WorldWideScience

Sample records for premotor cortex including

  1. Differential activation of the lateral premotor cortex during action observation

    Directory of Open Access Journals (Sweden)

    Stark Rudolf

    2010-07-01

    Full Text Available Abstract Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice in ballroom dancing and the visual viewpoint (internal vs. external viewpoint influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

  2. The human premotor cortex is 'mirror' only for biological actions.

    Science.gov (United States)

    Tai, Yen F; Scherfler, Christoph; Brooks, David J; Sawamoto, Nobukatsu; Castiello, Umberto

    2004-01-20

    Previous work has shown that both human adults and children attend to grasping actions performed by another person but not necessarily to those made by a mechanical device. According to recent neurophysiological data, the monkey premotor cortex contains "mirror" neurons that discharge both when the monkey performs specific manual grasping actions and when it observes another individual performing the same or similar actions. However, when a human model uses tools to perform grasping actions, the mirror neurons are not activated. A similar "mirror" system has been described in humans, but whether or not it is also tuned specifically to biological actions has never been tested. Here we show that when subjects observed manual grasping actions performed by a human model a significant neural response was elicited in the left premotor cortex. This activation was not evident for the observation of grasping actions performed by a robot model commanded by an experimenter. This result indicates for the first time that in humans the mirror system is biologically tuned. This system appears to be the neural substrate for biological preference during action coding.

  3. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex.

    Science.gov (United States)

    Chambers, Christopher D; Bellgrove, Mark A; Gould, Ian C; English, Therese; Garavan, Hugh; McNaught, Elizabeth; Kamke, Marc; Mattingley, Jason B

    2007-12-01

    Intelligent behavior depends on the ability to suppress inappropriate actions and resolve interference between competing responses. Recent clinical and neuroimaging evidence has demonstrated the involvement of prefrontal, parietal, and premotor areas during behaviors that emphasize conflict and inhibition. It remains unclear, however, whether discrete subregions within this network are crucial for overseeing more specific inhibitory demands. Here we probed the functional specialization of human prefrontal cortex by combining repetitive transcranial magnetic stimulation (rTMS) with integrated behavioral measures of response inhibition (stop-signal task) and response competition (flanker task). Participants undertook a combined stop-signal/flanker task after rTMS of the inferior frontal gyrus (IFG) or dorsal premotor cortex (dPM) in each hemisphere. Stimulation of the right IFG impaired stop-signal inhibition under conditions of heightened response competition but did not influence the ability to suppress a competing response. In contrast, stimulation of the right dPM facilitated execution but had no effect on inhibition. Neither of these results was observed during rTMS of corresponding left-hemisphere regions. Overall, our findings are consistent with existing evidence that the right IFG is crucial for inhibitory control. The observed double dissociation of neurodisruptive effects between the right IFG and right dPM further implies that response inhibition and execution rely on distinct neural processes despite activating a common cortical network.

  4. Neural encoding of auditory discrimination in ventral premotor cortex

    Science.gov (United States)

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    Monkeys have the capacity to accurately discriminate the difference between two acoustic flutter stimuli. In this task, monkeys must compare information about the second stimulus to the memory trace of the first stimulus, and must postpone the decision report until a sensory cue triggers the beginning of the decision motor report. The neuronal processes associated with the different components of this task have been investigated in the primary auditory cortex (A1); but, A1 seems exclusively associated with the sensory and not with the working memory and decision components of this task. Here, we show that ventral premotor cortex (VPC) neurons reflect in their activities the current and remembered acoustic stimulus, their comparison, and the result of the animal's decision report. These results provide evidence that the neural dynamics of VPC is involved in the processing steps that link sensation and decision-making during auditory discrimination. PMID:19667191

  5. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  6. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.

    NARCIS (Netherlands)

    Munchau, A.; Bloem, B.R.; Irlbacher, K.; Trimble, M.R.; Rothwell, J.C.

    2002-01-01

    Connections between the premotor cortex and the primary motor cortex are dense and are important in the visual guidance of arm movements. We have shown previously that it is possible to engage these connections in humans and to measure the net amount of inhibition/facilitation from premotor to motor

  7. Neurons controlling voluntary vocalization in the macaque ventral premotor cortex.

    Directory of Open Access Journals (Sweden)

    Gino Coudé

    Full Text Available The voluntary control of phonation is a crucial achievement in the evolution of speech. In humans, ventral premotor cortex (PMv and Broca's area are known to be involved in voluntary phonation. In contrast, no neurophysiological data are available about the role of the oro-facial sector of nonhuman primates PMv in this function. In order to address this issue, we recorded PMv neurons from two monkeys trained to emit coo-calls. Results showed that a population of motor neurons specifically fire during vocalization. About two thirds of them discharged before sound onset, while the remaining were time-locked with it. The response of vocalization-selective neurons was present only during conditioned (voluntary but not spontaneous (emotional sound emission. These data suggest that the control of vocal production exerted by PMv neurons constitutes a newly emerging property in the monkey lineage, shedding light on the evolution of phonation-based communication from a nonhuman primate species.

  8. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  9. Effective connectivity analysis demonstrates involvement of premotor cortex during speech perception.

    Science.gov (United States)

    Osnes, Berge; Hugdahl, Kenneth; Specht, Karsten

    2011-02-01

    Several reports of premotor cortex involvement in speech perception have been put forward. Still, the functional role of premotor cortex is under debate. In order to investigate the functional role of premotor cortex, we presented parametrically varied speech stimuli in both a behavioral and functional magnetic resonance imaging (fMRI) study. White noise was transformed over seven distinct steps into a speech sound and presented to the participants in a randomized order. As control condition served the same transformation from white noise into a music instrument sound. The fMRI data were modelled with Dynamic Causal Modeling (DCM) where the effective connectivity between Heschl's gyrus, planum temporale, superior temporal sulcus and premotor cortex were tested. The fMRI results revealed a graded increase in activation in the left superior temporal sulcus. Premotor cortex activity was only present at an intermediate step when the speech sounds became identifiable but were still distorted but was not present when the speech sounds were clearly perceivable. A Bayesian model selection procedure favored a model that contained significant interconnections between Heschl's gyrus, planum temporal, and superior temporal sulcus when processing speech sounds. In addition, bidirectional connections between premotor cortex and superior temporal sulcus and from planum temporale to premotor cortex were significant. Processing non-speech sounds initiated no significant connections to premotor cortex. Since the highest level of motor activity was observed only when processing identifiable sounds with incomplete phonological information, it is concluded that premotor cortex is not generally necessary for speech perception but may facilitate interpreting a sound as speech when the acoustic input is sparse.

  10. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Siebner, Hartwig R; Hulme, Oliver J

    2014-01-01

    ), lateral premotor cortex (lPM), supplementary motor area (SMA) and primary motor cortex (M1). Dynamic causal modelling was used to characterize task-related oscillatory coupling between prefrontal and premotor cortical areas. Healthy participants showed task-induced coupling from PFC to SMA, which...... was modulated within the γ-band. In the OFF state, PD patients did not express any frequency-specific coupling between prefrontal and premotor areas. Application of levodopa reinstated task-related coupling from PFC to SMA, which was expressed as high-β-γ coupling. Additionally, strong within-frequency γ...

  11. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  12. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  13. The importance of premotor cortex for supporting speech production after left capsular-putaminal damage.

    Science.gov (United States)

    Seghier, Mohamed L; Bagdasaryan, Juliana; Jung, Dorit E; Price, Cathy J

    2014-10-22

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. Copyright © 2014 Seghier et al.

  14. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right-handed ...

  15. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    Science.gov (United States)

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  16. Decreased premotor cortex volume in victims of urban violence with posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Vanessa Rocha-Rego

    Full Text Available BACKGROUND: Studies addressing posttraumatic stress disorder (PTSD have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? METHODOLOGY/PRINCIPAL FINDINGS: Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. CONCLUSIONS: Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events.

  17. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study.

    Science.gov (United States)

    Grafton, S T; Fagg, A H; Arbib, M A

    1998-02-01

    Positron emission tomography (PET) brain mapping was used to investigate whether or not human dorsal premotor cortex is involved in selecting motor acts based on arbitrary visual stimuli. Normal subjects performed four movement selection tasks. A manipulandum with three graspable stations was used. An imperative visual cue (LEDs illuminated in random order) indicated which station to grasp next with no instructional delay period. In a power task, a large aperture power grip was used for all trials, irrespective of the LED color. In a precision task, a pincer grasp of thumb and index finger was used. In a conditional task, the type of grasp (power or precision) was randomly determined by LED color. Comparison of the conditional selection task versus the average of the power and precision tasks revealed increased blood flow in left dorsal premotor cortex and superior parietal lobule. The average rate of producing the different grasp types and transport to the manipulandum stations was equivalent across this comparison, minimizing the contribution of movement attributes such as planning the individual movements (as distinct from planning associated with use of instructional stimuli), kinematics, or direction of target or limb movement. A comparison of all three movement tasks versus a rest task identified movement related activity involving a large area of central, precentral and postcentral cortex. In the region of the precentral sulcus movement related activity was located immediately caudal to the area activated during selection. The results establish a role for human dorsal premotor cortex and superior parietal cortex in selecting stimulus guided movements and suggest functional segregation within dorsal premotor cortex.

  18. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy.

    Science.gov (United States)

    Chen, Joyce L; Schlaug, Gottfried

    2016-03-16

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery.

  19. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy

    Science.gov (United States)

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  20. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex.

    Science.gov (United States)

    Callan, Daniel E; Jones, Jeffery A; Callan, Akiko

    2014-01-01

    Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action ("Mirror System" properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with

  1. Exploring the contributions of premotor and parietal cortex to spatial compatibility using image-guided TMS.

    Science.gov (United States)

    Koski, Lisa; Molnar-Szakacs, Istvan; Iacoboni, Marco

    2005-01-15

    Functional brain imaging studies have demonstrated increased activity in dorsal premotor and posterior parietal cortex when performing spatial stimulus-response compatibility tasks (SRC). We tested the specific role of these regions in stimulus-response mapping using single-pulse transcranial magnetic stimulation (TMS). Subjects were scanned using functional magnetic resonance imaging (fMRI) prior to the TMS session during performance of a task in which spatial compatibility was manipulated. For each subject, the area of increased signal within the regions of interest was registered onto their own high-resolution T1-weighted anatomic scan. TMS was applied to these areas for each subject using a frameless stereotaxic system. Task accuracy and reaction time (RT) were measured during blocks of compatible or incompatible trials and during blocks of real TMS or sham stimulation. On each trial, a single TMS pulse was delivered at 50, 100, 150, or 200 ms after the onset of the stimulus in the left or right visual field. TMS over the left premotor cortex produced various facilitatory effects, depending on the timing of the stimulation. At short intervals, TMS appeared to prime the left dorsal premotor cortex to select a right-hand response more quickly, regardless of stimulus-response compatibility. The strongest effect of stimulation, however, occurred at the 200-ms interval, when TMS facilitated left-hand responses during the incompatible condition. Facilitation of attention to the contralateral visual hemifield was observed during stimulation over the parietal locations. We conclude that the left premotor cortex is one of the cortical regions responsible for overriding automatic stimulus-response associations.

  2. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    Science.gov (United States)

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  3. Mirror Neurons of Ventral Premotor Cortex Are Modulated by Social Cues Provided by Others' Gaze.

    Science.gov (United States)

    Coudé, Gino; Festante, Fabrizia; Cilia, Adriana; Loiacono, Veronica; Bimbi, Marco; Fogassi, Leonardo; Ferrari, Pier Francesco

    2016-03-16

    Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual. We recorded single-unit activity in macaque PMv while the monkey was observing an experimenter performing a grasping action and orienting his gaze either toward (congruent gaze condition) or away (incongruent gaze condition) from a target object. The results showed that one-half of the recorded MNs were modulated by the gaze direction of the human agent. These gaze-modulated neurons were evenly distributed between those preferring a gaze direction congruent with the direction where the grasping action was performed and the others that preferred an incongruent gaze. Whereas the presence of congruent responses is in line with the usual coupling of hand and gaze in both executed and observed actions, the incongruent responses can be explained by the long exposure of the monkeys to this condition. Our results reveal that the representation of observed actions in PMv is influenced by contextual information not only extracted from physical cues, but also from cues endowed with biological or social value. In this study, we present the first evidence showing that social cues modulate MNs in the monkey ventral premotor cortex. These data suggest that there is an integrated representation of other's hand actions and gaze direction at the single neuron level in the ventral premotor cortex, and support the hypothesis of a functional role of MNs in decoding actions and understanding motor intentions. Copyright © 2016 the authors 0270-6474/16/363145-12$15.00/0.

  4. Decision-making in the ventral premotor cortex harbinger of action

    Directory of Open Access Journals (Sweden)

    José L. ePardo-Vázquez

    2011-09-01

    Full Text Available Although the premotor cortex (PM was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor cortex (PMv, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute and evaluate the outcomes of the subjects’ choices.

  5. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  6. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  7. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  8. A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Sang Seok Yeo; Sung Ho Jang

    2012-01-01

    Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.

  9. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J;

    2009-01-01

    OBJECTIVE: In macaques, intracortical electrical stimulation of ventral premotor cortex (PMv) can modulate ipsilateral primary motor cortex (M1) excitability at short interstimulus intervals (ISIs). METHODS: Adopting the same conditioning-test approach, we used bifocal transcranial magnetic...

  10. Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    were common to repetition in both modalities. We thus obtained three seed regions: the bilateral pre-SMA, left dorsal premotor cortex (PMd), and left ventral premotor cortex that were used to test 63 different models of effective connectivity in the premotor network for pseudoword relative to word...... repetition. The optimal model was identified with Bayesian model selection and reflected a network with driving input to pre-SMA and an increase in facilitatory drive from pre-SMA to PMd during repetition of pseudowords. The task-specific increase in effective connectivity from pre-SMA to left PMd suggests...... that the pre-SMA plays a supervisory role in the generation and subsequent sequencing of motor plans. Diffusion tensor imaging-based fiber tracking in another group of healthy volunteers showed that the functional connection between both regions is underpinned by a direct cortico-cortical anatomical connection....

  11. Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery.

    Science.gov (United States)

    Schubotz, Ricarda I; von Cramon, D Yves

    2004-06-16

    Activation triggered by either observed or imagined actions suggests that the ventral premotor cortex (PMv) provides an action vocabulary that allows us to detect and anticipate basically invariant perceptual states in observed actions. In the present study, we tested the hypothesis that the same PMv region is also recruited by nonbiological (abstract) stimulus sequences as long as the temporal order of stimuli has to be processed. Using functional magnetic resonance imaging, we instructed participants to assess expected outcomes in observed actions [external biological cues (EB)], motor imagery [internal biological cues (IB)], or geometrical figure sequences [external nonbiological cues (EN)]. As hypothesized, we found that each condition elicited significant activation within PMv [left hemisphere, Brodman Area (BA) 6], in contrast to a sequential target detection control task. In addition, cue-specific activations were identified in areas that were only engaged for biologically (action) cued (EB, IB) and nonbiologically cued (EN) tasks. Biologically cued tasks elicited activations within inferior frontal gyri adjacent to PMv (BA 44/45), in the frontomedian wall, the extrastriate body area, posterior superior temporal sulci, somatosensory cortices, and the amygdala-hippocampal-area, whereas the nonbiologically cued task engaged presupplementary motor area, middle frontal gyri, intraparietal sulci, and caudate nuclei of the basal ganglia. In sum, findings point to a basic premotor contribution to the representation or processing of sequentially structured events, supplemented by different sets of areas in the context of either biological or nonbiological cues.

  12. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2015-10-01

    Full Text Available Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG during stabilized and normal walking.Subjects walked on a treadmill in two conditions, each lasting 10 minutes; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e. lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability.

  13. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty.

    Science.gov (United States)

    Carnevale, Federico; de Lafuente, Victor; Romo, Ranulfo; Barak, Omri; Parga, Néstor

    2015-05-20

    Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.

  14. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement

    NARCIS (Netherlands)

    Potgieser, A. R. E.; de Jong, B. M.

    2011-01-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in th

  15. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement

    NARCIS (Netherlands)

    Potgieser, A. R. E.; de Jong, B. M.

    2011-01-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in th

  16. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Marco eZanon

    2013-11-01

    Full Text Available The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG. Towards this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 msec to about 200 msec after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 msec after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 msec. Finally, a likely rebounding activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans.

  17. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Geertsen, Svend Sparre;

    2007-01-01

    Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex. This act......Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex...

  18. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).

    Science.gov (United States)

    Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin

    2016-11-30

    Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate.

  19. Single neurons in M1 and premotor cortex directly reflect behavioral interference.

    Directory of Open Access Journals (Sweden)

    Neta Zach

    Full Text Available Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models.

  20. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  1. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    Science.gov (United States)

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.

  2. Modulation of physiological mirror activity with transcranial direct current stimulation over dorsal premotor cortex.

    Science.gov (United States)

    Beaulé, Vincent; Tremblay, Sara; Lafleur, Louis-Philippe; Ferland, Marie C; Lepage, Jean-François; Théoret, Hugo

    2016-11-01

    Humans have a natural tendency towards symmetrical movements, which rely on a distributed cortical network that allows for complex unimanual movements. Studies on healthy humans using rTMS have shown that disruption of this network, and particularly the dorsal premotor cortex (dPMC), can result in increased physiological mirror movements. The aim of the present set of experiments was to further investigate the role of dPMC in restricting motor output to the contralateral hand and determine whether physiological mirror movements could be decreased in healthy individuals. Physiological mirror movements were assessed before and after transcranial direct current stimulation (tDCS) over right and left dPMC in three conditions: bilateral, unilateral left and unilateral right stimulation. Mirror EMG activity was assessed immediately before, 0, 10 and 20 min after tDCS. Results show that physiological mirroring increased significantly in the hand ipsilateral to cathodal stimulation during bilateral stimulation of the dPMC, 10 and 20 min after stimulation compared to baseline. There was no significant modulation of physiological mirroring in the hand ipsilateral to anodal stimulation in the bilateral condition or following unilateral anodal or unilateral cathodal stimulation. The present data further implicate the dPMC in the control of unimanual hand movements and show that physiological mirroring can be increased but not decreased with dPMC tDCS.

  3. Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (macaca mulatta).

    Science.gov (United States)

    Distler, Claudia; Hoffmann, Klaus-Peter

    2015-11-01

    The dorsal premotor cortex (PMd) is part of the cortical network for arm movements during reach-related behavior. Here we investigate the neuronal projections from the PMd to the midbrain superior colliculus (SC), which also contains reach-related neurons, to investigate how the SC integrates into a cortico-subcortical network responsible for initiation and modulation of goal-directed arm movements. By using anterograde transport of neuronal tracers, we found that the PMd projects most strongly to the deep layers of the lateral part of the SC and the underlying reticular formation corresponding to locations where reach-related neurons have been recorded, and from where descending tectofugal projections arise. A somewhat weaker projection targets the intermediate layers of the SC. By contrast, terminals originating from prearcuate area 8 mainly project to the intermediate layers of the SC. Thus, this projection pattern strengthens the view that different compartments in the SC are involved in the control of gaze and in the control or modulation of reaching movements. The PMD-SC projection assists in the participation of the SC in the skeletomotor system and provides the PMd with a parallel path to elicit forelimb movements.

  4. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference.

  5. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients.

    Science.gov (United States)

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P

    2013-03-01

    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  6. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    Science.gov (United States)

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  7. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  8. Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex.

    Science.gov (United States)

    Mochizuki, Hitoshi; Huang, Ying-Zu; Rothwell, John C

    2004-11-15

    We used transcranial magnetic stimulation (TMS) in a paired pulse protocol to investigate interhemispheric interactions between the right dorsal premotor (dPM) and left primary motor cortex (M1) using interstimulus intervals of 4, 6, 8, 10, 12, 16 and 20 ms in ten healthy subjects. A conditioning stimulus over right dPM at an intensity of either 90 or 110% resting motor threshold (RMT) suppressed motor-evoked potentials (MEPs) evoked in the first dorsal interosseous (FDI) muscle by stimulation of left M1. Maximum effects occurred for interstimulus intervals (ISIs) of 8-10 ms. There was no effect if the conditioning stimulus was applied 2.5 cm lateral, anterior or medial to dPM. The effect differed from previously described M1 interhemispheric inhibition in that the threshold for the latter was greater than 90% RMT, whereas stimulation of the dPM at the same intensity led to significant inhibition. In addition, voluntary contraction of the left FDI (i.e. contralateral to the conditioning TMS) enhanced interhemispheric inhibition from right M1 but had no effect on the inhibition from right dPM. Finally, conditioning to right dPM at 90% RMT reduced short-interval intracortical inhibition (SICI; at ISI = 2 ms) in left M1 whilst there was no effect if the conditioning stimulus was applied to right M1. We conclude that conditioning TMS over dPM has effects that differ from the previous pattern of interhemispheric inhibition described between bilateral M1s. This may reflect the existence of commissural fibres between dPM and contralateral M1 that may play a role in bimanual coordination.

  9. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement.

    Science.gov (United States)

    Potgieser, A R E; de Jong, B M

    2011-12-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in the left (dominant) hemisphere. Pilot observations suggested that distal movements are particularly implicated in cursive writing with the right hand and proximal movements in left-hand writing, which generated ideas concerning hemisphere-specific roles of PMv and dorsal premotor cortex (PMd). Now we examined upper-limb movements in 30 right-handed participants during right- and left-hand writing, respectively. Quantitative description of distal and proximal movements demonstrated a significant difference between movements in right- and left-hand writing (pwriting with the right hand, while proximal and distal movements similarly contributed to left-hand writing. Although differences between non-language drawings were not tested, we propose that the DME in right-hand writing may reflect functional dominance of PMv in the left hemisphere. More proximal movements in left-hand writing might be related to PMd dominance in right-hemisphere motor control, logically implicated in spatial visuomotor transformations as seen in reaching.

  10. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Science.gov (United States)

    Batista, Larissa M.; Nogueira, Lídia L. R. F.; de Oliveira, Eliane A.; de Carvalho, Antonio G. C.; Lima, Soriano S.; Santana, Jordânia R. M.; de Lima, Emerson C. C.; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561). PMID:28250992

  11. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Andrade, Suellen M; Batista, Larissa M; Nogueira, Lídia L R F; de Oliveira, Eliane A; de Carvalho, Antonio G C; Lima, Soriano S; Santana, Jordânia R M; de Lima, Emerson C C; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561).

  12. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  13. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    Science.gov (United States)

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  14. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    Science.gov (United States)

    Ward, Nick S.; Bestmann, Sven; Hartwigsen, Gesa; Weiss, Michael M.; Christensen, Lars O.D.; Frackowiak, Richard S.J.; Rothwell, John C.; Siebner, Hartwig R.

    2013-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals we applied 30 minutes of low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented one second before the target. On 20% of trials the cue was invalid requiring subjects to re-adjust their motor plan according to the target location. Compared to sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute towards dynamic control of actions, and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance. PMID:20610756

  15. Involvement of the human dorsal premotor cortex in unimanual motor control: an interference approach using transcranial magnetic stimulation.

    Science.gov (United States)

    Cincotta, Massimo; Borgheresi, Alessandra; Balestrieri, Fabrizio; Giovannelli, Fabio; Rossi, Simone; Ragazzoni, Aldo; Zaccara, Gaetano; Ziemann, Ulf

    2004-09-02

    Unilateral movements are enabled through a distributed network of motor cortical areas but the relative contribution from the parts of this network is largely unknown. Failure of this network potentially results in mirror activation of the primary motor cortex (M1) ipsilateral to the intended movement. Here we tested the role of the right dorsal premotor cortex (dPMC) in 11 healthy subjects by disrupting its activity with 20 Hz repetitive transcranial magnetic stimulation (rTMS) whilst the subjects exerted a unilateral contraction of the left first dorsal interosseous (FDI). We found that disruption of right dPMC enhanced mirror activation of the ipsilateral left M1, as probed by motor evoked potential (MEP) amplitude to the right FDI. This was not the case with sham rTMS, when rTMS was directed to the right M1, or with rTMS of the right dPMC but without contraction of the left FDI. Findings suggest that activity in the dPMC contributes to the suppression of mirror movements during intended unilateral movements.

  16. A shared representation of the space near oneself and others in the human premotor cortex.

    Science.gov (United States)

    Brozzoli, Claudio; Gentile, Giovanni; Bergouignan, Loretxu; Ehrsson, H Henrik

    2013-09-23

    Interactions between people require shared high-level cognitive representations of action goals, intentions, and mental states, but do people also share their representation of space? The human ventral premotor (PMv) and parietal cortices contain neuronal populations coding for the execution and observation of actions, analogous to the mirror neurons identified in monkeys. This neuronal system is tuned to the location of the acting person relative to the observer and the target of the action. Therefore, it can be theorized that the observer's brain constructs a low-level, body-centered representation of the space around others similar to one's own peripersonal space representation. Single-cell recordings have reported that parietal visuotactile neurons discharge for objects near specific parts of a monkey's own body and near the corresponding body parts of another individual. In humans, no neuroimaging study has investigated this issue. Here, we identified neuronal populations in the human PMv that encode the space near both one's own hand and another person's hand. The shared peripersonal space representation could support social interactions by coding sensory events, actions, and cognitive processes in a common spatial reference frame.

  17. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    Science.gov (United States)

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed.

  18. Modulatory Effects of the Ipsi and Contralateral Ventral Premotor Cortex (PMv) on the Primary Motor Cortex (M1) Outputs to Intrinsic Hand and Forearm Muscles in Cebus apella.

    Science.gov (United States)

    Quessy, Stephan; Côté, Sandrine L; Hamadjida, Adjia; Deffeyes, Joan; Dancause, Numa

    2016-10-01

    The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles. © The Author 2016. Published by Oxford University Press.

  19. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.

    Science.gov (United States)

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Dyson-Sutton, William; Barker, Anthony T; Woodruff, Peter W R

    2011-09-02

    Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.

  20. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    (HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......). A subthreshold conditioning stimulus (CS) was given to PMd 2.0-5.2 ms after the TS at intensities of 50-, 70-, or 90% of TS. The CS to PMd facilitated the MEP evoked by TS over M1(HAND) at interstimulus intervals (ISI) of 2.4 or 2.8 ms. There was a second facilitatory peak at ISI of 4.4 ms. PMd-to-M1(HAND...

  1. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal...

  2. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  3. View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex.

    Science.gov (United States)

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Pomper, Joern K; Thier, Peter; Giese, Martin A; Casile, Antonino

    2011-01-25

    Converging experimental evidence indicates that mirror neurons in the monkey premotor area F5 encode the goals of observed motor acts [1-3]. However, it is unknown whether they also contribute to encoding the perspective from which the motor acts of others are seen. In order to address this issue, we recorded the visual responses of mirror neurons of monkey area F5 by using a novel experimental paradigm based on the presentation of movies showing grasping motor acts from different visual perspectives. We found that the majority of the tested mirror neurons (74%) exhibited view-dependent activity with responses tuned to specific points of view. A minority of the tested mirror neurons (26%) exhibited view-independent responses. We conclude that view-independent mirror neurons encode action goals irrespective of the details of the observed motor acts, whereas the view-dependent ones might either form an intermediate step in the formation of view independence or contribute to a modulation of view-dependent representations in higher-level visual areas, potentially linking the goals of observed motor acts with their pictorial aspects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study.

    Directory of Open Access Journals (Sweden)

    Sein Schmidt

    Full Text Available BACKGROUND: Premotor cortical regions (PMC play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1. Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS. PURPOSE: The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance. HYPOTHESIS: Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability. METHODS: We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function. RESULTS: Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance

  5. Transcallosal connection patterns of opposite dorsal premotor regions support a lateralized specialization for action and perception

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R. E.; de Jong, Bauke M.

    Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information

  6. Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea.

    Science.gov (United States)

    Dergacheva, Olga; Weigand, Letitia A; Dyavanapalli, Jhansi; Mares, Jacquelyn; Wang, Xin; Mendelowitz, David

    2014-01-01

    Parasympathetic cardiac vagal neurons (CVNs) in the brainstem dominate the control of heart rate. Previous work has determined that these neurons are inherently silent, and their activity is largely determined by synaptic inputs to CVNs that include four major types of synapses that release glutamate, GABA, glycine, or serotonin. Whereas prior reviews have focused on glutamatergic, GABAergic and glycinergic pathways, and the receptors in CVNs activated by these neurotransmitters, this review focuses on the alterations in CVN activity with hypoxia-, sleep-, and sleep-related cardiovascular diseases including obstructive sleep apnea.

  7. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie

    2010-01-01

    In 19 healthy volunteers, we used transcranial magnetic stimulation (TMS) to probe the excitability in pathways linking the left dorsal premotor cortex and right primary motor cortex and those linking the left and right motor cortex during the response delay and the reaction time period while sub...

  8. Decoding Grasp Movement from Monkey Premotor Cortex for Real-time Prothetic Hand Control%猴子PMd区脑电解码抓握手势及机械手实时控制

    Institute of Scientific and Technical Information of China (English)

    郑筱祥; 王怡雯; 张韶岷; 张巧生

    2016-01-01

    过去的10年,脑机接口中对上肢有关的伸解码取得了非常大的成功,这给残障人士运动康复带来了希望。但与日常生活息息相关的手部的抓握动作的研究却很少涉及。当前,在解码手势方面有很多初步的工作,但是实时的抓握手势的解码工作还没有被系统地研究过。该研究首先建立了基于非人灵长类动物的植入式脑机接口平台,训练猕猴完成伸抓动作并记录PMd区的神经信号。通过FKNN算法异步解码出4种抓握手势和休息状态。然后,利用共享控制策略驱动灵巧的机械手完成与猴子相同的动作。结果表明大部分PMd区的神经元对伸抓动作具有调和特性,利用PMd区的神经元的解码正确率可以达到97.1%。在线控制模式中,猴子手的瞬时状态能够被成功解码出来并用于机械手的控制,正确率可以达到85.1%。我们的研究为残疾人士抓握运动的康复提供了新的思路和方法。%Brain machine interfaces (BMIs) have demonstrated lots of successful arm-related reach decoding in past decades, which provide a new hope for restoring the lost motor functions for the disabled. On the other hand, the more sophisticated hand grasp movement, which is more fundamental and crucial for daily life, was less referred. Current state of arts has specified some grasp related brain areas and offline decoding results; however, online decoding grasp movement and real-time neuroprosthetic control have not been systematically investigated. In this study, we obtained neural data from the dorsal premotor cortex (PMd) when monkey reaching and grasping one of four differently shaped objects following visual cues. The four grasp gesture types with an additional resting state were classified asynchronously using a fuzzy k-nearest neighbor model, and an artificial hand was controlled online using a shared control strategy. The results showed that most of the neurons in PMd are

  9. Relief of primary cervical dystonia symptoms by low frequency transcranial magnetic stimulation of the premotor cortex: case report Alívio da distonia cervical primária com o uso da estimulação magnética transcraniana de baixa freqüência sobre o córtex pré-motor: relato de caso

    Directory of Open Access Journals (Sweden)

    Nasser Allam

    2007-09-01

    Full Text Available OBJECTIVE: To evaluate the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS on the symptoms of a patient with primary segmental dystonia (PSD. METHOD: 1200 TMS pulses at a frequency of 1Hz, over the premotor cortex, with an intensity of 90% of the motor threshold (MT, using an eight-shaped coil; a total of 5 sessions were carried out. RESULTS: A reduction of 50 percent in the neck subset of the Burke, Fahn and Marsden torsion dystonia scale (BFM was observed in our patient. CONCLUSION: The reduction in the BFM scale supports the concept that rTMS of the premotor cortex may reduce specific motor symptoms in PSD.OBJETIVO: Investigar o efeito da estimulação magnética transcraniana repetitiva (EMTr de baixa freqüência nos sintomas de um paciente com distonia segmentar primária (DSP. MÉTODO: 1200 pulsos a uma freqüência de 1Hz, sobre o córtex pré-motor, a uma intensidade de 90% do limiar motor (LM, usando uma bobina em forma de 8. Foram realizadas 5 sessões. RESULTADOS: Uma redução de 50% no sub-item "pescoço" na escala de distonia de torção de Burke, Fahn e Marsden (BFM foi observada no paciente em questão. CONCLUSÃO: A redução na escala BFM corrobora a idéia de que a EMTr sobre o córtex pré-motor pode reduzir sintomas motores específicos na DSP.

