facial M1). Eighteen participants were asked to produce the following four facial movements in the fMRI scanner: AU1+2 (brow raiser), AU4 (brow lowerer), AU12 (lip corner puller) and AU24 (lip presser), each in alternation with a resting phase. Our facial movement task induced generally high activation in brain motor areas (e.g., M1, premotor cortex, supplementary motor area, putamen), as well as in the thalamus, insula, and visual cortex. BOLD activations revealed overlapping representations for the four facial movements. However, within the activated facial M1 areas, we could find distinct peak activities in the left and right hemisphere supporting a rough somatotopic upper to lower face organization within the right facial M1 area, and a somatotopic organization within the right M1 upper face part. In both hemispheres, the order was an inverse somatotopy within the lower face representations. In contrast to the right hemisphere, in the left hemisphere the representation of AU4 was more lateral and anterior compared to the rest of the facial movements. Our findings support the notion of a partial somatotopic order within the M1 face area confirming the "like attracts like" principle (Donoghue et al., 1992). AUs which are often used together or are similar are located close to each other in the motor cortex.

  12. Neuronal correlates of voluntary facial movements

    Directory of Open Access Journals (Sweden)

    Martin eKrippl

    2015-10-01

    Full Text Available Whereas the somatotopy of finger movements has been extensively studied with neuroimaging, the neural foundations of facial movements remain elusive. Therefore, we systematically studied the neuronal correlates of voluntary facial movements using the Facial Action Coding System (FACS,Ekman et al., 2002. The facial movements performed in the MRI scanner were defined as Action Units (AUs and were controlled by a certified FACS coder. The main goal of the study was to investigate the detailed somatotopy of the facial primary motor area (facial M1. Eighteen participants were asked to produce the following four facial movements in the fMRI scanner: AU1+2 (brow raiser, AU4 (brow lowerer, AU12 (lip corner puller and AU24 (lip presser, each in alternation with a resting phase.Our facial movement task induced generally high activation in brain motor areas (e.g. M1, premotor cortex, SMA, putamen, as well as in the thalamus, insula and visual cortex. BOLD activations revealed overlapping representations for the four facial movements. However, within the activated facial M1 areas, we could find distinct peak activities in the left and right hemisphere supporting a rough somatotopic upper to lower face organization within the right facial M1 area, and a somatotopic organization within the right M1 upper face part. In both hemispheres, the order was an inverse somatotopy within the lower face representations. In contrast to the right hemisphere, in the left hemisphere the representation of AU 4 was more lateral and anterior compared to the rest of the facial movements. Our findings support the notion of a partial somatotopic order within the M1 face area confirming the like attracts like principle (Donoghue et al., 1992 . AUs which are often used together or are similar are located close to each other in the motor cortex.

  13. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  14. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...... in various parts of the viral life cyclus. Most of the receptors encoded by human pathogenic virus are still orphan receptors, i.e. the endogenous ligand is unknown. In the few cases where it has been possible to characterize these receptors pharmacologically, they have been found to bind a broad spectrum...... expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  15. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  16. Synaptic encoding of temporal contiguity

    Directory of Open Access Journals (Sweden)

    Srdjan eOstojic

    2013-04-01

    Full Text Available Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity. Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain.

  17. Encoding of movement in near extrapersonal space in primate area VIP

    Directory of Open Access Journals (Sweden)

    Frank eBremmer

    2013-02-01

    Full Text Available Many neurons in the macaque ventral intraparietal area (VIP are multimodal, i.e., they respond not only to visual but also to tactile, auditory and vestibular stimulation. Anatomical studies have shown distinct projections between area VIP and a region of premotor cortex controlling head movements. A specific function of area VIP could be to guide movements in order to head for and/or to avoid objects in near extra-personal space. This behavioral role would require a consistent representation of visual motion within 3-D space and enhanced activity for nearby motion signals. Accordingly, in our present study we investigated whether neurons in area VIP are sensitive to moving visual stimuli containing depth signals from horizontal disparity. We recorded single unit activity from area VIP of two awake behaving monkeys (M. mulatta fixating a central target on a projection screen. Sensitivity of neurons to horizontal disparity was assessed by presenting large field moving images (random dot fields stereoscopically to the two eyes by means of LCD shutter goggles synchronized with the stimulus computer. During an individual trial, stimuli had one of seven different disparity values ranging from 3 degrees uncrossed- (far to 3 degrees crossed- (near disparity in 1 degree steps. Stimuli moved at constant speed in all simulated depth planes. Different disparity values were presented across trials in pseudo-randomized order. 61% percent of the motion sensitive cells had a statistically significant selectivity for the horizontal disparity of the stimulus (p<0.05, distribution free ANOVA. 75% of them preferred crossed-disparity values, i.e. moving stimuli in near space, with the highest mean activity for the nearest stimulus. At the population level, preferred direction of visual stimulus motion was not affected by horizontal disparity. Thus, our findings are in agreement with the behavioral role of area VIP in the representation of movement in near extra

  18. NEURON and Python

    OpenAIRE

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  19. Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans.

    Science.gov (United States)

    Lingnau, Angelika; Gesierich, Benno; Caramazza, Alfonso

    2009-06-16

    Neurons in macaque ventral premotor cortex and inferior parietal lobe discharge during both the observation and the execution of motor acts. It has been claimed that these so-called mirror neurons form the basis of action understanding by matching the visual input with the corresponding motor program (direct matching). Functional magnetic resonance imaging (fMRI) adaptation can be used to test the direct matching account of action recognition by determining whether putative mirror neurons show adaptation for repeated motor acts independently of whether they are observed or executed. An unambiguous test of the hypothesis requires that the motor acts be meaningless to ensure that any adaptation effect is directly because of movement recognition/motor execution and not contextually determined inferences. We found adaptation for motor acts that were repeatedly observed or repeatedly executed. We also found adaptation for motor acts that were first observed and then executed, as would be expected if a previously seen act primed the subsequent execution of that act. Crucially, we found no signs of adaptation for motor acts that were first executed and then observed. Failure to find cross-modal adaptation for executed and observed motor acts is not compatible with the core assumption of mirror neuron theory, which holds that action recognition and understanding are based on motor simulation.

  20. Transduction and encoding sensory information by skin mechanoreceptors.

    Science.gov (United States)

    Hao, Jizhe; Bonnet, Caroline; Amsalem, Muriel; Ruel, Jérôme; Delmas, Patrick

    2015-01-01

    Physical contact with the external world occurs through specialized neural structures called mechanoreceptors. Cutaneous mechanoreceptors provide information to the central nervous system (CNS) about touch, pressure, vibration, and skin stretch. The physiological function of these mechanoreceptors is to convert physical forces into neuronal signals. Key questions concern the molecular identity of the mechanoelectric transducer channels and the mechanisms by which the physical parameters of the mechanical stimulus are encoded into patterns of action potentials (APs). Compelling data indicate that the biophysical traits of mechanosensitive channels combined with the collection of voltage-gated channels are essential to describe the nature of the stimulus. Recent research also points to a critical role of the auxiliary cell-nerve ending communication in encoding stimulus properties. This review describes the characteristics of ion channels responsible for translating mechanical stimuli into the neural codes that underlie touch perception and pain.

  1. Parallel Engagement of Regions Associated with Encoding and Later Retrieval Forms Durable Memories

    NARCIS (Netherlands)

    Wagner, I.; Buuren, M. van; Bovy, L.; Fernandez, G.S.E.

    2016-01-01

    The fate of a memory is partly determined at initial encoding. However, the behavioral consequences of memory formation are often tested only once and shortly after learning, which leaves the neuronal predictors for the formation of durable memories largely unknown. Here, we hypothesized that durabl

  2. Functional circuits of new neurons in the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carmen eVivar

    2013-02-01

    Full Text Available The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG, a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub cortical inputs to new dentate granule cells. It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, followed after about one month by perirhinal and lateral entorhinal cortex. These cortical areas are deemed relevant to encoding of novel environmental information and may enable pattern separation. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.  

  3. Spiking Neural P Systems with Neuron Division and Dissolution

    Science.gov (United States)

    Liu, Xiyu; Wang, Wenping

    2016-01-01

    Spiking neural P systems are a new candidate in spiking neural network models. By using neuron division and budding, such systems can generate/produce exponential working space in linear computational steps, thus provide a way to solve computational hard problems in feasible (linear or polynomial) time with a “time-space trade-off” strategy. In this work, a new mechanism called neuron dissolution is introduced, by which redundant neurons produced during the computation can be removed. As applications, uniform solutions to two NP-hard problems: SAT problem and Subset Sum problem are constructed in linear time, working in a deterministic way. The neuron dissolution strategy is used to eliminate invalid solutions, and all answers to these two problems are encoded as indices of output neurons. Our results improve the one obtained in Science China Information Sciences, 2011, 1596-1607 by Pan et al. PMID:27627104

  4. Associative encoding in posterior piriform cortex during odor discrimination and reversal learning.

    Science.gov (United States)

    Calu, Donna J; Roesch, Matthew R; Stalnaker, Thomas A; Schoenbaum, Geoffrey

    2007-06-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex and basolateral amygdala (ABL). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. We recently reported that neurons in anterior piriform cortex (APC) in rats exhibited significant plasticity in their responses to odor cues during associative learning. Here, we have repeated this study, recording from neurons in posterior piriform cortex (PPC), a region of piriform cortex that receives much stronger input from ABL. If associative encoding in piriform cortex is driven by inputs from ABL, then we should see more plasticity in PPC neurons than we observed in APC. Consistent with this hypothesis, we found that PPC neurons were highly associative and appeared to be somewhat more likely than neurons recorded in APC to alter their responses to the odor cues after reversal of the odor-outcome associations in the task. Further, odor-selective PPC populations exhibited markedly different firing patterns based on the valence of the odor cue. These results suggest associative encoding in piriform cortex is represented in a topographical fashion, reflecting the stronger and more specific input from olfactory bulb concerning the sensory features of odors in anterior regions and stronger input from ABL concerning the meaning of odors in posterior regions.

  5. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae

    NARCIS (Netherlands)

    Qiu, Y.T.; Loon, van J.J.A.; Takken, W.; Meijerink, J.; Smid, H.M.