  10. Timing-dependent effects of whisker trimming in thalamocortical slices including the mouse barrel cortex.

    Science.gov (United States)

    Watanabe, Kenji; Kamatani, Daiki; Hishida, Ryuichi; Shibuki, Katsuei

    2011-04-18

    Whisker trimming produces depression of cortical responses in the barrel cortex. However, it is unclear how the developmental timing modifies the effects of whisker trimming. We investigated cortical responses in thalamocortical slices that included the mouse barrel cortex using flavoprotein fluorescence imaging. A topological relationship was observed between the thalamic stimulated sites and cortical areas showing fluorescence changes. By adjusting the position of the thalamic stimulated sites and the cortical windows in which amplitudes of the fluorescence changes were measured, we succeeded to reduce the variability of cortical responses between slices. We then investigated the effects of whisker trimming in the thalamocortical slices. Whisker trimming from 4 weeks to 8 weeks (at 4-8 weeks) of age significantly reduced cortical responses at 8 weeks. However, whisker trimming started before 4 weeks produced only slight depression or no significant effect on the thalamocortical responses. As sensory deprivation during a critical developmental period is known to prevent elimination of synapses, the presence of aberrant synapses may compensate the cortical depression induced by whisker trimming started before 4 weeks. To test this possibility, whisker trimming performed at 0-6 or 0-7 weeks of age was followed by regrowth of whiskers for 1-2 weeks. Clear and significant potentiation of cortical responses was observed in these mice at 8 weeks when compared with those of naive mice of the same age. Overall, these data suggest that whisker trimming, producing depression of thalamocortical responses, prevents elimination of aberrant synapses during a critical developmental period before 4 weeks in the mouse barrel cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Premotor Diagnosis of Parkinson's Disease.

    Science.gov (United States)

    Reichmann, Heinz

    2017-08-03

    Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression may antecede these motor symptoms for years. It would be ideal, if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD). Thus, it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD, if there is a high amout of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein. This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.

  12. Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment.

    Science.gov (United States)

    Craciunas, Sorin C; Brooks, William M; Nudo, Randolph J; Popescu, Elena A; Choi, In-Young; Lee, Phil; Yeh, Hung-Wen; Savage, Cary R; Cirstea, Carmen M

    2013-06-01

    Although functional imaging and neurophysiological approaches reveal alterations in motor and premotor areas after stroke, insights into neurobiological events underlying these alterations are limited in human studies. We tested whether cerebral metabolites related to neuronal and glial compartments are altered in the hand representation in bilateral motor and premotor areas and correlated with distal and proximal arm motor impairment in hemiparetic persons. In 20 participants at >6 months postonset of a subcortical ischemic stroke and 16 age- and sex-matched healthy controls, the concentrations of N-acetylaspartate and myo-inositol were quantified by proton magnetic resonance spectroscopy. Regions of interest identified by functional magnetic resonance imaging included primary (M1), dorsal premotor (PMd), and supplementary (SMA) motor areas. Relationships between metabolite concentrations and distal (hand) and proximal (shoulder/elbow) motor impairment using Fugl-Meyer Upper Extremity (FMUE) subscores were explored. N-Acetylaspartate was lower in M1 (P = .04) and SMA (P = .004) and myo-inositol was higher in M1 (P = .003) and PMd (P = .03) in the injured (ipsilesional) hemisphere after stroke compared with the left hemisphere in controls. N-Acetylaspartate in ipsilesional M1 was positively correlated with hand FMUE subscores (P = .04). Significant positive correlations were also found between N-acetylaspartate in ipsilesional M1, PMd, and SMA and in contralesional M1 and shoulder/elbow FMUE subscores (P = .02, .01, .02, and .02, respectively). Our preliminary results demonstrated that proton magnetic resonance spectroscopy is a sensitive method to quantify relevant neuronal changes in spared motor cortex after stroke and consequently increase our knowledge of the factors leading from these changes to arm motor impairment.

  13. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    Directory of Open Access Journals (Sweden)

    Rodrigo eSiqueira Kazu

    2014-11-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate, insectivore and afrotherian brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share nonneuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are however distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  14. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons.

    Science.gov (United States)

    Kazu, Rodrigo S; Maldonado, José; Mota, Bruno; Manger, Paul R; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  15. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    Science.gov (United States)

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  16. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  17. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    DEFF Research Database (Denmark)

    Michael, John; Sandberg, Kristian; Skewes, Joshua

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used offline continuous theta-burst stimulation (cTBS) to investigate...

  18. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    DEFF Research Database (Denmark)

    Michael, John; Sandberg, Kristian; Skewes, Joshua

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used offline continuous theta-burst stimulation (cTBS) to investigate t...

  19. Neurologic Outcome After Resection of Parietal Lobe Including Primary Somatosensory Cortex: Implications of Additional Resection of Posterior Parietal Cortex.

    Science.gov (United States)

    Kim, Young-Hoon; Kim, June Sic; Lee, Sang Kun; Chung, Chun Kee

    2017-10-01

    Postoperative neurologic outcomes after primary somatosensory cortex (S1) resection have not been well documented. This study was designed to evaluate the neurologic deterioration that follows resection of the S1 areas and to assess the risk factors associated with these morbidities. We reviewed 48 consecutive patients with medically intractable epilepsy who underwent resection of the S1 and/or the adjacent cortex. The 48 patients were categorized into 4 groups according to the resected area as seen on postoperative magnetic resonance images: group 1 (resection of S1 only; n = 4), 2 (the posterior parietal cortex [PPC] only; n = 24), 3 (S1 and PPC; n = 10), and 4 (S1 and precentral gyrus; n = 10). After the resection of S1 areas, 19 patients (40%) experienced neurologic worsening, including 6 (13%) with permanent and 13 (27%) with transient deficits. Patients with permanent deficits included 2 with motor dysphasia, 1 with dysesthesia, 2 with equilibrium impairments, and 1 with fine movement disturbance of the hand. The overall and permanent neurologic risks were 25% and 0% in group 1, 17% and 4% in group 2, 80% and 20% in group 3, and 60% and 30% in group 4, respectively. Multivariate analysis determined that the resection of both S1 and PPC was the only significant risk factor for neurologic deficits (P = 0.002). The neurologic risk of the resection of S1 and/or its adjacent cortical areas was 40%. The additional resection of the PPC was significantly associated with the development of postoperative neurologic impairments. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  1. Calretinin as a marker for premotor neurons involved in upgaze in human brainstem

    Directory of Open Access Journals (Sweden)

    Christopher eAdamczyk

    2015-12-01

    Full Text Available Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF, which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of calretinin input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and calretinin may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and calretinin positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan component of perineuronal nets, parvalbumin or calretinin and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without calretinin coexpression, which were intermingled. The parvalbumin/calretinin positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking calretinin are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as

  2. Can we image premotor Parkinson disease?

    Science.gov (United States)

    Marek, Kenneth; Jennings, Danna

    2009-02-17

    Pathology and imaging studies have shown that patients with Parkinson disease (PD) have a prolonged period of uncertain duration when vulnerable neuronal populations are degenerating, but typical motor symptoms have not yet developed. This provides both an opportunity-it may be best to test new medications and, ultimately, treat PD patients during this early phase of disease--and a challenge--how to find these premotor PD subjects? Imaging biomarkers targeting the premotor period are critical to elucidate both the onset and progression of premotor PD. Widespread data have demonstrated that dopaminergic imaging can detect PD subjects at the motor symptom threshold. Novel strategies combining dopaminergic imaging with known genetic mutations for PD or early clinical signs and PD-associated symptoms, such as olfactory loss and sleep disturbances like REM behavior disorder, have begun to be used to identify individuals at risk for PD before motor symptoms become manifest. Early studies also have used imaging targeting norepinephrine, serotonin, cholinergic, or other neuronal systems to focus on early cardiac, cognitive, and behavioral symptoms. Imaging of nondopaminergic targets such as inflammation or alpha-synuclein deposition may provide further insight into the etiology of PD. Given the multiple genetic etiologies for PD already identified, the marked variability in the loss of dopaminergic markers measured by imaging at motor symptom onset, and the clear heterogeneity of clinical symptoms at PD onset, it is certain that many imaging biomarkers with a focus ranging from clinical symptoms to PD pathobiology to molecular genetic mechanisms, will be necessary to fully map PD risk.

  3. Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia.

    Science.gov (United States)

    Halsband, U; Schmitt, J; Weyers, M; Binkofski, F; Grützner, G; Freund, H J

    2001-01-01

    We compared gesture comprehension and imitation in patients with lesions in the left parietal lobe (LPAR, n=5) and premotor cortex/supplementary motor area (LPMA, n=8) in patients with damage to the right parietal lobe (RPAR, n=6) and right premotor/supplementary motor area (RPMA, n=6) and in 16 non-brain damaged control subjects. Three patients with left parietal lobe damage had aphasia. Subjects were shown 136 meaningful pantomimed motor acts on a videoscreen and were asked to identify the movements and to imitate the motor acts from memory with their ipsilesional and contralesional hand or with both hands simultaneously. Motor tasks included gestures without object use (e.g. to salute, to wave) pantomimed imitation of gestures on one's own body (e.g. to comb one's hair) and pantomimed imitation of motor acts which imply tool use to an object in extrapersonal space (e.g. to hammer a nail). Videotaped test performance was analysed by two independent raters; errors were classified as spatial errors, body part as object, parapraxic performance and non-identifiable movements. In addition, action discrimination was tested by evaluating whether a complex motor sequence was correctly performed. Results indicate that LPAR patients were most severely disturbed when imitation performance was assessed. Interestingly, LPAR patients were worse when imitating gestures on their own bodies than imitating movements with reference to an external object use with most pronounced deficits in the spatial domain. In contrast to imitation, comprehension was not or only slightly disturbed and no clear correlation was found between the severity of imitation deficits and gesture comprehension. Moreover, although the three patients with aphasia imitated the movements more poorly than non-aphasic LPAR patients, the severity of comprehension errors did not differ. Whereas unimanual imitating performance and gesture comprehension of PMA patients did not differ significantly from control

  4. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  5. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward.

    Science.gov (United States)

    Shimada, Sotaro; Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-03-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock-Paper-Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player's success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness.

  6. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    Science.gov (United States)

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  7. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  8. Virtual reality and the role of the prefrontal cortex in adults and children.

    Directory of Open Access Journals (Sweden)

    Lutz Jäncke

    2009-05-01

    Full Text Available In this review the neural underpinnings of the experience of presence are outlined. Firstly, it will be shown that presence is associated with an activation of a distributed network including the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Second, the dorsolateral prefrontal cortex (DLPFC is identified as a key node of this network in that it modulates the activity of this network and the associated experience of presence. Third, because of their unmatured frontal cortex, children lack the strong modulatory influence of the DLPFC on this network. Fourth, it is shown that by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS while participants are exposed to the virtual roller coaster ride presence-related measures are influenced. Finally, these findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out of body experiences.

  9. MEG premotor abnormalities in children with Asperger's syndrome: determinants of social behavior?

    Science.gov (United States)

    Hauswald, Anne; Weisz, Nathan; Bentin, Shlomo; Kissler, Johanna

    2013-07-01

    Children with Asperger's syndrome show deficits in social functioning while their intellectual and language development is intact suggesting a specific dysfunction in mechanisms mediating social cognition. An action observation/execution matching system might be one such mechanism. Recent studies indeed showed that electrophysiological modulation of the "Mu-rhythm" in the 10-12Hz range is weaker when individuals with Asperger's syndrome observe actions performed by others compared to controls. However, electrophysiological studies typically fall short in revealing the neural generators of this activity. To fill this gap we assessed magnetoencephalographic Mu-modulations in Asperger's and typically developed children, while observing grasping movements. Mu-power increased at frontal and central sensors during movement observation. This modulation was stronger in typical than in Asperger children. Source localization revealed stronger sources in premotor cortex, the intraparietal lobule (IPL) and the mid-occipito-temporal gyrus (MOTG) and weaker sources in prefrontal cortex in typical participants compared to Asperger. Activity in premotor regions, IPL and MOTG correlated positively with social competence, whereas prefrontal Mu-sources correlated negatively with social competence. No correlation with intellectual ability was found at any of these sites. These findings localize abnormal Mu-activity in the brain of Asperger children providing evidence which associates motor-system abnormalities with social-function deficits.

  10. Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Honda Manabu

    2006-12-01

    Full Text Available Abstract Background It has yet to be determined whether visual-tactile cross-modal plasticity due to visual deprivation, particularly in the primary visual cortex (V1, is solely due to visual deprivation or if it is a result of long-term tactile training. Here we conducted an fMRI study with normally-sighted participants who had undergone long-term training on the tactile shape discrimination of the two dimensional (2D shapes on Mah-Jong tiles (Mah-Jong experts. Eight Mah-Jong experts and twelve healthy volunteers who were naïve to Mah-Jong performed a tactile shape matching task using Mah-Jong tiles with no visual input. Furthermore, seven out of eight experts performed a tactile shape matching task with unfamiliar 2D Braille characters. Results When participants performed tactile discrimination of Mah-Jong tiles, the left lateral occipital cortex (LO and V1 were activated in the well-trained subjects. In the naïve subjects, the LO was activated but V1 was not activated. Both the LO and V1 of the well-trained subjects were activated during Braille tactile discrimination tasks. Conclusion The activation of V1 in subjects trained in tactile discrimination may represent altered cross-modal responses as a result of long-term training.

  11. Writer's cramp: increased dorsal premotor activity during intended writing.

    Science.gov (United States)

    Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan

    2013-03-01

    Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing.

  12. Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands.

    Science.gov (United States)

    Hauschild, Markus; Mulliken, Grant H; Fineman, Igor; Loeb, Gerald E; Andersen, Richard A

    2012-10-16

    Cortical neural prosthetics extract command signals from the brain with the goal to restore function in paralyzed or amputated patients. Continuous control signals can be extracted from the motor cortical areas, whereas neural activity from posterior parietal cortex (PPC) can be used to decode cognitive variables related to the goals of movement. Because typical activities of daily living comprise both continuous control tasks such as reaching, and tasks benefiting from discrete control such as typing on a keyboard, availability of both signals simultaneously would promise significant increases in performance and versatility. Here, we show that PPC can provide 3D hand trajectory information under natural conditions that would be encountered for prosthetic applications, thus allowing simultaneous extraction of continuous and discrete signals without requiring multisite surgical implants. We found that limb movements can be decoded robustly and with high accuracy from a small population of neural units under free gaze in a complex 3D point-to-point reaching task. Both animals' brain-control performance improved rapidly with practice, resulting in faster target acquisition and increasing accuracy. These findings disprove the notion that the motor cortical areas are the only candidate areas for continuous prosthetic command signals and, rather, suggests that PPC can provide equally useful trajectory signals in addition to discrete, cognitive variables. Hybrid use of continuous and discrete signals from PPC may enable a new generation of neural prostheses providing superior performance and additional flexibility in addressing individual patient needs.

  13. The anatomical connections of the macaque monkey orbitofrontal cortex. A review.

    Science.gov (United States)

    Cavada, C; Compañy, T; Tejedor, J; Cruz-Rizzolo, R J; Reinoso-Suárez, F

    2000-03-01

    The orbitofrontal cortex (OfC) is a heterogeneous prefrontal sector selectively connected with a wide constellation of other prefrontal, limbic, sensory and premotor areas. Among the limbic cortical connections, the ones with the hippocampus and parahippocampal cortex are particularly salient. Sensory cortices connected with the OfC include areas involved in olfactory, gustatory, somatosensory, auditory and visual processing. Subcortical structures with prominent OfC connections include the amygdala, numerous thalamic nuclei, the striatum, hypothalamus, periaqueductal gray matter, and biochemically specific cell groups in the basal forebrain and brainstem. Architectonic and connectional evidence supports parcellation of the OfC. The rostrally placed isocortical sector is mainly connected with isocortical areas, including sensory areas of the auditory, somatic and visual modalities, whereas the caudal non-isocortical sector is principally connected with non-isocortical areas, and, in the sensory domain, with olfactory and gustatory areas. The connections of the isocortical and non-isocortical orbital sectors with the amygdala, thalamus, striatum, hypothalamus and periaqueductal gray matter are also specific. The medial sector of the OfC is selectively connected with the hippocampus, posterior parahippocampal cortex, posterior cingulate and retrosplenial areas, and area prostriata, while the lateral orbitofrontal sector is the most heavily connected with sensory areas of the gustatory, somatic and visual modalities, with premotor regions, and with the amygdala.

  14. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism.

    Science.gov (United States)

    van Nuenen, Bart F L; Helmich, Rick C; Ferraye, Murielle; Thaler, Avner; Hendler, Talma; Orr-Urtreger, Avi; Mirelman, Anat; Bressman, Susan; Marder, Karen S; Giladi, Nir; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan

    2012-12-01

    Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's disease, namely carriers of a leucine-rich repeat kinase 2-G2019S mutation associated with dominantly inherited parkinsonism. Functional magnetic resonance imaging was used to examine cerebral activity evoked during internal selection of motor representations, a core motor deficit in clinically overt Parkinson's disease. Thirty-nine healthy first-degree relatives of Ashkenazi Jewish patients with Parkinson's disease, who carry the leucine-rich repeat kinase 2-G2019S mutation, participated in this study. Twenty-one carriers of the leucine-rich repeat kinase 2-G2019S mutation and 18 non-carriers of this mutation were engaged in a motor imagery task (laterality judgements of left or right hands) known to be sensitive to motor control parameters. Behavioural performance of both groups was matched. Mutation carriers and non-carriers were equally sensitive to the extent and biomechanical constraints of the imagined movements in relation to the current posture of the participants' hands. Cerebral activity differed between groups, such that leucine-rich repeat kinase 2-G2019S carriers had reduced imagery-related activity in the right caudate nucleus and increased activity in the right dorsal premotor cortex. More severe striatal impairment was associated with stronger effective connectivity between the right dorsal premotor cortex and the right extrastriate body area. These findings suggest that altered movement-related activity in the caudate nuclei of leucine-rich repeat kinase 2-G2019S carriers might remain behaviourally latent by virtue of cortical compensatory mechanisms involving long-range connectivity between the dorsal premotor cortex and posterior sensory regions. These

  16. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  17. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    Science.gov (United States)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  18. Rule activity related to spatial and numerical magnitudes: comparison of prefrontal, premotor, and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2014-05-01

    In everyday situations, quantitative rules, such as "greater than/less than," need to be applied to a multitude of magnitude comparisons, be they sensory, spatial, temporal, or numerical. We have previously shown that rules applied to different magnitudes are encoded in the lateral PFC. To investigate if and how other frontal lobe areas also contribute to the encoding of quantitative rules applied to multiple magnitudes, we trained monkeys to switch between "greater than/less than" rules applied to either line lengths (spatial magnitudes) or dot numerosities (discrete numerical magnitudes). We recorded single-cell activity from the dorsal premotor cortex (dPMC) and cingulate motor cortex (CMA) and compared it with PFC activity. We found the largest proportion of quantitative rule-selective cells in PFC (24% of randomly selected cells), whereas neurons in dPMC and CMA rarely encoded the rule (6% of the cells). In addition, rule selectivity of individual cells was highest in PFC neurons compared with dPMC and CMA neurons. Rule-selective neurons that simultaneously represented the "greater than/less than" rules applied to line lengths and numerosities ("rule generalists") were exclusively present in PFC. In dPMC and CMA, however, neurons primarily encoded rules applied to only one of the two magnitude types ("rule specialists"). Our data suggest a special involvement of PFC in representing quantitative rules at an abstract level, both in terms of the proportion of neurons engaged and the coding capacities.

  19. Grey matter volume and resting-state functional connectivity of the motor cortex-cerebellum network reflect the individual variation in masticatory performance in the healthy elderly people

    Directory of Open Access Journals (Sweden)

    Chia-Shu eLin

    2016-01-01

    Full Text Available Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI and resting-state function MRI were performed. We analyzed alterations in grey matter volume (GMV using voxel-based morphometry and resting-state functional connectivity (rsFC between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1 the GMV change in the premotor cortex was positively correlated with masticatory performance. (2 The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3 The GMV changes in the dorsolateral prefrontal cortex (DLPFC, as well as the rsFC between the cerebellum and the DLPFC, was positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  20. The cutaneous rabbit illusion affects human primary sensory cortex somatotopically.

    Directory of Open Access Journals (Sweden)

    Felix Blankenburg

    2006-03-01

    Full Text Available We used functional magnetic resonance imaging (fMRI to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion, illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.

  1. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-10-15

    Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands.

  2. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Science.gov (United States)

    Wise, Nan J.; Frangos, Eleni; Komisaruk, Barry R.

    2016-01-01

    Background During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design Eleven healthy women (age range 29–74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the ‘reward system’. In addition

  3. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  4. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  5. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    M. T. Tadaiesky

    2010-01-01

    Full Text Available A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease.

  6. Weight-specific anticipatory coding of grip force in human dorsal premotor cortex

    DEFF Research Database (Denmark)

    van Nuenen, Bart F L; Kuhtz-Buschbeck, Johann; Schulz, Christian

    2012-01-01

    ). An additional pre-cue (S1) correctly predicted the weight in 75% of the trials. Participants were asked to use this prior information to prepare for the lift. In the sham condition, grip force showed a consistent undershoot, if the S1 incorrectly prompted the preparation of a light lift. Likewise, an S1...

  7. The Importance of Premotor Cortex for Supporting Speech Production after Left Capsular-Putaminal Damage

    OpenAIRE

    Mohamed L Seghier; Bagdasaryan, Juliana; Jung, Dorit E.; Cathy J. Price

    2014-01-01

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left put...

  8. Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R

    2015-01-01

    human subjects performed a spatially-precued reaction time task. RESULTS: Relative to sham rTMS, effective online perturbation of left PMd significantly impaired both the response speed and accuracy in trials that were invalidly pre-cued and required the subject to reprogram the prepared action...

  9. Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bestmann, Sven; Ward, Nick S

    2012-01-01

    The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal prem...

  10. Premotor biomarkers for Parkinson's disease - a promising direction of research

    Directory of Open Access Journals (Sweden)

    Haas Brian R

    2012-05-01

    Full Text Available Abstract The second most serious neurodegenerative disease is Parkinson’s disease (PD. Over the past several decades, a strong body of evidence suggests that PD can begin years before the hallmark clinical motor symptoms appear. Biomarkers for PD are urgently needed to differentiate between neurodegenerative disorders, screen novel therapeutics, and predict eventual clinical PD before the onset of symptoms. Some clinical evaluations and neuroimaging techniques have been developed in the last several years with some success in this area. Moreover, other strategies have been utilized to identify biochemical and genetic markers associated with PD leading to the examination of PD progression and pathogenesis in cerebrospinal fluid, blood, or saliva. Finally, interesting results are surfacing from preliminary studies using known PD-associated genetic mutations to assess potential premotor PD biomarkers. The current review highlights recent advances and underscores areas of potential advancement.

  11. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy N; Carter, Cameron S

    2015-01-01

    Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.

  12. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    Science.gov (United States)

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.

  13. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats.

    Science.gov (United States)

    Oulad Ben Taib, Nordeyn; Manto, Mario

    2008-07-01

    We studied the effects of low- and high-frequency premotor electrical stimulations on conditioned corticomotor responses, intra-cortical facilitation (ICF) and spinal excitability in hemicerebellectomized rats (left side). Trains of stimulation were applied in prefrontal region rFr2 (the equivalent of the premotor/supplementary motor area in primates) at a rate of 1 Hz (low-frequency stimulation LFS) or 20 Hz (high-frequency stimulation HFS). Test stimuli on the motor cortex were preceded by a conditioning stimulus in contralateral sciatic nerve (two inter-stimulus intervals ISIs were studied: 5 ms or 45 ms). (A) At ISI-5, conditioning increased amplitudes of MEPs (motor evoked potentials) in the left motor cortex. This afferent facilitation was enhanced if preceded by trains of stimuli administered over the ipsilateral rFr2 area, and HFS had higher effects than LFS. The facilitation was lower for the right motor cortex, for both LFS and HFS. (B) At ISI-45, conditioned motor evoked responses were depressed as compared to unconditioned responses in the left motor cortex (afferent inhibition). Following LFS, the degree of inhibition was unchanged while it increased with HFS. At baseline, inhibition was enhanced in the right motor cortex. Interestingly, the afferent inhibition decreased significantly following HFS. (C) ICF was depressed in the right motor cortex, but increased similarly on both sides following LFS/HFS. These results (1) confirm the increased inhibition in the motor cortex contralaterally to the hemicerebellar ablation, (2) demonstrate for the first time that the cerebellum is necessary for tuning amplitudes of corticomotor responses following a peripheral nerve stimulation, (3) show that the application of LFS or HFS does not cancel the defect of excitability in the motor cortex for short ISIs, and (4) suggest that for longer ISIs, HFS could have interesting properties for the modulation of afferent inhibition in case of extensive cerebellar lesion

  14. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B.

    Directory of Open Access Journals (Sweden)

    Marco eLanzilotto

    2015-01-01

    Full Text Available The Supplementary Eye Field (SEF and the Frontal Eye Field (FEF have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance and during the execution of a visual fixation task (VFT. In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey’s head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze

  15. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others.

  16. Activation of Premotor Vocal Areas during Musical Discrimination

    Science.gov (United States)

    Brown, Steven; Martinez, Michael J.

    2007-01-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…

  17. Cardiovascular physiology in premotor Parkinson's disease: a neuroepidemiologic study.

    Science.gov (United States)

    Jain, Samay; Ton, Thanh G; Perera, Subashan; Zheng, Yan; Stein, Phyllis K; Thacker, Evan; Strotmeyer, Elsa S; Newman, Anne B; Longstreth, Will T

    2012-07-01

    Changes in cardiovascular physiology in Parkinson's disease (PD) are common and may occur prior to diagnostic parkinsonian motor signs. We investigated associations of electrocardiographic (ECG) abnormalities, orthostasis, heart rate variability, and carotid stenosis with the risk of PD diagnosis in the Cardiovascular Health Study, a community-based cohort of older adults. ECG abnormality, orthostasis (symptomatic or asymptomatic), heart rate variability (24-hour Holter monitoring), and any carotid stenosis (≥1%) by ultrasound were modeled as primary predictors of incident PD diagnosis using multivariable logistic regression. Incident PD cases were identified by at least 1 of the following: self-report, antiparkinsonian medication use, and ICD-9. If unadjusted models were significant, they were adjusted or stratified by age, sex, and smoking status, and those in which predictors were still significant (P ≤ .05) were also adjusted for race, diabetes, total cholesterol, low-density lipoprotein, blood pressure, body mass index, physical activity, education level, stroke, and C-reactive protein. Of 5888 participants, 154 incident PD cases were identified over 14 years of follow-up. After adjusting models with all covariates, those with any ECG abnormality (odds ratio [OR], 1.45; 95% CI, 1.02-2.07; P = .04) or any carotid stenosis (OR, 2.40; 95% CI, 1.40-4.09; P = .001) at baseline had a higher risk of incident PD diagnosis. Orthostasis and heart rate variability were not significant predictors. This exploratory study suggests that carotid stenosis and ECG abnormalities occur prior to motor signs in PD, thus serving as potential premotor features or risk factors for PD diagnosis. Replication is needed in a population with more thorough ascertainment of PD onset.

  18. α-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects.

    Science.gov (United States)

    Kim, Joong-Seok; Park, In-Seok; Park, Hyung-Eun; Kim, Su-Young; Yun, Jung A; Jung, Chan Kwon; Sung, Hye-Young; Lee, Jin-Kwon; Kang, Won-Kyung

    2017-01-01

    Extranigral non-motor signs precede the first motor manifestations of Parkinson's disease by many years in some patients. The presence of α-synuclein deposition within colon tissues in patients with Parkinson's disease can aid in identifying early neuropathological changes prior to disease onset. In the present study, we evaluated the roles of non-motor symptoms and signs and imaging biomarkers of nigral neuronal changes and α-synuclein accumulation in the colon. Twelve subjects undergoing colectomy for primary colon cancer were recruited for this study. Immunohistochemical staining for α-synuclein in normal and phosphorylated forms was performed in normally appearing colonic tissue. We evaluated 16 candidate premotor risk factors in this study cohort. Among them, ten subjects showed positive immunostaining with normal- and phosphorylated-α-synuclein. An accumulation of premotor markers in each subject was accompanied with positive normal- and phosphorylated-α-synuclein immunostaining, ranging from 2 to 7 markers per subject, whereas the absence of Lewy bodies in the colon was associated with relative low numbers of premotor signs. A principal component analysis and a cluster analysis of these premotor markers suggest that urinary symptoms were commonly clustered with deposition of peripheral phosphorylated-α-synuclein. Among other premotor marker, color vision abnormalities were related to non-smoking. This mathematical approach confirmed the clustering of premotor markers in preclinical stage of Parkinson's disease. This is the first report showing that α-synuclein in the colon and other premotor markers are related to each other in neurologically normal subjects.

  19. Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey.

    Science.gov (United States)

    Luppino, Giuseppe; Rozzi, Stefano; Calzavara, Roberta; Matelli, Massimo

    2003-02-01

    The superior sector of Brodmann area 6 (dorsal premotor cortex, PMd) of the macaque monkey consists of a rostral and a caudal architectonic area referred to as F7 and F2, respectively. The aim of this study was to define the origin of prefrontal and agranular cingulate afferents to F7 and F2, in the light of functional and hodological evidence showing that these areas do not appear to be functionally homogeneous. Different sectors of F7 and F2 were injected with neural tracers in seven monkeys and the retrograde labelling was qualitatively and quantitatively analysed. The dorsorostral part of F7 (supplementary eye field, F7-SEF) was found to be a target of strong afferents from the frontal eye field (FEF), from the dorsolateral prefrontal regions located dorsally (DLPFd) and ventrally (DLPFv) to the principal sulcus and from cingulate areas 24a, 24b and 24c. In contrast, the remaining part of F7 (F7-non SEF) is only a target of the strong afferents from DLPFd. Finally, the ventrorostral part of F2 (F2vr), but not the F2 sector located around the superior precentral dimple (F2d), receives a minor, but significant, input from DLPFd and a relatively strong input from the cingulate gyrus (areas 24a and 24b) and area 24d. Present data provide strong hodological support in favour of the idea that areas F7 and F2 are formed by two functionally distinct sectors.

  20. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  1. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram;

    2014-01-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive...

  2. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    2009-01-01

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  3. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    Directory of Open Access Journals (Sweden)

    M Cornelia Stoeckel

    Full Text Available Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  4. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    Science.gov (United States)

    Stoeckel, M Cornelia; Morgenroth, Farina; Buetefisch, Cathrin M; Seitz, Rüdiger J

    2012-01-01

    Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  5. Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models.

    Science.gov (United States)

    Aghagolzadeh, Mehdi; Truccolo, Wilson

    2016-02-01

    Motor cortex neuronal ensemble spiking activity exhibits strong low-dimensional collective dynamics (i.e., coordinated modes of activity) during behavior. Here, we demonstrate that these low-dimensional dynamics, revealed by unsupervised latent state-space models, can provide as accurate or better reconstruction of movement kinematics as direct decoding from the entire recorded ensemble. Ensembles of single neurons were recorded with triple microelectrode arrays (MEAs) implanted in ventral and dorsal premotor (PMv, PMd) and primary motor (M1) cortices while nonhuman primates performed 3-D reach-to-grasp actions. Low-dimensional dynamics were estimated via various types of latent state-space models including, for example, Poisson linear dynamic system (PLDS) models. Decoding from low-dimensional dynamics was implemented via point process and Kalman filters coupled in series. We also examined decoding based on a predictive subsampling of the recorded population. In this case, a supervised greedy procedure selected neuronal subsets that optimized decoding performance. When comparing decoding based on predictive subsampling and latent state-space models, the size of the neuronal subset was set to the same number of latent state dimensions. Overall, our findings suggest that information about naturalistic reach kinematics present in the recorded population is preserved in the inferred low-dimensional motor cortex dynamics. Furthermore, decoding based on unsupervised PLDS models may also outperform previous approaches based on direct decoding from the recorded population or on predictive subsampling.

  6. Sensing with the Motor Cortex

    OpenAIRE

    Hatsopoulos, Nicholas G.; Suminski, Aaron J.

    2011-01-01

    The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensori-motor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development.

  7. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.

    2013-01-01

    Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing–remitting stage of the disease....

  8. Effect of Transcranial Direct Current Stimulation over the Primary Motor Cortex on Cerebral Blood Flow: A Time Course Study Using Near-infrared Spectroscopy.

    Science.gov (United States)

    Takai, Haruna; Tsubaki, Atsuhiro; Sugawara, Kazuhiro; Miyaguchi, Shota; Oyanagi, Keiichi; Matsumoto, Takuya; Onishi, Hideaki; Yamamoto, Noriaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that is applied during stroke rehabilitation. The purpose of this study was to examine diachronic intracranial hemodynamic changes using near-infrared spectroscopy (NIRS) during tDCS applied to the primary motor cortex (M1). Seven healthy volunteers were tested during real stimulation (anodal and cathodal) and during sham stimulation. Stimulation lasted 20 min and NIRS data were collected for about 23 min including the baseline. NIRS probe holders were positioned over the entire contralateral sensory motor area. Compared to the sham condition, both anodal and cathodal stimulation resulted in significantly lower oxyhemoglobin (O2Hb) concentrations in the contralateral premotor cortex (PMC), supplementary motor area (SMA), and M1 (pstimulation was significantly lower than that during the sham condition (pstimulation was lower than that during anodal stimulation (pstimulation was significantly higher than the concentrations during both cathodal stimulation and the sham condition (p<0.05). The factor of time did not demonstrate significant differences. These results suggest that both anodal and cathodal tDCS cause widespread changes in cerebral blood flow, not only in the area immediately under the electrode, but also in other areas of the cortex.

  9. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct...

  10. The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains

    Directory of Open Access Journals (Sweden)

    Ronen eSosnik

    2014-04-01

    Full Text Available There is growing experimental evidence that the engagement of different brain areas in a given motor task may change with practice, although the specific brain activity patterns underlying different stages of learning, as defined by kinematic or dynamic performance indices, are not well understood. Here we studied the change in activation in motor areas during practice on sequences of handwriting-like trajectories, connecting four target points on a digitizing table 'as rapidly and as accurately as possible' while lying inside an fMRI scanner. Analysis of the subjects' pooled kinematic and imaging data, acquired at the beginning, middle and end of the training period, revealed no correlation between the amount of activation in the contralateral M1, PM (dorsal and ventral, SMA, preSMA and PPC and the amount of practice per-se. Single trial analysis has revealed that the correlation between the amount of activation in the contralateral M1 and trial mean velocity was partially modulated by performance gains related effects, such as increased hand motion smoothness. Furthermore, it was found that the amount of activation in the contralateral preSMA increased when subjects shifted from generating straight point-to-point trajectories to their spatiotemporal concatenation into a smooth, curved trajectory. Altogether, our results indicate that the amount of activation in the contralateral M1, PMd and preSMA during the learning of movement sequences is correlated with performance gains and that high level motion features (e.g., motion smoothness may modulate, or even mask correlations between activity changes and low-level motion attributes (e.g., trial mean velocity.

  11. TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex.

    Science.gov (United States)

    Koch, Giacomo; Rothwell, John C

    2009-09-14

    Transcranial magnetic stimulation (TMS) can be used in two different ways to investigate the contribution of cortical areas involved in grasp/reach movements in humans. It can produce "virtual lesions" that interfere with activity in particular cortical areas at specific times during a task, or it can be used in a twin coil design to test the excitability of cortical projections to M1 at different times during a task. The former method has described how cortical structures such as the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and the anterior intraparietal sulcus (aIPS) are important for specific aspects of reaching, grasping and lifting objects. In the latter method, a conditioning stimulus (CS) is first used to activate putative pathways to the motor cortex from, for example, posterior parietal cortex (PPC) or PMd, while a second, test stimulus (TS), delivered over the primary motor cortex a few ms later probes any changes in excitability that are produced by the input. Thus changes in the effectiveness of the conditioning pulse give an indication of how the excitability of the connection changes over time and during a specific task. Here we review studies describing the time course of operation of parallel intracortical circuits and cortico-cortical connections between the PMd, PMv, PPC and M1, thus demonstrating that functional interplay between these areas and the primary motor cortices is not fixed, but can change in a highly task-, condition- and time-dependent manner.

  12. Preparative activities in posterior parietal cortex for self-paced movement in monkeys.

    Science.gov (United States)

    Gemba, Hisae; Matsuura-Nakao, Kazuko; Matsuzaki, Ryuichi

    2004-02-26

    Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0-3.0 mm depth in various cortices in monkeys performing self-paced finger, toe, mouth, hand or trunk movements. Surface-negative, depth-positive potentials (readiness potential) appeared in the posterior parietal cortex about 1.0 s before onset of every self-paced movement, as well as in the premotor, motor and somatosensory cortices. Somatotopical distribution was seen in the readiness potential in the posterior parietal cortex, although it was not so distinct as that in the motor or somatosensory cortex. This suggests that the posterior parietal cortex is involved in preparation for self-paced movement of any body part. This study contributes to the investigation of central nervous mechanisms of voluntary movements initiated by internal stimulus.

  13. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  14. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution.

    Science.gov (United States)

    Rule, Michael E; Vargas-Irwin, Carlos; Donoghue, John P; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters.

  15. Contribution of LFP dynamics to single neuron spiking variability in motor cortex during movement execution

    Directory of Open Access Journals (Sweden)

    Michael Everett Rule

    2015-06-01

    Full Text Available Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ, θ, α, β LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100ms spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters.

  16. How electrode montage affects transcranial direct current stimulation of the human motor cortex.

    Science.gov (United States)

    Salvador, Ricardo; Wenger, Cornelia; Nitsche, Michael A; Miranda, Pedro C

    2015-01-01

    Several different electrode configurations were originally proposed to induce excitability changes in the hand area of the motor cortex in transcranial direct current stimulation (tDCS). However only one was found to efficiently affect cortical excitability: anode/cathode over the primary motor cortex and return electrode placed over the contralateral orbit (M-CF configuration). In this work we used the finite element method to calculate the electric field (E-field) induced in a realistic human head model in all the proposed electrode configurations. In order to analyze the results, average values of the E-field's magnitude and polar/azimuthal angles were calculated in several cortical motor and premotor areas which may have an effect on the output of the primary motor cortex. The average E-field's magnitude at the hand-knob (HK) was similar between the M-CF configuration (0.16 V/m) and a few other tested configurations, the same happening for the average polar angle (129°). However this configuration achieved the highest mean E-field values over premotor (PM) areas (0.21 V/m). These results show that the polar angle and the average magnitude of the E-field evaluated at the HK and at the PM cortex might be important parameters in predicting the success of a specific electrode montage in tDCS.

  17. Processing of Own Hand Visual Feedback during Object Grasping in Ventral Premotor Mirror Neurons.

    Science.gov (United States)

    Maranesi, Monica; Livi, Alessandro; Bonini, Luca

    2015-08-26

    Mirror neurons (MNs) discharge during action execution as well as during observation of others' actions. Our own actions are those that we have the opportunity to observe more frequently, but no study thus far to our knowledge has addressed the issue of whether, and to what extent, MNs can code own hand visual feedback (HVF) during object grasping. Here, we show that MNs of the ventral premotor area F5 of macaque monkeys are particularly sensitive to HVF relative to non-MNs simultaneously recorded in the same penetrations. Importantly, the HVF effect is more evident on MN activity during hand-object interaction than during the hand-shaping phase. Furthermore, the increase of MN activity induced by HVF and others' actions observed from a subjective perspective were positively correlated. These findings indicate that at least part of ventral premotor MNs can process the visual information coming from own hand interacting with objects, likely playing a role in self-action monitoring. We show that mirror neurons (MNs) of area F5 of the macaque, in addition to encoding others' observed actions, are particularly sensitive, relative to simultaneously recorded non-MNs, to the sight of the monkey's own hand during object grasping, likely playing a role in self-action monitoring. Copyright © 2015 the authors 0270-6474/15/3511824-06$15.00/0.

  18. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  19. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division

    DEFF Research Database (Denmark)

    Petersen, Peter C; Vestergaard, Mikkel; Reveles Jensen, Kristian

    2014-01-01

    Direct measurements of synaptic inhibition (I) and excitation (E) to spinal motoneurons can provide an important insight into the organization of premotor networks. Such measurements of flexor motoneurons participating in motor patterns in turtles have recently demonstrated strong concurrent E an...

  20. [Investigation on chemical constituents of processed products of Eucommiae Cortex].

    Science.gov (United States)

    Tao, Yi; Sheng, Chen; Li, Wei-dong; Cai, Bao-chang; Lu, Tu-lin

    2014-11-01

    According to the 2010 Chinese pharmacopeia, salt processed and charcoal processed Eucommiae Cortex were pre- pared. HPLC-DAD analysis of the content of the bark and leaf of Eucommiae Cortex showed that the bark of Eucommiae Cortex mainly contained lignans such as pinoresinol glucose and iridoid including genipin, geniposide, geniposidic acid, while the leaf of Eucommiae Cortex consisted of flavonoids such as quercetin and phenolic compound such as chlorogenic acid. The content of pinoresinol diglucoside in the bark of Eucommiae Cortex was about 18 times more than that in the leaf of Eucommiae Cortex. The content of pinoresinol diglucoside in salted and charcoal processed Eucommiae Cortex decreased approximately by 30% and 85%, respectively. The content of genipin, geniposide and geniposidic acid in the bark of Eucommiae Cortex was about 3 times, 23 times, 28 times more than that in the leaf of Eucommiae Cortex. The content of genipin, geniposide and geniposidic acid in salted Eucommiae Cortex were reduced by 25%, 40% and 40%, respectively. The content of genipin, geniposide and geniposidic acid in charcoal processed Eucommiae Cortex were reduced by 98%, 70%, 70%, respectively. The content of caffeic acid in bark of Eucommiae Cortex was about 3 times more than that in the leaf of Eucommiae Cortex. The content of caffeic acid was decreased by about 50% in the salted Eucommiae Cortex. While the content of caffeic acid in charcoal processed Eucommiae Cortex was decreased approximately 75%; the content of chlorogenic acid in bark of Eucommiae Cortex was about 1/6 of that in the leaf of Eucommiae Cortex. The content of chlorogenic acid in salted and charcoal processed Eucommiae Cortex decreased by 40% and 75%, respectively; the content of quercetin in bark of Eucommiae Cortex was only 1/40 of that in the leaf of Eucommiae Cortex. The content of quercetin in salted and charcoal processed Eucommiae Cortex were reduced by 60% and 50%, respectively.

  1. Transformation of Cortex-wide Emergent Properties during Motor Learning.

    Science.gov (United States)

    Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki

    2017-05-17

    Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Alaburda, Aidas; Hounsgaard, Jørn Dybkjær

    2013-01-01

    Intrinsic response properties of neurons change during network activity. These changes may reinforce the initiation of particular forms of network activity. If so, the involvement of neurons in particular behaviors in multifunctional networks could be determined by up or down regulation...... of their intrinsic excitability. Here we employed an experimental paradigm of protracted scratch initiation in the integrated carapace-spinal cord preparation of adult turtles (Chrysemys scripta elegans). The protracted initiation of scratch network activity allows us to investigate the excitability of motoneurons...... and pre-motor network activity in the time interval from the start of sensory stimulation until the onset of scratch activity. Our results suggest that increased activity in the pre-motor network facilitates the onset of scratch episodes but does not change the excitability of motoneurons at the onset...

  3. Spatial and viewpoint selectivity for others' observed actions in monkey ventral premotor mirror neurons.

    Science.gov (United States)

    Maranesi, Monica; Livi, Alessandro; Bonini, Luca

    2017-08-15

    The spatial location and viewpoint of observed actions are closely linked in natural social settings. For example, actions observed from a subjective viewpoint necessarily occur within the observer's peripersonal space. Neurophysiological studies have shown that mirror neurons (MNs) of the monkey ventral premotor area F5 can code the spatial location of live observed actions. Furthermore, F5 MN discharge can also be modulated by the viewpoint from which filmed actions are seen. Nonetheless, whether and to what extent MNs can integrate viewpoint and spatial location of live observed actions remains unknown. We addressed this issue by comparing the activity of 148 F5 MNs while macaque monkeys observed an experimenter grasping in three different combinations of viewpoint and spatial location, namely, lateral view in the (1) extrapersonal and (2) peripersonal space and (3) subjective view in the peripersonal space. We found that the majority of MNs were space-selective (60.8%): those selective for the peripersonal space exhibited a preference for the subjective viewpoint both at the single-neuron and population level, whereas space-unselective neurons were view invariant. These findings reveal the existence of a previously neglected link between spatial and viewpoint selectivity in MN activity during live-action observation.

  4. Role of human premotor dorsal region in learning a conditional visuomotor task.

    Science.gov (United States)

    Parikh, Pranav J; Santello, Marco

    2017-01-01

    Conditional learning is an important component of our everyday activities (e.g., handling a phone or sorting work files) and requires identification of the arbitrary stimulus, accurate selection of the motor response, monitoring of the response, and storing in memory of the stimulus-response association for future recall. Learning this type of conditional visuomotor task appears to engage the premotor dorsal region (PMd). However, the extent to which PMd might be involved in specific or all processes of conditional learning is not well understood. Using transcranial magnetic stimulation (TMS), we demonstrate the role of human PMd in specific stages of learning of a novel conditional visuomotor task that required subjects to identify object center of mass using a color cue and to apply appropriate torque on the object at lift onset to minimize tilt. TMS over PMd, but not vertex, increased error in torque exerted on the object during the learning trials. Analyses of digit position and forces further revealed that the slowing in conditional visuomotor learning resulted from impaired monitoring of the object orientation during lift, rather than stimulus identification, thus compromising the ability to accurately reduce performance error across trials. Importantly, TMS over PMd did not alter production of torque based on the recall of learned color-torque associations. We conclude that the role of PMd for conditional learning is highly sensitive to the stage of learning visuomotor associations.

  5. Psychosocial risk factors, pre-motor symptoms and first-time hospitalization with Parkinson's disease

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Ritz, B; Prescott, E;

    2013-01-01

    BACKGROUND AND PURPOSE: Experimental studies support a link between stress and development of parkinsonian symptoms, but prospective population studies are lacking. The aim of the current study is to determine the effects of several psychosocial factors on the risk of Parkinson's disease (PD), as...... PD. Vital exhaustion may be useful for screening aimed at early detection and when considering disease-modifying therapies in people at high risk of clinical PD.......BACKGROUND AND PURPOSE: Experimental studies support a link between stress and development of parkinsonian symptoms, but prospective population studies are lacking. The aim of the current study is to determine the effects of several psychosocial factors on the risk of Parkinson's disease (PD......), as well as to identify potential pre-motor symptoms for PD in a large prospective cohort study. METHODS: In 1991-1993, a total of 9955 women and men free of PD from the Copenhagen City Heart Study were asked about major life events, economic hardship, social network, impaired sleep and vital exhaustion...

  6. Space-dependent representation of objects and other's action in monkey ventral premotor grasping neurons.

    Science.gov (United States)

    Bonini, Luca; Maranesi, Monica; Livi, Alessandro; Fogassi, Leonardo; Rizzolatti, Giacomo

    2014-03-12

    The macaque ventral premotor area F5 hosts two types of visuomotor grasping neurons: "canonical" neurons, which respond to visually presented objects and underlie visuomotor transformation for grasping, and "mirror" neurons, which respond during the observation of others' action, likely playing a role in action understanding. Some previous evidence suggested that canonical and mirror neurons could be anatomically segregated in different sectors of area F5. Here we investigated the functional properties of single neurons in the hand field of area F5 using various tasks similar to those originally designed to investigate visual responses to objects and actions. By using linear multielectrode probes, we were able to simultaneously record different types of neurons and to precisely localize their cortical depth. We recorded 464 neurons, of which 243 showed visuomotor properties. Canonical and mirror neurons were often present in the same cortical sites; and, most interestingly, a set of neurons showed both canonical and mirror properties, discharging to object presentation as well as during the observation of experimenter's goal-directed acts (canonical-mirror neurons). Typically, visual responses to objects were constrained to the monkey peripersonal space, whereas action observation responses were less space-selective. Control experiments showed that space-constrained coding of objects mostly relies on an operational (action possibility) rather than metric (absolute distance) reference frame. Interestingly, canonical-mirror neurons appear to code object as target for both one's own and other's action, suggesting that they could play a role in predictive representation of others' impending actions.

  7. Reduced parietal connectivity with a premotor writing area in writer's cramp.

    Science.gov (United States)

    Delnooz, Cathérine C S; Helmich, Rick C; Toni, Ivan; van de Warrenburg, Bart P C

    2012-09-15

    Writer's cramp is a task-specific form of dystonia with symptoms characterized by abnormal movements and postures of the hand and arm evident only during writing. Its pathophysiology has been related to faulty sensorimotor integration, abnormal sensory processing, and impaired motor planning. Its symptoms might appear when the computational load of writing pushes a tonically altered circuit outside its operational range. Using resting-state fMRI, we tested whether writer's cramp patients have altered intrinsic functional connectivity in the premotor-parietal circuit. Sixteen patients with right-sided writer's cramp and 19 control subjects were studied. We show that writer's cramp patients have reduced connectivity between the superior parietal lobule and a dorsal precentral region that controls writing movements. This difference between patients and controls occurred in the absence of writing and only in the hemisphere contralateral to the affected hand. This finding adds a novel element to the pathophysiological substrate for writer's cramp, namely, task-independent alterations within a writing-related circuit.

  8. Risk of premotor symptoms in patients with newly diagnosed PD: a nationwide, population-based, case-control study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Wu

    Full Text Available To evaluate the risk of premotor symptoms, namely rapid eye movement behavior disorder (RBD, constipation, and depression among patients with newly diagnosed Parkinson disease (PD.A total of 705 PD patients and 2,820 control subjects were selected from the Taiwan National Health Insurance Research Database. Patients were traced back for a maximum of 14 years to determine the diagnoses of RBD, depression, and constipation. Logistic regression analysis was used to identify risk of premotor symptoms for PD. Moreover, subgroup analyses were performed by dividing the patients into a middle-age onset group (≤ 64 years and an old-age onset group (≥ 65 years. The associations between these premotor symptoms and age of PD onset were further examined.An association was found between a history of premotor symptoms and newly diagnosed PD in which a high occurrence of premotor symptoms was identified in PD patients as compared to selected controls (4.3% vs. 1.2% for RBD, 40.4% vs. 24.0% for constipation, and 13.0% vs. 5.1% for depression. The strength of this association remained statistically significant after adjustment for potential confounders (3.69 fold risk for RBD, 2.36 for constipation, and 2.82 for depression, all p < 0.0001. The average interval between premotor symptoms and PD ranged from 4.5 to 6.2 years. RBD and depression carried higher risks for PD in the middle-age onset group than in the old-age onset group (7.20- vs. 2.24-fold risk for RBD, 6.06 vs. 1.40 for depression.The prevalence of premotor symptoms was higher among the PD patients than in the controls. Premotor symptoms appeared to be associated with a higher risk for PD in subjects with an earlier age of onset.

  9. Intraoperative identification of the negative motor network during awake surgery to prevent deficit following brain resection in premotor regions.

    Science.gov (United States)

    Rech, F; Duffau, H; Pinelli, C; Masson, A; Roublot, P; Billy-Jacques, A; Brissart, H; Civit, T

    2017-06-01

    Surgical resection in premotor areas can lead to supplementary motor area syndrome as well as a permanent deficit. However, recent findings suggest a putative role of the negative motor network in those dysfunctions. Our objective was to compare the functional results in two groups of adult patients who underwent the resection of a frontal glioma with and without resection of the negative motor networks. Twelve patients (total of 13 surgeries) were selected for awake surgery for a frontal glioma. Negative motor responses were monitored during surgery at the cortical and subcortical levels. Sites eliciting negative motor responses were first identified then spared (n=8) or removed (n=5) upon oncological requirements. In the group with removal of the negative motor network (n=5), all patients presented a complete supplementary motor area syndrome with akinesia and mutism. At 3months, they all presented bimanual coordination dysfunction and fine movement disorders. In the group with preservation of the negative motor network (n=8), all patients presented transient and slight disorders of speech or upper limb, they all recovered completely at 3months. The negative motor network is a part of a modulatory motor network involved in the occurrence of the supplementary motor area syndrome and the permanent deficit after resection in premotor areas. Then, intraoperative functional cortico-subcortical mapping using direct electrostimulation under awake surgery seems mandatory to avoid deficit in bimanual coordination and fine movements during surgery in premotor areas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Interaction between the premotor processes of eye and hand movements: possible mechanism underlying eye-hand coordination.

    Science.gov (United States)

    Hiraoka, Koichi; Kurata, Naoatsu; Sakaguchi, Masato; Nonaka, Kengo; Matsumoto, Naoto

    2014-03-01

    Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye-hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye-hand coordination tasks during which both processes proceed.

  11. 帕金森病运动前期研究进展%Premotor Phase of Early Parkinson Disease (review)

    Institute of Scientific and Technical Information of China (English)

    焦淑军; 袁红

    2011-01-01

    Clinical, neuroimaging, and pathologic studies suggested that a variety of nonmotor symptoms, such as olfactory dysfunction, dysautonomia, and mood and sleep disorders, can precede the typic motor features of Parkinson disease (PD) by years and, perhaps, even decades.The period when these symptoms arise can be referred as the premotor phase of the disease.This paper reviewed the conception, clinical manifestation, pathology, diogose of the premotor phase of early Parkinson disease.%临床症状学及神经影像学、病理学的资料均提示各种帕金森病(PD)非运动症状(NMS),如嗅觉障碍、自主神经机能异常、情感障碍、睡眠紊乱等,先于运动症状出现数年至十数年,这段时期称为运动前期(premotor phase).本文对帕金森病运动前期概念、临床表现、病理基础、诊断的研究进展做一综述.

  12. An fMRI Study of Audiovisual Speech Perception Reveals Multisensory Interactions in Auditory Cortex.

    Science.gov (United States)

    Okada, Kayoko; Venezia, Jonathan H; Matchin, William; Saberi, Kourosh; Hickok, Gregory

    2013-01-01

    Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.

  13. Left superior parietal cortex involvement in writing: integrating fMRI with lesion evidence.

    Science.gov (United States)

    Menon, V; Desmond, J E

    2001-10-01

    Writing is a uniquely human skill that we utilize nearly everyday. Lesion studies in patients with Gerstmann's syndrome have pointed to the parietal cortex as being critical for writing. Very little information is, however, available about the precise anatomical location of brain regions subserving writing in normal healthy individuals. In this study, we used functional magnetic resonance imaging (fMRI) to investigate parietal lobe function during writing to dictation. Significant clusters of activation were observed in left superior parietal lobe (SPL) and the dorsal aspects of the inferior parietal cortex (IPC) bordering the SPL. Localized clusters of activation were also observed in the left premotor cortex, sensorimotor cortex and supplementary motor area. No activation cluster was observed in the right hemisphere. These results clearly indicate that writing appears to be primarily organized in the language-dominant hemisphere. Further analysis revealed that within the parietal cortex, activation was significantly greater in the left SPL, compared to left IPC. Together with lesion studies, findings from the present study provide further evidence for the essential role of the left SPL in writing. Deficits to the precise left hemisphere parietal cortex regions identified in the present study may specifically underlie disorders of writing observed in Gerstmann's syndrome and apractic agraphia.

  14. Insular cortex and neuropsychiatric disorders: a review of recent literature.

    Science.gov (United States)

    Nagai, M; Kishi, K; Kato, S

    2007-09-01

    The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.

  15. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    Science.gov (United States)

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks.

  16. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice.

    Science.gov (United States)

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-02-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  18. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.

    Science.gov (United States)

    Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg

    2015-01-21

    Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans.

  19. Cardiovascular physiology in pre-motor Parkinson disease: A Neuroepidemiologic study

    Science.gov (United States)

    Jain, S; Ton, TG; Perera, S; Zheng, Y; Stein, PK; Thacker, EL; Strotmeyer, ES; Newman, AB; Longstreth, WT

    2013-01-01

    Background Changes in cardiovascular physiology in PD are common and may occur prior to diagnostic Parkinsonian motor signs. We investigated associations of electrocardiographic (ECG) abnormalities, orthostasis, heart rate variability or carotid stenosis with the risk of Parkinson disease (PD) diagnosis in the Cardiovascular Health Study, a community-based cohort of older adults. Methods ECG abnormality, orthostasis (symptomatic or asymptomatic), heart rate variability (24-hour Holter monitoring) or any carotid stenosis (≥1%) by ultrasound were modeled as primary predictors for incident PD diagnosis using multivariable logistic regression. Incident PD cases were identified by at least one of the following: self-report, anti-Parkinsonian medication use, or ICD9. If unadjusted models were significant, they were adjusted or stratified for age, sex and smoking status and those in which predictors were still significant (p≤0.05) were additionally adjusted for race, diabetes, total cholesterol, low density lipoprotein, blood pressure, body mass index, physical activity, education level, stroke and C-reactive protein. Results Of 5,888 participants, 154 incident PD cases were identified over 14 years of follow-up. After adjusting models with all covariates, those with any ECG abnormality (Odds Ratio: 1.45, 95% CI: 1.02-2.07,p=0.04) or any carotid stenosis (OR: 2.40, 95% CI (1.40-4.09,p=0.001) at baseline had a higher risk of incident PD diagnosis. Orthostasis and heart rate variability were not significant predictors. Conclusions This exploratory study suggests that carotid stenosis and ECG abnormalities occur prior to motor signs in PD, thus serving as potential pre-motor features or risk factors for PD diagnosis. Replication is needed in a population with more thorough ascertainment of PD onset. PMID:22700356

  20. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    Science.gov (United States)

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC.

  1. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    Science.gov (United States)

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  2. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    Science.gov (United States)

    Krutki, Piotr; Jelen, Sabina; Jankowska, Elzbieta

    2011-04-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons.

  3. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  4. Neuropsychology of prefrontal cortex

    OpenAIRE

    2008-01-01

    The history of clinical frontal lobe study is long and rich which provides valuable insights into neuropsychologic determinants of functions of prefrontal cortex (PFC). PFC is often classified as multimodal association cortex as extremely processed information from various sensory modalities is integrated here in a precise fashion to form the physiologic constructs of memory, perception, and diverse cognitive processes. Human neuropsychologic studies also support the notion of different funct...

  5. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  6. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    Science.gov (United States)

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2016-01-11

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates.

  7. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Simone, Luciano; Rozzi, Stefano; Bimbi, Marco; Fogassi, Leonardo

    2015-12-01

    Grasping actions require the integration of two neural processes, one enabling the transformation of object properties into corresponding motor acts, and the other involved in planning and controlling action execution on the basis of contextual information. The first process relies on parieto-premotor circuits, whereas the second is considered to be a prefrontal function. Up to now, the prefrontal cortex has been mainly investigated with conditional visuomotor tasks requiring a learned association between cues and behavioural output. To clarify the functional role of the prefrontal cortex in grasping actions, we recorded the activity of ventrolateral prefrontal (VLPF) neurons while monkeys (Macaca mulatta) performed tasks requiring reaching-grasping actions in different contextual conditions (in light and darkness, memory-guided, and in the absence of abstract learned rules). The results showed that the VLPF cortex contains neurons that are active during action execution (movement-related neurons). Some of them showed grip selectivity, and some also responded to object presentation. Most movement-related neurons discharged during action execution both with and without visual feedback, and this discharge typically did not change when the action was performed with object mnemonic information and in the absence of abstract rules. The findings of this study indicate that a population of VLPF neurons play a role in controlling goal-directed grasping actions in several contexts. This control is probably exerted within a wider network, involving parietal and premotor regions, where the role of VLPF movement-related neurons would be that of activating, on the basis of contextual information, the representation of the motor goal of the intended action (taking possession of an object) during action planning and execution.

  8. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl

    2005-01-01

    The role of the prefrontal cortex remains controversial. Neuroimaging studies support modality-specific and process-specific functions related to working memory and attention. Its role may also be defined by changes in its influence over other brain regions including sensory and motor cortex. We...... included high-order interactions between modality, selection and regional activity. There was greater coupling between prefrontal cortex and motor cortex during free selection and action tasks, and between prefrontal cortex and visual cortex during free selection of colours. The results suggest...

  9. Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation.

    Science.gov (United States)

    Jung, Patrick; Klein, Johannes C; Wibral, Michael; Hoechstetter, Karsten; Bliem, Barbara; Lu, Ming-Kuei; Wahl, Mathias; Ziemann, Ulf

    2012-04-18

    Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.

  10. Subthreshold rTMS over pre-motor cortex has no effect on tics in patients with Gilles de la Tourette syndrome.

    NARCIS (Netherlands)

    Orth, M.; Kirby, R.; Richardson, M.P.; Snijders, A.H.; Rothwell, J.C.; Trimble, M.R.; Robertson, M.M.; Munchau, A.

    2005-01-01

    OBJECTIVE: A previous study showed no effect of 1Hz repetitive transcranial magnetic stimulation (rTMS) on tics in Gilles de la Tourette Syndrome (GTS). We modified the rTMS protocol in order to investigate some of the possible methodological reasons for the negative outcome in that study. METHODS:

  11. Overlap and Segregation in Predorsal Premotor Cortex Activations Related to Free Selection of Self-Referenced and Target-Based Finger Movements

    NARCIS (Netherlands)

    Beudel, M.; de Jong, B. M.

    2009-01-01

    In reaching movements, parietal contributions can be distinguished that are based on representations of external space and body scheme. By functional magnetic resonance imaging, we examined 16 healthy subjects to see whether such segregation similarly exists in the frontal lobes when visuomotor acti

  12. Subthreshold rTMS over pre-motor cortex has no effect on tics in patients with Gilles de la Tourette syndrome.

    NARCIS (Netherlands)

    Orth, M.; Kirby, R.; Richardson, M.P.; Snijders, A.H.; Rothwell, J.C.; Trimble, M.R.; Robertson, M.M.; Munchau, A.

    2005-01-01

    OBJECTIVE: A previous study showed no effect of 1Hz repetitive transcranial magnetic stimulation (rTMS) on tics in Gilles de la Tourette Syndrome (GTS). We modified the rTMS protocol in order to investigate some of the possible methodological reasons for the negative outcome in that study. METHODS:

  13. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Science.gov (United States)

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  14. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Directory of Open Access Journals (Sweden)

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulb – olfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  15. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Science.gov (United States)

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of

  16. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Directory of Open Access Journals (Sweden)

    Yuki Itakura

    Full Text Available Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs. Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons, that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs. We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged

  17. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  18. Task-driven intra- and interarea communications in primate cerebral cortex

    Science.gov (United States)

    Tauste Campo, Adrià; Martinez-Garcia, Marina; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Deco, Gustavo

    2015-01-01

    Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas. PMID:25825731

  19. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions.

    Science.gov (United States)

    Price, Joseph L

    2007-12-01

    The orbitofrontal cortex is often defined topographically as the cortex on the ventral surface of the frontal lobe. Unfortunately, this definition is not consistently used, and it obscures distinct connectional and functional systems within the orbital cortex. It is difficult to interpret data on the orbital cortex that do not take these different systems into account. Analysis of cortico-cortical connections between areas in the orbital and medial prefrontal cortex indicate two distinct networks in this region. One system, called the orbital network, involves most of the areas in the central orbital cortex. The other system, has been called the medial prefrontal network, though it is actually more complex, since it includes areas on the medial wall, in the medial orbital cortex, and in the posterolateral orbital cortex. Some areas in the medial orbital cortex are involved in both networks. Connections to other brain areas support the distinction between the networks. The orbital network receives several sensory inputs, from olfactory cortex, taste cortex, somatic sensory association cortex, and visual association cortex, and is connected with multisensory areas in the ventrolateral prefrontal cortex and perirhinal cortex. The medial network has outputs to the hypothalamus and brain stem and connects to a cortical circuit that includes the rostral part of the superior temporal gyrus and dorsal bank of the superior temporal sulcus, the cingulate and retrosplenial cortex, the entorhinal and posterior parahippocampal cortex, and the dorsomedial prefrontal cortex.

  20. Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord.

    Science.gov (United States)

    Kargo, William J; Giszter, Simon F

    2008-03-05

    Complex actions may arise by combining simple motor primitives. Our studies support individual premotor drive pulses or bursts as execution primitives in spinal cord. Alternatively, the fundamental execution primitives at the segmental level could be time-varying synergies. To distinguish these hypotheses, we examined sensory feedback effects during targeted wiping organized in spinal cord. This behavior comprises three bursts. We tested (1) whether feedback altered the structure of individual premotor drive bursts or primitives, and (2) whether feedback differentially modulated different drive bursts or pulses in the three burst sequence. At least two of the three bursts would need to always be comodulated to support a time-varying synergy. We used selective muscle vibration to control spindle feedback from a single muscle (biceps/iliofibularis). The structures of premotor drive bursts were conserved. However, biceps vibration (1) scaled the amplitudes of two bursts coactivated during the initial phase of wiping independently of one another without altering their phase, and (2) independently phase regulated the third burst but preserved its amplitude. Thus, all three bursts were regulated separately. Durations were unaffected. The independent effects depended on (1) time of vibration during wiping, (2) frequency of vibration, and (3) limb configuration. Because each of the three bursts was independently modulated, these data strongly support execution using individual premotor bursts rather than time-varying synergies at the spinal level of motor organization. Our data show that both sensory feedback and central systems of the spinal cord act in concert to adjust the individual premotor bursts in support of the straight and unimodal wiping trajectory.

  1. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex

    OpenAIRE

    Kensaku eMori; Hiroyuki eManabe; Kimiya eNarikiyo; Naomi eOnisawa

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory senso...

  2. Projection from the perirhinal cortex to the frontal motor cortex in the rat.

    Science.gov (United States)

    Kyuhou, Shin ichi; Gemba, Hisae

    2002-03-01

    Stimulation of the anterior perirhinal cortex (PERa) induced marked surface-negative and depth-positive field potentials in the rat frontal motor cortex (MC) including the rostral and caudal forelimb areas. Injection of biotinylated dextran into the PERa densely labeled axon terminals in the superficial layers of the MC, where vigorous unit responses were evoked after PERa stimulation, indicated that the perirhinal-frontal projection preferentially activates the superficial layer neurons of the MC.

  3. Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode

    Directory of Open Access Journals (Sweden)

    Jürgen Krüger

    2010-05-01

    Full Text Available A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than seven years in about one third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage the recording area. Advantages and problems related to long-term recording are discussed.

  4. STOP-EVENT-RELATED POTENTIALS FROM INTRACRANIAL ELECTRODES REVEAL A KEY ROLE OF PREMOTOR AND MOTOR CORTICES IN STOPPING ONGOING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Maurizio eMattia

    2012-06-01

    Full Text Available In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus. These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e. premotor (PMA and primary motor (M1 cortices. Electroencephalographic (EEG studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA and Brodmann's area (BA 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times. These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network.