    2006-01-01

    Olfactory receptor neurons (ORNs) in the antenna of insects serve to encode odors in action potential activity conducted to the olfactory lobe of the deuterocerebrum. We performed an analysis of the electrophysiological responses of olfactory neurons in the antennae of the female malaria mosquito An

  6. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  7. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  8. Binding by asynchrony: the neuronal phase code

    Directory of Open Access Journals (Sweden)

    Zoltan Nadasdy

    2010-09-01

    Full Text Available Neurons display continuous subthreshold oscillations and discrete action potentials. When action potentials are phase-locked to the subthreshold oscillation, we hypothesize they represent two types of information: the presence/absence of a sensory feature and the phase of subthreshold oscillation. If subthreshold oscillation phases are neuron-specific, then the sources of action potentials can be recovered based on the action potential times. If the spatial information about the stimulus is converted to action potential phases, then action potentials from multiple neurons can be combined into a single axon and the spatial configuration reconstructed elsewhere. For the reconstruction to be successful, we introduce two assumptions: that a subthreshold oscillation field has a constant phase gradient and that coincidences between action potentials and intracellular subthreshold oscillations are neuron-specific as defined by the "interference principle." Under these assumptions, a phase coding model enables information transfer between structures and reproduces experimental phenomenons such as phase precession, grid cell architecture, and phase modulation of cortical spikes. This article reviews a recently proposed neuronal algorithm for information encoding and decoding from the phase of action potentials (Nadasdy 2009. The focus is given to the principles common across different systems instead of emphasizing system specific differences.

  9. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  10. Behavioral plasticity through the modulation of switch neurons.

    Science.gov (United States)

    Vassiliades, Vassilis; Christodoulou, Chris

    2016-02-01

    A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required.

  11. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  12. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  13. Mirror neuron dysfunction and ego-boundary disturbances in schizophrenia: A transcranial magnetic stimulation study

    Directory of Open Access Journals (Sweden)

    Rakshathi Basavaraju

    2015-01-01

    Full Text Available Background: Ego-boundary disturbance (EBD is a unique symptom cluster characterized by passivity experiences (involving thoughts, actions, emotions and sensations attributed by patients to some external agency. The neurobiology of these "first rank" symptoms is poorly understood. Aberrant mirror neuron activation may explain impaired self-monitoring and agency attribution underlying these symptoms. We aim to study mirror neuron activity (MNA in schizophrenia patients with and without EBD using transcranial magnetic stimulation (TMS. Materials and Methods: 50 right-handed schizophrenia patients (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition were evaluated using the Mini-International Neuropsychiatric Interview and the Positive and Negative Syndrome Scale. They completed a TMS experiment to assess putative premotor MNA. Motor evoked potential (MEP was recorded in the right first dorsal interosseous muscle (FDI with (a 120% of resting motor threshold (RMT, (b stimulus intensity set to evoke MEP of motor threshold 1 mV amplitude (MT1, (c two paired pulse paradigms (short- and long interval intra-cortical inhibition. These were done in three states: Actual observation of an action using the FDI, virtual-observation (video of this action and resting state. The percent change of MEP from resting to action-observation states formed the measure of putative MNA. Results: MNA measured using MT1 and 120% RMT paradigms was significantly lower in the 18 patients with EBD (thought-broadcast/withdrawal/insertion, made-act/impulse/affect and somatic passivity than the 32 patients without EBD (t = 2.431, P = 0.020; t = 2.051, P = 0.04 respectively for the two paradigms. The two groups did not differ on age, gender, education and total symptom scores. Conclusion: Schizophrenia patients with EBD have lower premotor MNA. This highlights the role of MNA dysfunction in the pathophysiology of this unique and intriguing symptom cluster in

  14. Mirror neuron dysfunction and ego-boundary disturbances in schizophrenia: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Basavaraju, Rakshathi; Mehta, Urvakhsh Meherwan; Thirthalli, Jagadisha; Gangadhar, Bangalore N

    2015-01-01

    Ego-boundary disturbance (EBD) is a unique symptom cluster characterized by passivity experiences (involving thoughts, actions, emotions and sensations) attributed by patients to some external agency. The neurobiology of these "first rank" symptoms is poorly understood. Aberrant mirror neuron activation may explain impaired self-monitoring and agency attribution underlying these symptoms. We aim to study mirror neuron activity (MNA) in schizophrenia patients with and without EBD using transcranial magnetic stimulation (TMS). 50 right-handed schizophrenia patients (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) were evaluated using the Mini-International Neuropsychiatric Interview and the Positive and Negative Syndrome Scale. They completed a TMS experiment to assess putative premotor MNA. Motor evoked potential (MEP) was recorded in the right first dorsal interosseous muscle (FDI) with (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke MEP of motor threshold 1 mV amplitude (MT1), (c) two paired pulse paradigms (short- and long interval intra-cortical inhibition). These were done in three states: Actual observation of an action using the FDI, virtual-observation (video) of this action and resting state. The percent change of MEP from resting to action-observation states formed the measure of putative MNA. MNA measured using MT1 and 120% RMT paradigms was significantly lower in the 18 patients with EBD (thought-broadcast/withdrawal/insertion, made-act/impulse/affect and somatic passivity) than the 32 patients without EBD (t = 2.431, P = 0.020; t = 2.051, P = 0.04 respectively for the two paradigms). The two groups did not differ on age, gender, education and total symptom scores. Schizophrenia patients with EBD have lower premotor MNA. This highlights the role of MNA dysfunction in the pathophysiology of this unique and intriguing symptom cluster in schizophrenia.

  15. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    Science.gov (United States)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  16. Functional brain networks during picture encoding and recognition in different odor contexts.

    Science.gov (United States)

    Reichert, J L; Ninaus, M; Schuehly, W; Hirschmann, C; Bagga, D; Schöpf, V

    2017-08-30

    Contextual odors can serve as retrieval cues when applied during encoding and recall/recognition of information. To investigate the neuronal basis of these observations, we collected functional MRI data while participants (n=51) performed an encoding and recognition memory task during which odors (congruent: CO or incongruent: IO) were presented as contextual cues. Recognition performance was not influenced by odor, but there was increased activation in the piriform cortex during successful encoding in the CO group, possibly indicating enhanced retrieval of information previously integrated with an olfactory percept. Moreover, group-independent component analysis revealed a stronger task-modulation of subcortical networks for IO versus CO during the recognition task, pointing to differences in olfactory processing. These observations provide a deeper understanding of the involvement of functional neuronal networks in memory tasks and a basis for further evaluation of the impact of odor contexts. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats.

    Science.gov (United States)

    Oulad Ben Taib, Nordeyn; Manto, Mario

    2008-07-01

    We studied the effects of low- and high-frequency premotor electrical stimulations on conditioned corticomotor responses, intra-cortical facilitation (ICF) and spinal excitability in hemicerebellectomized rats (left side). Trains of stimulation were applied in prefrontal region rFr2 (the equivalent of the premotor/supplementary motor area in primates) at a rate of 1 Hz (low-frequency stimulation LFS) or 20 Hz (high-frequency stimulation HFS). Test stimuli on the motor cortex were preceded by a conditioning stimulus in contralateral sciatic nerve (two inter-stimulus intervals ISIs were studied: 5 ms or 45 ms). (A) At ISI-5, conditioning increased amplitudes of MEPs (motor evoked potentials) in the left motor cortex. This afferent facilitation was enhanced if preceded by trains of stimuli administered over the ipsilateral rFr2 area, and HFS had higher effects than LFS. The facilitation was lower for the right motor cortex, for both LFS and HFS. (B) At ISI-45, conditioned motor evoked responses were depressed as compared to unconditioned responses in the left motor cortex (afferent inhibition). Following LFS, the degree of inhibition was unchanged while it increased with HFS. At baseline, inhibition was enhanced in the right motor cortex. Interestingly, the afferent inhibition decreased significantly following HFS. (C) ICF was depressed in the right motor cortex, but increased similarly on both sides following LFS/HFS. These results (1) confirm the increased inhibition in the motor cortex contralaterally to the hemicerebellar ablation, (2) demonstrate for the first time that the cerebellum is necessary for tuning amplitudes of corticomotor responses following a peripheral nerve stimulation, (3) show that the application of LFS or HFS does not cancel the defect of excitability in the motor cortex for short ISIs, and (4) suggest that for longer ISIs, HFS could have interesting properties for the modulation of afferent inhibition in case of extensive cerebellar lesion

  18. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.

    Directory of Open Access Journals (Sweden)

    Aleksey Malyshev

    Full Text Available Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites. Recent progress in optogenetics provides an opportunity to circumvent these limitations. Transgenic expression of light-activated ionic channels, such as Channelrhodopsin2 (ChR2, allows induction of controlled conductance changes even in thin distant dendrites. Here we show that photostimulation provides a useful extension of the tools to study neuronal encoding, but it has its own limitations. Optically induced fluctuating currents have a low cutoff (~70 Hz, thus limiting the dynamic range of frequency response of cortical neurons. This leads to severe underestimation of the ability of neurons to phase-lock their firing to high frequency components of the input. This limitation could be worked around by using short (2 ms light stimuli which produce membrane potential responses resembling EPSPs by their fast onset and prolonged decay kinetics. We show that combining application of short light stimuli to different parts of dendritic tree for mimicking distant EPSCs with somatic injection of fluctuating current that mimics fluctuations of membrane potential in vivo, allowed us to study fast encoding of artificial EPSPs photoinduced at different distances from the soma. We conclude that dendritic photostimulation of ChR2 with short light pulses provides a powerful tool to

  19. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.

    Science.gov (United States)

    Li, Wen-Chang; Roberts, Alan; Soffe, Stephen R

    2009-04-15

    Electrical coupling is important in rhythm generating systems. We examine its role in circuits controlling locomotion in a simple vertebrate model, the young Xenopus tadpole, where the hindbrain and spinal cord excitatory descending interneurons (dINs) that drive and maintain swimming have been characterised. Using simultaneous paired recordings, we show that most dINs are electrically coupled exclusively to other dINs (DC coupling coefficients approximately 8.5%). The coupling shows typical low-pass filtering. We found no evidence that other swimming central pattern generator (CPG) interneurons are coupled to dINs or to each other. Electrical coupling potentials between dINs appear to contribute to their unusually reliable firing during swimming. To investigate the role of electrical coupling in swimming, we evaluated the specificity of gap junction blockers (18-beta-GA, carbenoxolone, flufenamic acid and heptanol) in paired recordings. 18-beta-GA at 40-60 mum produced substantial (84%) coupling block but few effects on cellular properties. Swimming episodes in 18-beta-GA were significantly shortened (to approximately 2% of control durations). At the same time, dIN firing reliability fell from nearly 100% to 62% of swimming cycles and spike synchronization weakened. Because dINs drive CPG neuron firing and are critical in maintaining swimming, the weakening of dIN activity could account for the effects of 18-beta-GA on swimming. We conclude that electrical coupling among pre motor reticulospinal and spinal dINs, the excitatory interneurons that drive the swimming CPG in the hatchling Xenopus tadpole, may contribute to the maintenance of swimming as well as synchronization of activity.

  20. Study of a new neuron

    CERN Document Server

    Adler, Stephen Louis; Weckel, J D

    1994-01-01

    We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute XOR at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the modular neuron on two data sets is presented, which demonstrates that the new neuron performs at least as well as the standard neuron.

  1. Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird.

    Science.gov (United States)

    Hahnloser, Richard H R; Wang, Claude Z-H; Nager, Aymeric; Naie, Katja

    2008-05-07

    In mammals, the thalamus plays important roles for cortical processing, such as relay of sensory information and induction of rhythmical firing during sleep. In neurons of the avian cerebrum, in analogy with cortical up and down states, complex patterns of regular-spiking and dense-bursting modes are frequently observed during sleep. However, the roles of thalamic inputs for shaping these firing modes are largely unknown. A suspected key player is the avian thalamic nucleus uvaeformis (Uva). Uva is innervated by polysensory input, receives indirect cerebral feedback via the midbrain, and projects to the cerebrum via two distinct pathways. Using pharmacological manipulation, electrical stimulation, and extracellular recordings of Uva projection neurons, we study the involvement of Uva in zebra finches for the generation of spontaneous activity and auditory responses in premotor area HVC (used as a proper name) and the downstream robust nucleus of the arcopallium (RA). In awake and sleeping birds, we find that single Uva spikes suppress and spike bursts enhance spontaneous and auditory-evoked bursts in HVC and RA neurons. Strong burst suppression is mediated mainly via tonically firing HVC-projecting Uva neurons, whereas a fast burst drive is mediated indirectly via Uva neurons projecting to the nucleus interface of the nidopallium. Our results reveal that cerebral sleep-burst epochs and arousal-related burst suppression are both shaped by sophisticated polysynaptic thalamic mechanisms.

  2. Encoding information into precipitation structures

    Science.gov (United States)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  3. Cajal bodies in neurons.

    Science.gov (United States)

    Lafarga, Miguel; Tapia, Olga; Romero, Ana M; Berciano, Maria T

    2016-09-14

    Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

  4. Geometric Hyperplanes: Desargues Encodes Doily

    CERN Document Server

    Saniga, Metod

    2011-01-01

    It is shown that the structure of the generalized quadrangle of order two is fully encoded in the properties of the Desargues configuration. A point of the quadrangle is represented by a geometric hyperplane of the Desargues configuration and its line by a set of three hyperplanes such that one of them is the complement of the symmetric difference of the remaining two and they all share a pair of non-collinear points.

  5. Vector Encoding in Biochemical Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  6. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    (HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......). A subthreshold conditioning stimulus (CS) was given to PMd 2.0-5.2 ms after the TS at intensities of 50-, 70-, or 90% of TS. The CS to PMd facilitated the MEP evoked by TS over M1(HAND) at interstimulus intervals (ISI) of 2.4 or 2.8 ms. There was a second facilitatory peak at ISI of 4.4 ms. PMd-to-M1(HAND...

  7. Noise and Neuronal Heterogeneity

    CERN Document Server

    Barber, Michael J

    2010-01-01

    We consider signal transaction in a simple neuronal model featuring intrinsic noise. The presence of noise limits the precision of neural responses and impacts the quality of neural signal transduction. We assess the signal transduction quality in relation to the level of noise, and show it to be maximized by a non-zero level of noise, analogous to the stochastic resonance effect. The quality enhancement occurs for a finite range of stimuli to a single neuron; we show how to construct networks of neurons that extend the range. The range increases more rapidly with network size when we make use of heterogeneous populations of neurons with a variety of thresholds, rather than homogeneous populations of neurons all with the same threshold. The limited precision of neural responses thus can have a direct effect on the optimal network structure, with diverse functional properties of the constituent neurons supporting an economical information processing strategy that reduces the metabolic costs of handling a broad...

  8. Neurons and tumor suppressors.

    Science.gov (United States)

    Zochodne, Douglas W

    2014-08-20

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to enhance neuron plasticity and improve outcome from damage or disease.

  9. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  10. Neuronal spike initiation modulated by extracellular electric fields.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Based on a reduced two-compartment model, the dynamical and biophysical mechanism underlying the spike initiation of the neuron to extracellular electric fields is investigated in this paper. With stability and phase plane analysis, we first investigate in detail the dynamical properties of neuronal spike initiation induced by geometric parameter and internal coupling conductance. The geometric parameter is the ratio between soma area and total membrane area, which describes the proportion of area occupied by somatic chamber. It is found that varying it could qualitatively alter the bifurcation structures of equilibrium as well as neuronal phase portraits, which remain unchanged when varying internal coupling conductance. By analyzing the activating properties of somatic membrane currents at subthreshold potentials, we explore the relevant biophysical basis of spike initiation dynamics induced by these two parameters. It is observed that increasing geometric parameter could greatly decrease the intensity of the internal current flowing from soma to dendrite, which switches spike initiation dynamics from Hopf bifurcation to SNIC bifurcation; increasing internal coupling conductance could lead to the increase of this outward internal current, whereas the increasing range is so small that it could not qualitatively alter the spike initiation dynamics. These results highlight that neuronal geometric parameter is a crucial factor in determining the spike initiation dynamics to electric fields. The finding is useful to interpret the functional significance of neuronal biophysical properties in their encoding dynamics, which could contribute to uncovering how neuron encodes electric field signals.

  11. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.

    Science.gov (United States)

    Courtin, Julien; Chaudun, Fabrice; Rozeske, Robert R; Karalis, Nikolaos; Gonzalez-Campo, Cecilia; Wurtz, Hélène; Abdi, Azzedine; Baufreton, Jerome; Bienvenu, Thomas C M; Herry, Cyril

    2014-01-02

    Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.

  12. Glutamatergic neurons are present in the rat ventral tegmental area

    Science.gov (United States)

    Yamaguchi, Tsuyoshi; Sheen, Whitney; Morales, Marisela

    2010-01-01

    The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. PMID:17241272

  13. Alterations in the motor neuron-Renshaw cell circuit in the Sod1G93A mouse model

    Science.gov (United States)

    Wootz, Hanna; FitzSimons-Kantamneni, Eileen; Larhammar, Martin; Rotterman, Travis M.; Enjin, Anders; Patra, Kalicharan; Andre, Elodie; van Zundert, Brigitte; Kullander, Klas; Alvarez, Francisco J.

    2012-01-01

    Motor neurons become hyperexcitable during progression of amyotrophic lateral sclerosis (ALS). This abnormal firing behavior has been explained by changes in their membrane properties, but more recently it has been suggested that changes in premotor circuits may also contribute to this abnormal activity. The specific circuits that may be altered during development of ALS have not been investigated. Here we examined the Renshaw cell recurrent circuit that exerts inhibitory feedback control on motor neuron firing. Using two markers for Renshaw cells (calbindin and Chrna2 , cholinergic nicotinic receptor subunit alpha2), two general markers for motor neurons (NeuN and VAChT, vesicular acethylcholine transporter ) and two markers for fast motor neurons (Chondrolectin and Calca, calcitonin-related polypeptide alpha), we analyzed the survival and connectivity of these cells during disease progression in the Sod1G93A mouse model. Most calbindin-immunoreactive (IR) Renshaw cells survive to end-stage but downregulate postsynaptic Chrna2 in presymptomatic animals. In motor neurons, some markers are downregulated early (NeuN, VAChT, Chondrolectin) and others at end-stage(Calca). Early downregulation of presynaptic VAChT and Chrna2 was correlated with disconnection from Renshaw cells as well as major structural abnormalities of motor axon synapses inside the spinal cord. Renshaw cell synapses on motor neurons underwent more complex changes, including transitional sprouting preferentially over remaining NeuN-IR motor neurons. We conclude that the loss of presynaptic motor axon input on Renshaw cells occurs at early stages of ALS and disconnects the recurrent inhibitory circuit, presumably resulting in a diminished control of motor neuron firing. PMID:23172249

  14. Mirror neuron activation in children with developmental coordination disorder: A functional MRI study.

    Science.gov (United States)

    Reynolds, Jess E; Licari, Melissa K; Billington, Jac; Chen, Yihui; Aziz-Zadeh, Lisa; Werner, Julie; Winsor, Anne M; Bynevelt, Michael

    2015-12-01

    The aim of this study was to reveal cortical areas that may contribute to the movement difficulties seen in children with Developmental Coordination Disorder (DCD). Specifically, we hypothesized that there may be a deficit in the mirror neuron system (MNS), a neural system that responds to both performed and observed actions. Using functional MRI, 14 boys with DCD (x=10.08 years ± 1.31, range=7.83-11.58 years) and 12 typically developing controls (x=10.10 years ± 1.15, range=8.33-12.00 years) were scanned observing, executing and imitating a finger sequencing task using their right hand. Cortical activations of mirror neuron regions, including posterior inferior frontal gyrus (IFG), ventral premotor cortex, anterior inferior parietal lobule and superior temporal sulcus were examined. Children with DCD had decreased cortical activation mirror neuron related regions, including the precentral gyrus and IFG, as well as in the posterior cingulate and precuneus complex when observing the sequencing task. Region of interest analysis revealed lower activation in the pars opercularis, a primary MNS region, during imitation in the DCD group compared to controls. These findings provide some preliminary evidence to support a possible MNS dysfunction in children with DCD.

  15. Postnatal changes of local neuronal circuits involved in activation of jaw-closing muscles.

    Science.gov (United States)

    Inoue, Tomio; Nakamura, Shiro; Takamatsu, Junichi; Tokita, Kenichi; Gemba, Akiko; Nakayama, Kiyomi

    2007-04-01

    Feeding behaviour in mammals changes from suckling to mastication during postnatal development and the neuronal circuits controlling feeding behaviour should change in parallel to the development of orofacial structures. In this review we discuss the location of excitatory premotor neurons for jaw-closing motoneurons (JCMNs) and postnatal changes of excitatory synaptic transmission from the supratrigeminal region (SupV) to JCMNs. We show that neurons located in SupV and the reticular formation dorsal to the facial nucleus most likely excite JCMNs. Excitatory inputs from SupV to JCMNs are mediated by activation of glutamate and glycine receptors in neonatal rats, whereas glycinergic inputs from SupV to JCMNs become inhibitory with age. We also show that the incidence of post-spike afterdepolarization increases during postnatal development, whereas the amplitude and half-duration of the medium-duration afterhyperpolarization decrease with age. Such postnatal changes in synaptic transmission from SupV to JCMNs and membrane properties of JCMNs might be involved in the transition from suckling to mastication.