  5. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G [The Catholic University of Korea, Seoul (Korea, Republic of)

    2004-07-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control.

  6. Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices.

    Science.gov (United States)

    Tosoni, Annalisa; Corbetta, Maurizio; Calluso, Cinzia; Committeri, Giorgia; Pezzulo, Giovanni; Romani, G L; Galati, Gaspare

    2014-04-01

    During simple perceptual decisions, sensorimotor neurons in monkey fronto-parietal cortex represent a decision variable that guides the transformation of sensory evidence into a motor response, supporting the view that mechanisms for decision-making are closely embedded within sensorimotor structures. Within these structures, however, decision signals can be dissociated from motor signals, thus indicating that sensorimotor neurons can play multiple and independent roles in decision-making and action selection/planning. Here we used functional magnetic resonance imaging to examine whether response-selective human brain areas encode signals for decision-making or action planning during a task requiring an arbitrary association between face pictures (male vs. female) and specific actions (saccadic eye vs. hand pointing movements). The stimuli were gradually unmasked to stretch the time necessary for decision, thus maximising the temporal separation between decision and action planning. Decision-related signals were measured in parietal and motor/premotor regions showing a preference for the planning/execution of saccadic or pointing movements. In a parietal reach region, decision-related signals were specific for the stimulus category associated with its preferred pointing response. By contrast, a saccade-selective posterior intraparietal sulcus region carried decision-related signals even when the task required a pointing response. Consistent signals were observed in the motor/premotor cortex. Whole-brain analyses indicated that, in our task, the most reliable decision signals were found in the same neural regions involved in response selection. However, decision- and action-related signals within these regions can be dissociated. Differences between the parietal reach region and posterior intraparietal sulcus plausibly depend on their functional specificity rather than on the task structure. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons

  7. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings......The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  8. Parkinson disease and sleep: sleep-wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features.

    Science.gov (United States)

    Iranzo, Alex

    2013-09-01

    Parkinson disease (PD) has a premotor stage where neurodegeneration occurs before parkinsonism becomes apparent. Identification of individuals at this stage provides an opportunity to study early disease progression and test disease-modifying interventions. Hyposmia, constipation, depression and hypersomnia are part of this premotor phase and predictive of future development of PD. However, these features are common in the general population, and they are most often the result of causes other than incipient PD. In contrast, most individuals with idiopathic REM sleep behavior disorder (IRBD) eventually develop PD and other synucleinopathies. IRBD individuals with hyposmia, substantia nigra hyperechogenicity, and abnormal striatal dopamine transporter imaging findings have increased short-term risk of developing a synucleinopathy. IRBD is an optimal target to test disease-modifying agents in the PD prodromal phase. Serial dopamine transporter imaging, but not olfactory tests, may serve to monitor the disease process in future disease-modifying trials in IRBD.

  9. Extroversion-related differences in speed of premotor and motor processing as revealed by lateralized readiness potentials.

    Science.gov (United States)

    Stahl, Jutta; Rammsayer, Thomas

    2008-03-01

    To further elucidate extroversion-related differences in speed of sensorimotor processing, the authors obtained behavioral and psychophysiological measures as participants (16 introverts and 16 extroverts) performed a visual go/no-go task. Although no extroversion-related differences in reaction time emerged, introverts showed faster premotor processing but slower central and peripheral motor processing--as indicated by latencies of the lateralized readiness potential (LRP) and electromyographic (EMG) data, respectively--than extroverts did. Additional regression analyses revealed that stimulus-locked LRP latency, response-locked LRP latency, and Nl EMG amplitude accounted for 40% of overall variability in individual extroversion scores. On the basis of the present results, the authors introduce a compensation hypothesis that accounts for the common failure of researchers to demonstrate extroversion-related differences in reaction time. The present results challenge J. Brebner and C. Cooper's (1985) model of extroversion in which stimulus analysis is not slower in introverts than in extroverts. However, the present findings support the assumption of faster motor processing in extroverts.

  10. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  11. Common premotor regions for the perception and production of prosody and correlations with empathy and prosodic ability.

    Directory of Open Access Journals (Sweden)

    Lisa Aziz-Zadeh

    Full Text Available BACKGROUND: Prosody, the melody and intonation of speech, involves the rhythm, rate, pitch and voice quality to relay linguistic and emotional information from one individual to another. A significant component of human social communication depends upon interpreting and responding to another person's prosodic tone as well as one's own ability to produce prosodic speech. However there has been little work on whether the perception and production of prosody share common neural processes, and if so, how these might correlate with individual differences in social ability. METHODS: The aim of the present study was to determine the degree to which perception and production of prosody rely on shared neural systems. Using fMRI, neural activity during perception and production of a meaningless phrase in different prosodic intonations was measured. Regions of overlap for production and perception of prosody were found in premotor regions, in particular the left inferior frontal gyrus (IFG. Activity in these regions was further found to correlate with how high an individual scored on two different measures of affective empathy as well as a measure on prosodic production ability. CONCLUSIONS: These data indicate, for the first time, that areas that are important for prosody production may also be utilized for prosody perception, as well as other aspects of social communication and social understanding, such as aspects of empathy and prosodic ability.

  12. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  13. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  14. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  15. Retinotopy versus face selectivity in macaque visual cortex.

    Science.gov (United States)

    Rajimehr, Reza; Bilenko, Natalia Y; Vanduffel, Wim; Tootell, Roger B H

    2014-12-01

    Retinotopic organization is a ubiquitous property of lower-tier visual cortical areas in human and nonhuman primates. In macaque visual cortex, the retinotopic maps extend to higher-order areas in the ventral visual pathway, including area TEO in the inferior temporal (IT) cortex. Distinct regions within IT cortex are also selective to specific object categories such as faces. Here we tested the topographic relationship between retinotopic maps and face-selective patches in macaque visual cortex using high-resolution fMRI and retinotopic face stimuli. Distinct subregions within face-selective patches showed either (1) a coarse retinotopic map of eccentricity and polar angle, (2) a retinotopic bias to a specific location of visual field, or (3) nonretinotopic selectivity. In general, regions along the lateral convexity of IT cortex showed more overlap between retinotopic maps and face selectivity, compared with regions within the STS. Thus, face patches in macaques can be subdivided into smaller patches with distinguishable retinotopic properties.

  16. The discovery of motor cortex and its background.

    Science.gov (United States)

    Gross, Charles G

    2007-01-01

    In 1870 Gustav Fritsch and Edvard Hitzig showed that electrical stimulation of the cerebral cortex of a dog produced movements. This was a crucial event in the development of modern neuroscience because it was the first good experimental evidence for a) cerebral cortex involvement in motor function, b) the electrical excitability of the cortex, c) topographic representation in the brain, and d) localization of function in different regions of the cerebral cortex. This paper discusses their experiment and some developments in the previous two centuries that led to it including the ideas of Thomas Willis and Emanuel Swedenborg, the widespread interest in electricity and the localizations of function of Franz Joseph Gall, John Hughlings Jackson, and Paul Broca. We also consider the subsequent study of the motor cortex by David Ferrier and others.

  17. Associative Encoding in Anterior Piriform Cortex versus Orbitofrontal Cortex during Odor Discrimination and Reversal Learning

    Science.gov (United States)

    Roesch, Matthew R.; Stalnaker, Thomas A.; Schoenbaum, Geoffrey

    2008-01-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex (OFC). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. To test this hypothesis, we recorded from neurons in OFC and anatomically related parts of the anterior piriform cortex (APC) in rats, learning and reversing novel odor discriminations. Findings in OFC were similar to what we have reported previously, with nearly all the cue-selective neurons exhibiting substantial plasticity during learning and reversal. Also, many of the cue-selective neurons were originally responsive in anticipation of the outcomes early in learning, thereby providing a single-unit representation of the cue-outcome associations. Some of these features were also evident in firing activity in APC, including some plasticity across learning and reversal. However, APC neurons failed to reverse cue selectivity when the associated outcome was changed, and the cue-selective population did not include neurons that were active prior to outcome delivery. Thus, although representations in APC are substantially more associative than expected in a purely sensory region, they do appear to be somewhat more constrained by the sensory features of the odor cues than representations in downstream areas of OFC. PMID:16699083

  18. Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations.

    Science.gov (United States)

    Mørch-Johnsen, Lynn; Nesvåg, Ragnar; Jørgensen, Kjetil N; Lange, Elisabeth H; Hartberg, Cecilie B; Haukvik, Unn K; Kompus, Kristiina; Westerhausen, René; Osnes, Kåre; Andreassen, Ole A; Melle, Ingrid; Hugdahl, Kenneth; Agartz, Ingrid

    2017-01-01

    Neuroimaging studies have demonstrated associations between smaller auditory cortex volume and auditory hallucinations (AH) in schizophrenia. Reduced cortical volume can result from a reduction of either cortical thickness or cortical surface area, which may reflect different neuropathology. We investigate for the first time how thickness and surface area of the auditory cortex relate to AH in a large sample of schizophrenia spectrum patients. Schizophrenia spectrum (n = 194) patients underwent magnetic resonance imaging. Mean cortical thickness and surface area in auditory cortex regions (Heschl's gyrus [HG], planum temporale [PT], and superior temporal gyrus [STG]) were compared between patients with (AH+, n = 145) and without (AH-, n = 49) a lifetime history of AH and 279 healthy controls. AH+ patients showed significantly thinner cortex in the left HG compared to AH- patients (d = 0.43, P = .0096). There were no significant differences between AH+ and AH- patients in cortical thickness in the PT or STG, or in auditory cortex surface area in any of the regions investigated. Group differences in cortical thickness in the left HG was not affected by duration of illness or current antipsychotic medication. AH in schizophrenia patients were related to thinner cortex, but not smaller surface area of the left HG, a region which includes the primary auditory cortex. The results support that structural abnormalities of the auditory cortex underlie AH in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  20. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  1. Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of Visual Causality Perception.

    Science.gov (United States)

    Caggiano, Vittorio; Fleischer, Falk; Pomper, Joern K; Giese, Martin A; Thier, Peter

    2016-11-21

    Humans derive causality judgments reliably from highly abstract stimuli, such as moving discs that bump into each other [1]. This fascinating visual capability emerges gradually during human development [2], perhaps as consequence of sensorimotor experience [3]. Human functional imaging studies suggest an involvement of the "action observation network" in the processing of such stimuli [4, 5]. In addition, theoretical studies suggest a link between the computational mechanisms of action and causality perception [6, 7], consistent with the fact that both functions require an analysis of sequences of spatiotemporal relationships between interacting stimulus elements. Single-cell correlates of the perception of causality are completely unknown. In order to find such neural correlates, we investigated the responses of "mirror neurons" in macaque premotor area F5 [8, 9]. These neurons respond during the observation as well as during the execution of actions and show interesting invariances, e.g., with respect to the stimulus view [10], occlusions [11], or whether an action is really executed or suppressed [12]. We investigated the spatiotemporal properties of the visual responses of mirror neurons to naturalistic hand action stimuli and to abstract stimuli, which specified the same causal relationships. We found a high degree of generalization between these two stimulus classes. In addition, many features that strongly reduced the similarity of the response patterns coincided with the ones that also destroy the perception of causality in humans. This implies an overlap of neural structures involved in the processing of actions and the visual perception of causality at the single-cell level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  3. Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Bissonette, Gregory B; Powell, Elizabeth M; Roesch, Matthew R

    2013-08-01

    Impaired attentional set-shifting and inflexible decision-making are problems frequently observed during normal aging and in several psychiatric disorders. To understand the neuropathophysiology of underlying inflexible behavior, animal models of attentional set-shifting have been developed to mimic tasks such as the Wisconsin Card Sorting Task (WCST), which tap into a number of cognitive functions including stimulus-response encoding, working memory, attention, error detection, and conflict resolution. Here, we review many of these tasks in several different species and speculate on how prefrontal cortex and anterior cingulate cortex might contribute to normal performance during set-shifting. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex, premotor cortex, primary somatosensory cortex and language-related areas, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of

  5. Apraxia, pantomime and the parietal cortex

    Directory of Open Access Journals (Sweden)

    E. Niessen

    2014-01-01

    In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies and elderly neurological patients (typically included in structural lesion studies may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  6. Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context.

    Science.gov (United States)

    Bernier, Pierre-Michel; Grafton, Scott T

    2010-11-18

    Current models of sensorimotor transformations emphasize the dominant role of gaze-centered representations for reach planning in the posterior parietal cortex (PPC). Here we exploit fMRI repetition suppression to test whether the sensory modality of a target determines the reference frame used to define the motor goal in the PPC and premotor cortex. We show that when targets are defined visually, the anterior precuneus selectively encodes the motor goal in gaze-centered coordinates, whereas the parieto-occipital junction, Brodman Area 5 (BA 5), and PMd use a mixed gaze- and body-centered representation. In contrast, when targets are defined by unseen proprioceptive cues, activity in these areas switches to represent the motor goal predominantly in body-centered coordinates. These results support computational models arguing for flexibility in reference frames for action according to sensory context. Critically, they provide neuroanatomical evidence that flexibility is achieved by exploiting a multiplicity of reference frames that can be expressed within individual areas.

  7. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  8. Emotion, decision making and the orbitofrontal cortex.

    Science.gov (United States)

    Bechara, A; Damasio, H; Damasio, A R

    2000-03-01

    The somatic marker hypothesis provides a systems-level neuroanatomical and cognitive framework for decision making and the influence on it by emotion. The key idea of this hypothesis is that decision making is a process that is influenced by marker signals that arise in bioregulatory processes, including those that express themselves in emotions and feelings. This influence can occur at multiple levels of operation, some of which occur consciously and some of which occur non-consciously. Here we review studies that confirm various predictions from the hypothesis. The orbitofrontal cortex represents one critical structure in a neural system subserving decision making. Decision making is not mediated by the orbitofrontal cortex alone, but arises from large-scale systems that include other cortical and subcortical components. Such structures include the amygdala, the somatosensory/insular cortices and the peripheral nervous system. Here we focus only on the role of the orbitofrontal cortex in decision making and emotional processing, and the relationship between emotion, decision making and other cognitive functions of the frontal lobe, namely working memory.

  9. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Occurrence of new neurons in the piriform cortex

    OpenAIRE

    Ti-Fei eYuan; YU-XIANG eLIANG; Kwok-Fai eSo

    2015-01-01

    Adult neurogenesis has been well studied in hippocampus and subventricular zone; while this is much less appreciated in other brain regions, including amygdala, hypothalamus and piriform cortex. The present review aims at summarizing recent advances on the occurrence of new neurons in the piriform cortex, their potential origin and migration route from the subventricular zone. We further discuss the relevant implications in olfactory dysfunction accompanying the neuro-degenerative diseases.

  11. Occurrence of new neurons in the piriform cortex

    Directory of Open Access Journals (Sweden)

    Ti-Fei eYuan

    2015-01-01

    Full Text Available Adult neurogenesis has been well studied in hippocampus and subventricular zone; while this is much less appreciated in other brain regions, including amygdala, hypothalamus and piriform cortex. The present review aims at summarizing recent advances on the occurrence of new neurons in the piriform cortex, their potential origin and migration route from the subventricular zone. We further discuss the relevant implications in olfactory dysfunction accompanying the neuro-degenerative diseases.

  12. The orbitofrontal cortex and beyond: from affect to decision-making.

    Science.gov (United States)

    Rolls, Edmund T; Grabenhorst, Fabian

    2008-11-01

    The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.

  13. Requirement of the auditory association cortex for discrimination of vowel-like sounds in rats.

    Science.gov (United States)

    Kudoh, Masaharu; Nakayama, Yoko; Hishida, Ryuichi; Shibuki, Katsuei

    2006-11-27

    We investigated the roles of the auditory cortex in discrimination learning of vowel-like sounds consisting of multiple formants. Rats were trained to discriminate between synthetic sounds with four formants. Bilateral electrolytic lesions including the primary auditory cortex and the dorsal auditory association cortex impaired multiformant discrimination, whereas they did not significantly affect discrimination between sounds with a single formant or between pure tones. Local lesions restricted to the dorsal/rostral auditory association cortex were sufficient to attenuate multiformant discrimination learning, and lesions restricted to the primary auditory cortex had no significant effects. These findings indicate that the dorsal/rostral auditory association cortex but not the primary auditory cortex is required for discrimination learning of vowel-like sounds with multiple formants in rats.

  14. Preparatory attention in visual cortex.

    Science.gov (United States)

    Battistoni, Elisa; Stein, Timo; Peelen, Marius V

    2017-05-01

    Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions. © 2017 New York Academy of Sciences.

  15. Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors.

    Science.gov (United States)

    Passingham, Richard E; Smaers, Jeroen B

    2014-01-01

    There has been no agreement as to whether the prefrontal cortex is especially enlarged in the human brain. To answer this question, we analyzed the only two datasets that provide information on total prefrontal cortex volume based on cytoarchitectonic criteria. One delineated the prefrontal cortex proper on the basis of cytoarchitectonic criteria; the other used a proxy of the prefrontal cortex based on a cytoarchitectonic delineation of the frontal lobe. To investigate whether all cortical association areas, including the prefrontal cortex, are enlarged in the human brain, we scaled the different areas to a common reference, the primary visual cortex. To investigate whether the prefrontal cortex is more enlarged than other association areas, we scaled it relative to its inputs from and outputs to other nonprimary areas. We carried out separate regression analyses using different data samples as a predictive baseline group: data for monkeys alone informs us on whether great apes are different from monkeys; data for all non-human anthropoids, including great apes, informs us on whether humans are different from all other primates. The analyses show that the value for the human prefrontal cortex is greater than expected, and that this is true even when data for the great apes are included in the analysis. They also show that the chimpanzee prefrontal cortex is greater than expected for a monkey with a similar sized cortex. We discuss possible functional consequences.

  16. Human prefrontal cortex: evolution, development, and pathology.

    Science.gov (United States)

    Teffer, Kate; Semendeferi, Katerina

    2012-01-01

    The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.

  17. Processing of sound location in human cortex.

    Science.gov (United States)

    Lewald, Jörg; Riederer, Klaus A J; Lentz, Tobias; Meister, Ingo G

    2008-03-01

    This functional magnetic resonance imaging study was focused on the neural substrates underlying human auditory space perception. In order to present natural-like sound locations to the subjects, acoustic stimuli convolved with individual head-related transfer functions were used. Activation foci, as revealed by analyses of contrasts and interactions between sound locations, formed a complex network, including anterior and posterior regions of temporal lobe, posterior parietal cortex, dorsolateral prefrontal cortex and inferior frontal cortex. The distinct topography of this network was the result of different patterns of activation and deactivation, depending on sound location, in the respective voxels. These patterns suggested different levels of complexity in processing of auditory spatial information, starting with simple left/right discrimination in the regions surrounding the primary auditory cortex, while the integration of information on hemispace and eccentricity of sound may take place at later stages. Activations were identified as being located in regions assigned to both the dorsal and ventral auditory cortical streams, that are assumed to be preferably concerned with analysis of spatial and non-spatial sound features, respectively. The finding of activations also in the ventral stream could, on the one hand, reflect the well-known functional duality of auditory spectral analysis, that is, the concurrent extraction of information based on location (due to the spectrotemporal distortions caused by head and pinnae) and spectral characteristics of a sound source. On the other hand, this result may suggest the existence of shared neural networks, performing analyses of auditory 'higher-order' cues for both localization and identification of sound sources.

  18. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    Science.gov (United States)

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  19. The adrenal cortex and life.

    Science.gov (United States)

    Vinson, Gavin P

    2009-03-05

    The template for our understanding of the physiological role of the adrenal cortex was set by Hans Selye, who demonstrated its key involvement in the response to stress, of whatever origin, and who also introduced the terms glucocorticoid and mineralocorticoid. Despite this, from the late 1940s on there was certainly general awareness of the multiple actions of glucocorticoids, including effects on the thymus and immune system, cardiovascular system, water balance, and the CNS. For these reasons, and perhaps because in the early studies of the actions of individual steroids there was less clear-cut difference between them, there was some initial resistance to the use of these terms. Today they are universal and unchallenged. It can be argued that, with respect to the glucocorticoids, this term colours our perception of their physiological importance, and may be misleading. By taking evidence from disease states, emphasis is placed on extreme conditions that do not necessarily reveal normal physiology. In particular, evidence for the role of glucocorticoid regulation of gluconeogenesis and blood glucose in the normal subject or animal is inconclusive. Similarly, while highly plausible theories explaining glucocorticoid actions on inflammation or the immune system as part of normal physiology have been presented, direct evidence to support them is hard to find. Under extreme conditions of chronic stress, the cumulative actions of glucocorticoids on insulin resistance or immunocompromise may indeed seem to be actually damaging. Two well-documented and long recognized situations create huge variation in glucocorticoid secretion. These are the circadian rhythm, and the acute response to mild stress, such as handling, in the rat. Neither of these can be adequately explained by the need for glucocorticoid action, as we currently understand it, particularly on carbohydrate metabolism or on the immune system. Perhaps we should re-examine other targets at the physiological

  20. [Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water].

    Science.gov (United States)

    Xiuwen, Yang; Hongchen, Liu; Ke, Li; Zhen, Jin; Gang, Liu

    2014-12-01

    We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 °C) and no- xious cold (4 °C) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. The activated cortical areas were as follows: left pre-/post-central gyrus, insula/operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex S I. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Results suggested that a similar network of regions was activated common to the perception of pain and no-pain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.

  1. [Macro- and microscopic systematization of cerebral cortex malformations in children].

    Science.gov (United States)

    Milovanov, A P; Milovanova, O A

    2011-01-01

    For the first time in pediatric pathologicoanatomic practice the complete systematization of cerebral cortex malformations is represented. Organ, macroscopic forms: microencephaly, macroencephaly, micropolygyria, pachygyria, schizencephaly, porencephaly, lissencephaly. Histic microdysgenesis of cortex: type I includes isolated abnormalities such as radial (IA) and tangential (I B) subtypes of cortical dislamination; type II includes sublocal cortical dislamination with immature dysmorphic neurons (II A) and balloon cells (II B); type III are the combination focal cortical dysplasia with tuberous sclerosis of the hippocampus (III A), tumors (III B) and malformations of vessels, traumatic and hypoxic disorders (III C). Band heterotopias. Subependimal nodular heterotopias. Tuberous sclerosis. Cellular typification of cortical dysplasia: immature neurons and balloon cells.

  2. Apraxia, pantomime and the parietal cortex.

    Science.gov (United States)

    Niessen, E; Fink, G R; Weiss, P H

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  3. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    Science.gov (United States)

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD.

  4. Monkey brain cortex imaging by photoacoustic tomography

    OpenAIRE

    Yang, Xinmai; Wang, Lihong V.

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultras...

  5. Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex

    Directory of Open Access Journals (Sweden)

    Itsuki Ajioka

    2016-03-01

    Full Text Available The cerebral cortex is responsible for higher functions of the central nervous system (CNS, such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.

  6. The Functions of the Orbitofrontal Cortex

    Science.gov (United States)

    Rolls, Edmund T.

    2004-01-01

    The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…

  7. Evolutionary specializations of human association cortex

    NARCIS (Netherlands)

    Mars, R.B.; Passingham, R.E.; Neubert, F.X.; Verhagen, L.; Sallet, J.

    2017-01-01

    Is the human brain a big ape brain? We argue that the human association cortex is larger than would be expected for an equivalent ape brain, suggesting human association cortex is a unique adaptation. The internal organization of the human association cortex shows modifications of the ape plan in

  8. Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals

    Directory of Open Access Journals (Sweden)

    Hong eYin

    2015-08-01

    Full Text Available Social anhedonia (SA is a debilitating characteristic of schizophrenia and a vulnerability for developing schizophrenia among people at risk. Prior work (Hooker et al, 2014 has revealed neural deficits in ventral lateral prefrontal cortex (VLPFC during processing of positive emotion in a community sample of people with high social anhedonia. Deficits in VLPFC neural activity are related to worse self-reported schizophrenia-spectrum symptoms and worse mood and behavior after social stress. In the current study, psychophysiological interaction (PPI analysis was applied to investigate the neural mechanisms mediated by VLPFC during emotion processing. PPI analysis revealed that, compared to low SA controls, participants with high SA displayed reduced VLPFC integration, specifically reduced connectivity between VLPFC and premotor cortex, inferior parietal and posterior temporal regions when viewing positive relative to neutral emotion. Across all participants, connectivity between VLPFC and inferior parietal region when viewing positive (versus neutral emotion was significantly correlated with measures of emotion management and attentional control. Additionally connectivity between VLPFC and superior temporal sulcus was related to reward and pleasure anticipation, and connectivity between VLPFC and inferior temporal sulcus correlated with attentional control measure. Our results suggest that impairments to VLPFC mediated neural circuitry underlie the cognitive and emotional deficits.

  9. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion.

    Science.gov (United States)

    Rolls, E T

    2008-06-01

    Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant

  10. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'.

  11. Contextual modulation of primary visual cortex by auditory signals

    Science.gov (United States)

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  12. [Orbitofrontal cortex and morality].

    Science.gov (United States)

    Funayama, Michitaka; Mimura, Masaru

    2012-10-01

    Research on the neural substrates of morality is a recently emerging field in neuroscience. The anatomical structures implicated to play a role in morality include the frontal lobe, temporal lobe, cingulate gyrus, amygdala, hippocampus, and basal ganglia. In particular, the orbitofrontal or ventromedial prefrontal areas are thought to be involved in decision-making, and damage to these areas is likely to cause decision-making deficits and/or problems in impulsive control, which may lead to antisocial and less moral behaviors. In this article, we focus on case presentation and theory development with regard to moral judgment. First, we discuss notable cases and syndromes developing after orbitofrontal/ventromedial prefrontal damage, such as the famous cases of Gage and EVR, cases of childhood orbitofrontal damage, forced collectionism, squalor syndrome, and hypermoral syndrome. We then review the proposed theories and neuropsychological mechanisms underlying decision-making deficits following orbitofrontal/ventromedial prefrontal damage, including the somatic-marker hypothesis, reversal learning, preference judgment, theory of mind, and moral dilemma.

  13. Benefits of physical exercise on the aging brain: the role of the prefrontal cortex.

    Science.gov (United States)

    Berchicci, Marika; Lucci, Giuliana; Di Russo, Francesco

    2013-11-01

    Motor planning in older adults likely relies on the overengagement of the prefrontal cortex (PFC) and is associated with slowness of movement and responses. Does a physically active lifestyle counteract the overrecruitment of the PFC during action preparation? This study used high-resolution electroencephalography to measure the effect of physical exercise on the executive functions of the PFC preceding a visuomotor discriminative task. A total of 130 participants aged 15-86 were divided into two groups based on physical exercise participation. The response times and accuracy and the premotor activity of the PFC were separately correlated with age for the two groups. The data were first fit with a linear function and then a higher order polynomial function. We observed that after 35-40 years of age, physically active individuals have faster response times than their less active peers and showed no signs of PFC hyperactivity during motor planning. The present findings show that physical exercise could speed up the response of older people and reveal that also in middle-aged people, moderate-to-high levels of physical exercise benefits the planning/execution of a response and the executive functions mediated by the PFC, counteracting the neural overactivity often observed in the elderly adults.

  14. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.; Bressi, S.; Antoni, M. [Univ. of Milan (Italy)] [and others

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  15. Inhibition by somatostatin interneurons in olfactory cortex

    Directory of Open Access Journals (Sweden)

    Adam M Large

    2016-08-01

    Full Text Available Inhibitory circuitry plays an integral cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST interneurons onto pyramidal cells, parvalbumin (PV interneurons and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre and G42 that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS interneurons rather than regular (RS or low threshold spiking (LTS phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that somatostatin interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.

  16. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  17. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  18. Lesions of Rat Infralimbic Cortex Enhance Recovery and Reinstatement of an Appetitive Pavlovian Response

    Science.gov (United States)

    Rhodes, Sarah E. V.; Kilcross, Simon

    2004-01-01

    The prefrontal cortex (PFC) has a well-established role in the inhibition of inappropriate responding, and evidence suggests that the infralimbic (IL) region of the rat medial PFC (MPFC) may be involved in some aspects of extinction of conditioned fear. MPFC lesions including, but not those sparing the IL cortex increase spontaneous recovery of…

  19. Electrocorticography Reveals Enhanced Visual Cortex Responses to Visual Speech.

    Science.gov (United States)

    Schepers, Inga M; Yoshor, Daniel; Beauchamp, Michael S

    2015-11-01

    Human speech contains both auditory and visual components, processed by their respective sensory cortices. We test a simple model in which task-relevant speech information is enhanced during cortical processing. Visual speech is most important when the auditory component is uninformative. Therefore, the model predicts that visual cortex responses should be enhanced to visual-only (V) speech compared with audiovisual (AV) speech. We recorded neuronal activity as patients perceived auditory-only (A), V, and AV speech. Visual cortex showed strong increases in high-gamma band power and strong decreases in alpha-band power to V and AV speech. Consistent with the model prediction, gamma-band increases and alpha-band decreases were stronger for V speech. The model predicts that the uninformative nature of the auditory component (not simply its absence) is the critical factor, a prediction we tested in a second experiment in which visual speech was paired with auditory white noise. As predicted, visual speech with auditory noise showed enhanced visual cortex responses relative to AV speech. An examination of the anatomical locus of the effects showed that all visual areas, including primary visual cortex, showed enhanced responses. Visual cortex responses to speech are enhanced under circumstances when visual information is most important for comprehension.

  20. The rat retrosplenial cortex as a link for frontal functions: A lesion analysis.

    Science.gov (United States)

    Powell, Anna L; Nelson, Andrew J D; Hindley, Emma; Davies, Moira; Aggleton, John P; Vann, Seralynne D

    2017-09-29

    Cohorts of rats with excitotoxic retrosplenial cortex lesions were tested on four behavioural tasks sensitive to dysfunctions in prelimbic cortex, anterior cingulate cortex, or both. In this way the study tested whether retrosplenial cortex has nonspatial functions that reflect its anatomical interactions with these frontal cortical areas. In Experiment 1, retrosplenial cortex lesions had no apparent effect on a set-shifting digging task that taxed intradimensional and extradimensional attention, as well as reversal learning. Likewise, retrosplenial cortex lesions did not impair a strategy shift task in an automated chamber, which involved switching from visual-based to response-based discriminations and, again, included a reversal (Experiment 2). Indeed, there was evidence that the retrosplenial lesions aided the initial switch to response-based selection. No lesion deficit was found on an automated cost-benefit task that pitted size of reward against effort to achieve that reward (Experiment 3). Finally, while retrosplenial cortex lesions affected matching-to-place task in a T-maze, the profile of deficits differed from that associated with prelimbic cortex damage (Experiment 4). When the task was switched to a nonmatching design, retrosplenial cortex lesions had no apparent effect on performance. The results from the four experiments show that many frontal tasks do not require the retrosplenial cortex, highlighting the specificity of their functional interactions. The results show how retrosplenial cortex lesions spare those learning tasks in which there is no mismatch between the internal and external representations used to guide behavioural choice. In addition, these experiments further highlight the importance of the retrosplenial cortex in solving tasks with a spatial component. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. The human orbitofrontal cortex: linking reward to hedonic experience.

    Science.gov (United States)

    Kringelbach, Morten L

    2005-09-01

    Hedonic experience is arguably at the heart of what makes us human. In recent neuroimaging studies of the cortical networks that mediate hedonic experience in the human brain, the orbitofrontal cortex has emerged as the strongest candidate for linking food and other types of reward to hedonic experience. The orbitofrontal cortex is among the least understood regions of the human brain, but has been proposed to be involved in sensory integration, in representing the affective value of reinforcers, and in decision making and expectation. Here, the functional neuroanatomy of the human orbitofrontal cortex is described and a new integrated model of its functions proposed, including a possible role in the mediation of hedonic experience.

  2. Computer assisted measurement of femoral cortex thickening on radiographs

    Science.gov (United States)

    Yao, Jianhua; Liu, Yixun; Chen, Foster; Summers, Ronald M.; Bhattacharyya, Timothy

    2013-03-01

    Radiographic features such as femoral cortex thickening have been frequently observed with atypical subtrochanteric fractures. These features may be a valuable finding to help prevent fractures before they happen. The current practice of manual measurement is often subjective and inconsistent. We developed a semi-automatic tool to consistently measure and monitor the progress of femoral cortex thickening on radiographs. By placing two seed points on each side of the femur, the program automatically extracts the periosteal and endosteal layers of the cortical shell by active contour models and B-spline fitting. Several measurements are taken along the femur shaft, including shaft diameter, cortical thickness, and integral area for medial and lateral cortex. The experiment was conducted on 52 patient datasets. The semi-automatic measurements were validated against manual measurements on 52 patients and demonstrated great improvement in consistency and accuracy (p<0.001).

  3. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.