  16. Decoding Grasp Movement from Monkey Premotor Cortex for Real-time Prothetic Hand Control%猴子PMd区脑电解码抓握手势及机械手实时控制

    Institute of Scientific and Technical Information of China (English)

    郑筱祥; 王怡雯; 张韶岷; 张巧生

    2016-01-01

    过去的10年,脑机接口中对上肢有关的伸解码取得了非常大的成功,这给残障人士运动康复带来了希望。但与日常生活息息相关的手部的抓握动作的研究却很少涉及。当前,在解码手势方面有很多初步的工作,但是实时的抓握手势的解码工作还没有被系统地研究过。该研究首先建立了基于非人灵长类动物的植入式脑机接口平台,训练猕猴完成伸抓动作并记录PMd区的神经信号。通过FKNN算法异步解码出4种抓握手势和休息状态。然后,利用共享控制策略驱动灵巧的机械手完成与猴子相同的动作。结果表明大部分PMd区的神经元对伸抓动作具有调和特性,利用PMd区的神经元的解码正确率可以达到97.1%。在线控制模式中,猴子手的瞬时状态能够被成功解码出来并用于机械手的控制,正确率可以达到85.1%。我们的研究为残疾人士抓握运动的康复提供了新的思路和方法。%Brain machine interfaces (BMIs) have demonstrated lots of successful arm-related reach decoding in past decades, which provide a new hope for restoring the lost motor functions for the disabled. On the other hand, the more sophisticated hand grasp movement, which is more fundamental and crucial for daily life, was less referred. Current state of arts has specified some grasp related brain areas and offline decoding results; however, online decoding grasp movement and real-time neuroprosthetic control have not been systematically investigated. In this study, we obtained neural data from the dorsal premotor cortex (PMd) when monkey reaching and grasping one of four differently shaped objects following visual cues. The four grasp gesture types with an additional resting state were classified asynchronously using a fuzzy k-nearest neighbor model, and an artificial hand was controlled online using a shared control strategy. The results showed that most of the neurons in PMd are

  17. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  18. Olfactory bulb encoding during learning under anesthesia

    Science.gov (United States)

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  19. Encoding and storage of spatial information in the retrosplenial cortex.

    Science.gov (United States)

    Czajkowski, Rafał; Jayaprakash, Balaji; Wiltgen, Brian; Rogerson, Thomas; Guzman-Karlsson, Mikael C; Barth, Alison L; Trachtenberg, Joshua T; Silva, Alcino J

    2014-06-10

    The retrosplenial cortex (RSC) is part of a network of interconnected cortical, hippocampal, and thalamic structures harboring spatially modulated neurons. The RSC contains head direction cells and connects to the parahippocampal region and anterior thalamus. Manipulations of the RSC can affect spatial and contextual tasks. A considerable amount of evidence implicates the role of the RSC in spatial navigation, but it is unclear whether this structure actually encodes or stores spatial information. We used a transgenic mouse in which the expression of green fluorescent protein was under the control of the immediate early gene c-fos promoter as well as time-lapse two-photon in vivo imaging to monitor neuronal activation triggered by spatial learning in the Morris water maze. We uncovered a repetitive pattern of cell activation in the RSC consistent with the hypothesis that during spatial learning an experience-dependent memory trace is formed in this structure. In support of this hypothesis, we also report three other observations. First, temporary RSC inactivation disrupts performance in a spatial learning task. Second, we show that overexpressing the transcription factor CREB in the RSC with a viral vector, a manipulation known to enhance memory consolidation in other circuits, results in spatial memory enhancements. Third, silencing the viral CREB-expressing neurons with the allatostatin system occludes the spatial memory enhancement. Taken together, these results indicate that the retrosplenial cortex engages in the formation and storage of memory traces for spatial information.

  20. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators

    Science.gov (United States)

    Nakajima, Ryuichi; Jung, Arong; Yoon, Bong-June; Baker, Bradley J.

    2016-01-01

    The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities. PMID:27547183

  1. Performance limitations of relay neurons.

    Directory of Open Access Journals (Sweden)

    Rahul Agarwal

    Full Text Available Relay cells are prevalent throughout sensory systems and receive two types of inputs: driving and modulating. The driving input contains receptive field properties that must be transmitted while the modulating input alters the specifics of transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such as attentional demands and a subject's goals. In this paper, we analyze a biophysical based model of a relay cell and use systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the neuron's electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-pulse intervals obeying an exponential distribution. Our analysis applies to any [Formula: see text] order model as long as the neuron does not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how the biophysical properties of the neuron (e.g. ion channel dynamics define the oscillatory patterns needed in the modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds predict experimentally observed neural activity in the basal ganglia in (i health, (ii in Parkinson's disease (PD, and (iii in PD during

  2. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  3. A shared neural ensemble links distinct contextual memories encoded close in time

    Science.gov (United States)

    Cai, Denise J.; Aharoni, Daniel; Shuman, Tristan; Shobe, Justin; Biane, Jeremy; Song, Weilin; Wei, Brandon; Veshkini, Michael; La-Vu, Mimi; Lou, Jerry; Flores, Sergio E.; Kim, Isaac; Sano, Yoshitake; Zhou, Miou; Baumgaertel, Karsten; Lavi, Ayal; Kamata, Masakazu; Tuszynski, Mark; Mayford, Mark; Golshani, Peyman; Silva, Alcino J.

    2016-06-01

    Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.

  4. Pacemaking Kisspeptin Neurons

    Science.gov (United States)

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  5. Cellular and molecular biology of neuronal dystonin.

    Science.gov (United States)

    Ferrier, Andrew; Boyer, Justin G; Kothary, Rashmi

    2013-01-01

    Neuronal dystonin isoforms are giant cytoskeletal cross-linking proteins capable of interacting with actin and microtubule networks, protein complexes, membrane-bound organelles and cellular membranes. In the neuromuscular system, dystonin proteins are involved in maintaining cytoarchitecture integrity and have more recently been ascribed roles in other cellular processes such as organelle structure and intracellular transport. Loss of dystonin expression in mice results in a profound sensory ataxia termed dystonia musculorum (dt), which is attributed to the degeneration of sensory nerves. This chapter provides a comprehensive overview of the dystonin gene, the structure of encoded proteins, biological functions of neuronal dystonin isoforms, and known roles of dystonin in dt pathogenesis and human disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO2-Chemosensitivity

    Science.gov (United States)

    Brandt, Julia P.; Martinez-Velazquez, Luis A.; Petersen, Jakob Gramstrup; Pocock, Roger; Ringstad, Niels

    2012-01-01

    Many animals possess neurons specialized for the detection of carbon dioxide (CO2), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO2. The ETS-5 transcription factor is necessary for the specification of CO2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO2-detection and transforms neurons into CO2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO2-sensing neurons in other phyla. PMID:22479504

  7. A dynamic code for economic object valuation in prefrontal cortex neurons.

    Science.gov (United States)

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-09-13

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices.

  8. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli

    Science.gov (United States)

    de Bono, Mario; Tobin, David M.; Davis, M. Wayne; Avery, Leon; Bargmann, Cornelia I.

    2014-01-01

    Natural Caenorhabditis elegans isolates exhibit either social or solitary feeding on bacteria. We show here that social feeding is induced by nociceptive neurons that detect adverse or stressful conditions. Ablation of the nociceptive neurons ASH and ADL transforms social animals into solitary feeders. Social feeding is probably due to the sensation of noxious chemicals by ASH and ADL neurons; it requires the genes ocr-2 and osm-9, which encode TRP-related transduction channels, and odr-4 and odr-8, which are required to localize sensory chemoreceptors to cilia. Other sensory neurons may suppress social feeding, as social feeding in ocr-2 and odr-4 mutants is restored by mutations in osm-3, a gene required for the development of 26 ciliated sensory neurons. Our data suggest a model for regulation of social feeding by opposing sensory inputs: aversive inputs to nociceptive neurons promote social feeding, whereas antagonistic inputs from neurons that express osm-3 inhibit aggregation. PMID:12410303

  9. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  10. Identification and mechanosensitivity of viscerofugal neurons.

    Science.gov (United States)

    Hibberd, T J; Zagorodnyuk, V P; Spencer, N J; Brookes, S J H

    2012-12-06

    Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All

  11. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    Science.gov (United States)

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  12. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  13. Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons.

    Science.gov (United States)

    Tian, Ju; Huang, Ryan; Cohen, Jeremiah Y; Osakada, Fumitaka; Kobak, Dmitry; Machens, Christian K; Callaway, Edward M; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-09-21

    Dopamine neurons encode the difference between actual and predicted reward, or reward prediction error (RPE). Although many models have been proposed to account for this computation, it has been difficult to test these models experimentally. Here we established an awake electrophysiological recording system, combined with rabies virus and optogenetic cell-type identification, to characterize the firing patterns of monosynaptic inputs to dopamine neurons while mice performed classical conditioning tasks. We found that each variable required to compute RPE, including actual and predicted reward, was distributed in input neurons in multiple brain areas. Further, many input neurons across brain areas signaled combinations of these variables. These results demonstrate that even simple arithmetic computations such as RPE are not localized in specific brain areas but, rather, distributed across multiple nodes in a brain-wide network. Our systematic method to examine both activity and connectivity revealed unexpected redundancy for a simple computation in the brain.

  14. Measuring the quality of neuronal identification in ensemble recordings.

    Science.gov (United States)

    Neymotin, Samuel A; Lytton, William W; Olypher, Andrey V; Fenton, André A

    2011-11-09

    Technological advances in electrode construction and digital signal processing now allow recording simultaneous extracellular action potential discharges from many single neurons, with the potential to revolutionize understanding of the neural codes for sensory, motor, and cognitive variables. Such studies have revealed the importance of ensemble neural codes, encoding information in the dynamic relationships among the action potential spike trains of multiple single neurons. Although the success of this research depends on the accurate classification of extracellular action potentials to individual neurons, there are no widely used quantitative methods for assessing the quality of the classifications. Here we describe information theoretic measures of action potential waveform isolation applicable to any dataset that have an intuitive, universal interpretation, that are not dependent on the methods or choice of parameters for single-unit isolation, and that have been validated using a dataset of simultaneous intracellular and extracellular neuronal recordings from Sprague Dawley rats.

  15. NEURON and Python

    Directory of Open Access Journals (Sweden)

    Michael Hines

    2009-01-01

    Full Text Available The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including GUI tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the XML module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  16. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  17. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements.

    Science.gov (United States)

    Mameli, Ombretta; Stanzani, Stefania; Russo, Antonella; Pellitteri, Rosalia; Manca, Paolo; De Riu, Pier Luigi; Caria, Marcello Alessandro

    2014-03-01

    In previous experiments performed on anaesthetised rats, we demonstrated that whisking neurons responsive to spontaneous movement of the macrovibrissae are located within the trigeminal mesencephalic nucleus (Me5) and that retrograde tracers injected into the mystacial pad of the rat muzzle extensively labelled a number of Me5 neurons. In order to evaluate the electrophysiological characteristics of the Me5-whisker pad neural connection, the present study analysed the Me5 neurons responses to artificial whisking induced by electrical stimulation of the peripheral stump of the facial nerve. Furthermore, an anterograde tracer was injected into the Me5 to identify and localise the peripheral terminals of these neurons in the mystacial structures. The electrophysiological data demonstrated that artificial whisking induced Me5 evoked potentials as well as single and multiunit Me5 neurons responses consistent with a direct connection. Furthermore, the neuroanatomical findings showed that the peripheral terminals of the Me5 stained neurons established direct connections with the upper part of the macrovibrissae, at the conical body level, with fibres spiralling around the circumference of the vibrissae shaft. As for the functional role of this sensory innervation, we speculated that the Me5 neurons are possibly involved in encoding and relaying proprioceptive information related to vibrissae movements to other CNS structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. System identification of Drosophila olfactory sensory neurons.

    Science.gov (United States)

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be

  19. Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study.

    Directory of Open Access Journals (Sweden)

    Sein Schmidt

    Full Text Available BACKGROUND: Premotor cortical regions (PMC play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1. Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS. PURPOSE: The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance. HYPOTHESIS: Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability. METHODS: We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function. RESULTS: Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance

  20. STOP-EVENT-RELATED POTENTIALS FROM INTRACRANIAL ELECTRODES REVEAL A KEY ROLE OF PREMOTOR AND MOTOR CORTICES IN STOPPING ONGOING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Maurizio eMattia

    2012-06-01

    Full Text Available In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus. These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e. premotor (PMA and primary motor (M1 cortices. Electroencephalographic (EEG studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA and Brodmann's area (BA 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times. These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network.

  1. [Mirror neurons: from anatomy to pathophysiological and therapeutic implications].

    Science.gov (United States)

    Mathon, B

    2013-04-01

    Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. In vitro analog of operant conditioning in aplysia. I. Contingent reinforcement modifies the functional dynamics of an identified neuron.

    Science.gov (United States)

    Nargeot, R; Baxter, D A; Byrne, J H

    1999-03-15

    Previously, an analog of operant conditioning in Aplysia was developed using the rhythmic motor activity in the isolated buccal ganglia. This analog expressed a key feature of operant conditioning, namely a selective enhancement in the occurrence of a designated motor pattern by contingent reinforcement. Different motor patterns generated by the buccal central pattern generator were induced by monotonic stimulation of a peripheral nerve (i.e., n.2,3). Phasic stimulation of the esophageal nerve (E n.) was used as an analog of reinforcement. The present study investigated the neuronal mechanisms associated with the genesis of different motor patterns and their modifications by contingent reinforcement. The genesis of different motor patterns was related to changes in the functional states of the pre-motor neuron B51. During rhythmic activity, B51 dynamically switched between inactive and active states. Bursting activity in B51 was associated with, and predicted, characteristic features of a specific motor pattern (i.e., pattern I). Contingent reinforcement of pattern I modified the dynamical properties of B51 by decreasing its resting conductance and threshold for eliciting plateau potentials and thus increased the occurrences of pattern I-related activity in B51. These modifications were not observed in preparations that received either noncontingent reinforcement (i.e., yoke control) or no reinforcement (i.e., control). These results suggest that a contingent reinforcement paradigm can regulate the dynamics of neuronal activity that is centrally programmed by the intrinsic cellular properties of neurons.

  3. Tremorgenesis: a new conceptual scheme using reciprocally innervated circuit of neurons

    Directory of Open Access Journals (Sweden)

    Manto Mario

    2008-11-01

    Full Text Available Abstract Neural circuits controlling fast movements are inherently unsteady as a result of their reciprocal innervation. This instability is enhanced by increased membrane excitability. Recent studies indicate that the loss of external inhibition is an important factor in the pathogenesis of several tremor disorders such as essential tremor, cerebellar kinetic tremor or parkinsonian tremor. Shaikh and colleagues propose a new conceptual scheme to analyze tremor disorders. Oscillations are simulated by changing the intrinsic membrane properties of burst neurons. The authors use a model neuron of Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih, low threshold calcium current (It, and GABA/glycine mediated chloride currents. Post-inhibitory rebound is taken into account. The model includes a reciprocally innervated circuit of neurons projecting to pairs of agonist and antagonist muscles. A set of four burst neurons has been simulated: inhibitory agonist, inhibitory antagonist, excitatory agonist, and excitatory antagonist. The model fits well with the known anatomical organization of neural circuits for limb movements in premotor/motor areas, and, interestingly, this model does not require any structural modification in the anatomical organization or connectivity of the constituent neurons. The authors simulate essential tremor when Ih is increased. Membrane excitability is augmented by up-regulating Ih and It. A high level of congruence with the recordings made in patients exhibiting essential tremor is reached. These simulations support the hypothesis that increased membrane excitability in potentially unsteady circuits generate oscillations mimicking tremor disorders encountered in daily practice. This new approach opens new perspectives for both the understanding and the treatment of neurological tremor. It provides the rationale for decreasing membrane excitability by acting on a normal ion channel in a context of

  4. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.

    Directory of Open Access Journals (Sweden)

    Shan Yu

    Full Text Available Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial 'windowing', for well-characterized critical dynamics-neuronal avalanches. The local field potential (LFP was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10-95, i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s, invariably followed a power law with exponent -1.5 up to N, beyond which p(s declined more steeply producing a 'cut-off' that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades.

  5. Tremorgenesis: a new conceptual scheme using reciprocally innervated circuit of neurons.

    Science.gov (United States)

    Manto, Mario

    2008-11-26

    Neural circuits controlling fast movements are inherently unsteady as a result of their reciprocal innervation. This instability is enhanced by increased membrane excitability. Recent studies indicate that the loss of external inhibition is an important factor in the pathogenesis of several tremor disorders such as essential tremor, cerebellar kinetic tremor or parkinsonian tremor. Shaikh and colleagues propose a new conceptual scheme to analyze tremor disorders. Oscillations are simulated by changing the intrinsic membrane properties of burst neurons. The authors use a model neuron of Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih), low threshold calcium current (It), and GABA/glycine mediated chloride currents. Post-inhibitory rebound is taken into account. The model includes a reciprocally innervated circuit of neurons projecting to pairs of agonist and antagonist muscles. A set of four burst neurons has been simulated: inhibitory agonist, inhibitory antagonist, excitatory agonist, and excitatory antagonist. The model fits well with the known anatomical organization of neural circuits for limb movements in premotor/motor areas, and, interestingly, this model does not require any structural modification in the anatomical organization or connectivity of the constituent neurons. The authors simulate essential tremor when Ih is increased. Membrane excitability is augmented by up-regulating Ih and It. A high level of congruence with the recordings made in patients exhibiting essential tremor is reached. These simulations support the hypothesis that increased membrane excitability in potentially unsteady circuits generate oscillations mimicking tremor disorders encountered in daily practice. This new approach opens new perspectives for both the understanding and the treatment of neurological tremor. It provides the rationale for decreasing membrane excitability by acting on a normal ion channel in a context of impaired external

  6. In search of neural mechanisms of mirror neuron dysfunction in schizophrenia: resting state functional connectivity approach.

    Science.gov (United States)

    Zaytseva, Yuliya; Bendova, Marie; Garakh, Zhanna; Tintera, Jaroslav; Rydlo, Jan; Spaniel, Filip; Horacek, Jiri

    2015-09-01

    It has been repeatedly shown that schizophrenia patients have immense alterations in goal-directed behaviour, social cognition, and social interactions, cognitive abilities that are presumably driven by the mirror neurons system (MNS). However, the neural bases of these deficits still remain unclear. Along with the task-related fMRI and EEG research tapping into the mirror neuron system, the characteristics of the resting state activity in the particular areas that encompass mirror neurons might be of interest as they obviously determine the baseline of the neuronal activity. Using resting state fMRI, we investigated resting state functional connectivity (FC) in four predefined brain structures, ROIs (inferior frontal gyrus, superior parietal lobule, premotor cortex and superior temporal gyrus), known for their mirror neurons activity, in 12 patients with first psychotic episode and 12 matched healthy individuals. As a specific hypothesis, based on the knowledge of the anatomical inputs of thalamus to all preselected ROIs, we have investigated the FC between thalamus and the ROIs. Of all ROIs included, seed-to-voxel connectivity analysis revealed significantly decreased FC only in left posterior superior temporal gyrus (STG) and the areas in visual cortex and cerebellum in patients as compared to controls. Using ROI-to-ROI analysis (thalamus and selected ROIs), we have found an increased FC of STG and bilateral thalamus whereas the FC of these areas was decreased in controls. Our results suggest that: (1) schizophrenia patients exhibit FC of STG which corresponds to the previously reported changes of superior temporal gyrus in schizophrenia and might contribute to the disturbances of specific functions, such as emotional processing or spatial awareness; (2) as the thalamus plays a pivotal role in the sensory gating, providing the filtering of the redundant stimulation, the observed hyperconnectivity between the thalami and the STGs in patients with schizophrenia

  7. Molecular mechanisms for protein-encoded inheritance.

    Science.gov (United States)

    Wiltzius, Jed J W; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R; Apostol, Marcin I; Goldschmidt, Lukasz; Soriaga, Angela B; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-09-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  8. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  9. Dynamical encoding of cursive handwriting.