    Science.gov (United States)

    Dahmani, Louisa; Bohbot, Véronique D

    2015-01-01

    The hippocampus and the caudate nucleus are critical to spatial- and stimulus-response-based navigation strategies, respectively. The hippocampus and caudate nucleus are also known to be anatomically connected to various areas of the prefrontal cortex. However, little is known about the involvement of the prefrontal cortex in these processes. In the current study, we sought to identify the prefrontal areas involved in spatial and response learning. We used functional magnetic resonance imaging (fMRI) and voxel-based morphometry to compare the neural activity and grey matter density of spatial and response strategy users. Twenty-three healthy young adults were scanned in a 1.5 T MRI scanner while they engaged in the Concurrent Spatial Discrimination Learning Task, a virtual navigation task in which either a spatial or response strategy can be used. In addition to increased BOLD activity in the hippocampus, spatial strategy users showed increased BOLD activity and grey matter density in the ventral area of the medial prefrontal cortex, especially in the orbitofrontal cortex. On the other hand, response strategy users exhibited increased BOLD activity and grey matter density in the dorsal area of the medial prefrontal cortex. Given the prefrontal cortex's role in reward-guided decision-making, we discuss the possibility that the ventromedial prefrontal cortex, including the orbitofrontal cortex, supports spatial learning by encoding stimulus-reward associations, while the dorsomedial prefrontal cortex supports response learning by encoding action-reward associations.

  4. Neuropil distribution in the cerebral cortex differs between humans and chimpanzees.

    Science.gov (United States)

    Spocter, Muhammad A; Hopkins, William D; Barks, Sarah K; Bianchi, Serena; Hehmeyer, Abigail E; Anderson, Sarah M; Stimpson, Cheryl D; Fobbs, Archibald J; Hof, Patrick R; Sherwood, Chet C

    2012-09-01

    Increased connectivity of high-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is composed mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca's area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.

  5. Social cognition in patients following surgery to the prefrontal cortex

    NARCIS (Netherlands)

    Jenkins, L.M.; Andrewes, D.G.; Nicholas, C.L.; Drummond, K.J.; Moffat, B.A.; Phal, P.; Desmond, P.; Kessels, R.P.C.

    2014-01-01

    Impaired social cognition, including emotion recognition, may explain dysfunctional emotional and social behaviour in patients with lesions to the ventromedial prefrontal cortex (VMPFC). However, the VMPFC is a large, poorly defined area that can be sub-divided into orbital and medial sectors. We

  6. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    Science.gov (United States)

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  7. Finger somatotopy in human motor cortex.

    Science.gov (United States)

    Beisteiner, R; Windischberger, C; Lanzenberger, R; Edward, V; Cunnington, R; Erdler, M; Gartus, A; Streibl, B; Moser, E; Deecke, L

    2001-06-01

    Although qualitative reports about somatotopic representation of fingers in the human motor cortex exist, up to now no study could provide clear statistical evidence. The goal of the present study was to reinvestigate finger motor somatotopy by means of a thorough investigation of standardized movements of the index and little finger of the right hand. Using high resolution fMRI at 3 Tesla, blood oxygenation level-dependent (BOLD) responses in a group of 26 subjects were repeatedly measured to achieve reliable statistical results. The center of mass of all activated voxels within the primary motor cortex was calculated for each finger and each run. Results of all runs were averaged to yield an individual index and little finger representation for each subject. The mean center of mass localizations for all subjects were then submitted to a paired t test. Results show a highly significant though small scale somatotopy of fingerspecific activation patterns in the order indicated by Penfields motor homunculus. In addition, considerable overlap of finger specific BOLD responses was found. Comparing various methods of analysis, the mean center of mass distance for the two fingers was 2--3 mm with overlapping voxels included and 4--5 mm with overlapping voxels excluded. Our data may be best understood in the context of the work of Schieber (1999) who recently described overlapping somatotopic gradients in lesion studies with humans. Copyright 2001 Academic Press.

  8. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  9. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    Science.gov (United States)

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  10. Anatomical and functional pathways of rhythmogenic inspiratory premotor information flow originating in the pre-Bötzinger complex in the rat medulla.

    Science.gov (United States)

    Koshiya, N; Oku, Y; Yokota, S; Oyamada, Y; Yasui, Y; Okada, Y

    2014-05-30

    The pre-Bötzinger complex (preBötC) of the ventrolateral medulla is the kernel for inspiratory rhythm generation. However, it is not fully understood how inspiratory neural activity is generated in the preBötC and propagates to other medullary regions. We analyzed the detailed anatomical connectivity to and from the preBötC and functional aspects of the inspiratory information propagation from the preBötC on the transverse plane of the medulla oblongata. Tract-tracing with immunohistochemistry in young adult rats demonstrated that neurokinin-1 receptor- and somatostatin-immunoreactive neurons in the preBötC, which could be involved in respiratory rhythmogenesis, are embedded in the plexus of axons originating in the contralateral preBötC. By voltage-imaging in rhythmically active slices of neonatal rats, we analyzed origination and propagation of inspiratory neural activity as depolarizing wave dynamics on the entire transverse plane as well as within the preBötC. Novel combination of pharmacological blockade of glutamatergic transmission and mathematical subtraction of the video images under blockade from the control images enabled to extract glutamatergic signal propagations. By ultra-high-speed voltage-imaging we first demonstrated the inter-preBötC conduction process of inspiratory action potentials. Intra-preBötC imaging with high spatiotemporal resolution during a single spontaneous inspiratory cycle unveiled deterministic nonlinearities, i.e., chaos, in the population recruitment. Collectively, we comprehensively elucidated the anatomical pathways to and from the preBötC and dynamics of inspiratory neural information propagation: (1) From the preBötC in one side to the contralateral preBötC, which would synchronize the bilateral rhythmogenic kernels, (2) from the preBötC directly to the bilateral hypoglossal premotor and motor areas as well as to the nuclei tractus solitarius, and (3) from the hypoglossal premotor areas toward the hypoglossal

  11. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  12. Triterpenoid saponins from Cortex Albiziae

    OpenAIRE

    Zou, Kun; Zhao, Yuying

    2004-01-01

    Cortex Albiziae, the dried stem bark of a leguminous plant, Albizia julibrissin Durazz, was specified in Chinese Pharmacopoeia (1995 edit.) as a traditional Chinese medicine to be used.to relieve melancholia and uneasiness of body and mind, to invigorate the circulation of blood and subside a swelling. In a course of our quality assessment of traditional Chinese medicines, the n-BuOH soluble part of 95% EtOH extracts from the stem barks of Albizia julibrissin was subjected to a series of sol...

  13. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.

    Science.gov (United States)

    Hermes, D; Miller, K J; Wandell, B A; Winawer, J

    2015-09-01

    A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations.

  14. An extended retinotopic map of mouse cortex

    Science.gov (United States)

    Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack

    2017-01-01

    Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700

  15. Spindle Bursts in Neonatal Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Jenq-Wei Yang

    2016-01-01

    Full Text Available Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i the functional properties of spindle bursts, (ii the mechanisms underlying their generation, (iii the synchronous patterns and cortical networks associated with spindle bursts, and (iv the physiological and pathophysiological role of spindle bursts during early cortical development.

  16. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  17. Monkey brain cortex imaging by photoacoustic tomography.

    Science.gov (United States)

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  18. Prefrontal cortex glutamate and extraversion.

    Science.gov (United States)

    Grimm, Simone; Schubert, Florian; Jaedke, Maren; Gallinat, Jürgen; Bajbouj, Malek

    2012-10-01

    Extraversion is considered one of the core traits of personality. Low extraversion has been associated with increased vulnerability to affective and anxiety disorders. Brain imaging studies have linked extraversion, approach behaviour and the production of positive emotional states to the dorsolateral prefrontal cortex (DLPFC) and glutamatergic neurotransmission. However, the relationship between extraversion and glutamate in the DLPFC has not been investigated so far. In order to address this issue, absolute glutamate concentrations in the DLPFC and the visual cortex as a control region were measured by 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) in 29 subjects with high and low extraversion. We found increased glutamate levels in the DLPFC of introverts as compared with extraverts. The increased glutamate concentration was specific for the DLPFC and negatively associated with state anxiety. Although preliminary, results indicate altered top-down control of DLPFC due to reduced glutamate concentration as a function of extraversion. Glutamate measurement with 1H-MRS may facilitate the understanding of biological underpinnings of personality traits and psychiatric diseases associated with dysfunctions in approach behaviour and the production of positive emotional states.

  19. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Aaron eWilber

    2015-01-01

    Full Text Available A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into up to four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  1. Cerebral Cortex Expression of Gli3 Is Required for Normal Development of the Lateral Olfactory Tract.

    Directory of Open Access Journals (Sweden)

    Eleni-Maria Amaniti

    Full Text Available Formation of the lateral olfactory tract (LOT and innervation of the piriform cortex represent fundamental steps to allow the transmission of olfactory information to the cerebral cortex. Several transcription factors, including the zinc finger transcription factor Gli3, influence LOT formation by controlling the development of mitral cells from which LOT axons emanate and/or by specifying the environment through which these axons navigate. Gli3 null and hypomorphic mutants display severe defects throughout the territory covered by the developing lateral olfactory tract, making it difficult to identify specific roles for Gli3 in its development. Here, we used Emx1Cre;Gli3fl/fl conditional mutants to investigate LOT formation and colonization of the olfactory cortex in embryos in which loss of Gli3 function is restricted to the dorsal telencephalon. These mutants form an olfactory bulb like structure which does not protrude from the telencephalic surface. Nevertheless, mitral cells are formed and their axons enter the piriform cortex though the LOT is shifted medially. Mitral axons also innervate a larger target area consistent with an enlargement of the piriform cortex and form aberrant projections into the deeper layers of the piriform cortex. No obvious differences were found in the expression patterns of key guidance cues. However, we found that an expansion of the piriform cortex temporally coincides with the arrival of LOT axons, suggesting that Gli3 affects LOT positioning and target area innervation through controlling the development of the piriform cortex.

  2. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  3. Sensory cortex underpinnings of traumatic brain injury deficits.

    Directory of Open Access Journals (Sweden)

    Dasuni S Alwis

    Full Text Available Traumatic brain injury (TBI can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n=19 was induced using an impact acceleration method and sham controls received surgery only (n=15. Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8-10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.

  4. Functional involvement of cerebral cortex in human narcolepsy.

    Science.gov (United States)

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Versace, V; Mennuni, G; Di Lazzaro, V

    2005-01-01

    The pathophysiology of human narcolepsy is still poorly understood. The hypoactivity of some neurotransmitter systems has been hypothesised on the basis of the canine model. To determine whether narcolepsy is associated with changes in excitability of the cerebral cortex, we assessed the excitability of the motor cortex with transcranial magnetic stimulation (TMS) in 13 patients with narcolepsy and in 12 control subjects. We used several TMS paradigms that can provide information on the excitability of the motor cortex. Resting and active motor thresholds were higher in narcoleptic patients than in controls and intracortical inhibition was more pronounced in narcoleptic patients. No changes in the other evaluated measures were detected. These results are consistent with an impaired balance between excitatory and inhibitory intracortical circuits in narcolepsy that leads to cortical hypoexcitability. We hypothesise that the deficiency of the excitatory hypocretin/orexin-neurotransmitter-system in narcolepsy is reflected in changes of cortical excitability since circuits originating in the lateral hypothalamus and in the basal forebrain project widely to the neocortex, including motor cortex. This abnormal excitability of cortical networks could be the physiological correlate of excessive daytime sleepiness and it could be the substrate for allowing dissociated states of wakefulness and sleep to emerge suddenly while patients are awake, which constitute the symptoms of narcolepsy.

  5. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  6. Addiction and the adrenal cortex

    Science.gov (United States)

    Vinson, Gavin P; Brennan, Caroline H

    2013-01-01

    Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion. PMID:23825159

  7. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  8. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex.

    Science.gov (United States)

    Pinto, Joshua G A; Jones, David G; Williams, C Kate; Murphy, Kathryn M

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  9. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris).

    Science.gov (United States)

    Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob

    2016-01-01

    The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche.

  10. Dopaminergic modulation of impulsive decision making in the rat insular cortex.

    Science.gov (United States)

    Pattij, Tommy; Schetters, Dustin; Schoffelmeer, Anton N M

    2014-08-15

    Neuroimaging studies have implicated the insular cortex in cognitive processes including decision making. Nonetheless, little is known about the mechanisms by which the insula contributes to impulsive decision making. In this regard, the dopamine system is known to be importantly involved in decision making processes, including impulsive decision making. The aim of the current set of experiments was to further elucidate the importance of dopamine signaling in the agranular insular cortex in impulsive decision making. This compartment of the insular cortex is highly interconnected with brain areas such as the medial prefrontal cortex, amygdala and ventral striatum which are implicated in decision making processes. Male rats were trained in a delay-discounting task and upon stable baseline performance implanted with bilateral cannulae in the agranular insular cortex. Intracranial infusions of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist eticlopride revealed that particularly blocking dopamine D1 receptors centered on the insular cortex promoted impulsive decision making. Together, the present results demonstrate an important role of the agranular insular cortex in impulsive decision making and, more specifically, highlight the contribution of dopamine D1-like receptors.

  11. Radiation-induced apoptosis in developing fetal rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Woong Ki; Nam, Taek Keun; Lee, Min Cheol; Ahn, Sung Ja; Song, Ju Young; Park, Seung Jin; Nah, Byung Sik [College of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2003-09-01

    The study was performed to investigate apoptosis by radiation in the developing fetal rat brain. Fetal brains were irradiated in utero between the 17th and 19th days of fetal life(E17-19) by linear accelerator. A dose of irradiation ranging from 1 Gy to 4 Gy was used to evaluate dose dependency. To test time dependency the rats were irradiated with 2 Gy and then the fetal brain specimens were removed at variable time course; 1, 3, 6, 12 and 24 hours after the onset of irradiation. Immunohistochemical staining using in situ TdT-mediated dUTP nick end labelling (TUNEL) technique was used for apoptotic cells. The cerebral cortex, including three zones of cortical zone (CZ), intermediate zone (IZ), and ventricular zone (VZ), was examined. TUNEL positive cells revealed typical features of apoptotic cells under light microscope in the fetal rat cerebral cortex. Apoptotic cells were not found in the cerebral cortex of non-irradiated fetal rats, but did appear in the entire cerebral cortex after 1 Gy irradiation, and were more extensive at the ventricular and intermediate zones than at the cortical zone. The extent of apoptosis was increased with increasing doses of radiation. Apoptosis reached the peak at 6 hours after the onset of 2 Gy irradiation and persisted until 24 hours. Typical morphologic features of apoptosis by irradiation were observed in the developing fetal rat cerebral cortex. It was more extensive at the ventricular and intermediate zones than at the cortical zone, which suggested that stem cells or early differentiating cells are more radiosensitive than differentiated cells of the cortical zone.

  12. Proteomics analysis of cerebral cortex in Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng ZHAO; Jingrong WEN; Shu WANG; Xuemin SHI

    2008-01-01

    To analyze the protein expression pattern of the cerebral cortex in Wistar rats using the proteomics approach, proteins were separated by two-dimensional gel electrophoresis, stained with Coomassie brilliant blue and digested with trypsin. Then, we analyzed the peptide section using a matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and identified the protein by indexing special database (SwissProt) according to the finger printing of the peptide quality. Eighty-four protein spots were identified, includ-ing metabolic enzymes, skeleton proteins, heat shock pro-teins, antioxidant proteins, signaling proteins, proteasome related proteins, neuron and glial specific proteins and serum associated proteins. The result of this study enriches the database of the proteome in the cerebral cortex of rats and lays a foundation for further research of neurological disorders in rat models.

  13. Action word Related to Walk Heard by the Ears Activates Visual Cortex and Superior Temporal Gyrus: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Naoyuki Osaka

    2012-10-01

    Full Text Available Cognitive neuroscience of language of action processing is one of the interesting issues on the cortical “seat” of word meaning and related action (Pulvermueller, 1999 Behavioral Brain Sciences 22 253–336. For example, generation of action verbs referring to various arm or leg actions (e.g., pick or kick differentially activate areas along the motor strip that overlap with those areas activated by actual movement of the fingers or feet (Hauk et al., 2004 Neuron 41 301–307. Meanwhile, mimic words like onomatopoeia have the other potential to selectively and strongly stimulate specific brain regions having a specified “seat” of action meaning. In fact, mimic words highly suggestive of laughter and gaze significantly activated the extrastriate visual /premotor cortices and the frontal eye field, respectively (Osaka et al., 2003 Neuroscience Letters 340 127–130; 2009 Neuroscience Letters 461 65–68. However, the role of a mimic word related to walk on specific brain regions has not yet been investigated. The present study showed that a mimic word highly suggestive of human walking, heard by the ears with eyes closed, significantly activated the visual cortex located in extrastriate cortex and superior temporal gyrus while hearing non-sense words that did not imply walk under the same task did not activate these areas. These areas would be a critical region for generating visual images of walking and related action.

  14. Occurrence of new neurons in the piriform cortex.

    Science.gov (United States)

    Yuan, Ti-Fei; Liang, Yu-Xiang; So, Kwok-Fai

    2014-01-01

    Adult neurogenesis has been well studied in hippocampus and subventricular zone (SVZ); while this is much less appreciated in other brain regions, including amygdala, hypothalamus, and piriform cortex (PC). The present review aims at summarizing recent advances on the occurrence of new neurons in the PC, their potential origin, and migration route from the SVZ. We further discuss the relevant implications in olfactory dysfunction accompanying the neurodegenerative diseases.

  15. LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback.

    Science.gov (United States)

    Kang, Kukjin; Shelley, Michael; Henrie, James Andrew; Shapley, Robert

    2010-12-01

    This paper is about how cortical recurrent interactions in primary visual cortex (V1) together with feedback from extrastriate cortex can account for spectral peaks in the V1 local field potential (LFP). Recent studies showed that visual stimulation enhances the γ-band (25-90 Hz) of the LFP power spectrum in macaque V1. The height and location of the γ-band peak in the LFP spectrum were correlated with visual stimulus size. Extensive spatial summation, possibly mediated by feedback connections from extrastriate cortex and long-range horizontal connections in V1, must play a crucial role in the size dependence of the LFP. To analyze stimulus-effects on the LFP of V1 cortex, we propose a network model for the visual cortex that includes two populations of V1 neurons, excitatory and inhibitory, and also includes feedback to V1 from extrastriate cortex. The neural network model for V1 was a resonant system. The model's resonance frequency (ResF) was in the γ-band and varied up or down in frequency depending on cortical feedback. The model's ResF shifted downward with stimulus size, as in the real cortex, because increased size recruited more activity in extrastriate cortex and V1 thereby causing stronger feedback. The model needed to have strong local recurrent inhibition within V1 to obtain ResFs that agree with cortical data. Network resonance as a consequence of recurrent excitation and inhibition appears to be a likely explanation for γ-band peaks in the LFP power spectrum of the primary visual cortex.

  16. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery

    Directory of Open Access Journals (Sweden)

    Maria Laura eBlefari

    2015-02-01

    Full Text Available Motor imagery (MI has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME. The main region of the ME network, the primary motor cortex (M1, has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1 activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Activities in premotor and parietal regions were used as covariates. We found that cM1 activity was positively correlated to improvements in accuracy as well as overall performance improvements, whereas other regions in the sensorimotor network were not. The association between cM1 activation during MI with performance changes indicates that subjects with stronger cM1 activation during MI may benefit more from MI training, with implications towards targeted neurotherapy.

  17. Parvalbumin-positive projection neurons characterise the vocal premotor pathway in male, but not female, zebra finches.

    Science.gov (United States)

    Wild, J M; Williams, M N; Suthers, R A

    2001-11-02

    Parvalbumin (PV) and calbindin (CB) immunoreactivities were assessed in nucleus robustus archistriatalis (RA) of male and female zebra finches, together with retrograde labelling of RA neurons. The results of double and triple labelling experiments suggested that, in males, moderately and faintly PV-positive neurons were projection neurons, but that all intensely PV-positive cells were not. The latter, which are presumably interneurons, were also intensely CB-positive, and may correspond to the GABAergic inhibitory interneurons identified by others. In addition, the complete RA pathway and its terminal fields in the respiratory-vocal nuclei of the brainstem were strongly PV-positive. In female zebra finches, which do not sing, no evidence was found that PV-positive RA cells were projection neurons, yet the pattern of projections of RA neurons, as determined by anterograde transport of biotinylated dextran amine, was very similar to that of RA in males. Moreover, in females, RA neurons retrogradely labelled from injections of cholera toxin B-chain into the tracheosyringeal nucleus (XIIts) were abundant and included, in the lateral part of the nucleus, a population of cells that were as large as those in the male RA. Parvalbumin immunoreactivity was also present in RA and its projections in males of several other songbird species (northern cardinal, brown headed cowbird, canary) and in the female cardinal, which sings to some extent, but the labelling was not as intense as that in male zebra finches.

  18. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco eDavare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the reaching circuit remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  19. Temporal Cortex Morphology in Mesial Temporal Lobe Epilepsy Patients and Their Asymptomatic Siblings.

    Science.gov (United States)

    Alhusaini, Saud; Whelan, Christopher D; Doherty, Colin P; Delanty, Norman; Fitzsimons, Mary; Cavalleri, Gianpiero L

    2016-03-01

    Temporal cortex abnormalities are common in patients with mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE+HS) and believed to be relevant to the underlying mechanisms. In the present study, we set out to determine the familiarity of temporal cortex morphologic alterations in a cohort of MTLE+HS patients and their asymptomatic siblings. A surface-based morphometry (SBM) method was applied to process MRI data acquired from 140 individuals (50 patients with unilateral MTLE+HS, 50 asymptomatic siblings of patients, and 40 healthy controls). Using a region-of-interest approach, alterations in temporal cortex morphology were determined in patients and their asymptomatic siblings by comparing with the controls. Alterations in temporal cortex morphology were identified in MTLE+HS patients ipsilaterally within the anterio-medial regions, including the entorhinal cortex, parahippocampal gyrus, and temporal pole. Subtle but similar pattern of morphology changes with a medium effect size were also noted in the asymptomatic siblings. These localized alterations were related to volume loss that appeared driven by shared contractions in cerebral cortex surface area. These findings indicate that temporal cortex morphologic alterations are common to patients and their asymptomatic siblings and suggest that such localized traits are possibly heritable.

  20. Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex.

    Science.gov (United States)

    Aggleton, John P; Wright, Nicholas F; Rosene, Douglas L; Saunders, Richard C

    2015-11-01

    The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.

  1. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.

    Science.gov (United States)

    Mouly, A-M; Di Scala, G

    2006-01-01

    The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the

  2. Tonotopic organization of human auditory association cortex.

    Science.gov (United States)

    Cansino, S; Williamson, S J; Karron, D

    1994-11-07

    Neuromagnetic studies of responses in human auditory association cortex for tone burst stimuli provide evidence for a tonotopic organization. The magnetic source image for the 100 ms component evoked by the onset of a tone is qualitatively similar to that of primary cortex, with responses lying deeper beneath the scalp for progressively higher tone frequencies. However, the tonotopic sequence of association cortex in three subjects is found largely within the superior temporal sulcus, although in the right hemisphere of one subject some sources may be closer to the inferior temporal sulcus. The locus of responses for individual subjects suggests a progression across the cortical surface that is approximately proportional to the logarithm of the tone frequency, as observed previously for primary cortex, with the span of 10 mm for each decade in frequency being comparable for the two areas.

  3. Where does TMS Stimulate the Motor Cortex?

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja;

    2016-01-01

    Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...... of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region...

  4. Neuronal correlates of metacognition in primate frontal cortex

    Science.gov (United States)

    Middlebrooks, Paul G.; Sommer, Marc A.

    2012-01-01

    SUMMARY Humans are metacognitive: they monitor and control their cognition. Our hypothesis was that neuronal correlates of metacognition reside in the same brain areas responsible for cognition, including frontal cortex. Recent work demonstrated that non-human primates are capable of metacognition, so we recorded from single neurons in the frontal eye field, dorsolateral prefrontal cortex, and supplementary eye field of monkeys (Macaca mulatta) that performed a metacognitive visual-oculomotor task. The animals made a decision and reported it with a saccade, but received no immediate reward or feedback. Instead, they had to monitor their decision and bet whether it was correct. Activity was correlated with decisions and bets in all three brain areas, but putative metacognitive activity that linked decisions to appropriate bets occurred exclusively in the SEF. Our results offer a survey of neuronal correlates of metacognition and implicate the SEF in linking cognitive functions over short periods of time. PMID:22884334

  5. Early Visual Cortex as a Multiscale Cognitive Blackboard.

    Science.gov (United States)

    Roelfsema, Pieter R; de Lange, Floris P

    2016-10-14

    Neurons in early visual cortical areas not only represent incoming visual information but are also engaged by higher level cognitive processes, including attention, working memory, imagery, and decision-making. Are these cognitive effects an epiphenomenon or are they functionally relevant for these mental operations? We review evidence supporting the hypothesis that the modulation of activity in early visual areas has a causal role in cognition. The modulatory influences allow the early visual cortex to act as a multiscale cognitive blackboard for read and write operations by higher visual areas, which can thereby efficiently exchange information. This blackboard architecture explains how the activity of neurons in the early visual cortex contributes to scene segmentation and working memory, and relates to the subject's inferences about the visual world. The architecture also has distinct advantages for the processing of visual routines that rely on a number of sequentially executed processing steps.

  6. Affective ambiguity for a group recruits ventromedial prefrontal cortex.

    Science.gov (United States)

    Simmons, Alan; Stein, Murray B; Matthews, Scott C; Feinstein, Justin S; Paulus, Martin P

    2006-01-15

    Affective appraisal often involves processing complex and ambiguous stimuli, such as the mood of a group people. However, affective neuroimaging research often uses individual faces as stimuli when exploring the neural circuitry involved in social appraisal. Results from studies using single face paradigms may not generalize to settings where multiple faces are simultaneously processed. The goal of the current study was to use a novel task that presents groups of affective faces to probe the medial prefrontal cortex (PFC), a region that is critically involved in appraisal of ambiguous affective stimuli, in healthy volunteers. In the current study, 27 subjects performed the Wall of Faces (WOF) task in which multiple matrices of faces were briefly presented during functional MRI. Subjects were asked to decide whether there were more angry or happy faces (emotional decision) or whether there were more male or female faces (gender decision). In each condition, the array contained either an equal (ambiguous trials) or an unequal (unambiguous trials) distribution of one affect or gender. Ambiguous trials relative to unambiguous trials activated regions implicated in conflict monitoring and cognitive control, including the dorsal anterior cingulate cortex (ACC), dorsolateral PFC, and posterior parietal cortex. When comparing ambiguous affective decisions with ambiguous gender decisions, the ventromedial PFC (including the ventral ACC) was significantly more active. This supports the dissociation of the ACC into dorsal cognitive and ventral affective divisions, and suggests that the ventromedial PFC may play a critical role in appraising affective tone in a complex display of multiple human faces.

  7. Motor Cortex Stimulation in Parkinson's Disease

    OpenAIRE

    Marisa De Rose; Giusy Guzzi; Domenico Bosco; Mary Romano; Serena Marianna Lavano; Massimiliano Plastino; Giorgio Volpentesta; Rosa Marotta; Angelo Lavano

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment...

  8. The Role of Human Parietal Cortex in Attention Networks

    Science.gov (United States)

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  9. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  10. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  11. Optogenetic dissection of medial prefrontal cortex circuitry.

    Science.gov (United States)

    Riga, Danai; Matos, Mariana R; Glas, Annet; Smit, August B; Spijker, Sabine; Van den Oever, Michel C

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  12. Postsynaptic Signals Mediating Induction of Long-Term Synaptic Depression in the Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Saïd Kourrich

    2008-01-01

    Full Text Available The entorhinal cortex receives a large projection from the piriform cortex, and synaptic plasticity in this pathway may affect olfactory processing. In vitro whole cell recordings have been used here to investigate postsynaptic signalling mechanisms that mediate the induction of long-term synaptic depression (LTD in layer II entorhinal cortex cells. To induce LTD, pairs of pulses, using a 30-millisecond interval, were delivered at 1 Hz for 15 minutes. Induction of LTD was blocked by the NMDA receptor antagonist APV and by the calcium chelator BAPTA, consistent with a requirement for calcium influx via NMDA receptors. Induction of LTD was blocked when the FK506 was included in the intracellular solution to block the phosphatase calcineurin. Okadaic acid, which blocks activation of protein phosphatases 1 and 2a, also prevented LTD. Activation of protein phosphatases following calcium influx therefore contributes to induction of LTD in layer II of the entorhinal cortex.

  13. Postsynaptic Signals Mediating Induction of Long-Term Synaptic Depression in the Entorhinal Cortex

    Science.gov (United States)

    Kourrich, Saïd; Glasgow, Stephen D.; Caruana, Douglas A.; Chapman, C. Andrew

    2008-01-01

    The entorhinal cortex receives a large projection from the piriform cortex, and synaptic plasticity in this pathway may affect olfactory processing. In vitro whole cell recordings have been used here to investigate postsynaptic signalling mechanisms that mediate the induction of long-term synaptic depression (LTD) in layer II entorhinal cortex cells. To induce LTD, pairs of pulses, using a 30-millisecond interval, were delivered at 1 Hz for 15 minutes. Induction of LTD was blocked by the NMDA receptor antagonist APV and by the calcium chelator BAPTA, consistent with a requirement for calcium influx via NMDA receptors. Induction of LTD was blocked when the FK506 was included in the intracellular solution to block the phosphatase calcineurin. Okadaic acid, which blocks activation of protein phosphatases 1 and 2a, also prevented LTD. Activation of protein phosphatases following calcium influx therefore contributes to induction of LTD in layer II of the entorhinal cortex. PMID:18670611

  14. Perirhinal cortex and temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Giuseppe eBiagini

    2013-08-01

    Full Text Available The perirhinal cortex – which is interconnected with several limbic structures and is intimately involved in learning and memory - plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.

  15. Topography and areal organization of mouse visual cortex.

    Science.gov (United States)

    Garrett, Marina E; Nauhaus, Ian; Marshel, James H; Callaway, Edward M

    2014-09-10

    To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.

  16. Preparatory effects of distractor suppression: evidence from visual cortex.

    Directory of Open Access Journals (Sweden)

    Jaap Munneke

    Full Text Available Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3. In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.

  17. Preparatory effects of distractor suppression: evidence from visual cortex.

    Science.gov (United States)

    Munneke, Jaap; Heslenfeld, Dirk J; Usrey, W Martin; Theeuwes, Jan; Mangun, George R

    2011-01-01

    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.

  18. Functional involvement of cerebral cortex in adult sleepwalking.

    Science.gov (United States)

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Rubino, M; Di Lazzaro, V

    2007-08-01

    The pathophysiology of adult sleepwalking is still poorly understood. However, it is widely accepted that sleepwalking is a disorder of arousal. Arousal circuits widely project to the cortex, including motor cortex. We hypothesized that functional abnormality of these circuits could lead to changes in cortical excitability in sleepwalkers, even during wakefulness. We used transcranial magnetic stimulation (TMS) to examine the excitability of the human motor cortex during wakefulness in a group of adult sleepwalkers. When compared with the healthy control group, short interval intracortical inhibition (SICI), cortical silent period (CSP) duration, and short latency afferent inhibition (SAI) were reduced in adult sleepwalkers during wakefulness. Mean CSP duration was shorter in patients than in controls (80.9 +/- 41 ms vs. 139.4 +/- 37 ms; p = 0.0040). Mean SICI was significantly reduced in patients than in controls (73.5 +/- 38.4% vs. 36.7 +/- 13.1%; p = 0.0061). Mean SAI was also significantly reduced in patients than in controls (65.8 +/- 14.2% vs. 42.8 +/- 16.9%; p = 0.0053). This neurophysiological study suggests that there are alterations in sleepwalkers consistent with an impaired efficiency of inhibitory circuits during wakefulness. This inhibitory impairment could represent the neurophysiological correlate of brain "abnormalities" of sleepwalkers like "immaturity" of some neural circuits, synapses, or receptors.

  19. Mechanisms in Chronic Multisymptom Illnesses

    Science.gov (United States)

    2008-10-01

    in the amygdala, orbitofrontal cortex (OFC), and middle temporal gyrus and negatively correlated with SMA, premotor, and SI/M1 (Figure 2...connectivity with the amygdala and orbitofrontal cortex , and lesser AIC connectivity with the supplementary motor area...1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  20. Deep prepiriform cortex kindling and amygdala interactions.

    Science.gov (United States)

    Zhao, D Y; Moshé, S L

    1987-03-01

    The deep prepiriform cortex (DPC) has been recently suggested to be a crucial epileptogenic site in the rat brain. We investigated the susceptibility of the DPC to the development of electrical kindling as compared to that of the superficial prepiriform cortex (SPC) and amygdala as well as the transfer interactions between the two prepiriform sites and amygdala. Adult rats with electrodes implanted in the right prepiriform cortex (DPC or SPC) and left amygdala were divided into a DPC-amygdala and SPC-amygdala group while a third group consisted of rats with electrodes implanted in the ipsilateral DPC and amygdala. Within each group the rats were initially kindled from one site selected randomly and then rekindled from the other site. Both DPC and SPC were as sensitive to the development of kindling as the amygdala. The behavioral seizures elicited with DPC or SPC primary kindling were identical to those induced by amygdala kindling. Initial DPC kindling facilitated the development of kindling from either ipsilateral or contralateral amygdala with the ipsilateral transfer being significantly more potent than the contralateral. SPC kindling also facilitated the development of contralateral amygdala kindling but was less effective than DPC kindling. On the other hand, amygdala kindling did not facilitate contralateral SPC or DPC kindling although it transferred to the ipsilateral DPC. These results indicate that the prepiriform cortex can be readily kindled but not faster than the amygdala and that there are unequal kindling transfer interactions between prepiriform cortex and amygdala.

  1. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  2. [Prefrontal cortex in memory and attention processes].

    Science.gov (United States)

    Allegri, R F; Harris, P

    The role of the prefrontal cortex still remains poorly understood. Only after 1970, the functions of the frontal lobes have been conceptualized from different points of view (behaviorism, cognitivism). Recently,different parallel circuits connecting discrete cortical and subcortical regions of the frontal lobes have been described. Three of these circuits are the most relevant to understanding of behavior: the dorsolateral prefrontal circuit, that mediates executive behavior; the orbitofrontal prefrontal circuit, mediating social behavior, and the medial frontal circuit, involved in motivation. Damage to the frontal cortex impairs planning, problem solving, reasoning, concept formation, temporal ordering of stimuli, estimation, attention, memory search, maintaining information in working memory, associative learning,certain forms of skilled motor activities, image generation and manipulation of the spatial properties of a stimulus, metacognitive thinking, and social cognition. Several theories have been proposed to explain the functions of the prefrontal cortex. Currently,the most influential cognitive models are: the Norman and Shallice supervisory attentional system, involved in non-routine selection; the Baddeley working memory model with the central executive as a supervisory controlling system, in which impairment leads to a 'dysexecutive syndrome'; and the Grafman's model of managerial knowledge units, stored as macrostructured information in the frontal cortex. The prefrontal cortex is essential for attentional control, manipulation of stored knowledge and modulation of complex actions, cognition, emotion and behavior.

  3. Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lewald, Jörg; Meister, Ingo G; Weidemann, Jürgen; Töpper, Rudolf

    2004-06-01

    The processing of auditory spatial information in cortical areas of the human brain outside of the primary auditory cortex remains poorly understood. Here we investigated the role of the superior temporal gyrus (STG) and the occipital cortex (OC) in spatial hearing using repetitive transcranial magnetic stimulation (rTMS). The right STG is known to be of crucial importance for visual spatial awareness, and has been suggested to be involved in auditory spatial perception. We found that rTMS of the right STG induced a systematic error in the perception of interaural time differences (a primary cue for sound localization in the azimuthal plane). This is in accordance with the recent view, based on both neurophysiological data obtained in monkeys and human neuroimaging studies, that information on sound location is processed within a dorsolateral "where" stream including the caudal STG. A similar, but opposite, auditory shift was obtained after rTMS of secondary visual areas of the right OC. Processing of auditory information in the OC has previously been shown to exist only in blind persons. Thus, the latter finding provides the first evidence of an involvement of the visual cortex in spatial hearing in sighted human subjects, and suggests a close interconnection of the neural representation of auditory and visual space. Because rTMS induced systematic shifts in auditory lateralization, but not a general deterioration, we propose that rTMS of STG or OC specifically affected neuronal circuits transforming auditory spatial coordinates in order to maintain alignment with vision.

  4. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  5. Mismatch Receptive Fields in Mouse Visual Cortex.

    Science.gov (United States)

    Zmarz, Pawel; Keller, Georg B

    2016-11-23

    In primary visual cortex, a subset of neurons responds when a particular stimulus is encountered in a certain location in visual space. This activity can be modeled using a visual receptive field. In addition to visually driven activity, there are neurons in visual cortex that integrate visual and motor-related input to signal a mismatch between actual and predicted visual flow. Here we show that these mismatch neurons have receptive fields and signal a local mismatch between actual and predicted visual flow in restricted regions of visual space. These mismatch receptive fields are aligned to the retinotopic map of visual cortex and are similar in size to visual receptive fields. Thus, neurons with mismatch receptive fields signal local deviations of actual visual flow from visual flow predicted based on self-motion and could therefore underlie the detection of objects moving relative to the visual flow caused by self-motion. VIDEO ABSTRACT.

  6. Detecting Cortex Fragments During Bacterial Spore Germination.

    Science.gov (United States)

    Francis, Michael B; Sorg, Joseph A

    2016-06-25

    The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.

  7. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  8. Electrophysiological and morphological properties of neurons in layer 5 of the rat postrhinal cortex.

    Science.gov (United States)

    Sills, Joseph B; Connors, Barry W; Burwell, Rebecca D

    2012-09-01

    The postrhinal (POR) cortex of the rat is homologous to the parahippocampal cortex of the primate based on connections and other criteria. POR provides the major visual and visuospatial input to the hippocampal formation, both directly to CA1 and indirectly through connections with the medial entorhinal cortex. Although the cortical and hippocampal connections of the POR cortex are well described, the physiology of POR neurons has not been studied. Here, we examined the electrical and morphological characteristics of layer 5 neurons from POR cortex of 14- to 16-day-old rats using an in vitro slice preparation. Neurons were subjectively classified as regular-spiking (RS), fast-spiking (FS), or low-threshold spiking (LTS) based on their electrophysiological properties and similarities with neurons in other regions of neocortex. Cells stained with biocytin included pyramidal cells and interneurons with bitufted or multipolar dendritic patterns. Similarity analysis using only physiological data yielded three clusters that corresponded to FS, LTS, and RS classes. The cluster corresponding to the FS class was composed entirely of multipolar nonpyramidal cells, and the cluster corresponding to the RS class was composed entirely of pyramidal cells. The third cluster, corresponding to the LTS class, was heterogeneous and included both multipolar and bitufted dendritic arbors as well as one pyramidal cell. We did not observe any intrinsically bursting pyramidal cells, which is similar to entorhinal cortex but unlike perirhinal cortex. We conclude that POR includes at least two major classes of neocortical inhibitory interneurons, but has a functionally restricted cohort of pyramidal cells.

  9. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  10. Coding of movements in the motor cortex.

    Science.gov (United States)

    Georgopoulos, Apostolos P; Carpenter, Adam F

    2015-08-01

    The issue of coding of movement in the motor cortex has recently acquired special significance due to its fundamental importance in neuroprosthetic applications. The challenge of controlling a prosthetic arm by processed motor cortical activity has opened a new era of research in applied medicine but has also provided an 'acid test' for hypotheses regarding coding of movement in the motor cortex. The successful decoding of movement information from the activity of motor cortical cells using their directional tuning and population coding has propelled successful neuroprosthetic applications and, at the same time, asserted the utility of those early discoveries, dating back to the early 1980s.

  11. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude...... of the cortical component of the somatosensory evoked potential following stimulation of the left tibial nerve was reduced immediately after the seizure. Our findings suggest that the excitability of the sensory cortex is transiently reduced following a seizure involving the somatosensory area....

  12. Microarray profiles on age-related genes in the earlier postnatal rat visual cortex

    Institute of Scientific and Technical Information of China (English)

    YANG Liu; NIE Yu-hong; ZHOU Li-hua; LIN Shao-chun; WU Kai-li

    2011-01-01

    Background Accumulating evidence indicates that both innate and adaptive mechanisms are responsible for the postnatal development of the mammalian visual cortex. Most of the studies, including gene expression analysis, were performed on the visual cortex during the critical period; few efforts were made to elucidate the molecular changes in the visual cortex during much earlier postnatal stages. The current study aimed to gain a general insight into the molecular mechanisms in the developmental process of the rat visual cortex using microarray to display the gene expression profiles of the visual cortex on postnatal days.Methods All age-matched Sprague-Dawley rats in various groups including postnatal day 0 (PO, n=20), day 10 (P10,n=15), day 20 (P20, n=15) and day 45 (P45, n=10) were sacrificed respectively. Fresh visual cortex from the binocular area (Area 17) was dissected for extraction of total RNA for microarray analyses. Taking advantage of annotation information from the gene ontology and pathway database, the gene expression profiles were systematically and globally analyzed.Results Of the 31 042 gene sequences represented on the rat expression microarray, more than 4000 of the transcripts significantly altered at days 45,20 or 10 compared to day 0. The most obvious alteration of gene expression occurred in the first ten days of the postnatal period and the genomic activities of the visual cortex maintained a high level from birth to day 45. Compared to the gene expression at birth, there were 2630 changed transcripts that shared in three postnatal periods.The up-regulated genes in most signaling pathways were more than those of the down-regulated genes.Conclusions Analyzing gene expression patterns, we provide a detailed insight into the molecular organization of the developing visual cortex in the earlier postnatal rat. The most obvious alteration of gene expression in visual cortex occurred in the first ten days. Our data were a basis to identify new

  13. Microglia in the Cerebral Cortex in Autism

    Science.gov (United States)

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  14. Structure of Orbitofrontal Cortex Predicts Social Influence

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Kanai, Ryota; Bahrami, Bahador

    2012-01-01

    to guide choices and behaviour. These values can often be updated by the expressed preferences of other people as much as by independent experience. In this correspondence, we report a linear relationship between grey matter volume (GM) in a region of lateral orbitofrontal cortex (lOFCGM) and the tendency...

  15. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  16. The Piriform Cortex and Human Focal Epilepsy

    Directory of Open Access Journals (Sweden)

    David eVaughan

    2014-12-01

    Full Text Available It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic - being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in humans. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.

  17. The piriform cortex and human focal epilepsy.

    Science.gov (United States)

    Vaughan, David N; Jackson, Graeme D

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic - being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.

  18. Contour extracting networks in early extrastriate cortex

    NARCIS (Netherlands)

    Dumoulin, Serge O.; Hess, Robert F.; May, Keith A.; Harvey, Ben M.; Rokers, Bas; Barendregt, Martijn

    2014-01-01

    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ''association field'' proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour

  19. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  20. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  1. Hierarchical error representation in medial prefrontal cortex.

    Science.gov (United States)

    Zarr, Noah; Brown, Joshua W

    2016-01-01

    The medial prefrontal cortex (mPFC) is reliably activated by both performance and prediction errors. Error signals have typically been treated as a scalar, and it is unknown to what extent multiple error signals may co-exist within mPFC. Previous studies have shown that lateral frontal cortex (LFC) is arranged in a hierarchy of abstraction, such that more abstract concepts and rules are represented in more anterior cortical regions. Given the close interaction between lateral and medial prefrontal cortex, we explored the hypothesis that mPFC would be organized along a similar rostro-caudal gradient of abstraction, such that more abstract prediction errors are represented further anterior and more concrete errors further posterior. We show that multiple prediction error signals can be found in mPFC, and furthermore, these are arranged in a rostro-caudal gradient of abstraction which parallels that found in LFC. We used a task that requires a three-level hierarchy of rules to be followed, in which the rules changed without warning at each level of the hierarchy. Task feedback indicated which level of the rule hierarchy changed and led to corresponding prediction error signals in mPFC. Moreover, each identified region of mPFC was preferentially functionally connected to correspondingly anterior regions of LFC. These results suggest the presence of a parallel structure between lateral and medial prefrontal cortex, with the medial regions monitoring and evaluating performance based on rules maintained in the corresponding lateral regions.

  2. Contour extracting networks in early extrastriate cortex

    NARCIS (Netherlands)

    Dumoulin, Serge O.; Hess, Robert F.; May, Keith A.; Harvey, Ben M.; Rokers, Bas; Barendregt, Martijn

    2014-01-01

    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ''association field'' proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour i

  3. Prefrontal cortex and social cognition in mouse and man

    Directory of Open Access Journals (Sweden)

    Lucy King Bicks

    2015-11-01

    Full Text Available Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD and Schizophrenia (SCZ. Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain

  4. Cortex Matures Faster in Youths With Highest IQ

    Science.gov (United States)

    ... Current Issue Past Issues Research News From NIH Cortex Matures Faster in Youths With Highest IQ Past ... scans showed that their brains' outer mantle, or cortex, thickens more rapidly during childhood, reaching its peak ...

  5. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  6. Orbitofrontal cortex, decision-making and drug addiction

    OpenAIRE

    Schoenbaum, Geoffrey; Roesch, Matthew R.; Stalnaker, Thomas A

    2006-01-01

    The orbitofrontal cortex, as a part of prefrontal cortex, is implicated in executive function. However, within this broad region, the orbitofrontal cortex is distinguished by its unique pattern of connections with crucial subcortical associative learning nodes, such as basolateral amygdala and nucleus accumbens. By virtue of these connections, the orbitofrontal cortex is uniquely positioned to use associative information to project into the future, and to use the value of perceived or expecte...

  7. The left occipitotemporal cortex does not show preferential activity for words.

    Science.gov (United States)

    Vogel, Alecia C; Petersen, Steven E; Schlaggar, Bradley L

    2012-12-01

    Regions in left occipitotemporal (OT) cortex, including the putative visual word form area, are among the most commonly activated in imaging studies of single-word reading. It remains unclear whether this part of the brain is more precisely characterized as specialized for words and/or letters or contains more general-use visual regions having properties useful for processing word stimuli, among others. In Analysis 1, we found no evidence of greater activity in left OT regions for words or letter strings relative to other high-spatial frequency high-contrast stimuli, including line drawings and Amharic strings (which constitute the Ethiopian writing system). In Analysis 2, we further investigated processing characteristics of OT cortex potentially useful in reading. Analysis 2 showed that a specific part of OT cortex 1) is responsive to visual feature complexity, measured by the number of strokes forming groups of letters or Amharic strings and 2) processes learned combinations of characters, such as those in words and pseudowords, as groups but does not do so in consonant and Amharic strings. Together, these results indicate that while regions of left OT cortex are not specialized for words, at least part of OT cortex has properties particularly useful for processing words and letters.

  8. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus.

    Science.gov (United States)

    Mejia-Carmona, G E; Gosselink, K L; Pérez-Ishiwara, G; Martínez-Martínez, A

    2015-08-01

    The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic-pituitary-adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.

  9. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.

    Science.gov (United States)

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-03-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.

  10. Sensitive Dependence of Mental Function on Prefrontal Cortex

    OpenAIRE

    Alen J Salerian

    2015-01-01

    This study offers evidence to suggest that both normalcy and psychiatric illness are sensitively dependent upon prefrontal cortex function. In general, the emergence of psychiatric symptoms coincide with diminished influence of prefrontal cortex function. The mediating influence of prefrontal cortex may be independent of molecular and regional brain dysfunctions contributory to psychiatric illness.

  11. The prefrontal cortex and variants of sequential behaviour: indications of functional differentiation between subdivisions of the rat's prefrontal cortex

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Holm, Søren

    1994-01-01

    Neurobiologi, præfrontal cortex, sekventiel adfærd, rotte, adfærdsprogrammering, informationsbearbejdning......Neurobiologi, præfrontal cortex, sekventiel adfærd, rotte, adfærdsprogrammering, informationsbearbejdning...

  12. Projections from Orbitofrontal Cortex to Anterior Piriform Cortex in the Rat Suggest a Role in Olfactory Information Processing

    OpenAIRE

    ILLIG, KURT R.

    2005-01-01

    The orbitofrontal cortex (OFC) has been characterized as a higher-order, multimodal sensory cortex. Evidence from electrophysiological and behavioral studies in the rat has suggested that OFC plays a role in modulating olfactory guided behavior, and a significant projection to OFC arises from piriform cortex, the traditional primary olfactory cortex. To discern how OFC interacts with primary olfactory structures, the anterograde tracer Phaseolus vulgaris leucoagglutinin was injected into orbi...

  13. Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex.

    Science.gov (United States)

    Shiner, T; Symmonds, M; Guitart-Masip, M; Fleming, S M; Friston, K J; Dolan, R J

    2015-10-01

    Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effects on action learning or motor execution. We asked whether behavioral performance in response set shifting depends on the hedonic salience of reversal cues, by presenting these as null (neutral) or salient (monetary loss) outcomes. We observed marked effects of reversal cue salience on set-switching, with more efficient reversals following salient loss outcomes. L-Dopa degraded this discrimination, leading to inappropriate perseveration. Generic activation in thalamus, insula, and striatum preceded response set switches, with an opposite pattern in ventromedial prefrontal cortex (vmPFC). However, the behavioral effect of hedonic salience was reflected in differential vmPFC deactivation following salient relative to null reversal cues. l-Dopa reversed this pattern in vmPFC, suggesting that its behavioral effects are due to disruption of the stability and switching of firing patterns in prefrontal cortex. Our findings provide a potential neurobiological explanation for paradoxical phenomena, including maintenance of behavioral set despite negative outcomes, seen in impulse control disorders in Parkinson's disease.

  14. Active stream segregation specifically involves the left human auditory cortex.

    Science.gov (United States)

    Deike, Susann; Scheich, Henning; Brechmann, André

    2010-06-14

    An important aspect of auditory scene analysis is the sequential grouping of similar sounds into one "auditory stream" while keeping competing streams separate. In the present low-noise fMRI study we presented sequences of alternating high-pitch (A) and low-pitch (B) complex harmonic tones using acoustic parameters that allow the perception of either two separate streams or one alternating stream. However, the subjects were instructed to actively and continuously segregate the A from the B stream. This was controlled by the additional instruction to listen for rare level deviants only in the low-pitch stream. Compared to the control condition in which only one non-separable stream was presented the active segregation of the A from the B stream led to a selective increase of activation in the left auditory cortex (AC). Together with a similar finding from a previous study using a different acoustic cue for streaming, namely timbre, this suggests that the left auditory cortex plays a dominant role in active sequential stream segregation. However, we found cue differences within the left AC: Whereas in the posterior areas, including the planum temporale, activation increased for both acoustic cues, the anterior areas, including Heschl's gyrus, are only involved in stream segregation based on pitch.

  15. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Paulson, Olaf B.

    2005-01-01

    of visual and proprioceptive information and are therefore impaired when these modalities disagree. With fMRI in healthy subjects we compared brain activity across two conditions with similar visual and proprioceptive stimulation and similar task demands that differed by the congruence of movement showed...... with congruent movement activated the premotor area bilaterally and the right temporoparietal junction. These brain areas have previously been associated with shifts in the attended location in the visual space. These findings suggest an interaction between vision and proprioception in orienting to spatial...

  16. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Paulson, Olaf B.

    2005-01-01

    by the two modalities. Subjects felt the passive movement of the right index finger on a rectangular field and watched a cursor moving on a computer screen. Cursor and finger locations either mapped onto each other (congruent condition) or did not (incongruent condition). Monitoring incongruent compared...... with congruent movement activated the premotor area bilaterally and the right temporoparietal junction. These brain areas have previously been associated with shifts in the attended location in the visual space. These findings suggest an interaction between vision and proprioception in orienting to spatial...

  17. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Paulson, Olaf B.;

    2005-01-01

    by the two modalities. Subjects felt the passive movement of the right index finger on a rectangular field and watched a cursor moving on a computer screen. Cursor and finger locations either mapped onto each other (congruent condition) or did not (incongruent condition). Monitoring incongruent compared...... with congruent movement activated the premotor area bilaterally and the right temporoparietal junction. These brain areas have previously been associated with shifts in the attended location in the visual space. These findings suggest an interaction between vision and proprioception in orienting to spatial...

  18. A BOLD signature of eyeblinks in the visual cortex.

    Science.gov (United States)

    Hupé, Jean-Michel; Bordier, Cécile; Dojat, Michel

    2012-05-15

    We are usually unaware of the brief but large illumination changes caused by blinks, presumably because of blink suppression mechanisms. In fMRI however, increase of the BOLD signal was reported in the visual cortex, e.g. during blocks of voluntary blinks (Bristow, Frith and Rees, 2005) or after spontaneous blinks recorded during the prolonged fixation of a static stimulus (Tse, Baumgartner and Greenlee, 2010). We tested whether such activation, possibly related to illumination changes, was also present during standard fMRI retinotopic and visual experiments and was large enough to contaminate the BOLD signal we are interested in. We monitored in a 3T scanner the eyeblinks of 14 subjects who observed three different types of visual stimuli, including periodic rotating wedges and contracting/expanding rings, event-related Mondrians and graphemes, while fixating. We performed event-related analyses on the set of detected spontaneous blinks. We observed large and widespread BOLD responses related to blinks in the visual cortex of every subject and whatever the visual stimulus. The magnitude of the modulation was comparable to visual stimulation. However, blink-related activations lay mostly in the anterior parts of retinotopic visual areas, coding the periphery of the visual field well beyond the extent of our stimuli. Blinks therefore represent an important source of BOLD variations in the visual cortex and a troublesome source of noise since any correlation, even weak, between the distribution of blinks and a tested protocol could trigger artifactual activities. However, the typical signature of blinks along the anterior calcarine and the parieto-occipital sulcus allows identifying, even in the absence of eyetracking, fMRI protocols possibly contaminated by a heterogeneous distribution of blinks.

  19. Functional Zonation of the Adult Mammalian Adrenal Cortex

    Science.gov (United States)

    Vinson, Gavin P.

    2016-01-01

    The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts. PMID:27378832

  20. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.

    Science.gov (United States)

    Crowell, Andrea L; Ryapolova-Webb, Elena S; Ostrem, Jill L; Galifianakis, Nicholas B; Shimamoto, Shoichi; Lim, Daniel A; Starr, Philip A

    2012-02-01

    Movement disorders of basal ganglia origin may arise from abnormalities in synchronized oscillatory activity in a network that includes the basal ganglia, thalamus and motor cortices. In humans, much has been learned from the study of basal ganglia local field potentials recorded from temporarily externalized deep brain stimulator electrodes. These studies have led to the theory that Parkinson's disease has characteristic alterations in the beta frequency band (13-30 Hz) in the basal ganglia-thalamocortical network. However, different disorders have rarely been compared using recordings in the same structure under the same behavioural conditions, limiting straightforward assessment of current hypotheses. To address this, we utilized subdural electrocorticography to study cortical oscillations in the three most common movement disorders: Parkinson's disease, primary dystonia and essential tremor. We recorded local field potentials from the arm area of primary motor and sensory cortices in 31 subjects using strip electrodes placed temporarily during routine surgery for deep brain stimulator placement. We show that: (i) primary motor cortex broadband gamma power is increased in Parkinson's disease compared with the other conditions, both at rest and during a movement task; (ii) primary motor cortex high beta (20-30 Hz) power is increased in Parkinson's disease during the 'stop' phase of a movement task; (iii) the alpha-beta peaks in the motor and sensory cortical power spectra occur at higher frequencies in Parkinson's disease than in the other two disorders; and (iv) patients with dystonia have impaired movement-related beta band desynchronization in primary motor and sensory cortices. The findings support the emerging hypothesis that disease states reflect abnormalities in synchronized oscillatory activity. This is the first study of sensorimotor cortex local field potentials in the three most common movement disorders.

  1. Representation of individual forelimb muscles in primary motor cortex.

    Science.gov (United States)

    Hudson, Heather M; Park, Michael C; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2017-07-01

    Stimulus-triggered averaging (StTA) of forelimb muscle electromyographic (EMG) activity was used to investigate individual forelimb muscle representation within the primary motor cortex (M1) of rhesus macaques with the objective of determining the extent of intra-areal somatotopic organization. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was simultaneously recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 µA at 15 Hz) was delivered throughout the movement task and individual stimuli were used as triggers for generating StTAs of EMG activity. StTAs were used to map the cortical representations of individual forelimb muscles. As reported previously (Park et al. 2001), cortical maps revealed a central core of distal muscle (wrist, digit, and intrinsic hand) representation surrounded by a horseshoe-shaped proximal (shoulder and elbow) muscle representation. In the present study, we found that shoulder and elbow flexor muscles were predominantly represented in the lateral branch of the horseshoe whereas extensors were predominantly represented in the medial branch. Distal muscles were represented within the core distal forelimb representation and showed extensive overlap. For the first time, we also show maps of inhibitory output from motor cortex, which follow many of the same organizational features as the maps of excitatory output.NEW & NOTEWORTHY While the orderly representation of major body parts along the precentral gyrus has been known for decades, questions have been raised about the possible existence of additional more detailed aspects of somatotopy. In this study, we have investigated this question with respect to muscles of the arm and show consistent features of within-arm (intra-areal) somatotopic organization. For the first time we also show maps of how inhibitory output from motor cortex is

  2. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.

  3. Social distance evaluation in human parietal cortex.

    Science.gov (United States)

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. "close friends" "high lord"). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space.

  4. Determining physical properties of the cell cortex

    CERN Document Server

    Saha, A; Behrndt, M; Heisenberg, C -P; Jülicher, F; Grill, S W

    2015-01-01

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using ...

  5. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging.

  6. Effects of aging on motor cortex excitability.

    Science.gov (United States)

    Oliviero, A; Profice, P; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Ranieri, F; Di Lazzaro, V

    2006-05-01

    To determine whether aging is associated with changes in excitability of the cerebral cortex, we evaluated the excitability of the motor cortex with transcranial magnetic stimulation (TMS). We compared TMS related measures obtained in a group of young people with those of a group of old people. Motor evoked potential (MEP) amplitude was significantly smaller in older than in younger controls (1.3+/-0.8 mV versus 2.7+/-1.1 mV; p<0.0071). Mean cortical silent period (CSP) duration was shorter in older than in younger controls (87+/-29 ms versus 147+/-39 ms; p<0.0071). SP duration/MEP amplitude ratios were similar in both groups. Our results are consistent with an impaired efficiency of some intracortical circuits in old age.

  7. Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats

    OpenAIRE

    Şenol, Nilgün; Nazıroğlu, Mustafa

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We investigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vitamin E, reduced glutathione, a...

  8. Optical properties of the medulla and the cortex of human scalp hair

    Science.gov (United States)

    Kharin, Aleksey; Varghese, Babu; Verhagen, Rieko; Uzunbajakava, Natallia

    2009-03-01

    An increasing number of applications, including non- or minimally invasive diagnostics and treatment as well as various cosmetic procedures, has resulted in a need to determine the optical properties of hair and its structures. We report on the measurement of the total attenuation coefficient of the cortex and the medulla of blond, gray, and Asian black human scalp hair at a 633-nm wavelength. Our results show that for blond and gray hair the total attenuation coefficient of the medulla is more than 200 times higher compared to that of the cortex. This difference is only 1.5 times for Asian black hair. Furthermore, we present the total attenuation coefficient of the cortex of blond, gray, light brown, and Asian black hair measured at wavelengths of 409, 532, 633, 800, and 1064 nm. The total attenuation coefficient consistently decreases with an increase in wavelength, as well as with a decrease in hair pigmentation. Additionally, we demonstrate the dependence of the total attenuation coefficient of the cortex and the medulla of Asian black hair on the polarization of incident light. A similar dependence is observed for the cortex of blond and gray hair but not for the medulla of these hair types.

  9. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    Science.gov (United States)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (preading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  10. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks.

  11. BrdU-labelled neurons regeneration after cerebral cortex injury in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; QIU Shu-dong; ZHANG Peng-bo; SHI Wei

    2006-01-01

    @@ Mechanical injuries to the external regions of the brain including the cerebral cortex and other parts of the telencephalon are common yet relatively untreatable.1 The predicament in recovery from brain injury is that the adult central nervous system is generally thought to be incapable of replacing dead neurons. As the subventricular zone (SVZ) is now known to be neurogenic and is in close proximity to the cerebral cortex and other functionally important forebrain areas, the neurogeny of SVZ brings hope to the repair of brain injury.2,3 Because of the high frequency of injuries to the cerebral cortex and its functional importance in humans, many laboratories have studied the results of unilateral aspiration or percussion injury of the cerebral cortex.4-6 However,little is known about the response of endogenous neural stem/progenitor cells following loss of the cerebral cortex that commonly occurred in the neurosurgery. We have characterized the time course of the proliferation of neural stem/progenitor cells in the SVZ in brain to loss of cortical cells.

  12. Orbitofrontal Cortex, Associative Learning, and Expectancies

    Science.gov (United States)

    Schoenbaum, Geoffrey; Roesch, Matthew

    2009-01-01

    Orbitofrontal cortex is characterized by its unique pattern of connections with subcortical areas, such as basolateral amygdala. Here we distinguish between the critical role of these areas in associative learning and the pivotal contribution of OFC to the manipulation of this information to control behavior. This contribution reflects the ability of OFC to signal the desirability of expected outcomes, which requires the integration of associative information with information concerning internal states and goals in representational memory. PMID:16129393

  13. Cone inputs to murine striate cortex

    Directory of Open Access Journals (Sweden)

    Gouras Peter

    2008-11-01

    Full Text Available Abstract Background We have recorded responses from single neurons in murine visual cortex to determine the effectiveness of the input from the two murine cone photoreceptor mechanisms and whether there is any unique selectivity for cone inputs at this higher region of the visual system that would support the possibility of colour vision in mice. Each eye was stimulated by diffuse light, either 370 (strong stimulus for the ultra-violet (UV cone opsin or 505 nm (exclusively stimulating the middle wavelength sensitive (M cone opsin, obtained from light emitting diodes (LEDs in the presence of a strong adapting light that suppressed the responses of rods. Results Single cells responded to these diffuse stimuli in all areas of striate cortex. Two types of responsive cells were encountered. One type (135/323 – 42% had little to no spontaneous activity and responded at either the on and/or the off phase of the light stimulus with a few impulses often of relatively large amplitude. A second type (166/323 – 51% had spontaneous activity and responded tonically to light stimuli with impulses often of small amplitude. Most of the cells responded similarly to both spectral stimuli. A few (18/323 – 6% responded strongly or exclusively to one or the other spectral stimulus and rarely in a spectrally opponent manner. Conclusion Most cells in murine striate cortex receive excitatory inputs from both UV- and M-cones. A small fraction shows either strong selectivity for one or the other cone mechanism and occasionally cone opponent responses. Cells that could underlie chromatic contrast detection are present but extremely rare in murine striate cortex.

  14. Working Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Shintaro Funahashi

    2017-04-01

    Full Text Available The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  15. The role of prefrontal cortex in psychopathy

    OpenAIRE

    Koenigs, Michael

    2012-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingu...

  16. Cell types, circuits, and receptive fields in the mouse visual cortex.

    Science.gov (United States)

    Niell, Cristopher M

    2015-07-08

    Over the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.

  17. Specialized elements of orbitofrontal cortex in primates.

    Science.gov (United States)

    Barbas, Helen

    2007-12-01

    The orbitofrontal cortex is associated with encoding the significance of stimuli within an emotional context, and its connections can be understood in this light. This large cortical region is architectonically heterogeneous, but its connections and functions can be summarized by a broad grouping of areas by cortical type into posterior and anterior sectors. The posterior (limbic) orbitofrontal region is composed of agranular and dysgranular-type cortices and has unique connections with primary olfactory areas and rich connections with high-order sensory association cortices. Posterior orbitofrontal areas are further distinguished by dense and distinct patterns of connections with the amygdala and memory-related anterior temporal lobe structures that may convey signals about emotional import and their memory. The special sets of connections suggest that the posterior orbitofrontal cortex is the primary region for the perception of emotions. In contrast to orbitofrontal areas, posterior medial prefrontal areas in the anterior cingulate are not multi-modal, but have strong connections with auditory association cortices, brain stem vocalization, and autonomic structures, in pathways that may mediate emotional communication and autonomic activation in emotional arousal. Posterior orbitofrontal areas communicate with anterior orbitofrontal areas and, through feedback projections, with lateral prefrontal and other cortices, suggesting a sequence of information processing for emotions. Pathology in orbitofrontal cortex may remove feedback input to sensory cortices, dissociating emotional context from sensory content and impairing the ability to interpret events.

  18. Binocular form deprivation influences the visual cortex

    Institute of Scientific and Technical Information of China (English)

    Mingming Liu; Chuanhuang Weng; Hanping Xie; Wei Qin

    2012-01-01

    1a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are considered to play a crucial role in synaptic plasticity in the developing visual cortex. In this study, we established a rat model of binocular form deprivation by suturing the rat binocular eyelids before eye-opening at postnatal day 14. During development, the decay time of excitatory postsynaptic currents mediated by 1a-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors of normal rats became longer after eyeopening; however, the decay time did not change significantly in binocular form deprivation rats. The peak value in the normal group became gradually larger with age, but there was no significant change in the binocular form deprivation group. These findings indicate that binocular form deprivation influences the properties of excitatory postsynaptic currents mediated by β-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat visual cortex around the end of the critical period, indicating that form stimulation is associated with the experience-dependent modification of neuronal synapses in the visual cortex.

  19. Rhythmic spontaneous activity in the piriform cortex.

    Science.gov (United States)

    Sanchez-Vives, Maria V; Descalzo, V F; Reig, R; Figueroa, N A; Compte, A; Gallego, R

    2008-05-01

    Slow spontaneous rhythmic activity is generated and propagates in neocortical slices when bathed in an artificial cerebrospinal fluid with ionic concentrations similar to the ones in vivo. This activity is extraordinarily similar to the activation of the cortex in physiological conditions (e.g., slow-wave sleep), thus representing a unique in vitro model to understand how cortical networks maintain and control ongoing activity. Here we have characterized the activity generated in the olfactory or piriform cortex and endopiriform nucleus (piriform network). Because these structures are prone to generate epileptic discharges, it seems critical to understand how they generate and regulate their physiological rhythmic activity. The piriform network gave rise to rhythmic spontaneous activity consisting of a succession of up and down states at an average frequency of 1.8 Hz, qualitatively similar to the corresponding neocortical activity. This activity originated in the deep layers of the piriform network, which displayed higher excitability and denser connectivity. A remarkable difference with neocortical activity was the speed of horizontal propagation (114 mm/s), one order of magnitude faster in the piriform network. Properties of the piriform cortex subserving fast horizontal propagation may underlie the higher vulnerability of this area to epileptic seizures.