    Science.gov (United States)

    Singer, Y; Tishby, N

    1994-01-01

    A model-based approach to on-line cursive handwriting analysis and recognition is presented and evaluated. In this model, on-line handwriting is considered as a modulation of a simple cycloidal pen motion, described by two coupled oscillations with a constant linear drift along the line of the writing. By slow modulations of the amplitudes and phase lags of the two oscillators, a general pen trajectory can be efficiently encoded. These parameters are then quantized into a small number of values without altering the writing intelligibility. A general procedure for the estimation and quantization of these cycloidal motion parameters for arbitrary handwriting is presented. The result is a discrete motor control representation of the continuous pen motion, via the quantized levels of the model parameters. This motor control representation enables successful word spotting and matching of cursive scripts. Our experiments clearly indicate the potential of this dynamic representation for complete cursive handwriting recognition.

  10. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.

    Science.gov (United States)

    Lelito, Katherine R; Shafer, Orie T

    2012-04-01

    The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.

  11. Genetically Encoded Sensors for Metabolites

    Science.gov (United States)

    Deuschle, Karen; Fehr, Marcus; Hilpert, Melanie; Lager, Ida; Lalonde, Sylvie; Looger, Loren L.; Okumoto, Sakiko; Persson, Jörgen; Schmidt, Anja; Frommer, Wolf B.

    2009-01-01

    Background Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes over the past few years. Advanced expression systems and analysis technologies made it possible to study the biochemical properties of the corresponding proteins in great detail. We begin to understand the biological functions of the gene products by systematic analysis of mutants using systematic PTGS/RNAi, knockout and TILLING approaches. However, one crucial set of data especially relevant in the case of multicellular organisms is lacking: the knowledge of the spatial and temporal profiles of metabolite levels at cellular and subcellular levels. Methods We therefore developed genetically encoded nanosensors for several metabolites to provide a basic set of tools for the determination of cytosolic and subcellular metabolite levels in real time by using fluorescence microscopy. Results Prototypes of these sensors were successfully used in vitro and also in vivo, i.e., to measure sugar levels in fungal and animal cells. Conclusions One of the future goals will be to expand the set of sensors to a wider spectrum of substrates by using the natural spectrum of periplasmic binding proteins from bacteria and by computational design of proteins with altered binding pockets in conjunction with mutagenesis. This toolbox can then be applied for four-dimensional imaging of cells and tissues to elucidate the spatial and temporal distribution of metabolites as a discovery tool in functional genomics, as a tool for high-throughput, high-content screening for drugs, to test metabolic models, and to analyze the interplay of cells in a tissue or organ. PMID:15688353

  12. Predicting olfactory receptor neuron responses from odorant structure

    Directory of Open Access Journals (Sweden)

    Hähnel Melanie

    2007-05-01

    Full Text Available Abstract Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusion The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data.

  13. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision

    NARCIS (Netherlands)

    Vladusich, Tony

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory

  14. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision

    NARCIS (Netherlands)

    Vladusich, Tony

    2007-01-01

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory

  15. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision

    NARCIS (Netherlands)

    Vladusich, Tony

    2007-01-01

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory

  16. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  17. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    Full Text Available Dopamine neurons in the ventral tegmental area (VTA have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.

  19. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement.

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R; Turner, Robert S

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson's disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (-22%), speed (-40%), acceleration (-49%) and hand position (-33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (-50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes beginning in the 150

  20. Representation of dynamical stimuli in populations of threshold neurons.

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2011-10-01

    Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.

  1. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  2. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  3. Motor neurone disease.

    Science.gov (United States)

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  4. Neurons and Tumor Suppressors

    OpenAIRE

    Douglas W Zochodne

    2014-01-01

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to e...

  5. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse.

    Science.gov (United States)

    Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E

    2015-07-01

    Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.

  6. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  7. Associative Encoding in Posterior Piriform Cortex during Odor Discrimination and Reversal Learning

    OpenAIRE

    Calu, Donna J.; Roesch, Matthew R.; Stalnaker, Thomas A; Schoenbaum, Geoffrey

    2006-01-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex and basolateral amygdala (ABL). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. We recently reported that neurons in anterior piriform cortex (APC) in rats exhibited signi...

  8. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    Science.gov (United States)

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  9. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  10. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  11. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    Science.gov (United States)

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli.

  12. Novelty's effect on memory encoding.

    Science.gov (United States)

    Rangel-Gomez, Mauricio; Janenaite, Sigita; Meeter, Martijn

    2015-07-01

    It is often thought that novelty benefits memory formation. However, support for this idea mostly comes from paradigms that are open to alternative explanations. In the present study we manipulated novelty in a word-learning task through task-irrelevant background images. These background images were either standard (presented repeatedly), or novel (presented only once). Two types of background images were used: Landscape pictures and fractals. EEG was also recorded during encoding. Contrary to the idea that novelty aids memory formation, memory performance was not affected by the novelty of the background. In the evoked response potentials, we found evidence of distracting effects of novelty: both the N1 and P3b components were smaller to words studied with novel backgrounds, and the amplitude of the N2b component correlated negatively with subsequent retrieval. We conclude that although evidence from other studies does suggest benefits on a longer time scale, novelty has no instantaneous benefits for learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Computational Intelligence and Its Encoding Mechanism

    Institute of Scientific and Technical Information of China (English)

    LIU Man-dan

    2004-01-01

    The origin and characteristics of computational intelligence, and several typical computational intelligence algorithms such as genetic algorithm and DNA computing are described, and the influence of evolution strategies and convergence properties on the encoding mechanism is discussed. A novel genetic algorithm based on degressive carry number encoding is then proposed. This algorithm uses degressive carry number encoding in the evolutionary process instead of commonly used fixed carry number. Finally a novel encoding mechanism and a new algorithm are proposed, which combine modern computational intelligence with the traditional Chinese methodology.

  14. Computational Intelligence and Its Encoding Mechanism

    Institute of Scientific and Technical Information of China (English)

    LIUMan-dan

    2004-01-01

    The origin and characteristics of computational intelligence, and several typical computational intelligence algorithms such as genetic algorithm and DNA computing are described, and the influence of evolution strategies and convergence properties on the encoding mechanism is discussed. A novel genetic algorithm based on degressive carry number encoding is then proposed. This algorithm uses degressive carry number encoding in the evolutionary process instead of commonly used fixed carry number. Finally a novel encoding mechanism and a new algorithm are proposed, which combine modem computational intelligence with the traditional Chinese methodology.

  15. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  16. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe

    Directory of Open Access Journals (Sweden)

    Veit Grabe

    2016-09-01

    Full Text Available Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.

  17. Pulse-Density Modulation with an Ensemble of Single-Electron Circuits Employing Neuronal Heterogeneity to Achieve High Temporal Resolution

    Science.gov (United States)

    Kikombo, Andrew Kilinga; Asai, Tetsuya; Amemiya, Yoshihito

    We investigated the implications of static noises in a pulse-density modulator based on Vestibulo-ocular Reflex model. We constructed a simple neuromorphic circuit consisting of an ensemble of single-electron devices and confirmed that static noises (heterogeneity in circuit parameters) introduced into the network indeed played an important role in improving the fidelity with which neurons could encode signals whose input frequencies are higher than the intrinsic response frequencies of single neurons. Through Monte-Carlo based computer simulations, we demonstrated that the heterogeneous network could corectly encode signals with input frequencies as high as 1 GHz, twice the range for single (or a network of homogeneous) neurons.

  18. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and 'hard-wired' elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP, a cellular and molecular model for memory, post-synaptic calcium ion (Ca²⁺ flux activates the hexagonal Ca²⁺-calmodulin dependent kinase II (CaMKII, a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit. Thus each set of extended CaMKII kinases can potentially encode synaptic Ca²⁺ information via phosphorylation as ordered arrays of binary 'bits'. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs, cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six "bits", and thus "bytes", with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells.

  19. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.

    Science.gov (United States)

    Bush, Nicholas E; Schroeder, Christopher L; Hobbs, Jennifer A; Yang, Anne Et; Huet, Lucie A; Solla, Sara A; Hartmann, Mitra Jz

    2016-06-27

    Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space.

  20. Neuronal processing of noxious thermal stimuli mediated by dendritic Ca(2+) influx in Drosophila somatosensory neurons.

    Science.gov (United States)

    Terada, Shin-Ichiro; Matsubara, Daisuke; Onodera, Koun; Matsuzaki, Masanori; Uemura, Tadashi; Usui, Tadao

    2016-02-15

    Adequate responses to noxious stimuli causing tissue damages are essential for organismal survival. Class IV neurons in Drosophila larvae are polymodal nociceptors responsible for thermal, mechanical, and light sensation. Importantly, activation of Class IV provoked distinct avoidance behaviors, depending on the inputs. We found that noxious thermal stimuli, but not blue light stimulation, caused a unique pattern of Class IV, which were composed of pauses after high-frequency spike trains and a large Ca(2+) rise in the dendrite (the Ca(2+) transient). Both these responses depended on two TRPA channels and the L-type voltage-gated calcium channel (L-VGCC), showing that the thermosensation provokes Ca(2+) influx. The precipitous fluctuation of firing rate in Class IV neurons enhanced the robust heat avoidance. We hypothesize that the Ca(2+) influx can be a key signal encoding a specific modality.

  1. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  2. Modeling the Development of Goal-Specificity in Mirror Neurons.

    Science.gov (United States)

    Thill, Serge; Svensson, Henrik; Ziemke, Tom

    2011-12-01

    Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives.

  3. Visualization of cyclic nucleotide dynamics in neurons

    Directory of Open Access Journals (Sweden)

    Kirill eGorshkov

    2014-12-01

    Full Text Available The second messengers cAMP and cGMP transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.

  4. Molecular misreading in non-neuronal cells.

    Science.gov (United States)

    Van Leeuwen, F W; Hol, E M; Hermanussen, R W; Sonnemans, M A; Moraal, E; Fischer, D F; Evans, D A; Chooi, K F; Burbach, J P; Murphy, D

    2000-08-01

    +1 Frame-shifted proteins such as amyloid precursor protein(+1) and ubiquitin-B(+1) have been identified in the neuropathological hallmarks of Alzheimer's disease. These frameshifts are caused by dinucleotide deletions in GAGAG motifs of messenger RNA encoded by genes that have maintained the unchanged wild-type DNA sequence. This process is termed 'molecular misreading'. A key question is whether this process is confined to neurons or whether it could also occur in non-neuronal cells. A transgenic mouse line (MV-B) carrying multiple copies of a rat vasopressin minigene as a reporter driven by the MMTV-LTR promotor was used to screen non-neuronal tissues for molecular misreading by means of detection of the rat vasopressin(+1) protein and mutated mRNA. Molecular misreading was demonstrated to occur in several organs (e.g., epididymis and the parotid gland) where transgenic vasopressin expression is abundant, but its penetrance is variable both between and within tissues. This implies that non-neural tissues too, could be affected by cellular derangements caused by molecular misreading.

  5. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  6. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies

    Directory of Open Access Journals (Sweden)

    Gilles Laurent

    2007-11-01

    Full Text Available Genetically encoded optical indicators hold the promise of enabling non-invasive monitoring of activity in identified neurons in behaving organisms. However, the interpretation of images of brain activity produced using such sensors is not straightforward. Several recent studies of sensory coding used G-CaMP 1.3-a calcium sensor-as an indicator of neural activity; some of these studies characterized the imaged neurons as having narrow tuning curves, a conclusion not always supported by parallel electrophysiological studies. To better understand the possible cause of these conflicting results, we performed simultaneous in vivo 2-photon imaging and electrophysiological recording of G-CaMP 1.3 expressing neurons in the antennal lobe (AL of intact fruitflies. We find that G-CaMP has a relatively high threshold, that its signal often fails to capture spiking response kinetics, and that it can miss even high instantaneous rates of activity if those are not sustained. While G-CaMP can be misleading, it is clearly useful for the identification of promising neural targets: when electrical activity is well above the sensor's detection threshold, its signal is fairly well correlated with mean firing rate and G-CaMP does not appear to alter significantly the responses of neurons that express it. The methods we present should enable any genetically encoded sensor, activator, or silencer to be evaluated in an intact neural circuit in vivo in Drosophila.

  7. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution.

    Science.gov (United States)

    Rule, Michael E; Vargas-Irwin, Carlos; Donoghue, John P; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters.

  8. Contribution of LFP dynamics to single neuron spiking variability in motor cortex during movement execution

    Directory of Open Access Journals (Sweden)

    Michael Everett Rule

    2015-06-01

    Full Text Available Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ, θ, α, β LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100ms spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters.

  9. [Association of schizophrenia with variations in genes encoding transcription factors].

    Science.gov (United States)

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  10. Millisecond-Scale Motor Encoding in a Cortical Vocal Area

    Science.gov (United States)

    Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel

    2015-03-01

    Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation

  11. Spiking models for level-invariant encoding

    Directory of Open Access Journals (Sweden)

    Romain eBrette

    2012-01-01

    Full Text Available Levels of ecological sounds vary over several orders of magnitude,but the firing rate and membrane potential of a neuron are much more limited in range.In binaural neurons of the barn owl, tuning to interaural delays is independent oflevel differences. Yet a monaural neuron with a fixed threshold should fire earlier in responseto louder sounds, which would disrupt the tuning of these neurons. %, resulting in shifts in delay tuning for interaural level differences.How could spike timing be independent of input level?Here I derive theoretical conditions for a spiking model tobe insensitive to input level.The key property is a dynamic change in spike threshold.I then show how level invariance can be physiologically implemented,with specific ionic channel properties.It appears that these ingredients are indeed present inmonaural neurons of the sound localization pathway of birds and mammals.

  12. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise

    Science.gov (United States)

    Lim, Hyungkwang; Ahn, Hyung-Woo; Kornijcuk, Vladimir; Kim, Guhyun; Seok, Jun Yeong; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2016-05-01

    A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration.A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic

  13. Neuronal modelling of baroreflex response to orthostatic stress

    Science.gov (United States)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse

  14. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons.

    Science.gov (United States)

    Leao, Ricardo M; Li, Shuang; Doiron, Brent; Tzounopoulos, Thanos

    2012-06-01

    Homeostatic mechanisms maintain homogeneous neuronal behavior among neurons that exhibit substantial variability in the expression levels of their ionic conductances. In contrast, the mechanisms, which generate heterogeneous neuronal behavior across a neuronal population, remain poorly understood. We addressed this problem in the dorsal cochlear nucleus, where principal neurons exist in two qualitatively distinct states: spontaneously active or not spontaneously active. Our studies reveal that distinct activity states are generated by the differential levels of a Ba(2+)-sensitive, inwardly rectifying potassium conductance (K(ir)). Variability in K(ir) maximal conductance causes variations in the resting membrane potential (RMP). Low K(ir) conductance depolarizes RMP to voltages above the threshold for activating subthreshold-persistent sodium channels (Na(p)). Once Na(p) channels are activated, the RMP becomes unstable, and spontaneous firing is triggered. Our results provide a biophysical mechanism for generating neural heterogeneity, which may play a role in the encoding of sensory information.

  15. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  16. A METHOD OF SHAPE ENCODING AND RETRIEVAL

    Institute of Scientific and Technical Information of China (English)

    Huang Xianglin; Song Lei; Shen Lansun

    2002-01-01

    A method of shape encoding and retrieval is proposed in this letter, which uses centripetal code to encode shape and extracts shape's convex for retrieval. For the rotation invariance and translation invariance of the centripetal code and the normalization of convex,the proposed retrieval method is similarity transform resistant, Experimental results confirm this capability.

  17. The multipolar stage and disruptions in neuronal migration.

    Science.gov (United States)

    LoTurco, Joseph J; Bai, Jilin

    2006-07-01

    The genetic basis is now known for several disorders of neuronal migration in the developing cerebral cortex. Identification of the cellular processes mediated by the implicated genes is revealing crucial stages of neuronal migration and has the potential to reveal common cellular causes of neuronal migration disorders. We hypothesize that a newly recognized morphological stage of neuronal migration, the multipolar stage, is vulnerable and is disrupted in several disorders of neocortical development. The multipolar stage occurs as bipolar progenitor cells become radially migrating neurons. Several studies using in utero electroporation and RNAi have revealed that transition out of the multipolar stage depends on the function of filamin A, LIS1 and DCX. Mutations in the genes encoding these proteins in humans cause distinct neuronal migration disorders, including periventricular nodular heterotopia, subcortical band heterotopia and lissencephaly. The multipolar stage therefore seems to be a critical point of migration control and a vulnerable target for disruption of neocortical development. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  18. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  19. Massively parallel neural circuits for stereoscopic color vision: encoding, decoding and identification.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B; Zhou, Yiyin

    2015-03-01

    Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself. If information about color is mixed and encoded by a common pool of neurons, how can colors be demixed and perceived? We present Color Video Time Encoding Machines (Color Video TEMs) for encoding color visual stimuli that take into account a variety of color representations within a single neural circuit. We then derive a Color Video Time Decoding Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual scenes from spikes produced by a population of visual neurons. In addition, we formulate Color Video Channel Identification Machines (Color Video CIMs) for functionally identifying color visual processing performed by a spiking neural circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two and leads to a general theory of neural information representation for stereoscopic color vision. We provide examples demonstrating that a massively parallel color visual neural circuit can be first identified with arbitrary precision and its spike trains can be subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the functional identification methodology can be effectively and intuitively performed in the stimulus space. In this space, a signal reconstructed from spike trains generated by the identified neural circuit can be compared to the original stimulus.

  20. Neuronal survival in the brain: neuron type-specific mechanisms.

    Science.gov (United States)

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  1. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  2. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  3. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  4. Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain.

    Science.gov (United States)

    Najlerahim, A; Harrison, P J; Barton, A J; Heffernan, J; Pearson, R C

    1990-05-01

    In situ hybridization histochemistry (ISHH) using synthetic oligonucleotide probes has been used to identify cells containing the mRNAs coding for glutaminase (GluT), aspartate aminotransferase (AspT) and glutamic acid decarboxylase (GAD). The distribution of GAD mRNA confirms previous descriptions and matches the distribution of GAD detected using specific antibodies. AspT mRNA is widely distributed in the brain, but is present at high levels in GABAergic neuronal populations, some that may be glutamatergic, and in a subset of neurons which do not contain significant levels of either GAD or GluT mRNA. Particularly prominent are the neurons of the magnocellular division of the red nucleus, the large cells in the deep cerebellar nuclei and the vestibular nuclei and neurons of the lateral superior olivary nucleus. GluT mRNA does not appear to be present at high levels in all GAD-containing neurons, but is seen prominently in many neuronal populations that may use glutamate as a neurotransmitter, such as neocortical and hippocampal pyramidal cells, the granule cells of the cerebellum and neurons of the dentate gyrus of the hippocampus. The heaviest labelling of GluT mRNA is seen in the lateral reticular nucleus of the medulla. ISHH using probes directed against the mRNAs encoding these enzymes may be an important technique for identifying glutamate and aspartate using neuronal populations and for examining their regulation in a variety of experimental and pathological circumstances.

  5. Expression and function of TrkB variants in developing sensory neurons.

    OpenAIRE

    Ninkina, N.; Adu, J; Fischer, A.; Piñón, L G; Buchman, V L; Davies, A M

    1996-01-01

    Mouse trigeminal neurons survive independently of neurotrophins when their axons are growing to their targets, and are then transiently supported by BDNF before becoming NGF dependent. During the stage of neurotrophin independence, transcripts encoding the BDNF receptor, TrkB, were expressed at very low levels. During the stage of BDNF dependence, high levels of a transcript encoding a receptor with the catalytic tyrosine kinase domain were expressed. Although the levels of this transcript fe...

  6. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology.

  7. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...

  8. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  9. Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons

    Science.gov (United States)

    Imamura, Keiko; Sahara, Naruhiko; Kanaan, Nicholas M.; Tsukita, Kayoko; Kondo, Takayuki; Kutoku, Yumiko; Ohsawa, Yutaka; Sunada, Yoshihide; Kawakami, Koichi; Hotta, Akitsu; Yawata, Satoshi; Watanabe, Dai; Hasegawa, Masato; Trojanowski, John Q.; Lee, Virginia M.-Y.; Suhara, Tetsuya; Higuchi, Makoto; Inoue, Haruhisa

    2016-01-01

    Mutations in the gene MAPT encoding tau, a microtubules-associated protein, cause a subtype of familial neurodegenerative disorder, known as frontotemporal lobar degeneration tauopathy (FTLD-Tau), which presents with dementia and is characterized by atrophy in the frontal and temporal lobes of the brain. Although induced pluripotent stem cell (iPSC) technology has facilitated the investigation of phenotypes of FTLD-Tau patient neuronal cells in vitro, it remains unclear how FTLD-Tau patient neurons degenerate. Here, we established neuronal models of FTLD-Tau by Neurogenin2-induced direct neuronal differentiation from FTLD-Tau patient iPSCs. We found that FTLD-Tau neurons, either with an intronic MAPT mutation or with an exonic mutation, developed accumulation and extracellular release of misfolded tau followed by neuronal death, which we confirmed by correction of the intronic mutation with CRISPR/Cas9. FTLD-Tau neurons showed dysregulation of the augmentation of Ca2+ transients evoked by electrical stimulation. Chemogenetic or pharmacological control of neuronal activity-relevant Ca2+ influx by the introduction of designer receptors exclusively activated by designer drugs (DREADDs) or by the treatment with glutamate receptor blockers attenuated misfolded tau accumulation and neuronal death. These data suggest that neuronal activity may regulate neurodegeneration in tauopathy. This FTLD-Tau model provides mechanistic insights into tauopathy pathogenesis and potential avenues for treatments. PMID:27721502

  10. The effect of medial temporal lobe epilepsy on visual memory encoding.

    Science.gov (United States)

    Gregory, A M; Nenert, R; Allendorfer, J B; Martin, R; Kana, R K; Szaflarski, J P

    2015-05-01

    Effective visual memory encoding, a function important for everyday functioning, relies on episodic and semantic memory processes. In patients with medial temporal lobe epilepsy (MTLE), memory deficits are common as the structures typically involved in seizure generation are also involved in acquisition, maintenance, and retrieval of episodic memories. In this study, we used group independent component analysis (GICA) combined with Granger causality analysis to investigate the neuronal networks involved in visual memory encoding during a complex fMRI scene-encoding task in patients with left MTLE (LMTLE; N=28) and in patients with right MTLE (RMTLE; N=18). Additionally, we built models of memory encoding in LMTLE and RMTLE and compared them with a model of healthy memory encoding (Nenert et al., 2014). For those with LMTLE, we identified and retained for further analyses and model generation 7 ICA task-related components that were attributed to four different networks: the frontal and posterior components of the DMN, visual network, auditory-insular network, and an "other" network. For those with RMTLE, ICA produced 9 task-related components that were attributed to the somatosensory and cerebellar networks in addition to the same networks as in patients with LMTLE. Granger causality analysis revealed group differences in causality relations within the visual memory network and MTLE-related deviations from normal network function. Our results demonstrate differences in the networks for visual memory encoding between those with LMTLE and those with RMTLE. Consistent with previous studies, the organization of memory encoding is dependent on laterality of seizure focus and may be mediated by functional reorganization in chronic epilepsy. These differences may underlie the observed differences in memory abilities between patients with LMTLE and patients with RMTLE and highlight the modulating effects of epilepsy on the network for memory encoding.

  11. Encoding Chaos in Neural Spike Trains

    Science.gov (United States)

    Richardson, Kristen A.; Imhoff, Thomas T.; Grigg, Peter; Collins, James J.

    1998-03-01

    Recently, it has been shown that interspike interval (ISI) series from driven model neurons can be used to discriminate between chaotic and stochastic inputs. Here we extend this work to in vitro experimental studies with rat cutaneous mechanoreceptors. For each of the neurons tested, we show that a chaotically driven ISI series can be distinguished from a stochastically driven ISI series on the basis of a nonlinear prediction measure. This work demonstrates that dynamical information can be preserved when an analog chaotic signal is converted into a spike train by a sensory neuron.

  12. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  13. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  14. 七氟醚抑制脑干吸气前运动神经元的作用机制%Sevoflurane Depresses Glutamatergic Neurotransmission to Brainstem Inspiratory Premotor Neurons but Not Postsynaptic Receptor Function in a Decerebrate Dog Model

    Institute of Scientific and Technical Information of China (English)

    Astrid G. Stucke; 曾因明; Edward J. Zuperku; Viseslav Tonkovic-Capin; Mirko Krolo; Francis A. Hopp; John P. Kampine; Eckehard A. E. Stuth; Zhongcong Xie; 许鹏程

    2005-01-01

    研究背景:位于延髓尾部腹侧髓质的神经元是与吸气相关的前运动神经元,它们是支配呼吸肌如膈肌、肋间外肌、肋间内肌等运动神经元的上一级神经元。这些神经元的兴奋状态由NMDA受体,AM-PA受体调控,也受抑制性AGBA。能神经调节。作者在去大脑狗的模型上探讨七氟醚对这些突触机制的影响。

  15. Nanoresolution radiology of neurons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y. (IP-Taiwan); (Ecole); (BNL); (POSTECH)

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  16. New findings on neuron development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A mature neuron receives inputs from multiple dendrites and sends its output to other neurons via a single axon.This polarized morphology requires proper axonal/dendritic differentiation during development.

  17. Exploring neuronal activity with photons

    Science.gov (United States)

    Bourdieu, Laurent; Léger, Jean-François

    2015-10-01

    The following sections are included: * Introduction * Information coding * Optical recordings of neuronal activity * Functional organization of the cortex at the level of a cortical column * Microarchitecture of a cortical column * Dynamics of neuronal populations * Outlook * Bibliography

  18. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    Science.gov (United States)

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  19. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons.

    Science.gov (United States)

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E; Eisenberg, Leonard M; Leonard, Christopher S

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma.

  20. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  1. Binary neuron with optical devices

    Science.gov (United States)

    Degeratu, Vasile; Degeratu, Ştefania; Şchiopu, Paul; Şchiopu, Carmen

    2009-01-01

    In this paper the authors present a model of binary neuron, a model of McCulloch-Pitts neuron with optical devices. This model of neuron can be implemented not only in the optic integrated circuits but also in the classic optical circuits it being cheap and immune not only into electromagnetic fields but also into any kind of radiation. The transfer speed of information through the neuron is very higher, it being limited only by the light speed from the received medium.

  2. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    Science.gov (United States)

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  3. The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion

    Science.gov (United States)

    Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.

    2012-01-01

    Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113

  4. Associative Encoding in Anterior Piriform Cortex versus Orbitofrontal Cortex during Odor Discrimination and Reversal Learning

    Science.gov (United States)

    Roesch, Matthew R.; Stalnaker, Thomas A.; Schoenbaum, Geoffrey

    2008-01-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex (OFC). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. To test this hypothesis, we recorded from neurons in OFC and anatomically related parts of the anterior piriform cortex (APC) in rats, learning and reversing novel odor discriminations. Findings in OFC were similar to what we have reported previously, with nearly all the cue-selective neurons exhibiting substantial plasticity during learning and reversal. Also, many of the cue-selective neurons were originally responsive in anticipation of the outcomes early in learning, thereby providing a single-unit representation of the cue-outcome associations. Some of these features were also evident in firing activity in APC, including some plasticity across learning and reversal. However, APC neurons failed to reverse cue selectivity when the associated outcome was changed, and the cue-selective population did not include neurons that were active prior to outcome delivery. Thus, although representations in APC are substantially more associative than expected in a purely sensory region, they do appear to be somewhat more constrained by the sensory features of the odor cues than representations in downstream areas of OFC. PMID:16699083

  5. The vestibular system implements a linear-nonlinear transformation in order to encode self-motion.

    Science.gov (United States)

    Massot, Corentin; Schneider, Adam D; Chacron, Maurice J; Cullen, Kathleen E

    2012-01-01

    Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (~50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways.

  6. The vestibular system implements a linear-nonlinear transformation in order to encode self-motion.

    Directory of Open Access Journals (Sweden)

    Corentin Massot

    Full Text Available Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (~50% attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways.

  7. Neuronal substrate of eating disorders

    OpenAIRE

    Timofeeva, Elena; Calvez, Juliane

    2014-01-01

    Eating disorders are devastating and life-threatening psychiatric diseases. Although clinical and experimental investigations have significantly progressed in discovering the neuronal causes of eating disorders, the exact neuronal and molecular mechanisms of the development and maintenance of these pathologies are not fully understood. The complexity of the neuronal substrate of eating disorders hampers progress in revealing the precise mechanisms. The present re...

  8. Cellobiohydrolase variants and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Wogulis, Mark

    2017-04-04

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  9. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  10. Clustering of polarization-encoded images.

    Science.gov (United States)

    Zallat, Jihad; Collet, Christophe; Takakura, Yoshitate

    2004-01-10

    Polarization-encoded imaging consists of the distributed measurements of polarization parameters for each pixel of an image. We address clustering of multidimensional polarization-encoded images. The spatial coherence of polarization information is considered. Two methods of analysis are proposed: polarization contrast enhancement and a more-sophisticated image-processing algorithm based on a Markovian model. The proposed algorithms are applied and validated with two different Mueller images acquired by a fully polarimetric imaging system.

  11. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  12. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  13. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  14. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  15. Adaptive Encoding of Outcome Prediction by Prefrontal Cortex Ensembles Supports Behavioral Flexibility.

    Science.gov (United States)

    Del Arco, Alberto; Park, Junchol; Wood, Jesse; Kim, Yunbok; Moghaddam, Bita

    2017-08-30

    The prefrontal cortex (PFC) is thought to play a critical role in behavioral flexibility by monitoring action-outcome contingencies. How PFC ensembles represent shifts in behavior in response to changes in these contingencies remains unclear. We recorded single-unit activity and local field potentials in the dorsomedial PFC (dmPFC) of male rats during a set-shifting task that required them to update their behavior, among competing options, in response to changes in action-outcome contingencies. As behavior was updated, a subset of PFC ensembles encoded the current trial outcome before the outcome was presented. This novel outcome-prediction encoding was absent in a control task, in which actions were rewarded pseudorandomly, indicating that PFC neurons are not merely providing an expectancy signal. In both control and set-shifting tasks, dmPFC neurons displayed postoutcome discrimination activity, indicating that these neurons also monitor whether a behavior is successful in generating rewards. Gamma-power oscillatory activity increased before the outcome in both tasks but did not differentiate between expected outcomes, suggesting that this measure is not related to set-shifting behavior but reflects expectation of an outcome after action execution. These results demonstrate that PFC neurons support flexible rule-based action selection by predicting outcomes that follow a particular action.SIGNIFICANCE STATEMENT Tracking action-outcome contingencies and modifying behavior when those contingencies change is critical to behavioral flexibility. We find that ensembles of dorsomed