  20. An integrator circuit in cerebellar cortex.

    Science.gov (United States)

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low ( 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  1. Egocentric and allocentric representations in auditory cortex.

    Science.gov (United States)

    Town, Stephen M; Brimijoin, W Owen; Bizley, Jennifer K

    2017-06-01

    A key function of the brain is to provide a stable representation of an object's location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position.

  2. Hierarchical Bayesian inference in the visual cortex

    Science.gov (United States)

    Lee, Tai Sing; Mumford, David

    2003-07-01

    Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spatiotemporal filters that extract local features from a visual scene. The extracted information is then channeled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual system. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might model these interactive cortical computations. We review some recent neurophysiological evidences that support the plausibility of these ideas. 2003 Optical Society of America

  3. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  4. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

    Science.gov (United States)

    Takemura, Hiromasa; Rokem, Ariel; Winawer, Jonathan; Yeatman, Jason D; Wandell, Brian A; Pestilli, Franco

    2016-05-01

    Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information.

  5. Induction of neuroserpin expression in rat frontal cortex after chronic antidepressant treatment and electroconvulsive treatment.

    Science.gov (United States)

    Tanaka, Satoshi; Yamada, Misa; Kitahara, Sari; Higuchi, Teruhiko; Honda, Kazuo; Kamijima, Kunitoshi; Yamada, Mitsuhiko

    2006-02-01

    Using expressed sequence tag (EST) analysis, we previously identified certain molecular machinery that mediates antidepressant effects. To date, several partial cDNA fragments, termed antidepressant-related genes (ADRGs), have been isolated as ESTs from rat brain. In the present study, we identified two of the ADRGs to be rat neuroserpin. Using real-time quantitative PCR, we demonstrated increased neuroserpin mRNA expression in rat frontal cortex after chronic treatment with several classes of antidepressants, including imipramine, fluoxetine, sertraline, and venlafaxine. Electroconvulsive treatment (ECT), another therapeutic treatment for depression, also increased neuroserpin expression in rat frontal cortex. Neuroserpin is a serine protease inhibitor that is implicated in the regulation of synaptic plasticity, neuronal migration, and axogenesis in the central nervous system. In conclusion, our results support the hypothesis that neuroserpin-mediated plastic changes in frontal cortex may underlie the therapeutic action of antidepressants and ECT.

  6. Cortex-M0处理器初探%Cortex-M0 Processor:An Initial Survey

    Institute of Scientific and Technical Information of China (English)

    范云龙; 方安平; 李宁

    2010-01-01

    介绍Cortex-M0处理器的特点;详细分析Cortex-M0处理器的编程模型、存储模型、异常处理和功耗管理,并将Cortex-M0与Cortex-M3和基于8/16位架构的处理器作了对比分析;最后简要介绍Cortex-M0处理器的相关开发工具.

  7. Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Wiers, R.W.

    2012-01-01

    Anodal stimulation of dorsolateral prefrontal cortex by transcranial Direct Current Stimulation (tDCS) has been shown to enhance performance on working memory tasks. However, it is not yet known precisely which aspects of working memory - a broad theoretical concept including short-term memory and v

  8. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making

    NARCIS (Netherlands)

    van't Wout, M; Kahn, RS; Sanfey, AG; Aleman, A

    2005-01-01

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task.

  9. Intracellular responses to frequency modulated tones in the dorsal cortex of the mouse inferior colliculus

    NARCIS (Netherlands)

    H.R.A.P. Geis (H.-Rüdiger A.P.); J.G.G. Borst (Gerard)

    2013-01-01

    textabstractFrequency modulations occur in many natural sounds, including vocalizations. The neuronal response to frequency modulated (FM) stimuli has been studied extensively in different brain areas, with an emphasis on the auditory cortex and the central nucleus of the inferior colliculus. Here,

  10. Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Wiers, R.W.

    2012-01-01

    Anodal stimulation of dorsolateral prefrontal cortex by transcranial Direct Current Stimulation (tDCS) has been shown to enhance performance on working memory tasks. However, it is not yet known precisely which aspects of working memory - a broad theoretical concept including short-term memory and v

  11. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making

    NARCIS (Netherlands)

    van't Wout, M; Kahn, RS; Sanfey, AG; Aleman, A

    2005-01-01

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task.

  12. Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Stephanie Kullmann

    2014-01-01

    These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN.

  13. The Contribution of the Inferior Parietal Cortex to Spoken Language Production

    Science.gov (United States)

    Geranmayeh, Fatemeh; Brownsett, Sonia L. E.; Leech, Robert; Beckmann, Christian F.; Woodhead, Zoe; Wise, Richard J. S.

    2012-01-01

    This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with…

  14. The contribution of the inferior parietal cortex to spoken language production

    NARCIS (Netherlands)

    Geranmayeh, F.; Brownsett, S.L.; Leech, R.; Beckmann, Christian; Woodhead, Z.; Wise, R.J.

    2012-01-01

    This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions

  15. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  16. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  17. I find you more attractive … after (prefrontal cortex) stimulation.

    Science.gov (United States)

    Ferrari, Chiara; Lega, Carlotta; Tamietto, Marco; Nadal, Marcos; Cattaneo, Zaira

    2015-06-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is involved in high-level processes, so how does its activity relate to beauty appreciation? To shed light on this, we asked male and female participants to evaluate the attractiveness of faces of the same and other sex prior and after transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC). We found that increasing excitability via anodal tDCS in the right but not in the left DLPFC increased perceived attractiveness of the faces, irrespective of the sex of the faces or the sex of the viewers. Identical stimulation over the same site did not affect estimation of other facial characteristics, such as age, thereby suggesting that the effects of anodal tDCS over the right DLPFC might be selective for facial attractiveness, and might not generalize to decisions concerning other facial attributes. Overall, our data suggest that the right DLPFC plays a causal role in explicit judgment of facial attractiveness. The mechanisms mediating such effect are discussed.

  18. Characterization of Face-Selective Patches in Orbitofrontal Cortex.

    Science.gov (United States)

    Troiani, Vanessa; Dougherty, Chase C; Michael, Andrew M; Olson, Ingrid R

    2016-01-01

    Face processing involves a complex, multimodal brain network. While visual-perceptual face patches in posterior parts of the brain have been studied for over a decade, the existence and properties of face-selective regions in orbitofrontal cortex (OFC) is a relatively new area of research. While regions of OFC are implicated in the emotional processing of faces, this is typically interpreted as a domain-general response to affective value rather than a face- or socially-specific response. However, electrophysiology studies in monkeys have identified neurons in OFC that respond more to faces than any other stimuli. Here, we characterize the prevalence and location of OFC face-selective regions in 20 healthy college students. We did this by including another biologically motivating category (appetizing foods) in a variant of the standard face localizer. Results show that face-selective patches can be identified at the individual level. Furthermore, in both a region of interest (ROI) and a whole brain analysis, medial regions of the OFC were face-selective, while lateral regions were responsive to faces and foods, indicating a domain-general response in lateral OFC. Medial OFC (mOFC) response to faces scales in relationship to a measure of social motivation that is distinct from face processing abilities associated with fusiform cortex.

  19. Task engagement selectively modulates neural correlations in primary auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2015-05-13

    Noise correlations (r(noise)) between neurons can affect a neural population's discrimination capacity, even without changes in mean firing rates of neurons. r(noise), the degree to which the response variability of a pair of neurons is correlated, has been shown to change with attention with most reports showing a reduction in r(noise). However, the effect of reducing r(noise) on sensory discrimination depends on many factors, including the tuning similarity, or tuning correlation (r(tuning)), between the pair. Theoretically, reducing r(noise) should enhance sensory discrimination when the pair exhibits similar tuning, but should impair discrimination when tuning is dissimilar. We recorded from pairs of neurons in primary auditory cortex (A1) under two conditions: while rhesus macaque monkeys (Macaca mulatta) actively performed a threshold amplitude modulation (AM) detection task and while they sat passively awake. We report that, for pairs with similar AM tuning, average r(noise) in A1 decreases when the animal performs the AM detection task compared with when sitting passively. For pairs with dissimilar tuning, the average r(noise) did not significantly change between conditions. This suggests that attention-related modulation can target selective subcircuits to decorrelate noise. These results demonstrate that engagement in an auditory task enhances population coding in primary auditory cortex by selectively reducing deleterious r(noise) and leaving beneficial r(noise) intact.

  20. Corticofugal GABAergic projection neurons in the mouse frontal cortex

    Directory of Open Access Journals (Sweden)

    Ryohei eTomioka

    2015-10-01

    Full Text Available Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen, ventral pallidum, lateral globus pallidus, nucleus accumbens, and olfactory tubercle. Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia.

  1. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  2. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    Science.gov (United States)

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  3. The anterior olfactory nucleus and piriform cortex of the echidna and platypus.

    Science.gov (United States)

    Ashwell, Ken W S; Phillips, Jennifer M

    2006-01-01

    The cyto- and chemoarchitecture of the anterior olfactory nucleus and piriform cortex of the short-beaked echidna and platypus were studied to determine: (1) if these areas contain chemically distinct subdivisions, and (2) if the chemoarchitecture of those cortical olfactory regions differs from therians. Nissl and myelin staining were applied in conjunction with enzyme reactivity for NADPH diaphorase and acetylcholinesterase, and immunoreactivity for calcium-binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase. Golgi impregnations were also available for the echidna. In the echidna, the anterior olfactory nucleus is negligible in extent and merges at very rostral levels with a four-layered piriform cortex. Several rostrocaudally running subregions of the echidna piriform lobe could be identified on the basis of Nissl staining and calcium-binding protein immunoreactivity. Laminar-specific differences in calcium-binding protein immunoreactivity and NADPH-d-reactive neuron distribution were also noted. Neuron types identified in echidna piriform cortex included pyramidal neurons predominating in layers II and III and non-pyramidal neurons (e.g., multipolar profusely spiny and neurogliaform cells) in deeper layers. Horizontal cells were identified in both superficial and deep layers. By contrast, the platypus had a distinct anterior olfactory nucleus and a three-layered piriform cortex with no evidence of chemically distinct subregions within the piriform cortex. Volume of the paleocortex of the echidna was comparable to prosimians of similar body weight and, in absolute volume, exceeded that for eutherian insectivores such as T. ecaudatus and E. europaeus. The piriform cortex of the echidna shows evidence of regional differentiation, which in turn suggests highly specialized olfactory function.

  4. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    Science.gov (United States)

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between

  5. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2015-09-01

    Full Text Available Cholecystokinin (CCK- and parvalbumin (PV-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behaviour. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV than they were in corresponding primary areas (V1, S1, M1 and Aud1. The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favour the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labelling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism.

  6. Orbitofrontal cortex function and structure in depression.

    Science.gov (United States)

    Drevets, Wayne C

    2007-12-01

    The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.

  7. Determining Physical Properties of the Cell Cortex

    Science.gov (United States)

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W.

    2016-03-01

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.

  8. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  9. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

    Science.gov (United States)

    Neymotin, Samuel A.; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D.; Lytton, William W.

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  10. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex.

    Science.gov (United States)

    Neymotin, Samuel A; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D; Lytton, William W

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.

  11. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    Science.gov (United States)

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons.

  12. The value of identity: olfactory notes on orbitofrontal cortex function.

    Science.gov (United States)

    Gottfried, Jay A; Zelano, Christina

    2011-12-01

    Neuroscientific research has emphatically promoted the idea that the key function of the orbitofrontal cortex (OFC) is to encode value. Associative learning studies indicate that OFC representations of stimulus cues reflect the predictive value of expected outcomes. Neuroeconomic studies suggest that the OFC distills abstract representations of value from discrete commodities to optimize choice. Although value-based models provide good explanatory power for many different findings, these models are typically disconnected from the very stimuli and commodities giving rise to those value representations. Little provision is made, either theoretically or empirically, for the necessary cooperative role of object identity, without which value becomes orphaned from its source. As a step toward remediating the value of identity, this review provides a focused olfactory survey of OFC research, including new work from our lab, to highlight the elemental involvement of this region in stimulus-specific predictive coding of both perceptual outcomes and expected values.

  13. Neural representation of behavioral outcomes in the orbitofrontal cortex.

    Science.gov (United States)

    Mainen, Zachary F; Kepecs, Adam

    2009-02-01

    The orbitofrontal cortex (OFC) is important in processing rewards and other behavioral outcomes. Here, we review from a computational perspective recent progress in understanding this complex function. OFC neurons appear to represent abstract outcome values, which may facilitate the comparison of options, as well as concrete outcome attributes, such as flavor or location, which may enable predictive cues to access current outcome values in the face of dynamic modulation by internal state, context and learning. OFC can use reinforcement learning to generate outcome predictions; it can also generate outcome predictions using other mechanisms, including the evaluation of decision confidence or uncertainty. OFC neurons encode not only the mean expected outcome but also the variance, consistent with the idea that OFC uses a probabilistic population code to represent outcomes. We suggest that further attention to the nature of its representations and algorithms will be critical to further elucidating OFC function.

  14. Damage to ventromedial prefrontal cortex impairs judgment of harmful intent

    Science.gov (United States)

    Young, Liane; Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Hauser, Marc; Damasio, Antonio

    2011-01-01

    Summary Moral judgments, whether delivered in ordinary experience or in the courtroom, depend on our ability to infer intentions. We forgive unintentional or accidental harms and condemn failed attempts to harm. Prior work demonstrates that patients with damage to the ventromedial prefrontal cortex (VMPC) deliver abnormal judgments in response to moral dilemmas, and that these patients are especially impaired in triggering emotional responses to inferred or abstract events (e.g., intentions), as opposed to real or actual outcomes. We therefore predicted that VMPC patients would deliver abnormal moral judgments of harmful intentions in the absence of harmful outcomes, as in failed attempts to harm. This prediction was confirmed in the current study: VMPC patients judged attempted harms including attempted murder as more morally permissible relative to controls. These results highlight the critical role of the VMPC in processing harmful intent for moral judgment. PMID:20346759

  15. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  16. Neurons and circuits for odor processing in the piriform cortex.

    Science.gov (United States)

    Bekkers, John M; Suzuki, Norimitsu

    2013-07-01

    Increased understanding of the early stages of olfaction has lead to a renewed interest in the higher brain regions responsible for forming unified 'odor images' from the chemical components detected by the nose. The piriform cortex, which is one of the first cortical destinations of olfactory information in mammals, is a primitive paleocortex that is critical for the synthetic perception of odors. Here we review recent work that examines the cellular neurophysiology of the piriform cortex. Exciting new findings have revealed how the neurons and circuits of the piriform cortex process odor information, demonstrating that, despite its superficial simplicity, the piriform cortex is a remarkably subtle and intricate neural circuit.

  17. Epigenetic dysregulation in the developing Down syndrome cortex

    Science.gov (United States)

    El Hajj, Nady; Dittrich, Marcus; Böck, Julia; Kraus, Theo F. J.; Nanda, Indrajit; Müller, Tobias; Seidmann, Larissa; Tralau, Tim; Galetzka, Danuta; Schneider, Eberhard; Haaf, Thomas

    2016-01-01

    ABSTRACT Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3–11 times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions. PMID:27245352

  18. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  19. Motor cortex stimulation in Parkinson's disease.

    Science.gov (United States)

    De Rose, Marisa; Guzzi, Giusy; Bosco, Domenico; Romano, Mary; Lavano, Serena Marianna; Plastino, Massimiliano; Volpentesta, Giorgio; Marotta, Rosa; Lavano, Angelo

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27-31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39), and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD). During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27-31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  20. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  1. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  2. Effects of prefrontal cortex damage on emotion understanding: EEG and behavioural evidence.

    Science.gov (United States)

    Perry, Anat; Saunders, Samantha N; Stiso, Jennifer; Dewar, Callum; Lubell, Jamie; Meling, Torstein R; Solbakk, Anne-Kristin; Endestad, Tor; Knight, Robert T

    2017-04-01

    Humans are highly social beings that interact with each other on a daily basis. In these complex interactions, we get along by being able to identify others' actions and infer their intentions, thoughts and feelings. One of the major theories accounting for this critical ability assumes that the understanding of social signals is based on a primordial tendency to simulate observed actions by activating a mirror neuron system. If mirror neuron regions are important for action and emotion recognition, damage to regions in this network should lead to deficits in these domains. In the current behavioural and EEG study, we focused on the lateral prefrontal cortex including dorsal and ventral prefrontal cortex and utilized a series of task paradigms, each measuring a different aspect of recognizing others' actions or emotions from body cues. We examined 17 patients with lesions including (n = 8) or not including (n = 9) the inferior frontal gyrus, a core mirror neuron system region, and compared their performance to matched healthy control subjects (n = 18), in behavioural tasks and in an EEG observation-execution task measuring mu suppression. Our results provide support for the role of the lateral prefrontal cortex in understanding others' emotions, by showing that even unilateral lesions result in deficits in both accuracy and reaction time in tasks involving the recognition of others' emotions. In tasks involving the recognition of actions, patients showed a general increase in reaction time, but not a reduction in accuracy. Deficits in emotion recognition can be seen by either direct damage to the inferior frontal gyrus, or via damage to dorsal lateral prefrontal cortex regions, resulting in deteriorated performance and less EEG mu suppression over sensorimotor cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates

    Directory of Open Access Journals (Sweden)

    Xue-mei Zhang

    2009-10-01

    Full Text Available A novel population of cells that express typical immature neuronal markers including doublecortin (DCX+ has been recently identified throughout the adult cerebral cortex of relatively large mammals (guinea pig, rabbit, cat, monkey and human. These cells are more common in the associative relative to primary cortical areas and appear to develop into interneurons including type II nitrinergic neurons. Here we further describe these cells in the cerebral cortex and amygdala, in comparison with DCX+ cells in the hippocampal dentate gyrus, in 3 age groups of rhesus monkeys: young adult (12.3±0.2 yrs, n=3, mid-age (21.2±1.9 yrs, n=3 and aged (31.3±1.8 yrs, n=4. DCX+ cells with a heterogeneous morphology persisted in layers II/III primarily over the associative cortex and amygdala in all groups (including in two old animals with cerebral amyloid pathology, showing a parallel decline in cell density with age across regions. In contrast to the cortex and amygdala, DCX+ cells in the subgranular zone diminished in the mid-age and aged groups. DCX+ cortical cells might arrange as long tangential migratory chains in the mid-age and aged animals, with apparently distorted cell clusters seen in the aged group. Cortical DCX+ cells colocalized commonly with polysialylated neural cell adhesion molecule (PSA-NCAM and partially with neuron-specific nuclear protein (NeuN and γ-aminobutyric acid (GABA, suggesting a potential differentiation of these cells into interneuron phenotype. These data suggest a life-long role for immature interneuron-like cells in the associative cerebral cortex and amygdala in nonhuman primates.

  4. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, J.; Grey, M.J.;

    2010-01-01

    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb moveme...... premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement....

  5. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  6. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles

    Science.gov (United States)

    Luo, Tianzhi; Srivastava, Vasudha; Ren, Yixin; Robinson, Douglas N.

    2014-04-01

    The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.

  7. Prearcuate cortex in the Cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nuclei.

    Science.gov (United States)

    Leichnetz, G R; Gonzalo-Ruiz, A

    1996-01-01

    The cortical and subcortical connections of the prearcuate cortex were studied in capuchin monkeys (Cebus apella, albifrons) using the anterograde and retrograde transport capabilities of the horseradish peroxidase technique. The findings demonstrate remarkable similarities to those of the macaque frontal eye field and strongly support their homology. The report then focuses on specific prearcuate projections to oculomotor-related brainstem nuclei that were shown in a companion experiment to entertain connections with the caudal oculomotor portion of the cerebellar fastigial nucleus. The principal corticocortical connections of the cebus prearcuate cortex were with dorsomedial prefrontal cortex, lateral intraparietal sulcal cortex, posterior medial parietal cortex, and superior temporal sulcal cortex, which were for the most part reciprocal and columnar in organization. The connections of the dorsal prearcuate region were heavier to the dorsomedial prefrontal and posterior medial parietal cortices, and those of the ventral region were heavier to the superior temporal sulcal cortex. The prearcuate cortex projects to several brainstem areas which also receive projections from the caudal fastigial nucleus, including the supraoculomotor periaqueductal gray matter, superior colliculus, medial nucleus reticularis tegmenti pontis, dorsomedial basilar pontine nucleus, dorsolateral basilar pontine nucleus, nucleus reticularis pontis caudalis, pontine raphe, and nucleus prepositus hypoglossi. The findings define a neuroanatomical framework within which convergence of prearcuate (putative frontal eye field) and caudal fastigial nucleus connections might occur, facilitating their potential interaction in saccadic and smooth pursuit eye movement.

  8. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  9. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  10. Development of binocular vision in the kitten's striate cortex.

    Science.gov (United States)

    Freeman, R D; Ohzawa, I

    1992-12-01

    Studies of the development and plasticity of the visual pathway are well documented, but a basic question remains open: what is the physiological status of the system prior to extensive visual experience? Somewhat conflicting answers have been put forward, and in a major area, binocular vision, reports have ranged from severe immaturity to well-developed maturity. This is an important question to resolve since binocular cells in the visual cortex are thought to be the neural substrate for stereoscopic depth perception. We have addressed this question by recording from single cells in the striate cortex of kittens at postnatal ages 2, 3, and 4 weeks and from adults for comparison. Gratings with sinusoidal luminance distribution are presented to left, right, or both eyes. For each cell, we determine optimal values for orientation and spatial frequency. Relative phase (retinal disparity) is then varied in a dichoptic sequence so that binocular interaction may be studied. Results are as follows. In the normal adult, we have shown in previous work that most binocular interaction in the visual cortex can be accounted for on the basis of linear summation. Results from 3 and 4 week postnatal kittens are closely similar to those from adults. All types of binocular interaction found in adults are present in kittens. This includes phase-specific and non-phase-specific suppression or facilitation. Furthermore, monocular and binocular tuning characteristics are comparable in kittens and adults. The clear changes that occur with age are optimal spatial frequencies and peak responses. In addition, at 2 weeks, there is a substantially higher proportion of monocular cells compared to other ages and correspondingly, lower relative numbers of cells that exhibit phase-specific or suppressive binocular interactions. From increases in optimal spatial frequency and interpupillary distance with age, we calculated predicted changes in binocular disparity thresholds (stereo acuity) with age

  11. [Short-term memory processes during delayed visual differentiation after bilateral removal of the 7th field of the parietal cortex in Rhesus macaca].

    Science.gov (United States)

    Dudkin, K N; Chueva, I V; Makarov, F N; Orlov, I V

    1998-01-01

    Extirpation of the parietal cortex area 7 aggravated delayed visual discrimination of all visual attributes including shape, colour and spatial relationship in adult rhesus monkeys. Oxymetacil improved the shape and colour discrimination alone.

  12. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.

    2013-01-01

    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  13. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2013-10-01

    Full Text Available Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.

  14. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: implications for vision recovery

    Directory of Open Access Journals (Sweden)

    Amy eBrodtmann

    2015-04-01

    Full Text Available The extent of visual cortex reorganization following injury remains controversial. We report serial functional magnetic resonance imaging (fMRI data from a patient with sequential posterior circulation strokes occurring three weeks apart, compared with data from an age-matched healthy control subject. At 8 days following a left occipital stroke, contralesional visual cortical activation was within expected striate and extrastriate sites, comparable to that seen in controls. Despite a further infarct in the right (previously unaffected hemisphere, there was evolution of visual cortical reorganization progressed. In this patient, there was evidence of utilization of peri-infarct sites (right-sided and recruitment of new activation sites in extrastriate cortices, including in the lateral middle and inferior temporal lobes. The changes over time corresponded topographically with the patient’s lesion site and its connections. Reorganization of the surviving visual cortex was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex was demonstrated at the 6 month scan. We present a summary of mechanisms of recovery following stroke relevant to the visual system. We conclude that mature primary visual cortex displays considerable plasticity and capacity to reorganize, associated with evolution of visual field deficits. We discuss these findings and their implications for therapy within the context of current concepts in visual compensatory and restorative therapies.

  15. Top-down influence on the visual cortex of the blind during sensory substitution

    Science.gov (United States)

    Murphy, Matthew C.; Nau, Amy C.; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2017-01-01

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. PMID:26584776

  16. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  17. Layer-specific diffusion weighted imaging in human primary visual cortex in vitro.

    Science.gov (United States)

    Kleinnijenhuis, Michiel; Zerbi, Valerio; Küsters, Benno; Slump, Cornelis H; Barth, Markus; van Cappellen van Walsum, Anne-Marie

    2013-10-01

    One of the most prominent characteristics of the human neocortex is its laminated structure. The first person to observe this was Francesco Gennari in the second half the 18th century: in the middle of the depth of primary visual cortex, myelinated fibres are so abundant that he could observe them with bare eyes as a white line. Because of its saliency, the stria of Gennari has a rich history in cyto- and myeloarchitectural research as well as in magnetic resonance (MR) microscopy. In the present paper we show for the first time the layered structure of the human neocortex with ex vivo diffusion weighted imaging (DWI). To achieve the necessary spatial and angular resolution, primary visual cortex samples were scanned on an 11.7 T small-animal MR system to characterize the diffusion properties of the cortical laminae and the stria of Gennari in particular. The results demonstrated that fractional anisotropy varied over cortical depth, showing reduced anisotropy in the stria of Gennari, the inner band of Baillarger and the deepest layer of the cortex. Orientation density functions showed multiple components in the stria of Gennari and deeper layers of the cortex. Potential applications of layer-specific diffusion imaging include characterization of clinical abnormalities, cortical mapping and (intra)cortical tractography. We conclude that future high-resolution in vivo cortical DWI investigations should take into account the layer-specificity of the diffusion properties.

  18. Top-down influence on the visual cortex of the blind during sensory substitution.

    Science.gov (United States)

    Murphy, Matthew C; Nau, Amy C; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C

    2016-01-15

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine.

  19. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    Science.gov (United States)

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  20. Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex.

    Science.gov (United States)

    He, X; Zhang, X-M; Wu, J; Fu, J; Mou, L; Lu, D-H; Cai, Y; Luo, X-G; Pan, A; Yan, X-X

    2014-02-14

    Immature neurons expressing doublecortin (DCX+) are present around cortical layer II in various mammals including guinea pigs and humans, especially enriched in the paleocortex. However, little is known whether and how functional experience affects the development of this population of neurons. We attempted to explore a modulation by experience to layer II DCX+ cells in the primary olfactory cortex in postnatal and adult guinea pigs. Neonatal and 1-year-old guinea pigs were subjected to unilateral naris-occlusion, followed 1 and 2months later by morphometry of DCX+ cells in the piriform cortex. DCX+ somata and processes were reduced in the deprived relative to the non-deprived piriform cortex in both age groups at the two surviving time points. The number of DCX+ cells was decreased in the deprived side relative to internal control at 1 and 2months in the youths and at 2months in the adults post-occlusion. The mean somal area of DCX+ cells showed a trend of decrease in the deprived side relative to the internal control in the youths. In addition, DCX+ cells in the deprived side exhibited a lower frequency of colocalization with the neuron-specific nuclear antigen (NeuN) relative to counterparts. These results suggest that normal olfactory experience is required for the maintenance and development of DCX+ immature neurons in postnatal and adult guinea pig piriform cortex.

  1. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: implications for vision recovery.

    Science.gov (United States)

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2015-01-01

    The extent of visual cortex reorganization following injury remains controversial. We report serial functional magnetic resonance imaging (fMRI) data from a patient with sequential posterior circulation strokes occurring 3 weeks apart, compared with data from an age-matched healthy control subject. At 8 days following a left occipital stroke, contralesional visual cortical activation was within expected striate and extrastriate sites, comparable to that seen in controls. Despite a further infarct in the right (previously unaffected hemisphere), there was evolution of visual cortical reorganization progressed. In this patient, there was evidence of utilization of peri-infarct sites (right-sided) and recruitment of new activation sites in extrastriate cortices, including in the lateral middle and inferior temporal lobes. The changes over time corresponded topographically with the patient's lesion site and its connections. Reorganization of the surviving visual cortex was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex was demonstrated at the 6 month scan. We present a summary of mechanisms of recovery following stroke relevant to the visual system. We conclude that mature primary visual cortex displays considerable plasticity and capacity to reorganize, associated with evolution of visual field deficits. We discuss these findings and their implications for therapy within the context of current concepts in visual compensatory and restorative therapies.

  2. The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology.

    Science.gov (United States)

    Butti, Camilla; Ewan Fordyce, R; Ann Raghanti, Mary; Gu, Xiaosi; Bonar, Christopher J; Wicinski, Bridget A; Wong, Edmund W; Roman, Jessica; Brake, Alanna; Eaves, Emily; Spocter, Muhammad A; Tang, Cheuk Y; Jacobs, Bob; Sherwood, Chet C; Hof, Patrick R

    2014-04-01

    The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semiaquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR-immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR-immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius. Copyright © 2014 Wiley Periodicals, Inc.

  3. Anodic or cathodic motor cortex stimulation for pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Manola, L.

    2006-01-01

    Objective. In motor cortex stimulation (MCS) for central and trigeminal pain Resume leads are placed epidurally over the motor and sensory cortex. Several bipolar combinations are used to identify the cortical target corresponding to the painful body segment. The cathode giving the largest motor r

  4. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    Science.gov (United States)

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  5. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  6. Effects of acetylcholine on neuronal properties in entorhinal cortex

    Directory of Open Access Journals (Sweden)

    James G Heys

    2012-07-01

    Full Text Available The entorhinal cortex receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB. To understand how cholinergic neurotransmission can modulate behavior, research has been directed towards identification of the specific cellular mechanisms in entorhinal cortex that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in entorhinal cortex that may underlie functions such as working memory, spatial processing and episodic memory. In particular, the study of stellate cells in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in entorhinal cortex that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in entorhinal cortex. Finally, the local circuits of entorhinal cortex demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of entorhinal cortex to underlie the functional role of acetylcholine in memory.

  7. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  8. Prefrontal Cortex: A Mystery of Belated Memories.

    Science.gov (United States)

    Eichenbaum, Howard

    2017-06-05

    A recent study suggests that the prefrontal cortex gradually becomes critical as a storage site for remotely acquired memories. How do we interpret this observation in light of the well-known functional role of the prefrontal cortex in cognition and memory? Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex

    Science.gov (United States)

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…

  10. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    Science.gov (United States)

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  11. [Lipid peroxidation in the adrenal cortex during exhausting stress].

    Science.gov (United States)

    Doroshkevich, N A; Antsulevich, S N; Naumov, A V; Vinogradov, V V

    1990-05-01

    Under prolonged stress which is connected with exhaustion of functional resources of adrenal cortex the activation of lipid peroxidation processes in this gland was found. It is possible that the reason for such lipid peroxidation activation is the decrease in the content of adrenal cortex ascorbic acid and alpha-tocopherol.

  12. Olfactocentric Paralimbic Cortex Morphology in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Wang, Fei; Kalmar, Jessica H.; Womer, Fay Y.; Edmiston, Erin E.; Chepenik, Lara G.; Chen, Rachel; Spencer, Linda; Blumberg, Hilary P.

    2011-01-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together,…

  13. Biodiversity conservation including uncharismatic species

    DEFF Research Database (Denmark)

    Muñoz, Joaquin

    2007-01-01

    Recent papers mention ideas on the topics of biodiversity conservation strategies and priorities (Redford et al. 2003; Lamoreux et al. 2006; Rodrı´guez et al. 2006), the current status of biodiversity (Loreau et al. 2006), the obligations of conservation biologists regarding management policies...... (Chapron 2006; Schwartz 2006), and the main threats to biodiversity (including invasive species) (Bawa 2006). I suggest, however, that these articles do not really deal with biodiversity. Rather, they all focus on a few obviously charismatic groups (mammals, birds, some plants, fishes, human culture...

  14. Does the orbitofrontal cortex signal value?

    Science.gov (United States)

    Schoenbaum, Geoffrey; Takahashi, Yuji; Liu, Tzu-Lan; McDannald, Michael A

    2011-12-01

    The orbitofrontal cortex (OFC) has long been implicated in associative learning. Early work by Mishkin and Rolls showed that the OFC was critical for rapid changes in learned behavior, a role that was reflected in the encoding of associative information by orbitofrontal neurons. Over the years, new data-particularly neurophysiological data-have increasingly emphasized the OFC in signaling actual value. These signals have been reported to vary according to internal preferences and judgments and to even be completely independent of the sensory qualities of predictive cues, the actual rewards, and the responses required to obtain them. At the same time, increasingly sophisticated behavioral studies have shown that the OFC is often unnecessary for simple value-based behavior and instead seems critical when information about specific outcomes must be used to guide behavior and learning. Here, we review these data and suggest a theory that potentially reconciles these two ideas, value versus specific outcomes, and bodies of work on the OFC.

  15. Conserved Sequence Processing in Primate Frontal Cortex.

    Science.gov (United States)

    Wilson, Benjamin; Marslen-Wilson, William D; Petkov, Christopher I

    2017-02-01

    An important aspect of animal perception and cognition is learning to recognize relationships between environmental events that predict others in time, a form of relational knowledge that can be assessed using sequence-learning paradigms. Humans are exquisitely sensitive to sequencing relationships, and their combinatorial capacities, most saliently in the domain of language, are unparalleled. Recent comparative research in human and nonhuman primates has obtained behavioral and neuroimaging evidence for evolutionarily conserved substrates involved in sequence processing. The findings carry implications for the origins of domain-general capacities underlying core language functions in humans. Here, we synthesize this research into a 'ventrodorsal gradient' model, where frontal cortex engagement along this axis depends on sequencing complexity, mapping onto the sequencing capacities of different species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Deep Hierarchies in the Primate Visual Cortex

    DEFF Research Database (Denmark)

    Krüger, Norbert; Jannsen, Per; Kalkan, S.

    2013-01-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition or vision-based navigation and manipulation. This article...... reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles...... of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchal processing in the primate visual system is characterized by a sequence of different levels of processing (in the order of ten) that constitute a deep hierarchy in contrast to the flat...

  17. Sex, beauty and the orbitofrontal cortex.

    Science.gov (United States)

    Ishai, Alumit

    2007-02-01

    Face perception is mediated by a distributed neural system in the human brain. Attention, memory and emotion modulate the neural activation evoked by faces, however the effects of gender and sexual orientation are currently unknown. To test whether subjects would respond more to their sexually-preferred faces, we scanned 40 hetero- and homosexual men and women whilst they assessed facial attractiveness. Behaviorally, regardless of their gender and sexual orientation, all subjects similarly rated the attractiveness of both male and female faces. Consistent with our hypothesis, a three-way interaction between stimulus gender, beauty and the sexual preference of the subject was found in the medial orbitofrontal cortex (OFC). In heterosexual women and homosexual men, attractive male faces elicited stronger activation than attractive female faces, whereas in heterosexual men and homosexual women, attractive female faces evoked stronger activation than attractive male faces. These findings suggest that the OFC represents the value of salient sexually-relevant faces, irrespective of their reproductive fitness.

  18. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.

  19. Functioning of Circuits Connecting Thalamus and Cortex.

    Science.gov (United States)

    Sherman, S Murray

    2017-03-16

    Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver, which carries the main information between cells, and modulator, which modifies how driver inputs function. Identifying driver inputs helps to reveal functional computational circuits, and one set of such circuits identified by this approach are cortico-thalamo-cortical (or transthalamic corticocortical) circuits. This, in turn, leads to the conclusion that there are two types of thalamic relay: first order nuclei (such as the lateral geniculate nucleus) that relay driver input from a subcortical source (i.e., retina), and higher order nuclei (such as the pulvinar) which are involved in these transthalamic pathways by relaying driver input from layer 5 of one cortical area to another. This thalamic division is also seen in other sensory pathways and beyond these so that most of thalamus by volume consists of higher-order relays. Many, and perhaps all, direct driver connections between cortical areas are paralleled by an indirect cortico-thalamo-cortical (transthalamic) driver route involving higher order thalamic relays. Such thalamic relays represent a heretofore unappreciated role in cortical functioning, and this assessment challenges and extends conventional views regarding both the role of thalamus and mechanisms of corticocortical communication. Finally, many and perhaps the vast majority of driver inputs relayed through thalamus arrive via branching axons, with extrathalamic targets often being subcortical motor centers. This raises the possibility that inputs relayed by thalamus to cortex also serve as efference copies, and this may represent an important feature of information relayed up the cortical hierarchy via transthalamic circuits. © 2017 American Physiological Society. Compr Physiol 7:713-739, 2017.

  20. FLUXNET2015 Dataset: Batteries included

    Science.gov (United States)

    Pastorello, G.; Papale, D.; Agarwal, D.; Trotta, C.; Chu, H.; Canfora, E.; Torn, M. S.; Baldocchi, D. D.

    2016-12-01

    The synthesis datasets have become one of the signature products of the FLUXNET global network. They are composed from contributions of individual site teams to regional networks, being then compiled into uniform data products - now used in a wide variety of research efforts: from plant-scale microbiology to global-scale climate change. The FLUXNET Marconi Dataset in 2000 was the first in the series, followed by the FLUXNET LaThuile Dataset in 2007, with significant additions of data products and coverage, solidifying the adoption of the datasets as a research tool. The FLUXNET2015 Dataset counts with another round of substantial improvements, including extended quality control processes and checks, use of downscaled reanalysis data for filling long gaps in micrometeorological variables, multiple methods for USTAR threshold estimation and flux partitioning, and uncertainty estimates - all of which accompanied by auxiliary flags. This "batteries included" approach provides a lot of information for someone who wants to explore the data (and the processing methods) in detail. This inevitably leads to a large number of data variables. Although dealing with all these variables might seem overwhelming at first, especially to someone looking at eddy covariance data for the first time, there is method to our madness. In this work we describe the data products and variables that are part of the FLUXNET2015 Dataset, and the rationale behind the organization of the dataset, covering the simplified version (labeled SUBSET), the complete version (labeled FULLSET), and the auxiliary products in the dataset.

  1. Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Kennerley, Steven W

    2011-12-01

    Damage to the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) impairs decision making, but the underlying value computations that cause such impairments remain unclear. Both the OFC and ACC encode a wide variety of signals correlated with decision making. The current challenge is to determine how these two different areas support decision-making processes. Here, we review a series of experiments that have helped define these roles. A special population of neurons in the ACC, but not the OFC, multiplex value information across decision parameters using a unified encoding scheme, and encode reward prediction errors. In contrast, neurons in the OFC, but not the ACC, encode the value of a choice relative to the recent history of choice values. Together, these results suggest complementary valuation processes: OFC neurons dynamically evaluate current choices relative to the value contexts recently experienced, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters.

  2. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    Science.gov (United States)

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion.

  3. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    Science.gov (United States)

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  4. Families classification including multiopposition asteroids

    Science.gov (United States)

    Milani, Andrea; Spoto, Federica; Knežević, Zoran; Novaković, Bojan; Tsirvoulis, Georgios

    2016-01-01

    In this paper we present the results of our new classification of asteroid families, upgraded by using catalog with > 500,000 asteroids. We discuss the outcome of the most recent update of the family list and of their membership. We found enough evidence to perform 9 mergers of the previously independent families. By introducing an improved method of estimation of the expected family growth in the less populous regions (e.g. at high inclination) we were able to reliably decide on rejection of one tiny group as a probable statistical fluke. Thus we reduced our current list to 115 families. We also present newly determined ages for 6 families, including complex 135 and 221, improving also our understanding of the dynamical vs. collisional families relationship. We conclude with some recommendations for the future work and for the family name problem.

  5. File list: Pol.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  6. File list: Pol.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  7. File list: Pol.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  8. Live imaging of mitosis in the developing mouse embryonic cortex.

    Science.gov (United States)

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  9. Chronic exposure to light reverses the effect of maternal separation on proteins in the prefrontal cortex.

    Science.gov (United States)

    Dimatelis, J J; Stein, D J; Russell, V A

    2013-11-01

    Animals subjected to maternal separation display behavioural and endocrine disturbances, as well as structural and functional changes in the prefrontal cortex and limbic areas. The aim of the present study was to determine the effect of maternal separation and treatment with either chronic constant light exposure or anti-depressant (escitalopram) on proteins in the prefrontal cortex. Four experimental groups of male Sprague-Dawley rats were subjected to (1) normal rearing, (2) maternal separation (3 h per day from postnatal day 2 (P2) to P14), (3) maternal separation followed by chronic light exposure (P42-P63) or (4) maternal separation followed by treatment with the anti-depressant drug, escitalopram (P68-P100). Groups 1-3 were treated with saline as vehicle control for the escitalopram-treated group. At P101, all rats were decapitated, and the prefrontal cortex was collected and stored at -80 °C. Tissue from three rats per group was pooled and proteins determined by isobaric tagging for relative and absolute quantification using matrix-assisted laser desorption/ionisation tandem mass spectrometry. Maternal separation led to disruptions in the prefrontal cortex that included hypometabolism by decreasing energy-related proteins (creatine kinase B, aconitate hydratase), decreased cell signalling (synapsin I, calmodulin, 14-3-3 protein epsilon) and impaired plasticity (spectrin, microtubule-associated protein). Maternal separation also increased dihydropyrimidinase-related protein/collapsin response mediator protein (CRMP) and myelin proteolipid protein. Exposure of maternally separated animals to constant light during adolescence reversed the hypometabolic state by increasing energy-related proteins in the prefrontal cortex and increasing cell signalling and cytoskeletal proteins and decreasing the expression of CRMP. Escitalopram had similar effects to light by increasing ATP synthase in maternally separated rats and dissimilar effects by increasing 2',3'-cyclic

  10. Febrile seizure, but not hyperthermia alone, induces the expression of heme oxygenase-1 in rat cortex

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Febrile seizure (FS) is the most common seizure disorders. Approximately one third of children with a febrile seizure have recurrent events. The mechanism of FS remains unclear. Heme oxygenase-1 (HO-1) is a member of the heat shock proteins family and can be induced in the brain by various stresses, including hyperthemia and seizure. This study aimed at investigating the changes of HO-1 in the cortex of rats after recurrent FS.Methods FS in rats was induced ten times, once every 2 days. In a bath of warm water, developing rats were randomly divided into two groups: control group (n=16) and warm water-treated group (n=50). The latter group was subdivided into hyperthermia group (n=19) and FS group (n=23). The expression and content of HO-1 mRNA in cortex were observed using in situ hybridization and quantitative reverse transcription-polymerase chain reaction (RT-PCR). The content of HO-1 protein in cortex was measured using Western blotting. Results HO-1 mRNA expression of cortex neurons in FS group was markedly increased in comparison with those in hyperthermia and control groups (P=0.00), however, there was no statistic difference between hyperthermia group and control group (P=0.16). The relative amount of HO-1 mRNA in cortex in FS group was increased by 53.13% and 96% in comparison with those in hyperthermia group and control group respectively (P=0.00), but there was no obvious difference between the later two groups (P=0.051). Western blotting analysis showed that the HO-1 protein content in cortex in FS group was increased by 198% and 246% in comparison with those in hyperthermia group and control group respectively (P=0.00). There was no obvious difference in HO-1 protein content between the later two groups ( P=0.09).Conclusions Recurrent FS in rats can cause the increase of HO-1 mRNA and protein in cortex which may be involved in the mechanism of FS. The short-time recurrent hyperthermia can not induce the increase of HO-1 mRNA and protein.

  11. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-12-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging.Methods: We examined 75 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence, and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index.Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann’s Area 34, partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i serum lutein and temporal cortex structure, (ii serum lutein and crystallized intelligence, and (iii parahippocampal cortex structure

  12. Including Magnetostriction in Micromagnetic Models

    Science.gov (United States)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  13. Prefrontal cortex and drug abuse vulnerability: translation to prevention and treatment interventions.

    Science.gov (United States)

    Perry, Jennifer L; Joseph, Jane E; Jiang, Yang; Zimmerman, Rick S; Kelly, Thomas H; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P; Bardo, Michael T

    2011-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and humans. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals.

  14. Underconnectivity between voice-selective cortex and reward circuitry in children with autism.

    Science.gov (United States)

    Abrams, Daniel A; Lynch, Charles J; Cheng, Katherine M; Phillips, Jennifer; Supekar, Kaustubh; Ryali, Srikanth; Uddin, Lucina Q; Menon, Vinod

    2013-07-16

    Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.

  15. Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Sommeijer

    Full Text Available BACKGROUND: Inhibitory innervation by parvalbumin (PV expressing interneurons has been implicated in the onset of the sensitive period of visual plasticity. Immunohistochemical analysis of the development and plasticity of these inhibitory inputs is difficult because PV expression is low in young animals and strongly influenced by neuronal activity. Moreover, the synaptic boutons that PV neurons form onto each other cannot be distinguished from the innervated cell bodies by immunostaining for this protein because it is present throughout the cells. These problems call for the availability of a synaptic, activity-independent marker for PV+ inhibitory boutons that is expressed before sensitive period onset. We investigated whether synaptotagmin-2 (Syt2 fulfills these properties in the visual cortex. Syt2 is a synaptic vesicle protein involved in fast Ca(2+ dependent neurotransmitter release. Its mRNA expression follows a pattern similar to that of PV throughout the brain and is present in 30-40% of hippocampal PV expressing basket cells. Up to now, no quantitative analyses of Syt2 expression in the visual cortex have been carried out. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemistry to analyze colocalization of Syt2 with multiple interneuron markers including vesicular GABA transporter VGAT, calbindin, calretinin, somatostatin and PV in the primary visual cortex of mice during development and after dark-rearing. CONCLUSIONS/SIGNIFICANCE: We show that in the adult visual cortex Syt2 is only found in inhibitory, VGAT positive boutons. Practically all Syt2 positive boutons also contain PV and vice versa. During development, Syt2 expression can be detected in synaptic boutons prior to PV and in contrast to PV expression, Syt2 is not down-regulated by dark-rearing. These properties of Syt2 make it an excellent marker for analyzing the development and plasticity of perisomatic inhibitory innervations onto both excitatory and inhibitory

  16. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  17. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer's disease.

    Science.gov (United States)

    Saiz-Sanchez, Daniel; De la Rosa-Prieto, Carlos; Ubeda-Banon, Isabel; Martinez-Marcos, Alino

    2015-07-01

    Impaired olfaction has been described as an early symptom of Alzheimer's disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer's disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 < α = 0.05) and calretinin-positive (p = 0.013 < α = 0.05) cells that colocalized with amyloid-β peptide, while the prevalence of parvalbumin-positive cells was increased (p = 0.045 < α = 0.05) in the Alzheimer's cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer's disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.

  18. Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes

    Directory of Open Access Journals (Sweden)

    Menno P. Witter

    2017-06-01

    Full Text Available The entorhinal cortex (EC is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC and medial EC (MEC might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC and postrhinal cortex, all areas that are considered to belong to the “spatial processing domain” of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation.

  19. Behavioural changes after ablation of subdivisions of the rat prefrontal cortex

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Divac, Ivan

    1993-01-01

    Neurobiologi, præfrontal cortex, exploration, betinget smagsaversion, spontan alternation, operant udslukning......Neurobiologi, præfrontal cortex, exploration, betinget smagsaversion, spontan alternation, operant udslukning...

  20. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions

    OpenAIRE

    de la Mothe, Lisa A.; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A.

    2012-01-01

    The current working model of primate auditory cortex is constructed from a number of studies of both New and Old World monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organiza...

  1. Rapid Modulation of Distributed Brain Activity by Transcranial Magnetic Stimulation of Human Motor Cortex

    OpenAIRE

    Lucy Lee; Hartwig Siebner; Sven Bestmann

    2006-01-01

    This paper reviews the effects of single and repetitive transcranial magnetic stimuli (rTMS) delivered to one cortical area and measured across distributed brain regions using electrophysiological measures (e.g. motor thresholds, motor evoked potentials, paired-pulse stimulation), functional neuroimaging (including EEG, PET and fMRI) and behavioural measures. Discussion is restricted to changes in excitability in the primary motor cortex and behaviour during motor tasks following transcranial...

  2. The auditory representation of speech sounds in human motor cortex

    Science.gov (United States)

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  3. Visual field map clusters in human frontoparietal cortex.

    Science.gov (United States)

    Mackey, Wayne E; Winawer, Jonathan; Curtis, Clayton E

    2017-06-19

    The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher-order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field modeling, we map and characterize the topographic organization of several regions in human frontoparietal cortex. We discover representations of both polar angle and eccentricity that are organized into clusters, similar to visual cortex, where multiple gradients of polar angle of the contralateral visual field share a confluent fovea. This is striking because neural activity in frontoparietal cortex is believed to reflect higher-order cognitive functions rather than external sensory processing. Perhaps the spatial topography in frontoparietal cortex parallels the retinotopic organization of sensory cortex to enable an efficient interface between perception and higher-order cognitive processes. Critically, these visual maps constitute well-defined anatomical units that future studies of frontoparietal cortex can reliably target.

  4. The spatiotopic 'visual' cortex of the blind

    Science.gov (United States)

    Likova, Lora

    2012-03-01

    Visual cortex activity in the blind has been shown in sensory tasks. Can it be activated in memory tasks? If so, are inherent features of its organization meaningfully employed? Our recent results in short-term blindfolded subjects imply that human primary visual cortex (V1) may operate as a modality-independent 'sketchpad' for working memory (Likova, 2010a). Interestingly, the spread of the V1 activation approximately corresponded to the spatial extent of the images in terms of their angle of projection to the subject. We now raise the questions of whether under long-term visual deprivation V1 is also employed in non-visual memory task, in particular in congenitally blind individuals, who have never had visual stimulation to guide the development of the visual area organization, and whether such spatial organization is still valid for the same paradigm that was used in blindfolded individuals. The outcome has implications for an emerging reconceptualization of the principles of brain architecture and its reorganization under sensory deprivation. Methods: We used a novel fMRI drawing paradigm in congenitally and late-onset blind, compared with sighted and blindfolded subjects in three conditions of 20s duration, separated by 20s rest-intervals, (i) Tactile Exploration: raised-line images explored and memorized; (ii) Tactile Memory Drawing: drawing the explored image from memory; (iii) Scribble: mindless drawing movements with no memory component. Results and Conclusions: V1 was strongly activated for Tactile Memory Drawing and Tactile Exploration in these totally blind subjects. Remarkably, after training, even in the memory task, the mapping of V1 activation largely corresponded to the angular projection of the tactile stimuli relative to the ego-center (i.e., the effective visual angle at the head); beyond this projective boundary, peripheral V1 signals were dramatically reduced or even suppressed. The matching extent of the activation in the congenitally blind

  5. The Functioning of a Cortex without Layers

    Directory of Open Access Journals (Sweden)

    Julien Guy

    2017-07-01

    Full Text Available A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, “molecular lesion”-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward

  6. Hydrolysis of cortex peptidoglycan during bacterial spore germination.

    Science.gov (United States)

    Makino, Shio; Moriyama, Ryuichi

    2002-06-01

    Despite the most extreme dormancy and resistance properties among living systems, bacterial endospores retain an alert sensory mechanism to respond to the germinants and initiate germination. Although the molecular mechanism of the germination process is not completely described, current progress in the studies on the enzymes involved in the process gave us a somewhat clearer picture of the process of spore peptidoglycan (cortex) hydrolysis, a major biochemical event in germination. Germination-specific cortex-lytic enzymes require muramic acid d-lactam in their substrates. At least two types of enzymes are involved in the germination process: a spore cortex-lytic enzyme (SCLE) and a cortical fragment-lytic enzyme (CFLE). Except for their peptidoglycan-binding regions, the primary structures of SCLE and CFLE vary according species. Both enzymes differ in their hydrolytic bond-specificities and recognition of the substrates morphology. SCLE appears to initiate germination by uncrosslinking the intract cortex, and the CFLE further degrades the polysaccharide moiety of the SCLE-modified cortex. In vivo CFLE activity is likely regulated by its requirement for partially un-crosslinked cortex, while SCLE requires activation process. Clostridium perfringens SCLE is activated by a germination-specific serine protease during germination, but the activation mechanism of SCLE in Bacillus species is unknown. Cortex-lytic enzymes are expressed at the early stage of sporulation but the compartment of expression depends on proteins. However, all enzymes are located outside the cortex layer in dormant spores, suggesting that the hydrolysis process initiates at the exterior side of the cortex. The assembly of the germination apparatus is also discussed.

  7. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A; Semeralul, Mawahib O; Chen, Robert; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-02-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  8. Is the prefrontal cortex necessary for establishing cognitive sets?

    DEFF Research Database (Denmark)

    Rowe, James B; Sakai, Katsuyuki; Lund, Torben E;

    2007-01-01

    There is evidence from neuroimaging that the prefrontal cortex may be involved in establishing task set activity in advance of presentation of the task itself. To find out whether it plays an essential role, we examined patients with unilateral lesions of the rostral prefrontal cortex. They were...... regions, as evidenced by reduced correlations between them during instruction delays. The results suggest that the left rostral prefrontal cortex is indeed required for establishing a cognitive set but that the essential function is to support the functional connectivity among the task-related regions....

  9. 术语解惑 ARM Cortex A9

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Cortex A9是ARM公司最新的核心架构,相比前辈Cortex A8。Cortex A9的最大优势在于它引入了多核心架构,Cortex—A9的微体系结构既可用于可伸缩的多核处理器(Cortex—A9 MPcore多核处理器),也可用于更传统的处理器(Cortex—A9单核处理器)。

  10. Motor cortex changes in spinal cord injury: a TMS study.

    Science.gov (United States)

    Saturno, Eleonora; Bonato, Claudio; Miniussi, Carlo; Lazzaro, Vincenzodi; Callea, Leonardo

    2008-12-01

    Using paired pulse transcranial magnetic stimulation (TMS) paradigms, we studied cortical excitability in a patient with spinal cord lesion. During posterior tibial nerve stimulation, the contextual flexion of hand fingers contralateral to the stimulated lower limb had suggested a change in motor cortex excitability. Results showed a decrease in the activity of motor cortex inhibitory circuits. This could suggest that in spinal cord injury, just as in stroke and peripheral deafferentation, a disinhibition of latent synapses within the motor cortex and the rewriting of a new motor map can occur.

  11. Cytoarchitecture of mouse and rat cingulate cortex with human homologies.

    Science.gov (United States)

    Vogt, Brent A; Paxinos, George

    2014-01-01

    A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases.

  12. Neural field theory of plasticity in the cerebral cortex.

    Science.gov (United States)

    Fung, P K; Haber, A L; Robinson, P A

    2013-02-07

    A generalized timing-dependent plasticity rule is incorporated into a recent neural field theory to explore synaptic plasticity in the cerebral cortex, with both excitatory and inhibitory populations included. Analysis in the time and frequency domains reveals that cortical network behavior gives rise to a saddle-node bifurcation and resonant frequencies, including a gamma-band resonance. These system resonances constrain cortical synaptic dynamics and divide it into four classes, which depend on the type of synaptic plasticity window. Depending on the dynamical class, synaptic strengths can either have a stable fixed point, or can diverge in the absence of a separate saturation mechanism. Parameter exploration shows that time-asymmetric plasticity windows, which are signatures of spike-timing dependent plasticity, enable the richest variety of synaptic dynamics to occur. In particular, we predict a zone in parameter space which may allow brains to attain the marginal stability phenomena observed experimentally, although additional regulatory mechanisms may be required to maintain these parameters.

  13. Orbitofrontal cortex abnormality and deficit schizophrenia.

    Science.gov (United States)

    Kanahara, Nobuhisa; Sekine, Yoshimoto; Haraguchi, Tadashi; Uchida, Yoshitaka; Hashimoto, Kenji; Shimizu, Eiji; Iyo, Masaomi

    2013-02-01

    Deficit syndrome, which is characterized by primary and enduring negative symptoms, is a homogeneous subtype within schizophrenia. Negative symptoms in schizophrenia are currently considered to be closely linked with frontal lobe impairment. However, the etiology in the frontal lobe of people with deficit syndrome is not fully understood. We measured regional cerebral blood flow (rCBF) with single photon emission computed tomography (SPECT) in 33 patients with deficit syndrome, 40 patients with nondeficit syndrome, and 45 healthy controls, and we compared groups using the voxel-wise method. Schizophrenia combined group, the deficit syndrome and the nondeficit syndrome presented hypoperfusion in mainly the medial and lateral prefrontal cortices. The deficit syndrome group showed a significant decrease in rCBF in the right orbitofrontal cortex (OFC) compared to the nondeficit group. These results demonstrated that at-rest hypofrontality was a common feature within the disease group and suggested that the OFC might play an important role in the development of severe negative symptoms in people with deficit syndrome.

  14. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  15. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  16. The Insular Cortex and Takotsubo Cardiomyopathy.

    Science.gov (United States)

    Nagai, Michiaki; Dote, Keigo; Kato, Masaya; Sasaki, Shota; Oda, Noboru; Kagawa, Eisuke; Nakano, Yoshinori; Yamane, Aya; Higashihara, Tasuku; Miyauchi, Shunsuke; Tsuchiya, Akane; Harada, Wakako; Kario, Kazuomi

    2017-01-01

    Transient left ventricular dysfunction in patients under emotional stress, also known as Takotsubo cardiomyopathy, has been recognized as a distinct clinical entity. Recent studies have supported the concept notion that the cardiovascular system is regulated by cortical modulation. A network consisting of the insular cortex (Ic), anterior cingulate gyrus, and amygdala plays a crucial role in the regulation of the central autonomic nervous system in relation to emotional stress such as anxiety, fear and sadness. Because the Ic is located in the region of the middle cerebral arteries, its structure tends to be exposed to a higher risk of cerebrovascular disease. Ic damage has been associated with myocardial injury, increased brain natriuretic peptide, and the incidence of Takotsubo cardiomyopathy. Because Ic damage has been associated with increased sympathetic nervous system activity, Ic damage is suggested to have a pivotal role in the pathophysiology of Takotsubo cardiomyopathy. In this review, we focus on the role of the Ic as a mediator for the cardiovascular system in relation to emotional stress, and we summarizes the current knowledge on the relationships between the Ic and Takotsubo cardiomyopathy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Qiu-Ju Jiang

    2016-01-01

    Full Text Available Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM; however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component was prepared, which completely inhibits high K+- and acetylcholine- (ACH- induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  18. Microarray analysis of the developing cortex.

    Science.gov (United States)

    Semeralul, Mawahib O; Boutros, Paul C; Likhodi, Olga; Okey, Allan B; Van Tol, Hubert H M; Wong, Albert H C

    2006-12-01

    Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during postnatal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known postnatal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between postnatal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid/transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).

  19. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  20. What We Know and Do Not Know about the Functions of the Orbitofrontal Cortex after 20 Years of Cross-Species Studies

    OpenAIRE

    Murray, Elisabeth A.; O'Doherty, John P.; Schoenbaum, Geoffrey

    2007-01-01

    When Pat Goldman-Rakic described the circuitry and function of primate prefrontal cortex in her influential 1987 monograph (Goldman-Rakic, 1987), she included only a few short paragraphs on the orbitofrontal cortex (OFC). That year, there were only nine papers published containing the term “orbitofrontal,” an average of less than one paper per month. Twenty years later, this rate has increased to 32 papers per month. This explosive growth is partly attributable to the remarkable similarities ...

  1. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Science.gov (United States)

    Cui, Yihui; Jin, Jing; Zhang, Xuliang; Xu, Hao; Yang, Liguo; Du, Dan; Zeng, Qingwen; Tsien, Joe Z; Yu, Huiting; Cao, Xiaohua

    2011-01-01

    Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  2. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations.

    Science.gov (United States)

    Khundakar, Ahmad A; Hanson, Peter S; Erskine, Daniel; Lax, Nichola Z; Roscamp, Joseph; Karyka, Evangelia; Tsefou, Eliona; Singh, Preeti; Cockell, Simon J; Gribben, Andrew; Ramsay, Lynne; Blain, Peter G; Mosimann, Urs P; Lett, Deborah J; Elstner, Matthias; Turnbull, Douglass M; Xiang, Charles C; Brownstein, Michael J; O'Brien, John T; Taylor, John-Paul; Attems, Johannes; Thomas, Alan J; McKeith, Ian G; Morris, Christopher M

    2016-06-30

    Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial.

  3. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Directory of Open Access Journals (Sweden)

    Yihui Cui

    Full Text Available Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP but did not alter long-term depression (LTD. The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  4. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2016-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  5. Modeling and optoelectronic realization of an artificial cortex

    Science.gov (United States)

    Pashaie, Ramin

    Cortex, the outermost layer of the cerebrum, is recognized as the most developed part of the brain. It is believed that the higher-level functionality of the brain, the operations such as perception, cognition, and learning of both static and dynamic sensory information, originates from the dynamics of the massively interconnected gray cells of cortex. Because of the compact three-dimensional architecture of this biological computational paradigm, realization of bio-inspired machines that imitate such functionalities, including all the cellular details, is prohibitively difficult even if we consider the available nano-fabrication technologies. Based on this logical deduction, instead of considering each single neuron, an intriguing conjecture is to build aggregate level models that mimic the behavior of a population of neurons with collective emergent properties. In our approach, which is presented in this dissertation, cortex is assumed to be a composition of a sequence of discernable interconnected cortical patches. Each concerned patch is a network of asymmetrically coupled complex processing elements whose dynamics contain not only fixed-point and periodic attractors but also bifurcation and chaos. Dynamics of the complex processing elements, in this dissertation, is mathematically modeled by a slight modification of the time evolution of netlets adapted from computational neuroscience. Regarding this modification, the dynamics of a netlet is approximated by that of a quadratic return map. Studying the previous experimental observations demonstrates that a smart way of coupling such processing units is to couple them through their bifurcation parameters. Putting all pieces of this puzzle together, we model each cortical patch by a network of parametrically coupled quadratic return maps. Our simulations prove the ability of this network to emulate many salient features of cortical information processing, such as clustering, classification, generation of sparse

  6. Melatonin reduces traumatic brain injur y-induced oxidative stress in the cerebral cortex and blood of rats

    Institute of Scientific and Technical Information of China (English)

    Nilgnenol; Mustafa Nazrolu

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We in-vestigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vita-min E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain inju-ry-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.

  7. Orbitofrontal cortex, decision-making and drug addiction.

    Science.gov (United States)

    Schoenbaum, Geoffrey; Roesch, Matthew R; Stalnaker, Thomas A

    2006-02-01

    The orbitofrontal cortex, as a part of prefrontal cortex, is implicated in executive function. However, within this broad region, the orbitofrontal cortex is distinguished by its unique pattern of connections with crucial subcortical associative learning nodes, such as basolateral amygdala and nucleus accumbens. By virtue of these connections, the orbitofrontal cortex is uniquely positioned to use associative information to project into the future, and to use the value of perceived or expected outcomes to guide decisions. This review will discuss recent evidence that supports this proposal and will examine evidence that loss of this signal, as the result of drug-induced changes in these brain circuits, might account for the maladaptive decision-making that characterizes drug addiction.

  8. Experience-dependent spatial expectations in mouse visual cortex

    DEFF Research Database (Denmark)

    Fiser, Aris; Mahringer, David; Oyibo, Hassana K.

    2016-01-01

    In generative models of brain function, internal representations are used to generate predictions of sensory input, yet little is known about how internal models influence sensory processing. Here we show that, with experience in a virtual environment, the activity of neurons in layer 2/3 of mouse...... primary visual cortex (V1) becomes increasingly informative of spatial location. We found that a subset of V1 neurons exhibited responses that were predictive of the upcoming visual stimulus in a spatially dependent manner and that the omission of an expected stimulus drove strong responses in V1....... Stimulus-predictive responses also emerged in V1-projecting anterior cingulate cortex axons, suggesting that anterior cingulate cortex serves as a source of predictions of visual input to V1. These findings are consistent with the hypothesis that visual cortex forms an internal representation of the visual...

  9. Orientation pop-out processing in human visual cortex.

    Science.gov (United States)

    Bogler, Carsten; Bode, Stefan; Haynes, John-Dylan

    2013-11-01

    Visual stimuli can "pop out" if they are different to their background. There has been considerable debate as to the role of primary visual cortex (V1) versus higher visual areas (esp. V4) in pop-out processing. Here we parametrically modulated the relative orientation of stimuli and their backgrounds to investigate the neural correlates of pop-out in visual cortex while subjects were performing a demanding fixation task in a scanner. Whole brain and region of interest analyses confirmed a representation of orientation contrast in extrastriate visual cortex (V4), but not in striate visual cortex (V1). Thus, although previous studies have shown that human V1 can be involved in orientation pop-out, our findings demonstrate that there are cases where V1 is "blind" and pop-out detection is restricted to higher visual areas. Pop-out processing is presumably a distributed process across multiple visual regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Action preparation shapes processing in early visual cortex.

    Science.gov (United States)

    Gutteling, Tjerk P; Petridou, Natalia; Dumoulin, Serge O; Harvey, Ben M; Aarnoutse, Erik J; Kenemans, J Leon; Neggers, Sebastian F W

    2015-04-22

    Preparation for an action, such as grasping an object, is accompanied by an enhanced perception of the object's action-relevant features, such as orientation and size. Cortical feedback from motor planning areas to early visual areas may drive this enhanced perception. To examine whether action preparation modulates activity in early human visual cortex, subjects grasped or pointed to oriented objects while high-resolution fMRI data were acquired. Using multivoxel pattern analysis techniques, we could decode with >70% accuracy whether a grasping or pointing action was prepared from signals in visual cortex as early as V1. These signals in early visual cortex were observed even when actions were only prepared but not executed. Anterior parietal cortex, on the other hand, showed clearest modulation for actual movements. This demonstrates that preparation of actions, even without execution, modulates relevant neuronal populations in early visual areas.

  11. Recurrent circuitry dynamically shapes the activation of piriform cortex.

    Science.gov (United States)

    Franks, Kevin M; Russo, Marco J; Sosulski, Dara L; Mulligan, Abigail A; Siegelbaum, Steven A; Axel, Richard

    2011-10-06

    In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar