Sample records for premixed laminar steady

  1. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F; Grcar, Joseph F


    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  2. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)


    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  3. Soot Formation in Freely-Propagating Laminar Premixed Flames (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.


    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  4. Numerical simulation of laminar premixed combustion in a porous burner

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pinghui; CHEN Yiliang; LIU Minghou; DING Min; ZHANG Genxuan


    Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH4/air mixture in a porous medium is numerically simulated with a laminar combustion model. Radiative heat transfer in solids and convective heat transfer between the gas and the solid is especially studied. A smaller detailed reaction mechanism is also used and the results can show good prediction for many combustion phenomena.

  5. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg


    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  6. Finite amplitude wave interaction with premixed laminar flames (United States)

    Aslani, Mohamad; Regele, Jonathan D.


    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  7. Steady laminar flow of fractal fluids (United States)

    Balankin, Alexander S.; Mena, Baltasar; Susarrey, Orlando; Samayoa, Didier


    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived.

  8. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)


    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  9. Flamelet mathematical models for non-premixed laminar combustion

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222 Terrassa, Barcelona (Spain); Coelho, P.J. [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)


    Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive (Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive (Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models. (author)

  10. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)


    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  11. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.


    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  12. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  13. Effect of Inhibitors on Biogas Laminar Burning Velocity and Flammability Limits in Spark Ignited Premix Combustion

    Directory of Open Access Journals (Sweden)

    Willyanto Anggono


    Full Text Available Biogas is the natural byproduct of the decomposition of vegetation or animal manure, of which there are almost in exhaustable supplies in the world, and which does not contribute CO2 or other greenhouse gases to global warming or climate change. Biogas contains 66.4% flammable gas (CH4 and 33.6% inhibitors (CO2 and N2. This study focuses on the effects of inhibitors on biogas laminar burning velocity and flammability limits in spark ignited premix combustion. Spherically expanding laminar premixed flames, freely propagating from spark ignition sources in initially quiescent biogas–air mixtures, are continuously recorded by a high-speed digital camera. Initially, all the experiments in this paper were performed using inhibitorless biogas (biogas without inhibitors at room temperature, at reduced pressure (0.5 atm and at various equivalence ratios (ϕ from the lower flammable limit to the upper flammable limit. The results are compared with those from biogas (containing inhibitors flames at reduced pressure, inhibitorless biogas flames at atmospheric pressure (1 atm, and biogas flames at atmospheric pressure to emphasize the effect of inhibitors on biogas laminar burning velocity and flammability limits. Compared to an inhibitorless biogas-air mixtures, in the biogas-air mixtures, the presence of inhibitors cause a reduction in the laminar burning velocity and the flammable limits become narrower.

  14. Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

    Institute of Scientific and Technical Information of China (English)

    陈珊珊; 蒋勇; 邱榕; 安江涛


    A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.

  15. Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN XianFeng; SUN JinHua; LIU Yi; LIU XuanYa; CHEN SiNing; LU ShouXiang


    In order to explore the flame structure and propagation behavior of premixed propane/air in the transition from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record the photograph of flame propagation process in a semi-vented pipe. Meanwhile, the super-thin thermocouple and ionization current probe methods were applied to detect the temperature distribution and reaction intensity of combustion reaction. The characteristics of propane/air flame propagation and microstructure were analyzed in detail by the experimental results coupled with chemical reaction thermodynamics. In the test, the particular tulip flame behavior and the formation process in the laminar-turbulent transition were disclosed clearly. From the Schlieren images and iron current results, one conclusion can be drawn that the small-scale turbulent combustion also appeared in laminar flame, which made little influence on the flame shape, but increased the flame thickness obviously.

  16. Transport Algorithms for Premixed, Laminar Steady State Flames (United States)


    II i/) 11 * • Orwell O ii 1- UJ •— >D ■C => O U. 1- >- •—i O O 1 1 UJ UJ a. t— 1 1 UJ UJ 3 o 5 » •—< p UJ UJ o o u * o • t...2 AFRPL (DYSC) ATTN: D. George J.N. Levine Edwards AFB, CA 93523 2 National Bureau of Standards ATTN: J. Hastie T. Kashiwagi Washington, DC

  17. Study of low-pressure premixed laminar n-heptane+ propane/oxygen/nitrogen flames

    Institute of Scientific and Technical Information of China (English)

    YU Wu; WEI LiXia; MA ZhiHao; HUANG ZuoHua; YUAN Tao; TIAN ZhenYu; LI YuYang


    Low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames were investigated with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spectrometry. Three flames with different mass percentage of propane in the fuel blends of 0%, 10%, and 20% were studied. The combustion intermediates were identified by comparing the measured IEs with those values in literatures. Mole fraction profiles of the main species were compared among the three flames. The experimental results provide detailed data in understanding the combustion of n-heptane and n-heptane/propane blends in engine. They are also helpful in establishing and verifying the kinetic models.

  18. Exploring Soot Particle Concentration and Emissivity by Transient Thermocouples Measurements in Laminar Partially Premixed Coflow Flames

    Directory of Open Access Journals (Sweden)

    Gianluigi De Falco


    Full Text Available Soot formation in combustion represents a complex phenomenon that strongly depends on several factors such as pressure, temperature, fuel chemical composition, and the extent of premixing. The effect of partial premixing on soot formation is of relevance also for real combustion devices and still needs to be fully understood. An improved version of the thermophoretic particle densitometry (TPD method has been used in this work with the aim to obtain both quantitative and qualitative information of soot particles generated in a set of laminar partially-premixed coflow flames characterized by different equivalence ratios. To this aim, the transient thermocouple temperature response has been analyzed to infer particle concentration and emissivity. A variety of thermal emissivity values have been measured for flame-formed carbonaceous particles, ranging from 0.4 to 0.5 for the early nucleated soot particles up to the value of 0.95, representing the typical value commonly attributed to mature soot particles, indicating that the correct determination of the thermal emissivity is necessary to accurately evaluate the particle volume fraction. This is particularly true at the early stage of the soot formation, when particle concentration measurement is indeed particularly challenging as in the central region of the diffusion flames. With increasing premixing, an initial increase of particles is detected both in the maximum radial soot volume fraction region and in the central region of the flame, while the further addition of primary air determines the particle volume fraction drop. Finally, a modeling analysis based on a sectional approach has been performed to corroborate the experimental findings.

  19. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.


    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  20. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat


    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  1. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, M., E-mail: [LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau (France); Schuller, T. [CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C), Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Sipp, D. [ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon (France); Schmid, P. J. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)


    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  2. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G (United States)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)


    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  3. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh


    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  4. Rich methane premixed laminar flames doped by light unsaturated hydrocarbons - Part I : allene and propyne

    CERN Document Server

    Gueniche, Hadj-Ali; Dayma, Guillaume; Fournet, Ren{é}; Battin-Leclerc, Fr{é}d{é}rique


    The structure of three laminar premixed rich flames has been investigated: a pure methane flame and two methane flames doped by allene and propyne, respectively. The gases of the three flames contain 20.9% (molar) of methane and 33.4% of oxygen, corresponding to an equivalence ratio of 1.25 for the pure methane flame. In both doped flames, 2.49% of C3H4 was added, corresponding to a ratio C3H4/CH4 of 12% and an equivalence ratio of 1.55. The three flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz microprobe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, propane, 1,2-butadiene, 1,3-butadiene, 1-butene, isobutene, 1-butyne, vinylacetylene, and benzene. The temperature was measured using a PtRh (6%)-PtRh (30%) thermocou...

  5. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.


    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  6. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F


    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  7. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.


    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  8. Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation

    CERN Document Server

    Borot, Gaëtan; Joulin, Guy


    Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the so-called O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.


    Institute of Scientific and Technical Information of China (English)

    Jinling Li; Suyuan Yu


    A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh's theory and Mie's scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.

  10. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T


    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  11. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.


    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  12. Laminar premixed methane/air flame extinction characteristics influenced by co-flow water mists

    Institute of Scientific and Technical Information of China (English)

    LIU XuanYa; LU ShouXiang; ZHU YingChun; LIU Yi


    Based on the tubular burner, the burning velocities, flame stretch and inhibition rules influenced by co-flow water mists were studied using a high-speed schlieren system. Moreover, the variation rules of the flame critical extinction in our burner equipment were also obtained by analyzing the process and mechanism of flame extinction and inhibition. It is shown that the flame stretch is related to the fuel concentration, co-flow fluxes and water mist diameters. For droplets with a larger diameter, the smaller the co-flow fluxes, the more obvious the flame stretch. When the water mist loading rate is rather smaller, for fuel-rich premixed flame with Le>1, the flame with larger burning rate tends to backfire more easily. Under the same water mist conditions, for fuel-lean premixed flame with Le<1, the smaller the gas concentration, the easier the flame is extinct.

  13. Factors influencing flow steadiness in laminar boundary layer shock interactions (United States)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.


    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  14. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)


    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  15. The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures (United States)

    Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.


    Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.

  16. An experimental investigation of the interaction between a Karman vortex street and a premixed laminar flame (United States)

    Namer, I.


    The interaction of a premixed C2H4-air flame with a Karman vortex street was studied. Laser Doppler anemometry was used for velocity measurements and Rayleigh scattering was used to measure total gas density. A reference hot wire was used to enable phase-locked ensemble averaging to be performed on the data. The velocity measurements for vortex shedding cylinder Reynolds numbers indicated that the vortex street and, hence, the flow field upstream of the flame is deflected by the flame. This is due to the pressure drop across the flame which is necessary to accelerate the flow behind the flame. The vortices were not observed behind the flame. The combination of dilation and increased dissipation consumed the vortices. Density statistics obtained from Rayleigh scattering measurements were compared with predictions by the Bray-Moss-Libby (B-M-L) model which neglects intermediate states. Density fluctuations were overpredicted by the B-M-L model by a small amount.

  17. An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization

    Institute of Scientific and Technical Information of China (English)

    WANG JinHua; HU ErJiang; HUANG ZuoHua; MA ZhiHao; TIAN ZhenYu; WANG Jing; LI YuYang


    Laminar premixed stoichiometric methane/hydrogen/oxygen/argon flames were investigated with tun-able synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spec-trometry techniques. The methane/hydrogen fuel blends with hydrogen volumetric fraction of 0, 20%, 40%, 60% and 80% were studied. All observed flame species, including stable intermediates and radi-cals in the flames, were detected by measuring photoionization mass spectra and photoionization effi-ciency (PIE) spectra. Mole fraction profiles of major species and intermediates were derived by scan-ning burner at some selected photon energies near ionization thresholds. The influence of hydrogen addition on mole fraction of major species and intermediates was analyzed. The results show that the major species mole fraction of CO, CO2 and CH4 decreases with the increase of hydrogen fraction. The mole fraction of intermediates measured in this experiment decreases remarkably with the increase of hydrogen fraction. This would be due to the increase of H and OH radicals by hydrogen addition and the high diffusivity and activity of H radical promoting the chemical reaction. In addition, the increase of H/C ratio with the increase of hydrogen fraction also leads to the decrease of the mole fraction of car-bon-related intermediates and contributes to the decrease of unburned and incomplete combustion products.

  18. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun


    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  19. Mathematical Theory of Laminar Combustion. 7. Cylindrical and Spherical Premixed Flames (United States)


    We first turn to the limits D + 0, ’, which had already been considered by Fendell (1969). Frozen combustion is described by the same formulas as for...found by Fendell (1972). Otherwise the above analysis has not been published before. Steady-state responses are showm in Fig. 2. They differ from those...spherico-symmnetric nonopropellant decomposition in inert and reactive environments, Combust. Sci. Tech. 1, 131-1145. Fendell , F.E:, 1972, Asymptotic

  20. The Effect of Noise on the Propagating Speed of Pre-mixed Laminar Flame Fronts

    CERN Document Server

    Liu, Hongliang


    We study the effect of thermal noise on the propagation speed of a planar flame. We show that this out of equilibrium greatly amplifies the effect of thermal noise to yield macroscopic reductions in the flame speed over what is predicted by the noise-free model. Computations show that noise slows the flame significantly. The flame is modeled using Navier Stokes equations with appropriate diffusive transport terms and chemical kinetic mechanism of hydrogen/oxygen. Thermal noise is modeled within the continuum framework using a system of stochastic partial differential equations, with transport noise from fluctuating hydrodynamics and reaction noise from a poisson model. We use a full chemical kinetics model in order to get quantitatively meaningful results. We compute steady and dynamic flames using an operator split finite volume scheme. New characteristic boundary conditions avoid non-physical boundary layers at computational boundaries. New limiters prevent stochastic terms from introducing non-physical neg...

  1. Development of high-lift laminar wing using steady active flow control (United States)

    Clayton, Patrick J.

    Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying Cμ were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

  2. Implementation variations of adiabatic steady PPDF flamelet model in turbulent H2/air non-premixed combustion simulation

    Directory of Open Access Journals (Sweden)

    Qiong Li


    Full Text Available Implementation of the adiabatic steady PPDF flamelet model involves a lot of variations including different scalar dissipation rate calculation methods and different mass diffusion models of the opposed jet flame. Four different look-up tables have been generated with the combinations of two different scalar dissipation rate calculation methods and two different mass diffusion models of the opposed jet flame. Simulation of a turbulent non-premixed H2 jet flame is used to discriminate the accuracy of different implementation methods by comparison with experimental data. It is observed that the turbulent flamelets are very close to their equilibrium states and the simulation result is not sensitive to the choice of dissipation rate calculation method. However, the choice of mass diffusion model has significant influence on the simulation result and excluding the Lewis number effect should be enforced for the opposed jet flame simulation.

  3. A study on measurement of NO concentrations in laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by LIF

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyung Hee University Graduate School, Seoul (Korea); Jin, S.H.; Kim, G.S. [Korea Institute of Industrial Technology, Chonan (Korea); Park, K.S. [Kyung Hee University, Seoul (Korea)


    In this study, quantitative nitric oxide concentration distributions are investigated in the post-flame zone of laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different equivalence ratios varying from 0.8 {approx} 1.4, and flow rate is fixed as 5 slpm. The No A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interferences from Rayleigh scattering and O{sub 2} fluorescence. NO concentration is rised when equivalence ratios increase at different vertical distances form nozzle tip. In any case, the maximum NO concentration reaches the maximum in reaction zone. (author). 11 refs., 9 figs., 1 tab.

  4. Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures

    Institute of Scientific and Technical Information of China (English)

    HU ErJiang; HUANG ZuoHua; HE JiaJia; JIN Chun; MIAO HaiYan; WANG XiBin


    The laminar burning velocities and Markstein lengths of the hydrogen-air-diluent mixtures were meas-ured at different equivalence ratios (0.4-1.5), different diluents (N2, CO2 and 15%CO2+85%N2) and di-lution ratios (0, 0.05, 0.10 and 0.15) by using the outwardly expanding flame. The influences of flame stretch rate on the flame propagation characteristics were analyzed. The results show that both the laminar burning velocities and the Markstein lengths of the hydrogen-air-diluent mixtures decrease with the increase of dilution ratio. The decrease in Markstein lengths means that adding diluents into the hydrogen-air mixtures will decrease the diffusional-thermal instability of the flame front. For a specified dilution ratio, the laminar burning velocities give their maximum values at an equivalence ratio of 1.8. The Markstein lengths increase with the increase of the equivalence ratio monotonously regardless of the diluents. The study shows that CO2 as the diluent has a greater impact on the laminar flame speed and the flame front stability than N2 as the diluent.

  5. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect

    KAUST Repository

    Kim, Minkuk


    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally by applying AC electric fields at low frequency below 60. Hz together with DC in the single electrode configuration. The blowoff velocity has been measured for varying AC voltage and frequency. A transition frequency between low and high frequency regimes has been identified near 40-50. Hz, where AC electric fields have minimal effect on flame stabilization. In the low frequency regime, the blowoff velocity decreased linearly with AC voltage such that the flames became less stable. This was consistent with the DC result, implying the influence of the ionic wind effect. The variation of blowoff velocity with AC frequency showed a non-monotonic behavior in that the velocity decreased and then increased, exhibiting minimum blowoff velocity near 6-8. Hz. Based on the molecular kinetic theory, the developing degree of ionic wind was derived. By considering the ionic wind effects arising from both positive and negative ions in a flame zone, the bi-ionic wind effect successfully explained the non-monotonic behavior of blowoff velocity with AC frequency in the low frequency regime. © 2011 The Combustion Institute.

  6. Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility

    CERN Document Server

    Sarracino, A; Puglisi, A; Vulpiani, A


    We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We show, with extensive numerical simulations, that the force-velocity relation for the tracer, in the nonlinear regime, displays complex and rich behaviors, including negative differential and absolute mobility. These effects rely upon a subtle coupling between inertia and applied force which induce the tracer to persist in particular regions of phase space with a velocity opposite to the force. The relevance of this coupling is revisited in the framework of non-equilibrium response theory, applying a generalized Einstein relation to our system. The possibility of experimental observation of these results is also discussed.

  7. 甲醇抑制层流预混火焰中碳烟生成的机理%Suppression of Soot in Laminar Premixed Flames with Methanol

    Institute of Scientific and Technical Information of China (English)

    倪培永; 王忠; 王向丽; 袁银男


    Using the method of moment, a computational study is performed on the chemical mechanism of the formation of soot particles in laminar premixed methanol/ethylene/air flames. The model involves particle inception, coagulation, condensation and heterogeneous surface growth and oxidation. This mechanism involves 101 species and 543 reactions. The simulations of volume fraction and average diameter of the soot particles and mole fraction of intermediate species import for soot formation were conducted for methanol of different mole fractions. Sensitivity analysis on formation/consumption of acetylene and benzene was made. The oxygen atom transfer path in methanol molecules in the process of fuel combustion was also disclosed. The results show that methanol can effectively reduce soot, polycyclic aromatic hydrocarbons which are the precursor of soot, and the precursors of polycyclic aromatic hydrocarbons such as acetylene and propargyl. The oxygen atoms in methanol molecules transfer among methanoyl, formaldehyde, hydroxide radical, formyl, carbon monoxide and carbon dioxide.%利用矩方法研究了层流甲醇/乙烯预混火焰中碳烟颗粒形成的化学反应动力学机理.模型考虑了颗粒的成核、颗粒间的凝结与聚合、气态组分在颗粒表面的生长与氧化过程.整个机理涉及101种组分和543个基元反应.计算了不同甲醇摩尔分数时碳烟粒子体积分数、粒子直径及重要中间组分的摩尔分数,对乙炔和苯的生成/消耗进行了敏感性分析,揭示了甲醇燃烧过程中氧原子的迁移路径.计算结果表明,甲醇能有效地减少碳烟及其前驱体多环芳香烃、多环芳香烃前驱体物质(如乙炔、炔丙基等)的生成量.燃烧过程甲醇中氧原子在甲醇基、甲醛、羟基、甲醛基、一氧化碳和二氧化碳等物质中迁移.

  8. Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Coriton, Bruno; Smooke, Mitchell D.; Gomez, Alessandro [Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286 (United States)


    The extinction of premixed CH{sub 4}/O{sub 2}/N{sub 2} flames counterflowing against a jet of combustion products in chemical equilibrium was investigated numerically using detailed chemistry and transport mechanisms. Such a problem is of relevance to combustion systems with non-homogeneous air/fuel mixtures or recirculation of the burnt gases. Contrary to similar studies that were focused on heat loss/gain, depending on the degree of non-adiabaticity of the system, the emphasis here was on the yet unexplored role of the composition of counterflowing burnt gases in the extinction of lean-to-stoichiometric premixed flames. For a given temperature of the counterflowing products of combustion, it was found that the decrease of heat release with increase in strain rate could be either monotonic or non-monotonic, depending on the equivalence ratio {phi}{sub b} of the flame feeding the hot combustion product stream. Two distinct extinction modes were observed: an abrupt one, when the hot counterflowing stream consists of either inert gas or equilibrium products of a stoichiometric premixed flame, and a smooth extinction, when there is an excess of oxidizing species in the combustion product stream. In the latter case four burning regimes can be distinguished as the strain rate is progressively increased while the heat release decreases smoothly: an adiabatic propagating flame regime, a non-adiabatic propagating flame regime, the so-called partially-extinguished flame regime, in which the location of the peak of heat release crosses the stagnation plane, and a frozen flow regime. The flame structure was analyzed in detail in the different burning regimes. Abrupt extinction was attributed to the quenching of the oxidation layer with the entire H-OH-O radical pool being comparably reduced. Under conditions of smooth extinction, the behavior is different and the concentration of the H radical decreases the most with increasing strain rate, whereas OH and O remain

  9. Experimental Study on Combustion Characteristics of Premixed Laminar Flame for Simulated Biogas%模拟沼气预混层流燃烧特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    吴怡; 暴秀超; 黄海波


    The combustion characteristics of premixed laminar flame for simulated biogas are studied in a constant volume combus-tion bomb by using high - speed schlieren photography. The components of simulated biogas contain methane and CO2, the methane content is from 70% to 75% , CO2 content is from 25% to 30% . The burning speed and combustion pressure of simulated biogas with different components are compared with pure methane. Experimental results show that the burning speed of biogas decreases compared with pure methane because CO2 restrains flame from spreading, and the combustion process extends with the increase of CO2 propor-tion.%在定容燃烧弹上采用高速纹影系统对模拟沼气预混层流火焰的燃烧特性进行研究.模拟沼气为甲烷含量70% ~ 75%和二氧化碳含量25%~ 30%的混合气.对不同成分的模拟沼气和纯甲烷的燃烧速度及燃烧压力进行了对比分析.研究结果表明,沼气中较高含量的二氧化碳对燃烧有强烈的抑制作用,使沼气的燃烧速度与纯甲烷相比有所下降,并且随着成分中二氧化碳含量的增加,整个燃烧过程延长.

  10. 甲醇对正庚烷层流预混火焰影响的实验研究%Experimental Study of the Effect of Methanol on the n-Heptane Premixed Laminar Flame

    Institute of Scientific and Technical Information of China (English)

    许汉君; 姚春德; 徐广兰; 阳向兰; 杨玖重; 王占东


    利用低压层流预混火焰结合同步辐射真空紫外光电离技术和分子束取样质谱技术,探测到并计算了甲醇摩尔掺混比为0%、11%、28%和50%的甲醇/正庚烷/氧气/氩气火焰中62种燃烧中间产物和最终产物的摩尔分数.结果发现,甲醇的加入对正庚烷的消耗速率和大分子裂解没有影响,其主要作用表现在对C1和C2小分子摩尔分数的影响.甲醇的氧化速率比正庚烷快,故用甲醇替换一部分正庚烷后,整体氧化速率加快.甲醇的加入对甲基、乙炔、乙基、乙烷、乙烯酮有抑制作用,对甲醛和乙醛有促进作用.研究结果为今后机理验证模拟提供了实验依据.%An experimental study of the low pressure premixed laminar methanol/n-heptane/oxygen/argon flame with the methanol mole fraction blend ratio of 0%, 11%, 28%, 50% was performed with the tunable synchrotron vacuum ultra-violet (VUV) photoionization and molecular-beam sampling mass spectrometry. 62 kinds of combustion intermediates and final products were detected as well as their mole fractions. The results show that the consumption rate of n-heptane and the dissociation of large molecular are not impacted by the methanol addition, the effect of methanol behaviors at the small C1 and C2 moleculars. The oxidation rate of methanol is larger than that of n-heptane, so with the methanol addition increase, the overall reaction rate increases. At the same time the equivalent concentrations of methyl, acetylene, ethyl, ethane and ketene decrease with the increase of methanol but formaldehyde and acetaldehyde increase. The experiment provides the valuable data for the validation of mechanism in the future.

  11. 2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage

    Directory of Open Access Journals (Sweden)

    M. Ozgun Korukcu


    Full Text Available Energy and exergy characteristics of a square cylinder (SC in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo and spanwise (v/Uo velocities attain the values of u/Uo = 0.840®0.879 and v/Uo = 0.236®0.386 (Re = 10®50 on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m non-dimensional temperature values (ζ from ζ = 0.387®0.926 (Re = 10®50 at xth = 0 mm to ζ = 0.002®0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0®10 mm. Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.

  12. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail:; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)


    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  13. Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame (United States)

    Lee, Chin Yik; Li, Larry Kin Bong; Juniper, Matthew P.; Cant, Robert Stewart


    Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier-Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various

  14. Inerting characteristics of entrained atomized water on premixed methane-air flame

    Institute of Scientific and Technical Information of China (English)

    Cai Feng; Wang Ping; Zhou Jiebo; Li Chao


    A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experi-mentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that:for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 mL/(m2 min);for the premixed methane–air gas with a concentration of 9%, the mini-mum inerting atomized water flux is 32.9 mL/(m2 min);for the premixed methane–air gas with a concen-tration of 11%, the minimum inerting atomized water flux is 44.6 mL/(m2 min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.

  15. Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.


    The present work addresses the coupling of a flamelet database, to a low-Mach approximation of the Navier–Stokes equations using scalar controlling variables. The model is characterized by the chemistry tabulation based on laminar premixed flamelets in combination with an optimal choice of the react

  16. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar


    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  17. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei


    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  18. Characteristics of premixed, laminar CO/N2O flames

    NARCIS (Netherlands)

    Kalff, P.J.; Alkemade, C.T.J.


    Several properties are studied of fuel-rich (CO:N2O = 1.5:1) and stoichiometrie (CO:N2O = 1:1) carbon monoxide/nitrous oxide flames with varying water content up to 10%. Flame temperatures, ranging from 2680 to 2860°K. are measured with the line-reversal method, and compared with calculated adiabati

  19. Experimental study and modeling of CH{sub 4}/O{sub 2}/Ar and C{sub 2}H{sub 6}/O{sub 2}/Ar pre-mixing laminar flames; Etude experimentale et modelisation de flammes laminaires de premelange CH{sub 4}/O{sub 2}/Ar et C{sub 2}H{sub 6}/O{sub 2}/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Crunelle, B.; Desgroux, P.; Pauwels, J.F. [Lille-1 Univ., 59 - Villeneuve-d`Ascq (France). Laboratoire de Cinetique et Chimie de la Combustion URA-CNRS


    New studies are always needed to better determine the physico-chemical processes involved in the combustion of natural gas. The understanding of the reaction mechanisms that lead to the formation of nitrogen oxides or volatile organic compounds requires to identify the inner mechanisms which take place during combustion and in particular the mechanisms of formation of intermediate products. The aim of this study is to analyze the thermal degradation of methane and ethane in low pressure pre-mixed stabilized laminar flames condition, because both of these compounds represent the major part of natural gas composition. The main chemical reaction ways identified in the studied flames and responsible for combustion have been identified after a comparison between experimental results and the computerized simulation performed using an a-priori postulated chemical mechanism. This study stresses on the transfer reaction schemes between the different C1, C2 and C3 oxidation ways which play an important role in the formation of intermediate hydrocarbons. (J.S.) 13 refs.

  20. Premixed Combustion of Coconut Oil on Perforated Burner


    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi


    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  1. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    NARCIS (Netherlands)

    Mokhov, A.V.; Levinsky, H.B.


    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser- induced fluorescence (LIF) and coherent anti-Stokes Raman scattering: (CARS), respe

  2. Spectral kinetic energy transfer in turbulent premixed reacting flows. (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E


    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  3. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner


    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi


    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  4. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A


    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  5. Premixed flame propagation in vertical tubes (United States)

    Kazakov, Kirill A.


    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  6. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  7. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H (United States)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  8. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  9. Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames (United States)

    Shahbazian, Nasim

    variable on LES predictions of the PCM-FPI approach is also investigated. The improved prediction of the filtered laminar flame speed by the modified laminar flamelet PDF is shown for LES of turbulent premixed combustion in comparison with a more widely-used beta-PDF. Furthermore, the results of this study consist the first application of the CSE combustion model to LES of premixed flames. The feasibility of this approach in terms of stability and convergence is demonstrated and the possible improvements of this non-flamelet-based model over the more traditional flamelet-based approach, PCM-FPI, are assessed. The comparisons of the CSE and PCM-FPI models allow the relative importance of deviations from the standard flamelet assumption to be assessed for flames lying outside the flamelet premixed combustion regime.

  10. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan


    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  11. On the regimes of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety


    The conditions of the MAGICO-2000 experiment are extended to more broadly investigate the regimes of premixing, and the corresponding internal structures of mixing zones. With the help of the data and numerical simulations using the computer code PM-ALPHA, we can distinguish extremes of behavior dominated by inertia and thermal effects - we name these the inertia and thermal regimes, respectively. This is an important distinction that should guide future experiments aimed at code verification in this area. Interesting intermediate behaviors are also delineated and discussed. (author)

  12. Influence of rarefaction wave on premixed flame structure and propagation behavior

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianfeng; SUN Jinhua; LU Shouxiang; CHU Guanquan; YAO Liyin; LIU Yi


    To explore the influence of rarefaction wave on the structure and propagation behavior of the premixed propane/air flame in a rectangle combustion pipe, the techniques of high speed Schlieren photograph method, pressure measurement and so on are used to study the interaction processes between rarefaction wave and flame. Two cases of rarefaction wave-flame interaction were performed in the experiment. The experimental result shows that both the rarefaction waves can cause the flame transition from laminar to turbulent combustion quickly. The cowflow rarefaction wave decreases the flame speed, while the counterflow rarefaction wave leads the flame propagation speed to increasing on the whole, accompanied with sharp vibration.

  13. Casa de estructura laminar

    Directory of Open Access Journals (Sweden)

    Mac L. Johansen, John


    Full Text Available Llevando hasta sus últimos extremos la utilización de las bóvedas laminares de hormigón se ha proyectado esta casa. No se trata de una realización práctica, sino de un estudio teórico y experimental sobre las posibilidades de este tipo de estructuras.

  14. An averaging method for nonlinear laminar Ekman layers

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Lautrup, B.; Bohr, T.


    We study steady laminar Ekman boundary layers in rotating systems using,an averaging method similar to the technique of von Karman and Pohlhausen. The method allows us to explore nonlinear corrections to the standard Ekman theory even at large Rossby numbers. We consider both the standard self...

  15. Computational aspects of premixing modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.F. [Sydney Univ., NSW (Australia). Dept. of Chemical Engineering; Witt, P.J.


    In the steam explosion research field there is currently considerable effort being devoted to the modelling of premixing. Practically all models are based on the multiphase flow equations which treat the mixture as an interpenetrating continuum. Solution of these equations is non-trivial and a wide range of solution procedures are in use. This paper addresses some numerical aspects of this problem. In particular, we examine the effect of the differencing scheme for the convective terms and show that use of hybrid differencing can cause qualitatively wrong solutions in some situations. Calculations are performed for the Oxford tests, the BNL tests, a MAGICO test and to investigate various sensitivities of the solution. In addition, we show that use of a staggered grid can result in a significant error which leads to poor predictions of `melt` front motion. A correction is given which leads to excellent convergence to the analytic solution. Finally, we discuss the issues facing premixing model developers and highlight the fact that model validation is hampered more by the complexity of the process than by numerical issues. (author)

  16. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun


    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  17. Laminar streak enhancement using streamwise grooves (United States)

    Martel, Carlos; Martín, Juan Ángel


    Laminar streak promotion in a flat plate boundary layer results in an increase of the stability of the Tollmien-Schlichting waves with respect to that of the 2D Blasius profile. This stabilization delays the laminar-turbulent transition, increasing the laminar phase of the flow. The stabilization effect is stronger for higher streak amplitudes, and therefore simple ways of generating high amplitude stable streaks are sought to be used as boundary layer flow control methods. In a recent experiment [Tallamelli & Franson,AIAA 2010-4291] high amplitude stable steady streaks have been produced using Miniature Vortex Generators (MGVs), where one array of MGVs is used to excite the streak and a second array is used downstream to enhance their amplitude. In this presentation we numerically explore the possibility of enhancing the streaks using a different passive mechanism: streamwise grooves carved in the plate. We will present some numerical simulations for different values of the spanwise period of the streaks and of the grooves, and we will show the combinations that provide maximum streak amplitude.

  18. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin


    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  19. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis


    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  20. Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Poinsot, T.J.; Haworth, D.C.; Bruneaux, G. (CNRS, Toulouse (France). Inst. de Mecanique des Fluides de Toulouse General Motors Research, Warren, MI (United States) Inst. Francais du Petrole, Rueil Malmaison (France))


    The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a law-of-the-wall'' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame -- wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step. Preliminary tests of this model are presented for the case of a spark-ignited piston engine.

  1. DNS and modeling of the interaction between turbulent premixed flames and walls (United States)

    Poinsot, T. J.; Haworth, D. C.


    The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.

  2. Research on Cellular Instabilities of Lean Premixed Syngas Flames under Various Hydrogen Fractions Using a Constant Volume Vessel

    Directory of Open Access Journals (Sweden)

    Hong-Meng Li


    Full Text Available An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0 premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The results indicate that excellent agreements are obtained. The cellular instabilities of syngas-air flames were discussed and critical flame radii were measured. When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence ratio increases; however, the instability increases for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in cellular instabilities induced by the increase in equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities become more evident because the enhanced hydrodynamic instabilities become the dominant effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the increase in hydrogen fraction is the result of both increasing diffusive-thermal and hydrodynamic instabilities.

  3. Hybrid Laminar Fin Investigations (United States)


    the driving unit being an ejector . Reynolds numbers at cruise conditions a ½2 scale model has been chosen to be tested in the ONERA SI MA wind The...enabled laminar flow to be ONERA and based on advanced CFD -tools [3] the final fully demonstrated up to a Mach number of 0.6. For shape which is...for different Mach numbers. As A critical issue for the second item and therefore a part of a detailed analysis of these experimental results

  4. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem


    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

  5. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.


    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  6. Design factors for stable lean premix combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.


    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  7. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram


    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  8. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.


    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  9. Impact of chemical kinetic model reduction on premixed turbulent flame characteristics (United States)

    Fillo, Aaron; Niemeyer, Kyle


    The use of detailed chemical kinetic models for direct numerical simulations (DNS) is prohibitively expensive. Current best practice for the development of reduced models is to match laminar burning parameters such as flame speed, thickness, and ignition delay time to predictions of the detailed chemical kinetic models. Prior studies using reduced models implicitly assumed that matching the homogeneous and laminar properties of the detailed model will result in similar behavior in a turbulent environment. However, this assumption has not been tested. Fillo et al. recently demonstrated experimentally that real jet fuels with similar chemistry and laminar burning parameters exhibit different turbulent flame speeds under the same flow conditions. This result raises questions about the validity of current best practices for the development of reduced chemical kinetic models for turbulent DNS. This study will investigate the validity of current best practices. Turbulent burning parameters, including flame speed, thickness, and stretch rate, will be compared for three skeletal mechanisms of the Princeton POSF 4658 mechanism, reduced using current best practice methods. DNS calculations of premixed, high-Karlovitz flames will be compared to determine if these methods are valid. This material is based upon work supported by the National Science Foundation under Grant No. 1314109-DGE.

  10. Non - linear laminar flow of fluid into an open bottom well

    Directory of Open Access Journals (Sweden)

    S. K. JAIN


    Full Text Available In steady state condition, non - linear laminar flow of fluid into an open
    bottom well just penetrating the semi-infinite porous aquifer is considered. The
    influence of non-linear laminar flow on discharge and its dependance on related
    physical quantities is examined. It is found that an open bottom well actually
    behaves like a hemispherical well, which is an obvious practical phenomenon.

  11. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.


    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  12. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)


    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  13. Laminar Flow Analysis (United States)

    Rogers, David F.


    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  14. Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames

    DEFF Research Database (Denmark)

    Day, Marc S.; Bell, John B.; Gao, Xinfeng


    Lean premixed hydrogen flames are thermodiffusively unstable and burn in cellular structures. Within these cellular structures the flame is locally enriched by preferential diffusion of hydrogen, leading to local hotspots that burn more intensely than an idealized flat steady flame at comparable...... examination of the reaction chemistry in these unsteady flames shows that at richer conditions the predominant path taken to convert nitrogen gas to nitric oxide is via NNH. For leaner flames a path through nitrous oxide becomes increasingly important....

  15. Cubierta laminar prefabricada, Suiza

    Directory of Open Access Journals (Sweden)

    Hossdorf, Heinz


    Full Text Available The roof constructed recently near Olten, in Switzerland, consists of a series of cylindrical shell surfaces, with skylights between the successive shells. It covers an area of 13.500 m2, and the building is to be used as a storehouse and servicing installation for the Federation of Consumer Goods Society. The general nature of the design made it logical, from the outset, to construct the roof as a number of similar prefabricated units. This method had evident economic advantages. The repetition of similar cylindrical roof sections made it possible to reiterate also the particular constructive process which was adopted in this case. The prefabricated shell units have been reinforced with lateral ribs, which make them sufficiently stiff to be handled at the working site. Each unit is 25.20 m long and spans a width of 1.40 ms. The roof is made up of 18 such elements. A feature of this roof is that it has been subjected to a prestressing process, applied by cables, running along the extrados of the cylindrical surface of each unit. This improves the stability and strength of the shells, and induces favourable stresses which counteract noticeably the effects of the shear forces and bending moments. The edges of these shells have been reinforced by increasing the thickness of the ribs, thereby improving the end anchorage. In order to check the theoretical calculations for this structure, several tests were carried out on scale models.La cubierta recientemente construida en las cercanías de Olten (Suiza, de tipo laminar, especial, curvada, constituida por una serie de superficies cilíndricas sucesivas y con lucernario en las soluciones de continuidad que cada par de superficies parciales cilíndricas motiva, tiene por principal objeto cubrir una superficie de 13.500 m2 edificados con destino a los servicios y explotación de un almacén de la Federación de Sociedades de Consumo. Debido a las ideas generales básicas del proyecto se impuso, desde un

  16. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna A.


    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization of the flame in a V-shape or an M-shape geometry, over a central stainless steel rod. The plasma is produced by short pulses of 10-ns duration, 8-kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. Plasma forcing is produced by positive or negative steps of plasma. The step response of the flame is investigated through heat release rate (HRR) fluctuations, to facilitate comparisons with flame response to acoustic perturbations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera equipped with an optical filter to estimate the HRR fluctuations. First, the results show that the flame does not respond to each single plasma pulse, but is affected only by the average plasma power, confirming the step nature of the forcing. The temporal evolutions of HRR are analyzed and the flame transfer functions are determined. A forcing mechanism, as a local increase in the reactivity of the fluid close to the rod, is proposed and compared with numerical simulations. Experiments and numerical simulations are in good qualitative agreement. © 2016.

  17. Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames

    NARCIS (Netherlands)

    van Essen, V. M.; Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    Effects of pressure on NO formation in CH4/air flames at a fixed equivalence ratio of 1.3 are investigated. The axial profiles of temperature, OH, CH, and NO mole fractions are measured using laser-induced fluorescence and compared with one-dimensional flame calculations. The measured and calculated

  18. Stability of a laminar premixed supersonic free shear layer with chemical reactions (United States)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.


    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  19. NR4.00002: Response of a laminar M-shaped premixed flame to plasma forcing

    KAUST Repository

    Lacoste, Deanna A.


    We report on the response of a lean methane-air flame to non-thermal plasma forcing. The set-up consists of an axisymmetric burner, with a nozzle made of a quartz tube of 7-mm inlet diameter. The equivalence ratio is 0.9 and the flame is stabilized in an M-shape morphology over a central stainless steel rod and the quartz tube. The plasma is produced by nanosecond pulses of 10 kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. The plasma forcing is produced by bursts of plasma pulses of 1 s duration. The response of the flame is investigated through the heat release rate (HRR) fluctuations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera with an optical filter to estimate the HRR fluctuations. The results show that, even though the plasma is located in the combustion area, the flame is not responding to each single plasma pulse, but is affected by the discharge burst. The plasma forcing can then be considered as a step of forcing: the beginning of a positive step corresponding to the first plasma pulse, and the beginning of a negative step corresponding to the end of the last pulse of the burst. The effects of both positive and negative steps were investigated. The response of the flame is then analyzed and viable mechanisms are discussed.

  20. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.


    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  1. Laminar laboratory rivers (United States)

    Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François


    A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.

  2. Asymptotic Analysis of Transport Properties and Burning Velocities for Premixed Hydrocarbon Flames

    Institute of Scientific and Technical Information of China (English)

    J.Y. Law; H.K. Ma


    Based on premixed flame, the theoretical model of transport properties with temperature variation was established inside a preheated zone. Lewis number of the deficient-to-stoichiometric hydrocarbon/air mixture has been theoretically predicted over a wide range of preheated temperature. These predictions are compared with the experimental data on transport properties that exist in the literature. The response of the burning velocity to flame stretch can be parameterized by the laminar flame speed and Markstein length. Therefore, if the laminar flame speed and Markstein number could be accurately simulated by using an analytic expression of characterized temperature, equivalence ratio, and Lewis number, the results are applicable to the prediction of methane,acetylene, ethylene, ethane, and propane flames. Expanding previous studies on the extinction ofpremixed flames under the influence of stretch and incomplete reaction, the results were further classified and rescaled. Finally, it could be inferred that parameter Pq, the rescaled extinction Karlovitz number could be used to explain the degree of flame quench.

  3. Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls

    Institute of Scientific and Technical Information of China (English)


    A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.

  4. Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

    KAUST Repository

    Luca, Stefano


    A set of lifted tribrachial n-heptane flames in a laminar jet configuration are simulated. The simulations are performed using finite rate chemistry and detailed transport, and aim at investigating the propagation of tribrachial flames. Varying the inlet velocity of the fuel, different stabilization heights are obtained, and the dependence of the stabilization height in the inlet velocity is compared with experimental data. A detailed analysis of the flame geometry is performed by comparingthe flame structure to that of unstretched premixed flames. Issues related to differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front are discussed.

  5. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan


    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  6. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct

    Directory of Open Access Journals (Sweden)

    DengKe Li


    Full Text Available To study the fuel gas combustion hazards, the methane/air flame structure and flow characteristic in an open duct influenced by a rectangular obstacle were explored by experiment and realizable k-∊ model (RKE. In the test, the high-speed schlieren photography technology and dynamic detection technology were applied to record the flame propagation behavior. Meanwhile, the interaction between flame front and flame flow field induced by the obstacle was disclosed. In addition, the laminar-turbulence transition was also taken into consideration. The RKE and eddy dissipation concept (EDC premixed combustion model were applied to obtain an insight into the phenomenon of flow change and wrinkle appearing, which potently explained the experimental observations. As a result, the obstacle blocked the laminar flame propagation velocity and increased pressure a little in an open duct. Some small-scale vortices began to appear near the obstacle, mainly due to Kelvin-Helmholtz instability (KHI, and gradually grew into large-scale vortices, which led to laminar-turbulent transition directly. The vortices thickened the reaction area and hastened the reaction rate; reversely, the higher reaction rate induced larger vortices. The RKE model result fitted the test data well and explained the wrinkle forming mechanism of two special vortices in the case.

  7. Natural Laminar Flow Flight Experiment (United States)

    Steers, L. L.


    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  8. Numerical prediction of laminar flow and heat transfer in internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rustum, I.M.


    An investigation was carried out to provide a detailed analysis of laminar fluid flow and heat transfer in internally finned pipes. Three mathematical models were formulated for this purpose, and shown to be capable of simulating the actual situation of pressure drop and heat transfer in such tubes. Steady, laminar forced convection heat transfer in the thermal entrance region of internally finned tubes was investigated numerically for the case of fully developed hydrodynamics using the H1 and T thermal boundary conditions. Steady, laminar fluid flow in the hydrodynamic entrance region of internally finned tubes was investigated numerically. Results are presented for the smooth tube geometry and sixteen geometries corresponding to various combinations of relative fin heights and number of fins. Steady, laminar mixed convection in the fully developed region of horizontal internally finned tubes was investigated for the case of uniform heat input axially and uniform wall temperature circumferentially. Fluid flow and heat transfer characteristics were found to be dependent on a modified Grashof number, Prandtl number, relative fin height, and number of fins. Internal finning was found to retard the onset of significant free convective effects and to suppress the enhancement in friction factor and Nusselt number compared to smooth tubes. 54 refs., 93 figs., 12 tabs.

  9. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Wen Zeng


    Full Text Available Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions of 0.0–0.5 on the laminar burning velocities, and Markstein numbers of Hydrogen (H2/RP-3/air mixtures were investigated. The results show that the flame front surfaces of RP-3/air mixtures remain smooth throughout the entire flame propagation process at a temperature of 390 K, pressure of 0.3 MPa, equivalence ratio of 1.3 and without hydrogen addition, but when the hydrogen addition increases from 0.0 to 0.5 under the same conditions, flaws and protuberances occur at the flame surfaces. It was also found that with the increase of the equivalence ratio from 0.9 to 1.5, the laminar burning velocities of the mixtures increase at first and then decrease, and the highest laminar burning velocity was measured at an equivalence ratio of 1.2. Meanwhile, with the increase of hydrogen addition, laminar burning velocities of H2/RP-3/air mixtures increase. However, the Markstein numbers of H2/RP-3/air mixtures decrease with the increase of hydrogen addition, which means that the flames of H2/RP-3/air mixtures become unstable with the increase of hydrogen addition.

  10. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    CERN Document Server

    Gueniche, Hadj-Ali; Fournet, René; Battin-Leclerc, Frédérique


    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, cyclopropane, 1,3-butadiene, butenes, 1-butyne, vinylacetylene, diacetylene, C5 compounds, benzene, and toluene. The temperature was measured thanks to a thermocouple in PtRh (6%)-PtRh (30%) settled inside the enclosure and ranged from 900 K close to the burner up to 2100 K.

  11. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS (United States)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng


    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  12. Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles

    CERN Document Server

    Baggaley, A W


    Superfluid helium is an intimate mixture of a viscous normal fluid, with continuous vorticity, and an inviscid superfluid, where vorticity is constrained to thin, stable topological defects. One mechanism to generate turbulence in this system is through the application of a heat flux, so called thermal counterflow. Of particular interest is how turbulence in the superfluid responds to both a laminar and turbulent normal fluid in the presence of walls. We model superfluid vortex lines as reconnecting space curves with fixed circulation, and consider both laminar (Poiseuille) and turbulent normal fluid flows in a channel configuration. Using high resolution numerical simulations we show that turbulence in the normal fluid sustains a notably higher vortex line density than a laminar flow with the same mean flow rate. We exam Vinen's relation, $\\sqrt{L}=\\gamma v_{ns}$, between the steady state vortex line density $L$ and the counterflow velocity $v_{ns}$. Our results support the hypothesis that transition to turb...

  13. Premixes production for synthesis of wear-resistant composite materials (United States)

    Kontsevoi, Yu V.; Meilakh, A. G.; Shubin, A. B.; Pastukhov, E. A.; Dolmatov, A. V.; Sipatov, I. S.


    State of the art line of powder metallurgy is application of initial powders as micro-composites with additional components - premixes. Usage of premixes inhibits segregation of added components and implies the homogeneity of powder charge composition, and finally it has a significant impact on structure formation and properties of end products. The aim of the present work was to design the new production technology of premixes based on iron powder which is layer-by-layer plated by aluminium and copper. We propose to carry out production of Cu-Al-Fe premixes in two stages: cladding of iron powder by aluminium and coating of the obtained composite by copper. The self-developed technique of vibration treatment of iron and aluminium powder mixture was chosen for this purpose. The uniform in thickness and unbroken copper-plating of Fe-Al powders were carried out by chemical technique. Physico-chemical properties and production conditions of premixes-powders were studied, besides optimal parameters of production and further heat-treatment were selected. In the result of the present study the Fe-Al-Cu premixes with laminated structure comprising of iron core, Fe-Al and Cu-Al intermetallide shells were synthesised.

  14. Scaling of velocity and mixture fraction fields in laminar counterflow configurations (United States)

    Bisetti, Fabrizio; Scribano, Gianfranco


    Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.

  15. Developing laminar flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.


    As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The mos

  16. Premixer Design for High Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome


    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the

  17. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion (United States)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition

  18. Heat Flux Characterization of DC Laminar-plasma Jets Impinging on a Flat Plate at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    孟显; 潘文霞; 张文宏; 吴承康


    By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.

  19. Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers (United States)

    Lee, Donghwi; Kawai, Soshi; Nonomura, Taku; Anyoji, Masayuki; Aono, Hikaru; Oyama, Akira; Asai, Keisuke; Fujii, Kozo


    Mechanisms behind the pressure distribution and skin friction within a laminar separation bubble (LSB) are investigated by large-eddy simulations around a 5% thickness blunt flat plate at the chord length based Reynolds number 5.0 × 103, 6.1 × 103, 1.1 × 104, and 2.0 × 104. The characteristics inside the LSB change with the Reynolds number; a steady laminar separation bubble (LSB_S) at the Reynolds number 5.0 × 103 and 6.1 × 103, and a steady-fluctuating laminar separation bubble (LSB_SF) at the Reynolds number 1.1 × 104, and 2.0 × 104. Different characteristics of pressure and skin friction distributions are observed by increasing the Reynolds number, such that a gradual monotonous pressure recovery in the LSB_S and a plateau pressure distribution followed by a rapid pressure recovery region in the LSB_SF. The reasons behind the different characteristics of pressure distributions at different Reynolds numbers are discussed by deriving the Reynolds averaged pressure gradient equation. It is confirmed that the viscous stress distributions near the surface play an important role in determining the formation of different pressure distributions. Depending on the Reynolds numbers, the viscous stress distributions near the surface are affected by the development of a separated laminar shear layer or the Reynolds shear stress. In addition, we show that the same analyses can be applied to the flows around a NACA0012 airfoil.

  20. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyumov, Vadim N. [Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Pizza, Gianmarco [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland); Frouzakis, Christos E. [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Mantzaras, John [Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland)


    The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

  1. On plane submerged laminar jets (United States)

    Coenen, Wilfried; Sanchez, Antonio L.


    We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.

  2. Simulations of premixed combustion in porous media (United States)

    Diamantis, D. J.; Mastorakos, E.; Goussis, D. A.


    A numerical model for planar premixed flames of methane in ceramic porous media has been developed to improve the understanding of the structure of such flames. The model successfully reproduces experimental data for both single- and two-layer surface flames. The success is attributed to the detail given to the boundary conditions and the radiation modelling, which was done by solving the radiation transfer equation inside the porous medium without any simplifying models. Surface-stabilized flames yielded SL/SL01 and their energy balance was similar to that of a free flame, which implies that the burning velocity acceleration is due to the reactant preheat. The flame solutions were further analysed with concepts from the computational singular perturbation method to construct reduced mechanisms. For all types of combustion (surface or submerged), an almost identical ordering of chemistry timescales to free flames was found and previously developed reduced mechanisms for free flames were accurate also for the flames inside the porous medium. The results suggest that the thermal exchange between the two phases that is responsible for the flame behaviour remains decoupled from the fast part of the chemistry.

  3. 3D velocity measurements in a premixed flame by tomographic PIV (United States)

    Tokarev, M. P.; Sharaborin, D. K.; Lobasov, A. S.; Chikishev, L. M.; Dulin, V. M.; Markovich, D. M.


    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV.

  4. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.


    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  5. Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering


    The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.

  6. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt


    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  7. Direct numerical simulation of stationary lean premixed methane-air flames under intense turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Ramanan [ORNL; Hawkes, Evatt R [Sandia National Laboratories (SNL); Yoo, Chun S [Sandia National Laboratories (SNL); Chen, Jacqueline H [Sandia National Laboratories (SNL); Lu, Tianfeng [Princeton University; Law, Chung K [Princeton University


    Direct numerical simulation of a three-dimensional spatially- developing turbulent Bunsen flame has been performed at three different turbulence intensities. The simulations are performed using a reduced methane-air chemical mechanism which is specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration is used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issues through a central jet and is surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow are selected such that combustion occurs in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime. At the highest turbulence intensity the conditions correspond to the boundary between the TRZ regime and the broken reaction zones regime. The data from the three simulations is analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Statistical analysis of the data shows that the thermal preheat layer of the flame is thickened due to the action of turbulence, but the reaction zone is not significantly affected.

  8. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario


    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  9. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk


    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  10. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES (United States)

    Cicoria, David; Chan, C. K.


    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.


    KAUST Repository

    Mansour, Morkous S.


    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  12. CSP-based chemical kinetics mechanisms simplification strategy for non-premixed combustion: An application to hybrid rocket propulsion

    KAUST Repository

    Ciottoli, Pietro P.


    A set of simplified chemical kinetics mechanisms for hybrid rocket applications using gaseous oxygen (GOX) and hydroxyl-terminated polybutadiene (HTPB) is proposed. The starting point is a 561-species, 2538-reactions, detailed chemical kinetics mechanism for hydrocarbon combustion. This mechanism is used for predictions of the oxidation of butadiene, the primary HTPB pyrolysis product. A Computational Singular Perturbation (CSP) based simplification strategy for non-premixed combustion is proposed. The simplification algorithm is fed with the steady-solutions of classical flamelet equations, these being representative of the non-premixed nature of the combustion processes characterizing a hybrid rocket combustion chamber. The adopted flamelet steady-state solutions are obtained employing pure butadiene and gaseous oxygen as fuel and oxidizer boundary conditions, respectively, for a range of imposed values of strain rate and background pressure. Three simplified chemical mechanisms, each comprising less than 20 species, are obtained for three different pressure values, 3, 17, and 36 bar, selected in accordance with an experimental test campaign of lab-scale hybrid rocket static firings. Finally, a comprehensive strategy is shown to provide simplified mechanisms capable of reproducing the main flame features in the whole pressure range considered.

  13. Visualization of flashback in a premixed burner with swirling flow

    Institute of Scientific and Technical Information of China (English)

    Satoshi; TANIMURA; Masaharu; KOMIYAMA; Kenichiro; TAKEISHI; Yuji; IWASAKI; Kiyonobu; NAKAYAMA


    In this study,the measurement object is a flame propagating in a premixed burner with swirling flow in order to investigate unsteady flame behavior in a gas turbine premixer.During flashback,the flame propagating upstream was visualized with a high-speed camera.Moreover,we established the technique to measure the instantaneous flow fields of unburned fuel-air mixture in a swirling premixed burner using particle image velocimetry(PIV).As a result,the characteristics of flame behavior propagating upstream were examined.And it was found that a low velocity region existed in the vicinity of the flame tip.The relationship between low velocity region and flame behavior was discussed in detail.

  14. Injectable Premixed Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)


    A new type of injectable premixed bone cement consisting of nano-hydroxyapatite (n-HA) and polyamide 66(PA66) composite is investigated. This cement can be handled as paste and easily shaped, which can set in air, in physiological saline solution and in blood. The setting time, injectability and compressive strength of the cement largely depend on the ratio of liquid to powder (L/P). Moreover, the content of n-HA in composite also affects the compressive strength and injectability of the cement. The premixed composite cement can remain stable in the package for a long period and harden only after delivery to the defects site. The results suggest that injectable premixed cement has a reasonable setting time, reasonable viscosity for injecting, excellent washout resistance and high mechanical strength, which can be developed for root canal filling, sealing and various bone defects augmentation.

  15. New controllable premixed combustion for dimethyl ether engine

    Institute of Scientific and Technical Information of China (English)


    A new concept of the controllable premixed combustion (CPC) system was proposed for dimethyl ether (DME) to explore a new approach to achieving ultra-low NOX emissions with the zero level of particulate matter exhaust emissions. The DME fuel was injected into the premix chamber by means of the electronically controlled low pressure injection system, then the mixture formation and combustion process were controlled with a control-valve set between the main chamber and the premix chamber. The test bench was constructed based on a single diesel engine. Preliminary studies demonstrated that ultra-low NOX emissions had been realized with zero particulate matter emissions under the optimum specifications of the DME engine, NOX emissions were less than 65 × 10-6. According to the engine combustion analysis, it was found that the control-valve played an important role in the pre-mixture formation and ignition timing.

  16. Micropolarity Effects on the Bickley-Plane-Laminar-Jet

    CERN Document Server

    Siddiqui, Abuzar Abid


    In this study, it was formulated the boundary-value-problem (BVP), comprising partial differential equations (PDEs), of steady flow for plane, laminar jet of a micropolar fluid. A new similarity transformation/solution was derived which is valid not only for the Newtonian fluids but also for the micropolar fluids. Obviously, this transformation will be transformed the PDEs into the ordinary differential equations (ODEs). These ODEs were solved numerically by the finite difference method. The obtained results were compared with existing results [1, 12] for the Newtonian fluids. The comparison was favourable. As the aciculate particles in a micropolar fluid can rotate without translation, the micropolarity effects must have influence on fluid-speed, microrotation, stresses, couple stresses and discharge. This influence was highlighted in the present study. If viscosity coupling parameter K1 (being the measure of micropolarity) increases then microrotation, fluid-flux, stresses and couple stresses intensify in t...

  17. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D (United States)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.


    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  18. Estudio asintótico-numérico de la descarga de chorros laminares de gas: efecto del peso molecular


    Rosales Vera, Marco Antonio


    La tesis que presentamos analiza la estructura de un chorro laminar de gas cuyo peso molecular es muy distinto del de el gas en el que descarga. Esa diferencia de peso molecular, si la temperatura de ambos gases es la misma, se traduce una fuerte diferencia de densidades que determina la evolución posterior del chorro. In this thesis we investigate the steady laminar flow generated by the discharge of a gas jet of radius a with a moderately large Reynolds number into a coflow stream of ...

  19. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel


    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  20. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng


    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  1. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed


    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  2. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu


    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  3. Validation of the AFIT Small Scale Combustion Facility and OH Laser-Induced Fluorescence of an Atmospheric Laminar Premixed Flame (United States)


    pneumatic ball valve and proceeding down stream. The majority of the work added was configuring the Proportional-Integral- Derivative ( PID ) controllers . The... PID controllers were initially configured using the auto-tune mode but it resulted in an unsteady airflow. Instead, each controller was... PID controllers display a percentage and Appendix A and Appendix B contain conversion tables for a quick reference between percentages and flow

  4. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.


    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  5. Numerical analysis of laminar forced convection in a spherical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Tuft, D.B.


    Calculations of steady laminar incompressible fluid-flow and heat transfer in a spherical annulus are presented. Steady pressures, temperatures, velocities, and heat transfer coefficients are calculated for an insulated outer sphere and a 0/sup 0/C isothermal inner sphere with 50/sup 0/C heated water flowing in the annulus. The inner sphere radius is 13.97 cm, the outer sphere radius is 16.83 cm and the radius ratio is 1.2. The transient axisymmetric equations of heat, mass, and momentum conservation are solved numerically in spherical coordinates. The transient solution is carried out in time until steady state is achieved. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep. It is believed that this is the first fully two-dimensional analysis of forced flow in a spherical annulus. Local and bulk Nusselt numbers are presented for Reynolds numbers from 4.4 to 440. Computed bulk Nusselt numbers ranged from 2 to 50 and are compared to experimental results from the literature. Inlet flow jetting off the inner sphere and flow separation are predicted by the analysis. The location of wall jet separation was found to be a function of Reynolds number, indicating the location of separation depends upon the ratio of inertia to viscous forces. Wall jet separation has a pronounced effect on the distribution of local heat flux. The area between inlet and separation was found to be the most significant area for heat transfer. Radial distributions of azimuthal velocity and temperature are presented for various angles beginning at the inlet. Inner sphere pressure distribution is presented and the effect on flow separation is discussed.

  6. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles. (United States)

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro


    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters.

  7. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam


    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  8. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.


    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  9. A Study of Laminar Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The laminar flow for a backwards facing step is studied. This work was initially part of the work presented in. In that work low-Reynolds number effects was studied, and the plan was also to include laminar flow. However, it turned out that when the numerical predictions of the laminar flow (Re...

  10. Impulsively started, steady and pulsated annular inflows (United States)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John


    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  11. Gas flow measurement using laminar flow elements

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, J. [Meriam Instrument, Cleveland, OH (United States)


    An instrument that measures gas volumetric flow rate using a capillary tube laminar-flow principle is described. Irs construction, operation, accuracy, and rangeability are presented. Discussion includes integrating the differential-pressure-producing flowmeter with appropriate temperature find pressure devices to produce a digital flowmeter system capable of measuring volumetric and mass flow rates. Typical applications are described.

  12. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)


    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  13. Modification of premixed combustion in shear layers by grid turbulence

    Institute of Scientific and Technical Information of China (English)

    MU Kejin; WANG Yue; ZHANG Zhedian; NIE Chaoqun


    The influence of grid turbulence on the shear layer of a jet and the premixed flames embedded in it was investigated in the present study. The velocity field of the jet was measured by using hot-wire anemometry. It was found that grid turbulence reduced turbulence intensities in the shear layer and suppressed low frcquency fluctuation. Moreover, the energy contained in small-scale fluctuation was increased and turbulence became homogeneous. The results indicate that grid turbulence inhibits the formation of a large-scale coherent structure in the shear layer. Flame temperature was measured by using a compensated free-wire thermocouple. It was found that grid turbulence reduced low frequency fluctuation of thc flame fronts, increased the small-scale wrinkles and elevated the mean temperature of the flame zone. The results show that grid turbulence can enhance and stabilize premixed flames in shear flow.

  14. Premixed Flame Dynamics in Narrow 2D Channels

    CERN Document Server

    Ayoobi, Mohsen


    Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...

  15. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others


    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  16. Premixed intravenous admixtures: a positive development for hospital pharmacy. (United States)

    Lee, H E


    The development of premixed intravenous admixtures is reviewed in a historical context, and its effects on hospital pharmacy practice are discussed. As pharmaceutical manufacturers introduce more i.v. medications in ready-to-use containers, the same complaints that were voiced by pharmacists about unit dose packaging and ready-to-dispense tablets and capsules are being aired. But premixed i.v. admixtures are a logical extension of the basic unit dose principle of providing a readily identifiable and ready-to-administer dose. The time and cost savings these products offer are needed in hospital pharmacies. Some of the disadvantages of these products--including storage and freezer space and multiplicity of administration systems--are overcome by proper planning and education of personnel. If fewer personnel are now needed to prepare i.v. admixtures, then those personnel should be used to improve patient care in other ways. The use of premixed i.v. admixtures is a positive technological advance in drug packaging. Its advantages outweight its disadvantages, and it will soon be become the universally accepted form of i.v. drug packaging.

  17. Large eddy simulation of unsteady lean stratified premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Duwig, C. [Division of Fluid Mechanics, Department of Energy Sciences, Lund University, SE 221 00 Lund (Sweden); Fureby, C. [Division of Weapons and Protection, Warheads and Propulsion, The Swedish Defense Research Agency, FOI, SE 147 25 Tumba (Sweden)


    Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (author)

  18. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul


    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  19. Laminar Film Boiling Heat Transfer on a Horizontal Cylinder Submerged in an Upward Crossflow of Saturated Liquids


    茂地, 徹; 川江, 信治; 金丸, 邦康; 山田, 岹


    An analysis was made of the steady-state, forced convection film boiling heat transfer on an isothermal horizontal cylinder submerged in an upward crossflow of saturated liquids in the gravitational field. The boundary-layer equations of momentum and of energy for the laminar vapor film, including both the inertia force in the former and the convection term in the latter, were solved using an integral method. The analytical solution was obtained for the integrated boundary-layer equations. A ...

  20. Determination of the Burning Velocity Domain of a Statistically Stationary Turbulent Premixed Flame in Presence of Counter-Gradient Transport

    Directory of Open Access Journals (Sweden)

    V. A. Sabel'nikov


    Full Text Available The present study aims at providing a complete picture of the various propagation scenarios that a statistically stationary turbulent premixed flame may possibly undergo. By explicitly splitting the scalar turbulent flux between its gradient and counter-gradient contributions, the scalar governing equation is rewritten as an ordinary differential equation in the phase space. Then, an analysis of the characteristic equations in the vicinity of the reactants and products side is carried out. The domain of existence of the propagation velocity is then determined and positioned over the relevant Bray number range. It is shown in particular that when a counter-gradient transport at the cold leading edge of the flame is dominant, there still exists a possibility of observing a steady regime of propagation. This conclusion is compatible with recent experimental data and observations based on the analysis of direct numerical simulations.

  1. Nonpremixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Kelley, A. P.; Law, C. K.


    The non-premixed ignition temperature of n-butanol (CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}OH), iso-butanol ((CH{sub 3}){sub 2}CHCH{sub 2}OH) and methyl butanoate (CH{sub 3}CH{sub 2}CH{sub 2}COOCH{sub 3}) was measured in a liquid pool assembly by heated oxidizer in a stagnation flow for system pressures of 1 and 3 atm. In addition, the stretch-corrected laminar flame speeds of mixtures of air–n-butanol/iso-butanol/methyl butanoate were determined from the outwardly propagating spherical flame at initial pressures of up to 2 atm, for an extensive range of equivalence ratio. The ignition temperature and laminar flame speeds of n-butanol and methyl butanoate were computationally simulated with three recently developed kinetic mechanisms in the literature. Dominant reaction pathways to ignition and flame propagation were identified and discussed through a chemical explosive mode analysis (CEMA) and sensitivity analysis. The detailed models were further reduced through a series of systematic strategies. The reduced mechanisms provided excellent agreement in both homogeneous and diffusive combustion environments and greatly improved the computation efficiency.

  2. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed


    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  3. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten


    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation...... in the laminar regime for the flow field, to a linear, time-harmonic acoustic equation in the low Mach number regime for the sound signal. B-splines are used both to represent the duct geometry and to approximate the flow and sound fields. This facilitates an exact representation of complex duct geometries...

  4. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes (United States)

    Vandam, C. P.


    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  5. Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame

    CERN Document Server

    Pousse, Emir; Fournet, René; Battin-Leclerc, Frédérique


    In order to better understand the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The gases of this flame contains 7.1% (molar) of methane, 36.8% of oxygen and 0.90% of indane corresponding to an equivalence ratio of 0.74 and a ratio C9H10/CH4 of 12.75%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included usual methane C0-C2 combustion products, but also 11 C3-C5 hydrocarbons and 3 C1-C3 oxygenated compounds, as well as 17 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, trimethylbenzenes, ethyltoluenes, indene methylindane, methylindene, naphthalene, phenol, benzaldehyde, benzofuran. The temperature was measured thanks to a thermocouple in PtRh (6%)-PtRh (30%) settled inside the enclosure and ranged from 800 K close to the bu...

  6. The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body

    KAUST Repository

    Kedia, Kushal S.


    © 2014 The Combustion Institute. The objective of this work is to investigate the unsteady response of a bluff-body stabilized laminar premixed flame to harmonic inlet velocity excitation. A time series analysis was performed to analyze the physical sequence of events at a fixed longitudinal forcing frequency of 100 Hz for cases with (1) two different equivalence ratios and (2) two different thermal properties of the stabilizing bluff-body. It was observed that conjugate heat exchange between the heat conducting bluff-body and the surrounding reacting flow has a crucial impact on the dynamic response. The flame area and anchoring location, the net conjugate heat transfer and the total heat release underwent significant oscillations. The latter was mean shifted and had multiple frequencies. The burning velocity varied significantly along the flame length and the recirculation zone underwent complex changes in its shape and size during an unsteady cycle. The lower equivalence ratio case exhibited vortex shedding after an initial symmetric response with periodic flame extinction and re-ignition along its surface, unlike the higher equivalence ratio case. The metal/ceramic bluff-body showed a net heat transfer directed from/to the bluff-body, to/from the reacting flow during an unsteady cycle, resulting in a significantly different flame response for the two otherwise equivalent cases.

  7. Impact of Turbulence Intensity and Equivalence Ratio on the Burning Rate of Premixed Methane–Air Flames

    Directory of Open Access Journals (Sweden)

    Gábor Janiga


    Full Text Available Direct Numerical Simulations (DNS have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent conditions (with integral Reynolds numbers up to 4513 have been accessed. The effect of turbulence on the physical properties of the flame, in particular its consumption speed Sc, which is an interesting measure of the turbulent flame speed ST has been investigated. Local quenching events are increasingly observed for highly turbulent conditions, particularly for lean mixtures. The obtained results qualitatively confirm the expected trend regarding correlations between u′/SL and the consumption speed: Sc first increases, roughly linearly, with u′/SL (low turbulence zone, then levels off (bending zone before decreasing again (quenching limit for too intense turbulence. For a fixed value of u′/SL, Sc/SL varies with the mixture equivalence ratio, showing that additional parameters should probably enter phenomenological expressions relating these two quantities.

  8. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames (United States)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter


    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  9. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik


    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  10. Insect contamination protection for laminar flow surfaces (United States)

    Croom, Cynthia C.; Holmes, Bruce J.


    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  11. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio


    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  12. Hot Strip Laminar Cooling Control Model

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Guo-dong; LIU Xiang-hua


    The control model of laminar cooling system for hot strip, including air-cooling model, water-cooling model, temperature distribution model along thickness direction, feedforward control model, feedback control model and self-learning model, was introduced. PID arithmetic and Smith predictor controller were applied to feedback control. The sample of model parameter classification was given. The calculation process was shown by flow chart. The model has been proved to be simple, effective and of high precision.

  13. Laminar Flow in the Ocean Ekman Layer (United States)

    Woods, J. T. H.


  14. Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa

    KAUST Repository

    Bagdanavicius, Audrius


    Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those

  15. Investigation of Shock-Induced Laminar Separation Bubble in a Supersonic Boundary Layer (United States)

    Sivasubramanian, Jayahar; Fasel, Hermann


    The interaction between an impinging oblique shock and a laminar boundary-layer on a flat plate is investigated using DNS. In particular, the two-dimensional separation bubble resulting from the shock/boundary-layer interaction (SBLI) at freestream Mach number of 2.0 is investigated in detail. The flow parameters used for the present investigation match the laboratory conditions in the experiments by Hakkinen et al. The skin friction and pressure distribution from the simulations are compared to the experimental measurements and numerical results available in the literature. Our results confirm the asymmetric nature of the separation bubble as reported in the literature. In addition to the steady flow field calculations, the response to low-amplitude disturbances is investigated in order to study the linear stability behavior of the separation bubble. For comparison, both the development of two-dimensional and three-dimensional (oblique) disturbances are studied with and without the impinging oblique shock. Furthermore, the effects of the shock incidence angle and Reynolds number are also investigated. Finally, three-dimensional simulations were performed in order to explore the laminar-turbulent transition process in the presence of a laminar separation bubble. Funded by the Air Force Office of Scientific Research under grant FA9550-14-1-0195.

  16. Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV

    Energy Technology Data Exchange (ETDEWEB)

    Lang, M.; Rist, U.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik, Universitaet Stuttgart, Pfaffenwaldring 21, 70550, Stuttgart (Germany)


    When a laminar boundary layer separates because of an adverse streamwise pressure gradient, the flow is subject to increased instability with respect to small-amplitude disturbances. Laminar-turbulent transition occurs under a rapid three-dimensional (3D) development within the separated shear layer. When the following turbulent boundary layer reattaches, a laminar separation bubble is formed. To allow controlled measurements, a small-amplitude Tollmien-Schlichting wave (TS wave) was introduced into the boundary layer without (case I) and with (case II) spanwise forcing of steady 3D disturbances. Combined application of laser-Doppler anemometry (LDA) and particle image velocimetry (PIV) demonstrates the suitability of both measurement techniques to capture the development of unsteady, periodic phenomena. The transition mechanism occurring in the flow field under consideration is discussed, and results obtained by controlled measurements are compared to direct numerical simulations (DNS) and predictions from linear stability theory (LST). Flow visualizations and stereoscopic PIV measurements give better insight into the 3D breakdown of the separated shear layer. (orig.)

  17. Stirring effects and bistability in the iodate-arsenous acid reaction: Premixed vs segregated flows (United States)

    Hannon, L.; Horsthemke, W.


    Using a coalescence-dispersion model of the continuous flow-stirred tank reactor (CSTR), we study the effect of premixed vs nonpremixed reactant flows on chemical bistability. The region of bistability is smaller for segregated feed streams than for a fully premixed feed stream. The transition from flow branch to thermodynamic branch is particularly sensitive to the feed stream configuration.

  18. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul


    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  19. Wall functions for numerical modeling of laminar MHD flows

    CERN Document Server

    Widlund, O


    general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20 x 20 grid, and Hartmann numbers Ha = [10,30,100], the accuracy of pressure drop and wall shear stress predictions was [1.1%,1.6%,0.5%], respectively. Com...

  20. Laminar Flow Through Circular Tubes with Side Inlets (United States)

    Abedian, Behrouz; Muhlanger, Eric


    We discuss experimental results on steady axisymmetric flow of a Newtonian incompressible fluid through circular pipes with side inlets. Circular tubes with a set of holes along their sidewalls are used in a number of medical procedures as straight catheters to transfer fluid into or out of the human body. For example, because of the small size of the incision required, they are commonly used in peritoneal dialysis. The internal diameter and the diameter of the side holes are often 1 mm and less, and as a result, the fluid flow is laminar in a typical medical procedure. An understanding of the flow inside the catheter tube in terms of its geometric parameters will be key in designing new catheters with optimal clinical performance for specific applications. In the experiments, water is withdrawn from a smooth tube with side holes and the local axial pressure and flow rates through the side holes are measured for different flow conditions. A nondimensionalization of the data shows a power-law behavior in only some cases. Using numerical simulations, it is shown how the interaction of the axial flow with the impinging jets from the side holes can change the overall behavior of the flow for a given suction pressure.

  1. Laminar vortex shedding behind a cooled circular cylinder (United States)

    Trávníček, Zdeněk; Wang, An-Bang; Tu, Wen-Yun


    This paper addresses the functional demonstration of a hot air flow generator driven by convective heat transfer and the airflow behind a cooled circular cylinder in cross flow in the low velocity range. The wake flow was investigated experimentally using flow visualization, hot-wire anemometry, and laser Doppler anemometry. An evaluation of the free-stream velocity from the vortex shedding frequency was derived for the isothermal and non-isothermal cases and demonstrated using simple stroboscope measurements. The results confirm that cylinder cooling destabilizes the wake flow in air, i.e., the laminar steady regime can be changed into the vortex shedding regime, and the vortex shedding frequency increases as the cylinder temperature decreases. This thermal effect of cylinder cooling is consistent with its counterpart, the known effect of flow stabilization by cylinder heating. The effective temperature and effective Reynolds number concept have been further quantitatively evaluated, and the extension of their validity to the case of cooled cylinders has been confirmed.

  2. Laminar flow in the entrance region of elliptical ducts (United States)

    Bhatti, M. S.


    A closed-form analytical solution is developed to hitherto unsolved problem of steady laminar flow of a Newtonian fluid in the entrance region of elliptical ducts. The analysis is based on the Karman-Pohlhausen integral method and entails solution of the integrated forms of the mass and the momentum balance equations. According to this analysis, the hydrodynamic entrance length based on 99 percent approach to the fully developed flow is equal to 0.5132 lambda/(l + lambda-squared) where lambda is the aspect ratio. Also, the fully developed incremental pressure defect is found to be 7/6 which is independent of the aspect ratio. In the limit when the flow becomes fully developed, the solution converges to the known exact asymptotic solution. Available, wide-ranging velocity measurements for a circular tube agree with the analytical predictions within 7 percent. Also, available pressure drop measurements near the inlet of a circular tube agree with the analytical predictions within 2 percent.

  3. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  4. Intensifying existing premix therapy (BIAsp 30) with BIAsp 50 and BIAsp 70

    DEFF Research Database (Denmark)

    Brito, Miguel; Ligthelm, Robert Jan; Boemi, Massimo


    In 2009, consensus guidelines were published on intensification of insulin therapy using the premix analog biphasic insulin aspart (BIAsp) 30 in the treatment of type 2 diabetes, based on the recommendations of an international, independent expert panel. The guidelines included recommendations...... switch from a BIAsp 30 to a mid-/high-ratio premix regimen for the vast majority of patients with type 2 diabetes. A panel of independent experts with extensive clinical experience in premix analog therapy met in October 2009 to review the therapeutic role of mid- and high-ratio premixes (BIAsp 50 and 70...... assist physicians in introducing mid-/high-ratio premixes to optimize the insulin therapy of patients with type 2 diabetes who are failing to achieve glycemic targets on a BIAsp 30 BID or TID regimen....

  5. Spatial variation of the magnetic field inside laminar flows of a perfect conductive fluid (United States)

    Duka, Bejo; Boçi, Sonila


    The steady state of a perfect conductive fluid in laminar flow resulting from the ‘Hall effect’ is studied. Using the Maxwell equations, the spatial variation of the magnetic field in the steady state is calculated for three cases of different fluid flow geometries: flow between two infinite parallel planes, flow between two coaxial infinite-long cylinders and flow between two concentric spheres. According to our calculation of the three cases, the spatial variation of the magnetic field depends on the flow velocity. The magnetic field is strengthened in layers where the velocity is greater, but this dependency is negligible for non relativistic flows. Our approach in this study provides an example of how to receive interesting results using only basic knowledge of physics and mathematics.

  6. Flashback mechanisms in lean premixed gas turbine combustion

    CERN Document Server

    Benim, Ali Cemal


    Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback.  Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research.Presents a coherent review of f

  7. Setting mechanisms of an acidic premixed calcium phosphate cement



    Premixed calcium phosphate cements (pCPC), where glycerol is used instead of water as mixing liquid, present better handling characteristics than water-based cements. However, the setting mechanisms of pCPC have not been described thoroughly. The aim of this paper is to increase the understanding of the setting mechanism of pCPC. The investigated cement starts to set when glycerol is exchanged with water via diffusion of glycerol out to the surrounding body fluid and water into the material. ...

  8. Response mechanisms of attached premixed flames subjected to harmonic forcing (United States)


    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  9. Jet flow and premixed jet flame control by plasma swirler (United States)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang


    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  10. Premixer assembly for mixing air and fuel for combustion

    Energy Technology Data Exchange (ETDEWEB)

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul


    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  11. Mixing Model Performance in Non-Premixed Turbulent Combustion (United States)

    Pope, Stephen B.; Ren, Zhuyin


    In order to shed light on their qualitative and quantitative performance, three different turbulent mixing models are studied in application to non-premixed turbulent combustion. In previous works, PDF model calculations with detailed kinetics have been shown to agree well with experimental data for non-premixed piloted jet flames. The calculations from two different groups using different descriptions of the chemistry and turbulent mixing are capable of producing the correct levels of local extinction and reignition. The success of these calculations raises several questions, since it is not clear that the mixing models used contain an adequate description of the processes involved. To address these questions, three mixing models (IEM, modified Curl and EMST) are applied to a partially-stirred reactor burning hydrogen in air. The parameters varied are the residence time and the mixing time scale. For small relative values of the mixing time scale (approaching the perfectly-stirred limit) the models yield the same extinction behavior. But for larger values, the behavior is distictly different, with EMST being must resistant to extinction.


    Directory of Open Access Journals (Sweden)

    M I El Khazen


    Full Text Available In this paper we simulate a turbulent premixed V-shape flame stabilized on a hot wire. The device used is composed of a vertical combustion chamber where the methane-air mixture is convected upwards with a mean velocity of 4ms-1. The flow was simulated running Fluent 6.3, which numerically solved the stationary Favre-averaged mass balance; Navier-Stokes equations; combustion progress variable, and k-ε equations on a two-dimensional numerical mesh. We model gaseous mixture, ignoring Soret and Dufour effects and radiation heat transfer. The progress variable balance equation was closed using Eddy Break Up model. The results of our simulations allow us to analyze the influence of equivalence ratio and the turbulent intensity on the properties of the flame (velocity, fluctuation, progress variable and Thickness of flame.This work gives us an idea on the part which turbulence can play to decrease the risks of extinction and instabilities caused by the lean premixed combustion.

  13. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.


    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  14. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad


    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  15. Cathlean: catalytic, hybrid, lean-premixed burner for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carroni, Richard; Griffin, Timothy [Alstom Power Technology Ltd., Baden-Daettwil (Switzerland); Kelsall, Greg [Alstom Power Technology Centre, Whetstone (United Kingdom)


    Cathlean (an EU FP5 project) addresses the research and development of an advanced, ultra-low NO{sub x}, hybrid burner for gas turbines (present and future), that combines catalytic and lean-premix combustion components. Such a hybrid design enables this new technology to be introduced in a lower-risk manner. The catalytic elements serve to pretreat the fuel in order to enhance performance in terms of emissions <3 ppmv NO{sub x} and <10 ppmv CO at 15% O{sub 2} and 50-100% load, for natural gas fuel), part-load stability (reducing the lean blow-out temperature by over 100 deg C) and thermoacoustic phenomena (pulsations << 0.3% of pressure). The principle scientific objective is to quantify the advantages of the hybrid burner in terms of the above-mentioned criteria, relative to traditional, lean-premixed combustors. The present paper describes the technical and organisational aspects of the project, including an outline of state-of-the-art catalytic combustion technology, technical specification of the advanced burner and a description of the methods used to attain project goals. (Author)

  16. Establishing bioequivalence of veterinary premixes (Type A medicated articles). (United States)

    Hunter, R P; Lees, P; Concordet, D; Toutain, P-L


    a) Key issues concerning Premix (Type A medicated articles) Bioequivalence evaluations: 1) This is a complex issue concerning both route of administration and formulation. 2) If the animal is not at the bunk/trough, the animal is not self-administering (eating medicated feed), thus there can be no drug absorption. b) Differing opinions among scientists and regulatory authorities/expert bodies regarding: 1) No harmonization on how to design, conduct, and interpret in vivo studies. 2) Applicability of biowaivers to Type A (premix) products. 3) Why are topdress and complete feed considered differently? Are they different formulations or different routes of administration? 4) Single dose vs. multi-dose studies. 5) What is the final formulation? c) What are the next steps: 1) Harmonize current bioequivalence guidelines through the VICH process. 2) Determine the applicability/non-applicability of the Biopharmaceutical Classification System (BCS). 3) Establish the Total Mixed Ration (i.e. formulation) effects. 4) Define the test subject (individual, pen, etc.).

  17. Experimental design of laminar proportional amplifiers (United States)

    Hellbaum, R. F.


    An experimental program was initiated at Langley Research Center to study the effects of various parameters on the design of laminar proportional beam deflection amplifiers. Matching and staging of amplifiers to obtain high-pressure gain was also studied. Variable parameters were aspect ratio, setback, control length, receiver distance, receiver width, width of center vent, and bias pressure levels. Usable pressure gains from 4 to 19 per stage can now be achieved, and five amplifiers were staged together to yield pressure gains up to 2,000,000.

  18. Simuliranje izotermnega QUEOS preskusa mešalne faze eksplozije pare Q08: Simulation of the isothermal QUEOS steam-explosion premixing experiment Q08:


    Leskovar, Matjaž; Mavko, Borut


    The premixing phase of a steam explosion covers the interaction of the melt jet with the water prior to any steam explosion occuring. To ger a better insight into the hydrodynamic processes during the premixing phase in addition to "hot" premixing experiments, where the water evaporation is significant. "cold" isothermal premixing experiments were also performed. The special feature of isothermal premixing experiments is that three phases are involved - the water, the air and the spheres phas...

  19. Influence of water content on hardening and handling of a premixed calcium phosphate cement. (United States)

    Engstrand, Johanna; Aberg, Jonas; Engqvist, Håkan


    Handling of calcium phosphate cements is difficult, where problems often arise during mixing, transferring to syringes, and subsequent injection. Via the use of premixed cements the risk of handling complications is reduced. However, for premixed cements to work in a clinical situation the setting time needs to be improved. The objective of this study is to investigate the influence of the addition of water on the properties of premixed cement. Monetite-forming premixed cements with small amounts of added water (less than 6.8 wt.%) were prepared and the influence on injectability, working time, setting time and mechanical strength was evaluated. The results showed that the addition of small amounts of water had significant influence on the properties of the premixed cement. With the addition of just 1.7 wt.% water, the force needed to extrude the cement from a syringe was reduced from 107 (±15) N to 39 (±9) N, the compression strength was almost doubled, and the setting time decreased from 29 (±4) min to 19 (±2) min, while the working time remained 5 to 6h. This study demonstrates the importance of controlling the water content in premixed cement pastes and how water can be used to improve the properties of premixed cements.

  20. Arbitrary Steady-State Solutions with the K-epsilon Model (United States)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.


    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  1. On steady electromagnetic equilibria (United States)

    Lehnert, B.


    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  2. Internal combustion engine using premixed combustion of stratified charges (United States)

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI


    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  3. Coaxial fuel and air premixer for a gas turbine combustor (United States)

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P


    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  4. Three dimensional dynamic mode decomposition of premixed turbulent jet flames (United States)

    Grenga, Temistocle; Macart, Jonathan; Mueller, Michael


    Analysis of turbulent combustion DNS data largely focuses on statistical analyses. However, turbulent combustion is highly unsteady and dynamic. In this work, Dynamic Mode Decomposition (DMD) will be explored as a tool for dynamic analysis of turbulent combustion DNS data, specifically a series of low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flames. DMD decomposes data into coherent modes with corresponding growth rates and oscillatory frequencies. The method identifies structures unbiased by energy so is particularly well suited to exploring dynamic processes at scales smaller than the largest, energy-containing scales of the flow and that may not be co-located in space and time. The focus of this work will be on both the physical insights that can potentially be derived from DMD modes and the computational issues associated with applying DMD to large three-dimensional DNS datasets.

  5. Flashback detection sensor for lean premix fuel nozzles (United States)

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward


    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  6. A turbulent premixed flame on fractal-grid generated turbulence

    CERN Document Server

    Soulopoulos, Nikos; Beyrau, Frank; Hardalupas, Yannis; Taylor, A M K P; Vassilicos, J Christos


    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent combustion experiment. In contrast to the power law decay of a standard turbulence grid, the downstream turbulence intensity of the fractal grid increases until it reaches a peak at some distance from the grid before it finally decays. The effective mesh size and the solidity are the same as those of a standard square mesh grid with which it is compared. It is found that, for the same flow rate and stoichiometry, the fractal generated turbulence enhances the burning rate and causes the flame to further increase its area. Using a flame fractal model, an attempt is made to highlight differences between the flames established at the two different turbulent fields.

  7. Sintering Response of Aluminum 6061-TiB2 Composite: Effect of Prealloyed and Premixed Matrix (United States)

    Paidpilli, Mahesh; Gupta, Gaurav Kumar; Upadhyaya, Anish


    In the present study, Al6061-based alloy and composites were produced using powder metallurgy route. Two different kinds of base powders (prealloyed and premixed 6061Al alloy) were mixed with TiB2 particles in compositions ranging from 0 to 15 vol.%, respectively. The processed powders were compacted at 300 MPa and sintered at 620 °C under N2 atmosphere. The microstructural evolution of prealloyed and premixed 6061Al alloy, at different stages of sintering cycle, was studied using scanning electron microscope and EDS analysis. A comparative study was done between prealloyed- and premixed-based composites on the basis of densification, microstructure, hardness, transverse rupture strength and electrical conductivity as a function of TiB2 content. Results indicated that premixed-based composites have better mechanical properties than prealloyed-based composites.

  8. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames (United States)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin


    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  9. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers (United States)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  10. Extinction conditions of a premixed flame in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Alliche, Mounir [LMP2M, Universite de Medea, Quartier Ain Dheb, 26000 Medea (Algeria); M2P2, UMR CNRS 6181, Universite de Provence, Marseille (France); Haldenwang, Pierre [M2P2, UMR CNRS 6181, Universite de Provence, Marseille (France); Chikh, Salah [LTPMP, Faculte de Genie Mecanique and de Genie des Procedes, USTHB, Bab Ezzouar (Algeria)


    A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)

  11. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  12. An original combined multiphase model of the steam-explosion premixing phase


    Leskovar, Matjaž; Mavko, Borut


    In multiphase flow, different distributions can occur that cannot be adequately modeled with just free-surface models or with just multiphase models. Such a distribution of phases occurs for example, in isothermal steam-explosion premixing experiments, where dispersed spheres penetrate the water and the water-air surface remains sharp. A common practice when modeling isothermal premixing experiments is to treat all three phases involved - the water, the air and the spheres phase - equally, wi...

  13. Modeling of complex physics & combustion dynamics in a combustor with a partially premixed turbulent flame


    Shahi, Mina


    To avoid the formation of the high temperature stoichiometric regions in flames in a gas turbine combustor, and hence the formation of nitric oxides, an alternative concept of combustion technology was introduced by means of lean premixed combustion. However, the low emission of nitric oxides and carbon monoxide of the lean premixed combustion of natural gas comes at the cost of increased sensitivity to thermoacoustic instabilities. These are driven by the feedback loop between heat release, ...

  14. Decreasing vitamin premix on chicken carcass composition and blood chemistry in floor and battery cage systems

    Directory of Open Access Journals (Sweden)

    Mahmood Shivazad


    Full Text Available Two experiments were conducted the to compare the effect of a decreasing amount of vitamin premix in diets inbroilers from 29 to 42 days of age on carcass composition and blood chemistry in floor (Experiment 1 and battery cage (Experiment 2 systems. At 35 and 42 days of ages, one bird of each replicate was slaughtered and carcass composition was measured. Blood concentrations of alkaline phosphatase (ALP and Ca were used to diagnose vitamin D3 deficiency and enzymes aspartate amino transferase (AST to identify vitamin E deficiency. Floor raised birds showed that vitamin premix reduction/withdrawal at 29 days of age did not impair body weight (BW, carcass composition, ALP and Ca during the final rearing period. However, diet without vitamin premix (T1 had a higher AST at 42 days of age than the other diets. Birds reared in cages were slightly more sensitive to vitamin premix reduction/withdrawal, probably due to the impracticality of performing coprophagy. Diet without vitamin premix (T1 had a lower BW, carcass breast and thigh yield at 42 days of age; also serum ALP, AST and Ca were impaired. In conclusion, the withdrawal of vitamins is not a reasonable option but it is possible to reduce vitamin premix in finisher broilers’ diets without negative effects on performance and on some metabolic traits during the finisher period with both methods of rearing.

  15. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.


    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  16. Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, R.K.; Bedat, B.; Yegian, D.T.


    The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.

  17. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.


    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  18. NASA F-16XL supersonic laminar flow control program overview (United States)

    Fischer, Michael C.


    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  19. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I (United States)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  20. Quasimolecular Dynamic Simulation for Bending Fracture of Laminar Composite Materials

    Institute of Scientific and Technical Information of China (English)


    Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials

  1. Numerical simulation of double diffusive laminar mixed convection in shallow inclined cavities with moving lid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Teamah


    Full Text Available A numerical investigation of double-diffusive laminar mixed convection in an inclined cavity has been studied numerically. The top lid was considered to move in both directions to introduce the forced convection effect. In addition, the solutal and thermal buoyancy forces are sustained by maintaining the top lid and the bottom surface at uniform temperatures and concentrations, but their values for the top lid are higher than those at the bottom surface. The laminar flow regime is considered under steady state conditions. Moreover, the transport equations for continuity, momentum, energy and mass transfer are solved. The streamlines, isotherms and isoconcentrations as well as both local and average Nusselt and Sherwood numbers were studied for the hot lid. The effects of inclination of the cavity on the flow, thermal and mass fields are investigated for inclination angles ranging from 0° to 30°. The study covers a wide range for 0.1 ⩽ Le ⩽ 10 and −10 ⩽ N ⩽ 10. Through this investigation, the following parameters are kept constant: The aspect ratio at 10, Prandtl number at six representing water. A comparison was made with published results and a good agreement was found.

  2. Mean flow of turbulent-laminar patterns in plane Couette flow

    CERN Document Server

    Barkley, D; Barkley, Dwight; Tuckerman, Laurette S.


    A turbulent-laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x,y,z) = U_0(y) + U_c(y) cos(kz) + U_s(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic compu...

  3. Mechanisms Of Pressure Distributions Within Laminar Separation Bubble At Different Reynolds Numbers (United States)

    Lee, Donghwi; Kawai, Soshi; Nonomura, Taku; Oyama, Akira; Fujii, Kozo


    Large-eddy simulation around 5 % thickness flat plate at Re = 5 , 000 , 6 , 100 , 11 , 000 and 20 , 000 are performed and the physical mechanisms of the pressure distributions (Cp) in laminar separation bubbles are analyzed. Depending on the Reynolds number, a gradual pressure recovery and plateau pressure distribution are observed as experiments by Anyoji et al. [AIAA paper 2011-0852]. The causes of the pressure distributions are quantitatively shown by deriving the pressure gradient (momentum budget) equation from the steady momentum equation. From the results, we identify that the viscous diffusion term near the surface has a major contribution to the pressure gradients, and a different growth of the separated shear layer relying on the Reynolds numbers affects the viscous stress near the surface. The gradual pressure recovery at the lower Reynolds numbers is caused by the progressive development of separated shear layer due to the viscous stress which makes a non-negligible viscous stress. On the other hand, a thin laminar separated shear layer is created at the higher Reynolds numbers because of the relatively small viscous diffusion effects, which results in a negligible shear stress distribution. It makes dp / dx ~ 0 and the plateau pressure distribution is generated. Asahi Glass Scholarship.

  4. Measurement and calculations of laminar flow in a ninety degree bifurcation. (United States)

    Liepsch, D; Moravec, S; Rastogi, A K; Vlachos, N S


    Measurements and numericaL calculations of laminar flow in a plane 90 degrees bifurcation are presented. The corresponding two-dimensional steady flow Navier-Stokes equations solved by a finite-difference procedure employing pressure and velocity as dependent variables. The influence of Reynolds number and mass flow ratio on the velocity field, streamlines, local shear stress and pressure drop are quantified and shown to be substantial. The circulation patterns and shear stresses are examined in view of available data regarding the formation of atherotic plaques in the human circulatory system. The calculated velocity profiles are compared with measurements obtained with laser Doppler anemometry and the agreement is shown to be satisfactory. Calculations outside the range of measurements which are of value to biomechanics are also presented.

  5. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    CERN Document Server

    Seshasayanan, K


    On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.

  6. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)


    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  7. Identification of the heat transfer frequency response in pulsating laminar and subcritical flow across a cylinder (United States)

    Witte, A.; Cabrera, A.; Polifke, W.


    The steady-state heat transfer from a cylinder in cross-flow is a prototype problem in thermo-fluiddynamics. However, in many applications such as the Rijke tube, the flow may fluctuate. This work analyses the phenomenon combining numerical simulation with system identification. Direct numerical simulation of laminar flow and Large Eddy Simulation at subcritical flow at Reynolds number equal to 3900 are used, respectively. Fluctuations of the inlet velocity in the simulation are excited over a wide range of frequencies. Time series of unsteady heat release and velocity are post-processed to identify dynamic models, which may be represented as transfer functions. They accurately describe the dynamic behavior and can be used for further modeling.

  8. A generalized relationship for swirl decay in laminar pipe flow

    Indian Academy of Sciences (India)

    T F Ayinde


    Swirling flow is of great importance in heat and mass transfer enhancements and in flow measurements. In this study, laminar swirling flow in a straight pipe was considered. Steady three-dimensional axisymmetric Navier–Stokes equations were solved numerically using a control volume approach. The swirl number distribution along the pipe length was computed. It was found that the swirl number at any location along the pipe length depends on the swirl number at inlet, the flow Reynolds number, the distance from the pipe inlet, the pipe diameter and the nature of the inlet swirl. A generalized relationship for swirl decay as a function of these parameters was then obtained by curve-fitting technique.

  9. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe (United States)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin


    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  10. Micropolarity-Ramification of Laminar/Turbulent Circular-Plane-Jet

    CERN Document Server

    Siddiqui, Abuzar Abid


    In the present work we formulated the boundary-value-problem, comprising partial differential equations (PDEs) of steady flow for laminar/turbulent circular jet of a micropolar fluid. A new boundary layer-similarity transformation/solution was derived which is valid not only for the Newtonian fluids but also for the micropolar fluids. Through this transformation PDEs are transformed into the ordinary differential equations (ODEs). These ODEs were solved numerically by the finite-difference method. The obtained results were compared with existing results [9] for the Newtonian fluids. The comparison was favourable. The micropolarity influences were highlighted in the present work. The axial-fluid-speed and normal stress-component decreases but radial-fluid-speed, microspin and one of the normal stress-component increase as the micropolarity effect enhances. The fluid-speed, microspin, shear stresses, normal stresses and couple stresses are dominant in the vicinity of the jet-source whereas they all vanish as fa...

  11. Investigation of laminar to turbulent transition phenomena effects on impingement heat transfer (United States)

    Isman, Mustafa Kemal; Morris, Philip J.; Can, Muhiddin


    Turbulent impinging air flow is investigated numerically by using the ANSYS-CFX® code. All computations are performed by considering three-dimensional, steady, and incompressible flow. Three different Reynolds averaged Navier-Stokes (RANS) turbulence models and two Reynolds stress models (RSM's) are employed. Furthermore three different laminar to turbulent transition (LTT) models are employed with the shear stress transport (SST) and the baseline (BSL) models. Results show that predictions of the SST and two RSM's are very close each other and these models' results are in better agreement with the experimental data when all Reynolds numbers used in this study are considered. Secondary maxima in Nusselt number can be seen only if the LTT formula is employed with SST and BSL models.

  12. Forced convection to laminar flow of liquid egg yolk in circular and annular ducts

    Directory of Open Access Journals (Sweden)

    M. Bernardi


    Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.

  13. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi


    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...


    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-e; YIN Xian-jun


    Under some certain assumptions, the physical model of the air combustion system was simplified to a laminar flame system. The mathematical model of the laminar flame system, which was built according to thermodynamics theory and the corresponding conservative laws, was studied. With the aid of qualitative theory and method of ordinary differential equations, the location of singular points on the Rayleigh curves is determined,the qualitative structure and the stability of the singular points of the laminar flame system,which are located in the areas of deflagration and detonation, are given for different parameter values and uses of combustion. The phase portraits of the laminar flame system in the reaction-stagnation enthalpy and combustion velocity-stagnation enthalpy planes are shown in the corresponding figures.

  15. Formation of coherent structures in 3D laminar mixing flows (United States)

    Speetjens, Michel; Clercx, Herman


    Mixing under laminar flow conditions is key to a wide variety of industrial systems of size extending from microns to meters. Examples range from the traditional (and still very relevant) mixing of viscous fluids via compact processing equipment down to emerging micro-fluidics applications. Profound insight into laminar mixing mechanisms is imperative for further advancement of mixing technology (particularly for complex micro-fluidics systems) yet remains limited to date. The present study concentrates on a fundamental transport phenomenon of potential relevance to laminar mixing: the formation of coherent structures in the web of 3D fluid trajectories due to fluid inertia. Such coherent structures geometrically determine the transport properties of the flow and better understanding of their formation and characteristics may offer ways to control and manipulate the mixing properties of laminar flows. The formation of coherent structures and its impact upon 3D transport properties is demonstrated by way of examples.

  16. Short communication: Preference for flavored concentrate premixes by dairy cows. (United States)

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Weeks, H L; Faugeron, J; Hristov, A N


    Flavor preferences may be used to stimulate feed intake in dairy cows, which may improve use of robotic milking systems and increase feed intake of sick cows. A cafeteria-design experiment was used to determine if dairy cows have flavor preferences. Sixteen lactating Holstein cows averaging 197±32d in milk, 1.9±0.8 lactations, 27.8±4.2kg/d of dry matter intake, and 41.5±7.4kg/d of milk yield were involved in the experiment. Cows were offered 7 flavored concentrate premixes (FCP) and 1 control premix. The FCP flavors were anise, fenugreek, honey, orange, thyme, molasses, and vanilla; the absence of flavor, neutral, acted as a control. The inclusion rate of the flavors in FCP was 250 to 300g/t on an as-is basis. Cows were not adapted to the flavors before the experiment. Cows were housed in a tiestall barn and offered, on each day, 4 different FCP (1kg each) in plastic bins placed in front of each cow. The experiment lasted 6 consecutive days. Each FCP was presented to each cow once every 2d, 2h after the morning feeding. Flavors and position of the bins in front of the cows were randomized. As a result, each flavor was presented to each cow 3 times during the experiment, at 3 different bin locations. Each cow had access to the FCP for 5min from the time they started eating. Eating time and amount eaten were recorded. The vanilla and fenugreek FCP were consumed the most, at 408 and 371g/5-min offering, respectively, whereas the orange and anise FCP were consumed the least, at 264 and 239g/5-min offering, respectively. Similarly, cows spent the most time eating the vanilla and fenugreek FCP at 99 and 75 s/offering, respectively, and the least amount of time eating the orange and anise FCP at 49 and 50 s/offering, respectively. We detected an effect of bin position: the 2 center FCP were consumed more than the outer 2 FCP. Flavor had no effect on consumption rate. In conclusion, relative to the control, concentrate intake was not affected by flavor, but dairy cows

  17. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.


    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  18. A Lean Methane Prelixed Laminar Flame Doped witg Components of Diesel Fuel. Part I: n)Butylbenzene

    CERN Document Server

    Pousse, Emir; Fournet, René; Battin-Leclerc, Frédérique; 10.1016/j.combustflame.2008.09.012


    To better understand the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) of methane, 36.8% of oxygen and 0.96% of n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C10H14 / CH4 of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C0-C2 combustion products, but also 16 C3-C5 hydrocarbons, 7 C1-C3 oxygenated compounds, as well as 20 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, allylbenzene, propylbenzene, cumene, methylstyrenes, butenylbenzenes, indene, indane, naphthalene, phenol, benzaldehyde, anisole, benzylalcohol, benzofuran, and isomers of C10H10 (1-methylindene, dihydronaphtalene, butadienylbenzene). A new mechanism for the...

  19. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy (United States)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei


    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  20. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows (United States)


    adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on

  1. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail:; Saffar-avval, Majid


    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364. - Highlights: • In this numerical study, the thermohydrodynamic characteristics of a laminar steady state ferroconvection was investigated in circular axisymmetric pipe under constant heat flux. • A magnetic field causes an increase in both pressure loss and heat transfer such that performance index remain acceptable for all linear distributions. • In constant total magnetic energy, an increase of magnetic field gradient tends to decrease the effectiveness slightly. • Magnetic field of lower gradient with high intensity is the best choice for both saving energy and heat transfer enhancement increase of up to 1.3638 and 135.65% respectively.

  2. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime (United States)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric


    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  3. A new approach to laminar flowmeters. (United States)

    Pena, Fernando Lopez; Diaz, Alvaro Deibe; Lema, Marcos Rodriguez; Rodriguez, Santiago Vazquez


    After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop.

  4. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    Sourabh S Diwan; O N Ramesh


    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel. First, a basic (unforced) separation bubble is obtained to set a benchmark for further experiments. Parametric study is done where the reference velocity is decreased to quantify its effect on the aspect ratio of the bubble. It is found that with decrease in Reynolds number, the height of the bubble increases at a greater rate than the length. This feature could be useful in characterising separation bubbles especially from the point of view of low Reynolds number aerofoil design. Artificial disturbance is introduced at two different initial amplitudes (infinitesimal and finite) upstream of separation location and hotwire anemometry is used to trace the wave packet as it is advected downstream. The evolution of wave packets is seen to take place in two distinct stages. Finite amplitude forcing causes periodic quenching of the bubble. Interestingly, even an infinitesimally small forcing is seen to modify and thereby control the separation bubble.

  5. Direct Numerical Simulation of laminar separation bubbles (United States)

    Ramesh, O. N.; Patwardhan, Saurabh; Mitra, Abhijit


    This work presents the DNS of laminar separation bubbles (LSB) that formed over a flat plate due to an imposed pressure gradient. Mean flow parameters such as mean velocity, static pressure distribution and the geometric parameters, such as aspect ratio of the LSB, over the plate closely corresponds to those found in experiments and literature. The locus of the inflection point of the mean velocity profile was found to lie outside the dividing streamline and this is expected to correspond to a convectively unstable bubble. A closer look of the LSB as when advects along the reverse flow streamline adjacent to the wall suggest that turbulence progressively decayed as one moved upstream. This is indicative of the phenomenon similar to relaminarisation in this region, presumably due to the decrease in pressure along the reverse flow streamline. The energy budget inside the dividing streamline showed interesting trends and these will be discussed during the presentation. Furthermore, the dynamics of free shear layer and nonlinearity will also be presented.

  6. Review of hybrid laminar flow control systems (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.


    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  7. A New Approach to Laminar Flowmeters

    Directory of Open Access Journals (Sweden)

    Alvaro Deibe


    Full Text Available After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop.

  8. Boundary Layers in Laminar Vortex Flows. (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  9. Laminar flow resistance in short microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Phares, D.J. [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering; Smedley, G.T.; Zhou, J. [Glaukos Corp., Laguna Hills, CA (United States). Dept. of Research and Development


    We have measured the pressure drop for the flow of liquid through a series of short microtubes ranging from 80 to 150 {mu}m in diameter with aspect ratios between L/D = 2 and L/D = 5. These dimensions were selected to resemble lumens of implantable microstents that are under consideration for the treatment of glaucoma. For physiologically relevant pressure drops and flow rates, we have determined that a fully-developed laminar pipe flow may be assumed throughout the microtube when (L/D) > 0.20Re, where Re is the Reynolds number based on the diameter, D, and L is the length of the tube. We have examined flow rates between 0.1 and 10 {mu}L/s, corresponding to Reynolds numbers between 1 and 150. For smooth microtubes, no difference from macroscopic flow is observed for the tube sizes considered. However, flow resistance is found to be sensitive to the relative surface roughness of the tube walls. (author)

  10. Einstein's steady-state cosmology (United States)

    O'Raifeartaigh, Cormac


    Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.

  11. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.


    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  12. Simulation studies of premixed ch4/air Microcombustion

    Directory of Open Access Journals (Sweden)

    P.Bala Murali


    Full Text Available A numerical study of CH4-air premixed combustion in the micro combustors with a five step global mechanism is performed by solving the two dimensional governing equations of continuity, momentum and species, coupled with the energy equation. A reference case is defined as the combustion in a cylindrical tube with 1 mm inlet diameter and length 10 times its inlet diameter with a uniform velocity profile at the inlet plane. Different physical and boundary conditions have been applied in order to investigate their respective effects on the flame temperature. The conditions studied in the current paper include the combustor size, geometry and inlet velocities. Downscaling the combustion chamber and higher velocities leaded to reduction in residence time which results in lower combustion efficiency causing insufficient heat generation unable to maintain the self-sustained combustion. The effect of variation in inlet velocity has role in the determining the flame position in combination with given thermal conditions. The results of this paper indicate that these various boundary and physical conditions have effects on the flame temperature to different extent and should be carefully monitored when applied for different applications.

  13. Hydrogen-hydrocarbon turbulent non-premixed flame structure

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [ANSYS-Benelux, 4 Avenue Pasteur, B-1300 Wavre (Belgium); Sarh, B.; Goekalp, I. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 1 C avenue de la recherche scientifique, Orleans 45071 Cedex 2 (France)


    In this study, the structure of turbulent non-premixed CH{sub 4}-H{sub 2}/air flames is analyzed with a special emphasis on mixing and air entrainment. The amount of H{sub 2} in the fuel mixture varies under constant volumetric fuel flow. Mixing is described by mixture fraction and its variance while air entrainment is characterized by the ratio of gas mass flow to fuel mass flow at the inlet section. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by the computational fluid dynamics (CFD) code. The slow chemistry aspect of NO{sub x} is handled by solving an additional transport equation with a source term derived from flamelet library. The results obtained show an improvement of mixing with hydrogen addition leading to a strong consumption of CH{sub 4} and a high air entrainment into the centerline region. As a global effect of this, the composite fuels burn faster and thereby reduce the residence time which ultimately shortens the flame length and thickness. On the other hand, hydrogen is found to increase NO{sub x} level. (author)

  14. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro


    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  15. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk


    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  16. Development of a lean premixed burner for hydrogen utilization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.O. [Sandia National Lab., Livermore, CA (United States)


    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  17. Unstrained and strained flamelets for LES of premixed combustion (United States)

    Langella, Ivan; Swaminathan, Nedunchezhian


    The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.

  18. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)


    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  19. Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique (United States)

    Seeger, Thomas; Jonuscheit, Joachim; Schenk, Martin; Leipertz, Alfred


    Using combined 'smeared' vibrational coherent anti-Stokes Raman spectroscopy (VCARS) and dual-broadband rotational CARS (DBB-RCARS) simultaneous measurements of temperature and relative concentrations of O 2/N 2 and CH 4/N 2 have been conducted in a fuel-rich ( φ=10), laminar, partially premixed CH 4/air-flame. The equivalence ratio was calculated from the relative concentration data determined. Using a dye laser which has been tuned to the Q-branch transitions of methane both VCARS and DBB-CARS signals were generated and detected simultaneously by a conventional DBB-RCARS-setup and a planar BOXCARS phase-matching scheme. In contrast to previous approaches, an important advantage of this technique is that no modification of the experimental setup is necessary which would increase the complexity of the system. Due to its molecular symmetry, methane can only be observed by VCARS. The DBB-RCARS approach was used to probe nitrogen and oxygen. In this way the measured signal is separated into two parts. The relative intensity of the 'smeared' VCARS signal determines the relative concentration of methane and the residual DBB-RCARS signal is evaluated by a conventional contour fit to obtain the temperature and the relative concentration of oxygen. Radial temperature and concentration profiles are measured at different downstream positions in the flame. A comparison of the obtained temperatures with previous results from spontaneous Raman scattering and filtered Rayleigh scattering indicates good agreement.

  20. N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure (United States)

    Ni, Gengsong; Qian, Muyang; Yang, Congying; Liu, Sanqiu; Wang, Dezhen


    In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model, two sub-models of time-dependent plasma dynamics and laminar flow are connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N2 gas. The mole fractions of the N2 (NMF) ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×106 m/s to 0.80×106 m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization. supported by National Natural Science Foundation of China (No. 11465013), the Natural Science Foundation of Jiangxi Province, China (No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (No. 2015DFA61800)


    KAUST Repository

    Lee, Bok Jik


    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  2. Photon-counting chirped amplitude modulation lidar using a smart premixing method. (United States)

    Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong


    We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.

  3. An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol

    Directory of Open Access Journals (Sweden)

    S. Saravanan


    Full Text Available This paper investigates the combustion, performance and emission characteristics of a partial Premixed Charge Compression Ignition-Direct Injection (PCCI-DI Engine with premixed fuels ethanol and gasohol (90% gasoline and 10% ethanol by volume along with direct injection of diesel fuel into the combustion chamber. The experiments were conducted in a four stroke, naturally aspirated, air cooled, constant speed diesel engine with 20% premixed fuels from no load to full load condition. The addition of premixed fuel enhances the air fuel mixture strength and for that the combustion duration is decreased in dual fuel operation. From this experiment it was observed the 70% and 67% reduction in smoke emission from premixed gasohol and ethanol fuel when compared to neat diesel operation. In addition to that, the oxides of nitrogen emissions were reduced to 30% and 24% for premixed gasohol and ethanol fuel. In particular, premixed gasohol reduces the smoke and oxides of nitrogen emissions more than the ethanol and also, significant increase in brake thermal efficiency was noted in 20% premixed gasohol and ethanol in dual fuel mode, when compared to neat diesel operation.

  4. Effect of powder density variation on premixed Ti-6Al-4V and Cu composites during laser metal deposition

    CSIR Research Space (South Africa)

    Erinosho, MF


    Full Text Available This paper reports the effect of powder density variation on the premixed Ti-6Al-4V/Cu and Ti-6A-4V/2Cu Composites. Two sets of experiment were conducted in this study. Five deposits each were made for the two premixed composites. Laser powers were...

  5. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames (United States)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.


    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  6. Asymptotic analysis, direct numerical simulation and modeling of premixed turbulent flame-wall interaction; Etude asymptotique, simulation numerique directe et modelisation de l`interaction flamme turbulente premelangee-paroi

    Energy Technology Data Exchange (ETDEWEB)

    Bruneaux, G.


    Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.

  7. Tabulated Combustion Model Development For Non-Premixed Flames (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  8. Lean premixed flames for low NO{sub x} combustors

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.; Tseng, L.; Bryjak, J. [Purdue Univ., West Lafayette, IN (United States)] [and others


    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  9. Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces (United States)

    Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.


    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.

  10. Effects of a Premixed Layer on the Richtmyer-Meshkov Instability

    Institute of Scientific and Technical Information of China (English)

    TIAN Bao-Lin; ZHANG Xin-Ting; QI Jin; WNG Shuang-Hu


    The effects of a premixed layer on the Richmyer-Meshkov instability (RMI) are studied by setting a density gradient for the first shocked fluid in the RMI problems.The RMI with initial density gradients are simulated by using a high resolution arbitrary Lagrangian-Eulerian method.The effects of density gradient and gradient width are analyzed on the basis of the simulation results for the shock from a light fluid to a heavy fluid and for the shock from a heavy fluid to a light fluid.Overall,the premixed layer can suppress the perturbation growth,and the detailed effects are different depending on the detailed premixed configuration.The width of the premixed layer has a very light influence on the perturbation,while the density gradient has quite a significant effect on two kinds of RMIs.The instability of a material interface under an acceleration by an incident shock was predicted theoretically by Richtmyer in 1960.Ten years later,Meshkov confirmed experimentally Richtmyer's prediction.Since then,this interfacial instability has been referred as the Richtmyer-Meshkov instability (RMI).[1-11] Such instabilities are observed in supernovae explosions and inertial confinement fusion (ICF),and are thus of great importance to science and technology.Extensive theoretical and experimental studies of the RM instability have been carried out in the last three decades.With the advent of computer technology and increasing computing power,numerical studies of the RM instability have become very common.%The effects of a premixed layer on the Richmyer-Meshkov instability (RMI) are studied by setting a density gradient for the first shocked fluid in the RMI problems. The RMI with initial density gradients are simulated by using a high resolution arbitrary Lagrangian-Eulerian method. The effects of density gradient and gradient width are analyzed on the basis of the simulation results for the shock from a light fluid to a heavy fluid and for the shock from a heavy fluid to a light

  11. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. (United States)

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru


    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  12. Laminar and turbulent heating predictions for mars entry vehicles (United States)

    Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei


    Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.

  13. Spontaneous transfer of droplets across microfluidic laminar interfaces. (United States)

    Deng, Nan-Nan; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin


    The precise manipulation of droplets in microfluidics has revolutionized a myriad of drop-based technologies, such as multiple emulsion preparation, drop fusion, drop fission, drop trapping and drop sorting, which offer promising new opportunities in chemical and biological fields. In this paper, we present an interfacial-tension-directed strategy for the migration of droplets across liquid-liquid laminar streams. By carefully controlling the interfacial energies, droplets of phase A are able to pass across the laminar interfaces of two immiscible fluids from phase B to phase C due to a positive spreading coefficient of phase C over phase B. To demonstrate this, we successfully perform the transfer of water droplets across an oil-oil laminar interface and the transfer of oil droplets across an oil-water laminar interface. The whole transfer process is spontaneous and only takes about 50 ms. We find that the fluid dynamics have an impact on the transfer processes. Only if the flowrate ratios are well matched will the droplets pass through the laminar interface successfully. This interfacial-tension-directed transfer of droplets provides a versatile procedure to make new structures and control microreactions as exemplified by the fabrication of giant unilamellar vesicles and cell-laden microgels.

  14. Steady-State Process Modelling

    DEFF Research Database (Denmark)


    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process.......This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...

  15. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)


    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  16. Temperature measurement in laminar free convective flow using digital holography. (United States)

    Hossain, Md Mosarraf; Shakher, Chandra


    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  17. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)


    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  18. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)


    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  19. Function of dorsal fins in bamboo shark during steady swimming. (United States)

    Maia, Anabela; Wilga, Cheryl A


    To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.

  20. Steady-State Process Modelling

    DEFF Research Database (Denmark)


    This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches i...

  1. Method and apparatus for detecting laminar flow separation and reattachment (United States)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)


    The invention is a method and apparatus for simultaneously detecting laminar separation and reattachment of a fluid stream such as an airstream from and to the upper surface of an airfoil by simultaneously sensing and comparing a plurality of output signals. Each signal represents the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of the airfoil that extends parallel to the airstream. The output signals are simultaneously compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment.

  2. Understanding the Role of Heat Recirculation in Enhancing the Speed of Premixed Laminar Flames in a Parallel Plate Micro-Combustor (United States)


    I would also like to thank my parents (Mr. A. Veeraragavan and Mrs. R. Lakxshmi), my uncle Mr. Ganesh Shastri, my aunt Mrs. Jaya Shastri, my aunt ... pressure term in eq. 3-34 drops out) to achieve maximum thrust.              === freee e L freeefreeL eL freeh h h U U D d S DUS UdS...Micro-Combustor 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  3. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    DEFF Research Database (Denmark)

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders


    flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-models for absorption and emission coefficients. The model using constant values for the absorption...... and emission coefficients gave good agreement with measurements for the regions close to burner outlet. However, the weighted Sum of Gray Gas model (WSGGM) reasonably predicts the flame temperature as the flame height about the burner outlet increases....

  4. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin


    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  5. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF (United States)

    Kim, Jeonglae; Pope, Stephen


    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  6. Influence of particle size on hardening and handling of a premixed calcium phosphate cement. (United States)

    Aberg, Jonas; Engstrand, Johanna; Engqvist, Håkan


    Premixed calcium phosphate cements (pCPC) have been developed to circumvent problems related to mixing and transfer of cements in the operating room. In addition, by using pCPC the short working times generally associated with conventional water-mixed cements are avoided. In this work, the influence of particle size on handling and hardening characteristics of a premixed monetite cement has been assessed. The cements were evaluated with respect to their injectability, setting time and compressive strength. It was found that cements with smaller particle sizes were more difficult to inject and had higher compressive strength. Regarding setting time, no clear trend could be discerned. The addition of granules made the cements easier to inject, but setting time was prolonged and lower strengths were obtained. The main findings of this work demonstrate that particle size can be used to control handling and physical properties of premixed cements and that previous knowledge from water-based CPC, regarding effects of particle size, is not directly applicable to premixed CPC.

  7. Acute toxicity study of Vilocym Premix (herbal growth promoter for Livestockin Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    A.H. Ahmad


    Full Text Available An experimental study with the objective of safety evaluation of Vilocym Premix, herbal growth promoter for Livestock (supplied by Ayurvet Ltd., Baddi, India, was done as per standard guidelines of OECD-423 for acute toxicity testing. Vilocym Premix is a scientifically developed combination of herbs that contains herbal ingredients namely Azadirachta indica, Curcuma longa & many more alongwith natural zeolites. The study was done in 3 males and 3 female Wistar Albino rats, which were administered an initial dose of 50 mg/kg body weight followed by dose rates of 300, 500 & 5000 mg/kg body weight of test compound. The animals were observed for signs of convulsions, tremors, circling, depression, excitement and mortality. Body weight was recorded at 0,7th and 14th day and plasma total protein, albumin; AST and ALT were measured after 3rd day of experiment. No abnormal sign of symptoms were observed in any of the animal fed with Vilocym Premix at the dose rate of 50, 300, 500 & 5000 mg/kg. No mortality was observed indicating safety of herbal premix. [Vet. World 2009; 2(3.000: 100-102

  8. Numerical and experimental investigation of NO{sub x} formation in lean premixed combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K.; Benz, P.; Marti, T.; Schaeren, R.; Schlegel, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    A high pressure jet-stirred reactor has been built and employed to investigate NO{sub x} formation in lean premixed combustion of methane/air. Experimental results are compared with numerical predictions using the model of a perfectly stirred reactor and elementary reaction mechanisms. Four reaction mechanisms are considered with respect to NO{sub x} formation. (author) 3 figs., 6 refs.

  9. High throughput production of double emulsions using packed bed premix emulsification

    NARCIS (Netherlands)

    Sahin, S.; Sawalha, H.I.M.; Schroen, C.G.P.H.


    We explored the potential of packed bed premix emulsification for homogenizing coarse food grade W/O/W emulsions, prepared with sunflower oil. Using packed beds with different glass bead sizes (30–90 µm) at different applied pressures (200–600 kPa), emulsions with reasonably uniform droplet size (sp

  10. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof , E.


    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great pract

  11. Polylactide microspheres prepared by premix membrane emulsification - Effects of solvent removal rate

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Purwanti, N.; Rinzema, A.; Schroën, C.G.P.H.; Boom, R.M.


    Polylactide microspheres were prepared by pre-mix membrane emulsification and subsequent extraction of solvent in a coagulation bath, and ultimately to the gas phase. The polymer was dissolved in dichloromethane and emulsified with water or water¿methanol mixtures by repeated passage through a glass

  12. Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system

    NARCIS (Netherlands)

    Eisinaite, Viktorija; Juraite, Dovile; Schroën, Karin; Leskauskaite, Daiva


    In this study we demonstrate that food-grade double emulsions can be successfully prepared using a hybrid premix emulsification system. A coarse emulsion containing beetroot juice as inner water phase, sunflower oil as oil phase and 0.5% or 1.0% whey protein isolate solution as outer water phase

  13. A non-adiabatic flamelet progress–variable approach for LES of turbulent premixed flames

    NARCIS (Netherlands)

    Cecere, Donato; Giacomazzi, Eugenio; Picchia, Franca R.; Arcidiacono, Nunzio; Donato, Filippo; Verzicco, Roberto


    A progress variable/flame surface density/probability density function method has been employed for a Large Eddy Simulation of a CH4/Air turbulent premixed bluff body flame. In particular, both mean and variance of the progress variable are transported and subgrid spatially filtered gradient contrib

  14. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames (United States)


    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...flames. Mixture fraction is an important variable in understanding and modeling turbulent mixing and turbulence- chemistry interaction, two key

  15. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig


    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement ...

  16. Rare earth metals appliance for magnetic admixtures recovery from mineral premixes

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov


    Full Text Available The analysis of the material composition metallomagnetic admixtures of mineral premix. It is shown that the dressed metallomagnetic impurity includes low-magnetic particles with low magnetic susceptibility. Removing these particles from the product stream in process of magnetic separation using high-energy rare earth magnets is a challenging task.

  17. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.


    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  18. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem


    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  19. The application of near-infrared spectroscopy for the quality control analysis of rocket propellant fuel pre-mixes. (United States)

    Judge, Michael D


    The viability of near-infrared (NIR) spectroscopy as a technique for the quality control analysis of ingredient concentrations in a rocket propellant fuel liquid pre-mix was investigated. The pre-mix analyzed consisted of a polybutadiene pre-polymer, a plasticizer and two antioxidants. It was determined that NIR spectroscopy offered a fast and convenient method of verifying the percentage level of all four ingredients while requiring no sample preparation. The NIR methodology exhibited a high level of accuracy and precision. There was also a clear indication that the technique allowed monitoring of antioxidant depletion in the pre-mix on ageing.

  20. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot Sullivan- [Univ. of California, Irvine, CA (United States); McDonell, Vincent G. [Univ. of California, Irvine, CA (United States)


    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  1. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot; McDonell, Vincent


    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  2. Laminar hydromagnetic flows in an inclined heated layer

    Directory of Open Access Journals (Sweden)

    Paolo Falsaperla


    Full Text Available In this paper we investigate, analytically, stationary laminar flow solutions of an inclined layer filled with a hydromagnetic fluid heated from below and subject to the gravity field. In particular we describe in a systematic way the many basic solutions associated to the system. This extensive work is the basis to linear instability and nonlinear stability analysis of such motions.

  3. Numerical assessment of accurate measurements of laminar flame speed (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano


    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  4. Laminar-turbulent transition delay on a swept wing (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Hanifi, A.


    The paper describes the results of experiments on robustness of laminar-turbulent transition control on a swept-wing using distributed micro-sized roughness (DMSR) elements. These elements introduce controlled stationary vortices which are able to significantly modify the base flow and its stability characteristics. We have performed parametric study first varying height and period of the DMSR elements in order to find the most stabilizing effect on boundary later flow in compare to uncontrolled reference case without DMSR. Significant downstream shift of laminar-turbulent transition position due to application of DMSR is found and well documented with help of thermography. The robustness of this flow control method was studied by variation of the wind-tunnel flow quality introducing significant sound background or introducing enhanced turbulence level (applying turbulizing grids). The wind-tunnel tests performed with turbulence-generating grids (at enhanced turbulence levels) have shown that laminar-turbulent transition moves upstream in this case, while DMSR-elements loose their effectiveness for transition control (no matter in quiet sound conditions or at elevated sound background). The experiments on acoustic influence have shown that without DMSR acoustic does not effect transition location. However, in case then laminar-turbulent transition is delayed by presence of DMSR, an additional transition delay was observed when harmonic acoustic waves of certain frequency were excited.


    Directory of Open Access Journals (Sweden)

    Mikoláš Kesely


    Full Text Available The paper deals with a determination of the terminal settling velocity of coarse particles in quiescent visco-plastic liquids of Herschel-Bulkley type. Experiments on laminar settling of glass beads of different sizes were conducted in transparent Carbopol solutions of various rheological properties in a sedimentation column. The terminal settling velocity of a solitude bead was determined together with the rheological parameters of the Carbopol liquid. An evaluation of the experimental results confirms the existence of the laminar regime for all tests and compares the measured velocities with predictions by Wilson et al. method. Furthermore, an alternative method is proposed for a prediction of the terminal settling velocity in the laminar regime which uses a particle-based determination of the strain rate in the expression for the equivalent viscosity. A comparison with our experimental results shows that the predictions using the proposed method agree well with the experiments and the proposed method is in the laminar settling regime more accurate than the Wilson et al. method.

  6. Laminar Soot Processes Experiment Shedding Light on Flame Radiation (United States)

    Urban, David L.


    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  7. Multiple paths to subharmonic laminar breakdown in a boundary layer (United States)

    Zang, Thomas A.; Hussaini, M. Yousuff


    Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbancews need not take the conventional lambda vortex/high-shear layer path.

  8. Flight tests of a supersonic natural laminar flow airfoil (United States)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.


    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  9. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi


    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  10. The Effect of Premixed Schedule on the Crystal Formation of Calcium Phosphate Cement-chitosan Composite with Added Tetracycline

    Institute of Scientific and Technical Information of China (English)

    Jing MAO; Yan LIU; Bin ZHOU; Liyun YAO


    In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC and chitosan-TTC-CPC were investigated with different premixed schedule. It was demonstrate that both TTC and chitosan worked on the phase transition and crystal characteristics. TTCP mixed with phosphate acid saline solution had similar features of Fourier transform-infrared spectrometry (FT-IR) no matter it was mixed with chitosan or TTC or both. TTC premixed with cement liquid or powder had significant different features of FT-IR and 876 cm-1seemed to be a special peak for TTC when TTC was premixed with cement liquid. This was also supported by XRD analysis, which showed that TTC premixed with cement liquid improved phase transition of TTCP to OCP. Chitosan, as organic additive, regulates the regular crystal formation and inhibits the phase transition of TTCP to OCP, except when it is mingled with cement liquid premixed with TTC in field scanning electron microscope. It was concluded that the premixed schedule influences the crystal formation and phase transition, which may be associated with its biocompatibility and bioactivities in vivo.

  11. Conceptual design for a laminar-flying-wing aircraft (United States)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  12. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames (United States)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.


    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  13. Numerical Study of Laminar-Turbulent Transition on a Plate in a Low-Speen Tunnel with Contoured Wall

    Institute of Scientific and Technical Information of China (English)


    Laminar-turbulent transition flow phenomena on a flat plate in a low-speed wind tunnel at different Reynolds numbers were studied numerically.The flow calculation is based on an inviscid/boundary layer interaction method with modified Abu-Ghannam/Shaw(AGS) transition criterion.The test section has non-symmetrical contoured walls,and the plate is located biased the bottom side with a height ratio of 26:14.Intest case of steady flow,a laminar-turbulent transition takes place and a small separation bubble occurs on the upper side of the plate,when the inlet Reynolds number is as small as 0.631×10-6,.The predicted transition location agrees well with that of the test results,but the separation bubble is hardly to see from the calculated velocity profiles though the printed data of velocity in this region do show the negative values.The further numerical predictions with different Reynolds numbers corresponding to the incoming flow velocities show that when the Reynolds number is greater than 1.379×10-6,the separation bubble does not occur,which is coincident with the experimental results.The influence of the side wall geometry on the transition on the plate is also studied.

  14. Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

    Indian Academy of Sciences (India)

    Rambir Bhadouriya; Amit Agrawal; S V Prabhu


    The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range considered was 100-3000. Twist ratio used are 2.5, 5, 10 and 20. Fluids considered are in Prandtl number range of 0.7-20. Product of friction factor and Reynolds number is found to be a function of Reynolds number and maximum values are observed for a twist ratio of 2.5 and Reynolds number of 3000. Maximum Nusselt number is observed for the same values along with Prandtl number of 20. Correlations for friction factor and Nusselt number are developed involving swirl parameter. Local distribution of friction factor ratio and Nusselt number across a cross-section is presented. Based on constant pumping power criteria, enhancement factor is defined to compare twisted ducts with straight ducts. Selection of twisted square duct is presented in terms of enhancement factor. It is found that twisted duct performs well in the laminar region for range of parameters studied. Heat transfer enhancement for Reynolds number of 3000 and Prandtl number of 0.7 for twist ratio of 2.5, 5, 10, and 20 is 20%, 17.8%, 16.1% and 13.7%, respectively. The results are significant because it will contribute to development of energy efficient compact size heat exchangers.

  15. Influence of mesenchymal stem cells on the response of endothelial cells to laminar flow and shear stress. (United States)

    Hong, Minsung; Jo, Hansu; Ankeny, Randell F; Holliday-Ankeny, Casey J; Kim, Hyengseok; Khang, Gilson; Nerem, Robert M


    The interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in a complex hemodynamic environment play an important role in the control of blood vessel function. Since autologous SMCs are not readily available for the tissue engineering of a blood vessel substitute, a substitute for SMCs, such as human adult bone marrow-derived mesenchymal stem cells (MSCs), is needed. The objective of this study was to use a three-dimensional coculture model of the blood vessel wall, comprised of ECs and MSCs, to determine how the presence of MSCs affects EC function. Two vascular coculture models with an EC monolayer were created using type I collagen. All models were exposed to steady laminar flow with a shear stress of 15 dyn/cm(2) for up to 48 h. ECs in both the MSC and SMC coculture models expressed up-regulated EC-specific markers compared to the EC-only control model. The most dramatic difference observed between the two coculture models was in the experiments assessing monocyte adhesion. Here, fewer monocytes bound after laminar shear compared to static conditions; however, the number of bound monocytes was much lower for the EC-MSC coculture model than the EC-SMC coculture model for both static and shear conditions. These results suggest the feasibility of developing a tissue-engineered blood vessel substitute using MSCs as a substitute for SMCs.

  16. Multimode optical fibers: steady state mode exciter. (United States)

    Ikeda, M; Sugimura, A; Ikegami, T


    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  17. Efficient solution of two-dimensional steady separated flows (United States)

    Napolitano, M.

    This work is concerned with the numerical solution of 2D incompressible steady laminar separated flows at moderate-to-high values of Re. The vorticity-stream function Navier-Stokes equations, as well as approximate models based upon the boundary-layer theory, will be considered. The main objective of the paper is to present the development of an efficient approach for solving a class of problems usually referred to as high Re weakly separated flows. A description is given of a block-alternating-direction-implicit method, which applies the approximate factorization scheme of Beam and Warming to the vorticity-stream function equations, using the delta form of the deferred correction procedure of Khosla and Rubin to combine the stability of upwind schemes with the accuracy of central differences. The logical steps which led to the development of a more efficient incremental block-line Gauss-Seidel method and to a simple multigrid strategy particularly suited for this kind of numerical scheme are then outlined. Finally, benchmark-quality solutions for separated flows inside diffusers and channels with smooth as well as sudden expansions are presented.

  18. Analysis of developing laminar flows in circular pipes using a higher-order finite-difference technique (United States)

    Gladden, Herbert J.; Ko, Ching L.; Boddy, Douglas E.


    A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested.

  19. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng


    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...... predictions have shown satisfactory agreement with the experimental results. Basing on the rate-of-production analysis, the reaction pathways that feature the combustion of nitroethane were revealed, including the primary decomposition of C–N bond fission, the oxidation of C2 and C1 hydrocarbons...

  20. Effects Of Ignition on Premixed Vortex Rings: A Simultaneous PLIF and PIV Investigation (United States)

    Meyer, T. R.; Gord, J. R.; Katta, V. R.; Gogineni, S. P.


    Preliminary studies of reacting, premixed vortex rings have shown that flame propagation is highly sensitive to ignition timing, equivalence ratio, and vortex strength. A variety of divergent phenomena have been observed, such as interior/exterior flame propagation, vortex-induced flame bridging across the jet column, and the formation of unburned pockets. In the current work, planar laser-induced fluorescence (PLIF) of acetone and OH is performed to study the non-reacting and reacting regions, respectively, and particle image velocimetry (PIV) is used to study the effects of reaction on the flow field. The flow field consists of well-characterized vortex rings of premixed methane and air generated at the exit of an axisymmetric nozzle using a solenoid-driven piston. Ignition is initiated at various phases of vortex development and propagation. Results are compared with corresponding numerical simulations from a time-dependent computational fluid dynamics code with chemistry.

  1. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.


    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  2. Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames (United States)

    Sabelnikov, Vladimir A.; Lipatnikov, Andrei N.


    When a premixed flame propagates in a turbulent flow, not only does turbulence affect the burning rate (e.g., by wrinkling the flame and increasing its surface area), but also the heat release in the flame perturbs the pressure field, and these pressure perturbations affect the turbulent flow and scalar transport. For instance, the latter effects manifest themselves in the so-called countergradient turbulent scalar flux, which has been documented in various flames and has challenged the combustion community for approximately 35 years. Over the past decade, substantial progress has been made in investigating (a) the influence of thermal expansion in a premixed flame on the turbulent flow and turbulent scalar transport within the flame brush, as well as (b) the feedback influence of countergradient scalar transport on the turbulent burning rate. The present article reviews recent developments in this field and outlines issues to be solved in future research.

  3. Numerical study of the laminar shock boundary layer interaction (United States)

    Katzer, E.


    The interaction of an oblique shock wave with a laminar boundary layer on an adiabatic flat plate was analyzed numerically with solutions of the two dimensional Navier-Stokes equations using McCormack's explicit finite volume method. The agreement between numerical calculations and experimental results is good. Local and global properties of the interaction region are discussed regarding shock strength, separation bubble length using a similarity law, and separation environment. The asymetrical structure inside the separation bubble produces an asymetrical shape of the wall shear stress distribution. The calculation speed was increased by algorithm vectorization on a CRAY 1S supercomputer. Further investigations for determination of a similarity law in interaction with turbulent boundary layer, of the physical mechanisms of the laminar interaction, and for study of the wall temperature transfer are recommended.

  4. Gyrotactic trapping in laminar and turbulent Kolmogorov flow

    CERN Document Server

    Santamaria, Francesco; Cencini, Massimo; Boffetta, Guido


    Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases we show t...

  5. Effect of heat loss on laminar flamelet species concentration (United States)

    Boccanera, Marco; Lentini, Diego


    The effects of heat loss on the structure of laminar flamelets, which are the constitutive elements of turbulent flames under the most common operating conditions, are investigated for typical aeronautical gas-turbine operating conditions at take-off. The magnitude of heat loss is quantified via the "enthalpy defect" measured with respect to an adiabatic flame. A procedure to generate laminar flamelets with an assigned enthalpy defect at the boundaries is devised and applied to nonpremixed propane/air flames, as propane reproduces the essential features of higher hydrocarbon combustion. It is found, contrary to commonly held beliefs, that the enthalpy defect has a significant effect on the concentration not only of minor species, but also of main reaction products. Such effects are found in general to be more pronounced for fuel-rich conditions. An impact is anticipated on the formation rate of nitric oxides. The effects of scalar dissipation rate are also discussed.

  6. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation (United States)

    Ortiz de Zárate, José M.; Sengers, Jan V.


    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  7. Laminar flow of two miscible fluids in a simple network

    CERN Document Server

    Karst, Casey M; Geddes, John B


    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by d...

  8. Particle streak velocimetry and its application to impinging laminar jets (United States)

    Bergthorson, Jeff; Dimotakis, Paul


    The technique of Particle Streak Velocimetry (PSV) was improved to include digital imaging and image processing, allowing it to compete with PIV or LDV in terms of accuracy and ease of implementation. PSV provides advantages over other techniques, such as low particle mass loading, short run time experiments, and high accuracy velocity data through the direct measurement of Lagrangian trajectories. PSV, coupled with measurements of the static (Bernoulli) pressure drop across a well designed nozzle contraction, provided redundancy in the measurement of the axisymmetric impinging laminar jet. The impinging laminar jet was studied in the intermediate regime where the existence of a stagnation plate will affect the flow out of the nozzle. This nozzle separation to diameter ratio, L/d_j, regime has not been well characterized. The results indicate that a one-dimensional streamfunction formulation is not sufficient to characterize this flow.

  9. Transition from laminar to turbulent flow in liquid filled microtubes (United States)

    Sharp, K. V.; Adrian, R. J.


    The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800 2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within -1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.

  10. Simulation of hypersonic shock wave - laminar boundary layer interactions (United States)

    Kianvashrad, N.; Knight, D.


    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  11. A case of hypoglycemic brain injuries with cortical laminar necrosis. (United States)

    Lee, Byung-Wan; Jin, Eun Sun; Hwang, Hyung-Sik; Yoo, Hyung-Joon; Jeong, Je Hoon


    We report a case of 68-yr-old male who died from brain injuries following an episode of prolonged hypoglycemia. While exploring controversies surrounding magnetic resonance imaging (MRI) findings indicating the bad prognosis in patients with hypoglycemia-induced brain injuries, we here discuss interesting diffusion-MRI of hypoglycemic brain injuries and their prognostic importance focusing on laminar necrosis of the cerebral cortex.

  12. NO{sub x} formation in lean premixed combustion of methane at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K.U.M.; Griebel, P.; Schaeren, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    High pressure experiments in a jet-stirred reactor have been performed to study the NO{sub x} formation in lean premixed combustion of methane/air mixtures. The experimental results are compared with numerical predictions using four well known reaction mechanisms and a model which consists of a series of two perfectly stirred reactors and a plug flow reactor. (author) 2 figs., 7 refs.

  13. Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy (United States)

    Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl


    Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.

  14. Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames (United States)

    Sitte, Michael Philip; Bach, Ellen; Kariuki, James; Bauer, Hans-Jörg; Mastorakos, Epaminondas


    The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work on non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability Pign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high Pign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model's flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the ST-versus-u‧ curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.

  15. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K


    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  16. Microwave and conventional sintering of premixed and prealloyed Cu-12Sn bronze

    Directory of Open Access Journals (Sweden)

    Sethi G.


    Full Text Available The aim of the present investigation is to study the sintering behavior of the Cu-12Sn bronze system in both, a microwave furnace as well as a conventional furnace. The powders prepared by premixed and prealloyed routes were sintered in the range of solid state, transient and supersolidus liquid phase sintering conditions. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples.

  17. Numerical simulation of pollutant emission and flame extinction in lean premixed systems (United States)

    Eggenspieler, Gilles

    Premixed and partially-premixed combustion and pollutant emissions in full-scale gas turbines has been numerically investigated using a massively-parallel Large-Eddy Simulation Combustion Dynamics Model. Through the use of a flamelet library approach, it was observed that CO (Carbon Oxide) and NO (Nitric Oxide) emission can be predicted and match experimental results. The prediction of the CO emission trend is shown to be possible if the influence of the formation of UHC (Unburnt HydroCarbons) via flame extinction is taken into account. Simulations were repeated with two different combustion approach: the G-equation model and the Linear-Eddy Mixing (LEM) Model. Results are similar for these two set of numerical simulations. The LEM model was used to simulate flame extinction and flame lift-off in a dump combustion chamber. The LEM model is compared to the G-equation model and it was found that the LEM model is more versatile than the G-equation model with regard to accurate simulation of flame propagation in all turbulent premixed combustion regimes. With the addition of heat losses, flame extinction was observed for low equivalence ratio. Numerical simulation of flame propagation with transient inflow conditions were also carried out and demonstrated the ability of the LEM model to accurately simulate flame propagation in the case of a partially-premixed system. In all simulations where flame extinction and flame lift-off was simulated, release of unburnt fuel in the post-flame region through flame extinction was not observed.

  18. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail:; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)


    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  19. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature (United States)

    Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro


    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  20. Laminar flow downregulates Notch activity to promote lymphatic sprouting. (United States)

    Choi, Dongwon; Park, Eunkyung; Jung, Eunson; Seong, Young Jin; Yoo, Jaehyuk; Lee, Esak; Hong, Mingu; Lee, Sunju; Ishida, Hiroaki; Burford, James; Peti-Peterdi, Janos; Adams, Ralf H; Srikanth, Sonal; Gwack, Yousang; Chen, Christopher S; Vogel, Hans J; Koh, Chester J; Wong, Alex K; Hong, Young-Kwon


    The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow-induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow-induced lymphatic sprouting.

  1. Investigation of Turbulent Laminar Patterns in Poiseuille-Couette flow (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios


    Laminar-turbulent intermittency has recently been observed in the transitional regime of pipe ... and plane Couette flow .... While many works focus on behavior of these patterns in plane Couette flow, little attention has been paid to Poiseuille flow and transition from Couette to Poiseuille flow. In this study, we investigate behavior of turbulent laminar patterns in Poiseuille-Couette flow, including pure Poiseuille and Couette flows at two limits. Direct Numerical Simulation (DNS) is used to simulate a Poiseuille-Couette channel at a size of 16 πh × 2h × 2 πh (corresponding to a resolution of 512 × 129 × 128 in x, y and z directions), with periodic boundary condition applied in the x and z directions (h is half of the channel height). The Reynolds number is 300, and the flow is at transitional regime in all simulations. Behavior of laminar turbulent patterns as the flow goes from Couette to Poiseuille flow will be presented in details. This would shed some light on the effect of different types of flow on these patterns, as well as how these patterns vary from fully Poiseuille flow to fully Couette flow.

  2. Characteristics of laminar MHD fluid hammer in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.Y.; Liu, Y.J., E-mail:


    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  3. Detection of Cortical Laminar Architecture Using Manganese-Enhanced MRI (United States)

    Silva, Afonso C.; Lee, Junghee; Wu, Carolyn W.-H.; Tucciarone, Jason; Pelled, Galit; Aoki, Ichio; Koretsky, Alan P.


    Changes in Manganese-Enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until mid-layer IV, and increased again, peaking in layer V, before decreasing through layer VI. The reeler mouse mutant was used to confirm that the cortical alternation in MEMRI contrast was related to laminar architecture. Unlike in wild-type mice, the reeler cortex showed no appreciable changes in MEMRI signal, consistent[ACS1] with absence of cortical laminae in histological slides. The tract-tracing ability of MEMRI was used to further confirm assignments and demonstrate laminar specificity. Twelve to sixteen hours after stereotaxic injections of MnCl2 to the ventroposterior thalamic nuclei, an overall increase in signal intensity was detected in primary somatosensory cortex compared to other brain regions. Maximum intensity projection images revealed a distinctly bright stripe located 600 − 700 μm below the pial surface, in layer IV. The data show that both systemic and tract-tracing forms of MEMRI are useful for studying laminar architecture in the brain. PMID:17936913

  4. Numerical Simulation of Laminar Flow Field in a Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    范茏; 王卫京; 杨超; 毛在砂


    Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.

  5. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame (United States)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha


    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  6. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio


    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  7. Optimization of instant dalia dessert pre-mix production by using response surface methodology. (United States)

    Jha, Alok; Shalini, B N; Patel, Ashok Ambalal; Singh, Mithilesh; Rasane, Prasad


    Dalia, a wheat-based, particulate containing dairy dessert is popularly consumed as a breakfast food and is also considered as a health food. Though popular throughout Northern parts of the country, its limited shelf-life even under refrigeration imposes severe restrictions on its organized manufacture and marketing. In order to promote dalia dessert as a marketable product, in the present study, a process was developed for manufacture of instant dalia pre-mix, as a dry product with long shelf-life, which could be attractively packaged and easily reconstituted for consumption. During the investigation, the effect of different levels of milk solids and wheat solids was studied on dalia pre-mix quality by employing a central composite rotatable design (CCRD). The suggested formulation had 17.82 % milk solids and 2.87 % wheat solids. This formulation was found to be most appropriate for manufacture of instant dalia pre-mix with predicted sensory scores (Max. 100) of 85.35, 41.98 and 67.27 for mouthfeel, consistency and flavor, respectively; the viscosity of the product was 941.0 cp.

  8. Conditional budgets of second-order statistics in nonpremixed and premixed turbulent combustion (United States)

    Macart, Jonathan F.; Grenga, Temistocle; Mueller, Michael E.


    Combustion heat release modifies or introduces a number of new terms to the balance equations for second-order turbulence statistics (turbulent kinetic energy, scalar variance, etc.) compared to incompressible flow. A major modification is a significant increase in viscosity and dissipation in the high-temperature combustion products, but new terms also appear due to density variation and gas expansion (dilatation). Previous scaling analyses have hypothesized that dilatation effects are important in turbulent premixed combustion but are unimportant in turbulent nonpremixed combustion. To explore this hypothesis, a series of DNS calculations have been performed in the low Mach number limit for spatially evolving turbulent planar jet flames of hydrogen and air in both premixed and nonpremixed configurations. Unlike other studies exploring the effects of heat release on turbulence, the turbulence is not forced, and detailed chemical kinetics are used to describe hydrogen-air combustion. Budgets for second-order statistics are computed conditioned on progress variable in the premixed flame and on mixture fraction in the nonpremixed flame in order to locate regions with respect to the flame structure where dilatation effects are strongest.

  9. Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement. (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan


    Premixed calcium phosphate cements can reduce handling complications that are associated with the mixing of cements in the operating room. However, to extend the clinical indication of ceramic cements their mechanical properties need to be further improved. The incorporation of a polymeric material with intrinsically high tensile properties could possibly assist in increasing the mechanical properties of calcium phosphate cement. In this study polymer microparticles made from poly(lactid-co-glycolide) plasticised with poly(ethylene glycol) 400 (PLGA/PEG microparticles) were added in amounts of up to 5 wt% to a premixed acidic calcium phosphate cement. The PLGA/PEG microparticles added undergo a shape transformation at 37 °C, which could give a better integration between polymer microparticles and ceramic cement compared with polymer microparticles lacking this property. The results showed that the incorporation of 1.25 wt% PLGA/PEG microparticles increased the compressive strength by approximately 20% up to 15.1 MPa while the diametral tensile strength was kept constant. The incorporation of PLGA/PEG microparticles increased the brushite to monetite ratio after setting compared with pure ceramic cements. In conclusion, small amounts of PLGA/PEG microparticles can be incorporated into premixed acidic calcium phosphate cement and increase their mechanical properties, which could lead to increased future applications.

  10. Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan


    Premixed calcium phosphate cements can reduce handling complications that are associated with the mixing of cements in the operating room. However, to extend the clinical indication of ceramic cements their mechanical properties need to be further improved. The incorporation of a polymeric material with intrinsically high tensile properties could possibly assist in increasing the mechanical properties of calcium phosphate cement. In this study polymer microparticles made from poly(lactid-co-glycolide) plasticised with poly(ethylene glycol) 400 (PLGA/PEG microparticles) were added in amounts of up to 5 wt% to a premixed acidic calcium phosphate cement. The PLGA/PEG microparticles added undergo a shape transformation at 37 °C, which could give a better integration between polymer microparticles and ceramic cement compared with polymer microparticles lacking this property. The results showed that the incorporation of 1.25 wt% PLGA/PEG microparticles increased the compressive strength by approximately 20% up to 15.1 MPa while the diametral tensile strength was kept constant. The incorporation of PLGA/PEG microparticles increased the brushite to monetite ratio after setting compared with pure ceramic cements. In conclusion, small amounts of PLGA/PEG microparticles can be incorporated into premixed acidic calcium phosphate cement and increase their mechanical properties, which could lead to increased future applications. PMID:24270588

  11. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem


    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  12. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael


    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  13. Bluff-body stabilized flame dynamics of lean premixed syngas combustion (United States)

    Im, Hong G.; Kim, Yu Jeong; Lee, Bok Jik; Kaust Team


    Recently, syngas combustion has been actively investigated for the potential application to integrated gasification combined cycle (IGCC) systems. While lean premixed combustion is attractive for both reduced emission and enhanced efficiency, flame instability becomes often an issue. Bluff-bodies have been adopted as effective flame holders for practical application of premixed flames. In the present study, high-fidelity direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized on a bluff-body, in particular at the near blow-off regime of the flame. A two-dimensional domain of 4 mm height and 20 mm length with a flame holder of a 1 mm-by-1 mm square geometry is used. For a syngas mixture with the equivalence ratio of 0.5 and the CO:H2 ratio of 1, several distinct flame modes are identified as the inflow velocity approaches to the blowoff limit. The sequences of extinction pathway and combustion characteristics are discussed.

  14. White organic light-emitting diodes with an ultra-thin premixed emitting layer

    CERN Document Server

    Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena


    We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

  15. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others


    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  16. Three-dimensional flow and vorticity transport in idealized airway model from laminar to turbulent regimes (United States)

    Jalal, Sahar; van de Moortele, Tristan; Nemes, Andras; Eslam Panah, Azar; Coletti, Filippo


    The presence and intensity of secondary flows formed by the inhaled air during respiration has important consequences for gas exchange and particle transport in the lungs. Here we focus on the formation and persistence of such secondary flows by experimentally studying the steady inspiration in an idealized airway model. The geometry consists of a symmetric planar double bifurcation that respects the geometrical proportions of the human bronchial tree. Physiologically relevant Reynolds numbers from 100 to 5000 are investigated, ranging from laminar to turbulent regimes. The time-averaged, three-dimensional velocity fields are obtained from Magnetic Resonance Imaging (MRI), providing detailed distributions of vorticity, circulation, and secondary flow strength. Information on the velocity fluctuations are obtained by Particle Image Velocimetry (PIV). The measurements highlight the effect of the Reynolds number on the momentum transport, flow partitioning at the bifurcations, strength and sense of rotation of the longitudinal vortices. A marked change in topology is found at a specific Reynolds number, above which the influence of the upstream flow prevails over the effect of the local geometry. Finally, turbulence and its role in the mean vorticity transport are also discussed.

  17. Laminar Flow and Heat Transfer Characteristics in Jackets of Triangular Flow Channels

    Institute of Scientific and Technical Information of China (English)

    王翠华; 刘胜举; 吴剑华; 李雅侠


    Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at the heated wall was assumed. The numerical program code in terms of vorticity, stream function, axial velocity com-ponent and energy equations was written based on a finite volume method. Based on the numerical results, the flow and temperature field were given, and the effects of Dean and Prandtl numbers on flow and heat transfer were ex-amined, and the correlations of flow resistance and mean Nusselt number were developed for the jacket. The results show that the structure of secondary flow is steady two vortices in the investigated range of dimensionless curvature ratio and Reynolds number. Two peaks of local Nusselt number increase significantly with Prandtl and Dean num-ber increasing, but the local Nusselt numbers near two ends and at the center of the heated wall increase only slightly. The center and two ends of heated wall are the poor positions for heat transfer in the jacket. Compared with the outer half coil jacket at the same area of heated wall, curvature radius, Reynolds number and Prandtl number, the jacket of triangular flow channel has lower flow resistance and less mean Nusselt number.

  18. The Response of an Elastic Splitter Plate Attached to a Cylinder to Laminar Pulsatile Flow

    CERN Document Server

    Kundu, Anup; Bhardwaj, Rajneesh; Thompson, Mark C


    The flow-induced deformation of a thin, elastic splitter plate attached to the rear of a circular cylinder and subjected to laminar pulsatile inflow is investigated. The cylinder and elastic splitter plate are contained within a narrow channel and the Reynolds number is mostly restricted to Re = 100, primarily covering the two-dimensional flow regime. An in-house fluid-structure interaction code is employed for simulations, which couples a sharp-interface immersed boundary method for the fluid dynamics with a finite-element method to treat the structural dynamics. The structural solver is implicitly (two-way) coupled with the flow solver using a partitioned approach. This implicit coupling ensures numerical stability at low structure-fluid density ratios. A power spectrum analysis of the time-varying plate displacement shows that the plate oscillates at more than a single frequency for pulsatile inflow, compared to a single frequency observed for steady inflow. The multiple frequencies obtained for the former...

  19. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct (United States)

    Aghanajafi, Amir; Toghraie, Davood; Mehmandoust, Babak


    In this article, distilled water and CuO particles with volume fraction of 1%, 2% and 4% are numerically studied. The steady state flow regime is considered laminar with Reynolds number of 100, and nano-particles diameters are assumed 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm, respectively. The problem is solved for two different boundary conditions; firstly, constant heat flux for all sides as a validation approach; and secondly, constant heat flux for two sides and constant temperature for one side (hot plate). Convective heat transfer coefficient, Nusselt number, pressure loss through the channel, velocity distribution in cross section and temperature distribution on walls are investigated in detail. The fluid flow is supposed to be one-phase flow. It can be observed that nano-fluid leads to a remarkable enhancement on heat transfer coefficient. Furthermore, CuO particles increase pressure loss through the channel and velocity distribution in fully developed cross section of channel, as well. The computations reveal that the size of nano-particles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between provided outcomes and experimental data available in the literature.

  20. Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure

    Directory of Open Access Journals (Sweden)

    Ala?a Abbas Muhadi


    Full Text Available In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105, with non-dimensional parameter (NE of Prandtl – Eyring model ranging from (0 to 10, and modified Prandtl number take in the range (Pr* =1,10, and 100. Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at the constant cold temperature. Also, the non-Newtonian fluids under consideration were assumed to obey the Prandtl – Eyring model..The results are presented in terms of isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In addition, some graphics are presented the relation between average Nusselt number and the various parameters. The results show the effect of non – dimensional parameter (NE on the velocity and temperature profiles. They also show that the average Nusselt number is a strong function of modified Rayleigh number, modified Prandtl number, non-dimensional parameter, and the boundary conditions. Four different correlations have been made to show the dependence of the average Nusselt number on the non-dimensional parameter, the modified Rayleigh and Prandtl numbers.

  1. Reynolds number dependence of the drag coefficient for laminar flow through fine-scale photoetched screens (United States)

    O'Hern, T. J.; Torczynski, J. R.


    The laminar steady flow downstream of fine-mesh screens is studied. Instead of woven-wire screens, high-uniformity screens are fabricated by photoetching holes into 50.8-micron-thick Inconel sheets. The resulting screens have minimum wire widths of 50.8 microns and inter-wire separations of 254 and 318 microns for the two screens examined. A flow facility has been constructed for experiments with these screens. Air is passed through the screens at upstream velocities yielding wire width Reynolds numbers from 2 to 35. To determine the drag coefficient, pressure drops across the screens are measured using pressure transducers and manometers. Three-dimensional flow simulations are also performed. The computational drag coefficients consistently overpredict the experimental values. However, the computational results exhibit sensitivity to the assumed wire cross section, indicating that detailed knowledge of the wire cross section is essential for unambiguous interpretation of experiments using photoetched screens. Standard semiempirical drag correlations for woven-wire screens do not predict the present experimental results with consistent accuracy.

  2. Steady and unsteady transonic flow (United States)

    Seegmiller, H. L.; Marvin, J. G.; Levy, L. L., Jr.


    An investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows. The investigation included the employment of a laser velocimeter to obtain data concerning the mean velocity, the shear stress, and the turbulent kinetic energy profiles in the flowfield downstream of the airfoil midchord where the flow features are more complex. Depending on the free-stream Mach number, the flowfield developed was either steady with shock-wave-induced separation extending from the foot of the shock wave to beyond the trailing edge or unsteady with a periodic motion also undergoing shock-induced separation. The experimental data were compared with the results of numerical simulations in which a computer code was employed that solved the time-dependent Reynolds' averaged compressible Navier-Stokes equations.

  3. Experimental study on interference effect of rarefaction wave on laminar propagating flame

    Institute of Scientific and Technical Information of China (English)

    SUN Jinhua; LIU Yi; WANG Qingsong; CHEN Peng


    In order to study the interference effect of rarefaction wave on the laminar flame propagating structure and pressure characteristics of methane-air mixture, a small scale combustion chamber has been built. The techniques of high speed Schlieren photograph, pressure measurement and so on, are used to study the influence of rarefaction wave on the laminar flame propagating through methane-air mixture. The results show that, after the rarefaction wave acts on the propagation laminar flame, the laminar combustion is fully transformed into turbulent combustion just during several milliseconds, which leads to a sharp increase in the burning surface area and the pressure rise rate.

  4. The effects of maternal dietary vitamin premixes, canthaxanthin, and 25-hydroxycholecalciferol on the performance of progeny ducklings. (United States)

    Ren, Z Z; Wang, J P; Zeng, Q F; Ding, X M; Bai, S P; Luo, Y H; Su, Z W; Xuan, Y; Zhang, K Y


    This trial studied the effects of maternal dietary vitamin premixes, and the mixture of canthaxanthin (CX) and 25-hydroxycholecalciferol (25-OH-D3) on the performance of progeny ducklings. Four maternal diets were used under a 2 × 2 factorial arrangement with 2 kinds of vitamin premixes (Regular and High; High premix had higher levels of all vitamins except K3 than the Regular premix), and with or without the addition of the mixture of CX (6 mg/kg) and 25-OH-D3 (0.069 mg/kg). Cherry Valley duck breeders (38-wk-old) were fed with corn-wheat flour-soybean meal-based diets for 8 wk, and then eggs were collected and hatched. Healthy ducklings (equal number of female and male) from each maternal group were randomly selected and received the same commercial starter (1 to 14 d) and grower (15 to 35 d) pellet diet for 35 d. Maternal High vitamin premix increased shank pigmentation (1 d, P = 0.001), BW (1 d, P growth performance and antioxidant status of ducklings.

  5. Quasi steady MPD performance analysis (United States)

    Guarducci, F.; Paccani, G.; Lehnert, J.


    Pulsed (quasi-steady) solid propellant magnetoplasmadynamic thruster operation has been investigated both in the self-induced and applied magnetic field cases. Input parameters have been varied in order to analyze performance (in particular impulse bit) dependance on these parameters. The stored energy per shot has been set to four values between 2000 and 3000 J, while magnetic field has been set to six values between 0 and 159 mT. Impulse bit has been evaluated through a thrust stand technique: a brief overview of this method is given together with a description of the data processing procedure. Current measurements allow to use Maeker's formula as a reference for comparison between theoretical and empirical results as well as between self and applied field operation. Appreciable improvements of the thruster impulse bit performance have been noticed for defined sets of stored energy and applied field values. An inductive interaction between the magnet coil and the laboratory facilities, resulting in thrust stand displacement, has been observed: this phenomenon and its consequences on measurements have been investigated. A target used as a ballistic pendulum, insensitive to magnetic coupling, has been employed to acquire a new set of measurements: the results obtained with the target technique show a maximum discrepancy of 5% when compared with the measurements derived from the thrust stand technique. Finally, the thrust stand measurements appear to be affected by the inductive interactions only for very high values of the applied field.

  6. Non-Markovianity assisted Steady State Entanglement

    CERN Document Server

    Huelga, Susana F; Plenio, Martin B


    We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.

  7. Quality improvement of melt extruded laminar systems using mixture design. (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D


    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality.

  8. IFTS measurements of a laboratory scale laminar flame (United States)

    Rhoby, Michael R.; Harley, Jacob L.; Gross, Kevin C.


    A point-and-shoot, passive remote sensing technology is highly desired to accurately monitor the combustion efficiency (CE) of petrochemical flares. A Phase II DOE-funded SBIR effort is being led by Spectral Sciences, Inc. to develop the methodologies needed to enable remote CE measurements via spectral remote sensing. Part of this effort entails standing up a laboratory-scale flare measurement laboratory to develop and validate CE measurements. This paper presents an overview and summarizes current progress of the Air Force Institute of Technology's (AFIT) contribution to this multi-organization, two-year effort. As a first step, a Telops Hyper-Cam longwave infrared (LWIR, 750-1300cm-1 or 7.7-13.3μm) imaging Fourier-transformspectrometer (IFTS) is used to examine a laminar, calibration flame produced by a Hencken burner. Ethylene and propane were combusted under several different fuel/air mixing ratios. For each event, 300 hyperspectral datacubes were collected on a 172(W)×200(H) pixel window at a 1.5cm-1 spectral resolution. Each pixel had approximately a 1.5×1.5mm2 instantaneous field-of-view (IFOV). Structured emission is evident throughout the combustion region with several lines arising from H2O; other lines have not yet been assigned. These first known IFTS measurements of a laminar Hencken-burner flame are presented along with some preliminary analysis. While the laminar flame appears stationary to the eye, significant flame flicker at a fundamental frequency of 17Hz was observed in the LWIR, and this is expected to complicate spectral interpretation for species concentrations and temperature retrieval. Changes to the fuel-air ratio (FAR) produced sizable changes in spectral intensity. Combustion spectra of ethylene and propane corresponding to ideal FAR were nearly identical.

  9. Aircraft energy efficiency laminar flow control wing design study (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.


    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  10. Laminar-turbulent transition on the flying wing model (United States)

    Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.


    Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.

  11. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer


    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  12. Acute hepatic encephalopathy presenting as cortical laminar necrosis: case report. (United States)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young


    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  13. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.


    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...

  14. Numerical Simulation Model of Laminar Hydrogen/Air Diffusion Flame

    Institute of Scientific and Technical Information of China (English)

    于溯源; 吕雪峰


    A numerical simulation model is developed for a laminar hydrogen/air diffusion flame. Nineteen species and twenty chemical reactions are considered. The chemical kinetics package (CHEMKIN) subroutines are employed to calculate species thermodynamic properties and chemical reaction rate constants. The flow field is calculated by simultaneously solving a continuity equation, an axial momentum equation and an energy equation in a cylindrical coordinate system. Thermal diffusion and Brownian diffusion are considered in the radial direction while they are neglected in the axial direction. The results suggest that the main flame is buoyancy-controlled.

  15. Propiedades de nanocompuestos de matriz termoestable con nuevos organosilicatos laminares


    Calvo del Valle, Silvia; Salom Coll, Catalina; González Prolongo, Margarita; Arribas Arribas, Carmen; García del Cid, A.; Masegosa Fanego, Rosa María


    En este trabajo se han preparado nanocompuestos de matriz polímero termoestable del tipo poliéster insaturado y epoxídica utilizando como refuerzo nanosilicatos laminares que se han modificado específicamente para mejorar la interacción con la matriz. En concreto se han modificado montmorillonitas con cationes orgánicos reactivos con la matriz de poliéster insaturado. Asimismo se han silanizado montmorillonitas comerciales orgánicamente modificadas con el objetivo de formar enlaces químicos c...

  16. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.


    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive...... species carried in the sample stream were deposited on functionalized chip surfaces as discrete 50 mm wide lanes. Using different model systems we have confirmed the method's suitability for qualitative screening and quantification tasks in receptor-ligand assays, recording biotin......-streptavidin interactions, DNA-hybridization and DNA-triplex formation. The system is simple, fast, reproducible, flexible, and has small sample requirements....

  17. On laminar-turbulent transition in nanofluid flows (United States)

    Rudyak, V. Ya.; Minakov, A. V.; Guzey, D. V.; Zhigarev, V. A.; Pryazhnikov, M. I.


    The paper presents experimental data on the laminar-turbulent transition in the nanofluid flow in the pipe. The transition in the flows of such fluids is shown to have lower Reynolds numbers than in the base fluid. The degree of the flow destabilization increases with an increase in concentration of nanoparticles and a decrease in their size. On the other hand, in the turbulent flow regime, the presence of particles in the flow leads to the suppression of smallscale turbulent fluctuations. The correlation of the measured viscosity coefficient of considered nanofluids is presented.


    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-guang; XU Zhong; WU Yu-lin; ZHANG Yong-jian


    A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.

  19. Acute hepatic encephalopathy presenting as cortical laminar necrosis: Case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young [Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam (Korea, Republic of)


    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  20. System of enterprise steady economic development management

    Directory of Open Access Journals (Sweden)

    K.О. Ivanchuk


    Full Text Available Providing enterprise controlled movement from one attractor to another preserving steady space requires formation of system of enterprise steady economic development management. The main purpose of such system is providing of effective and practical tools for managing steady economic development through the development of fundamental scientific and theoretical basis. The article proves the need for the management of steady economic development based on an integrated approach of a new type, which takes into account differences in objectives, principles, conditions of decision-making at the operational, tactical and strategic levels. Proposed and justified to manage the development of the enterprise from the perspective of steadiness at the operational level, mainly using the principles of the process approach; tactical management platform should be formed based on functional-dominant approach; strategic dimension of steady development management is viewed through the prism of a systemic approach. Effective implementation of an integrated management approach needs to adhere to a set of principles that are interpreted by the author from the perspective of the element development of the enterprise individual subsystems and from the standpoint of summarizing complex aspect that reflects the unity and integrity of the steady economic development management. Scroll to the management of the enterprise steady economic development, which cover the general functions block and the specific functions block, among which are defined homeostatic, adaptive and resistant function of steady development management system. Generalized representation of theoretical propositions is a system of conceptual propositions management of steady economic development. According to these provisions, the management system of steady development contently fills the scientific and theoretical and methodological core. These cores play the role of coordinating elements between the

  1. Estimation of Heat Transfer Coefficients for Biomass Particles by Direct Numerical Simulation Using Microstructured Particle Models in the Laminar Regime

    Energy Technology Data Exchange (ETDEWEB)

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; Ciesielski, Peter N.


    Direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positioned in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.


    Institute of Scientific and Technical Information of China (English)


    This paper presents a theory on premix fuel combustion at nearisosceles triangle type rate of heat release,describes the measures taken for the combustion system,points out its many theoretical advantages,and that it can solve effectively the problems of rough running,fuel consumption and exhaust emission.Two squish lip type combustion chambers are designed to match separately with multiple holes injector and conical spray type injector in order to achieve premix combustion at near isosceles triangle type rate of heat release.Experimental studies on two single cylinder diesel engines showed that premix combustion at isosceles triangle type rate of heat release resulted in longer ignition delay period,larger amount of fuel injected into cylinder during the ignition delay period,lower maximum pressure,better fuel economy,and better exhaust emission.

  3. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes. (United States)

    Zeng, Ye; Liu, Jingxia


    Blood flow patterns in proatherogenic and antiatherogenic regions are rather different. We hypothesize that the laminar flow with steady shear stress increased nitric oxide (NO) bioavailability while disturbed flow with low shear stress reduced it, which is mediating by glypican-1. Thus, we detected the expression of glypican-1 under different shear stress magnitudes, and tested whether the magnitude of shear stress determines the level of endothelial NO synthase (eNOS) via glypican-1 by using phosphatidylinositol phospholipase C (PI-PLC). Results revealed that the expression of glypican-1 depends on the magnitude and duration of shear stress loading. Activation of eNOS in HUVECs is downregulated by 4dyn/cm(2) of shear stress, but is upregulated by 15dyn/cm(2). Removal of glypican-1 significantly suppressed the 15dyn/cm(2) shear stress-induced eNOS activity, and further reduced the 4dyn/cm(2)-inhibited eNOS activity. Therefore, eNOS activation depends on shear stress magnitudes and is mediated by glypican-1. The role of glypican-1 in mediating the eNOS activation under shear stress might involve in protecting the endothelial function against disturbed flow and enhancing the sensitive of the endothelial cell to laminar flow, supporting a potential role of glypican-1 against atherosclerosis.

  4. Approximate Deconvolution and Explicit Filtering For LES of a Premixed Turbulent Jet Flame (United States)


    from laminar flamelets computed with the GRI -mechanism for methane-air combustion (Smith et al. 1999) and the progress variable Yc is defined as in... gri - mech/. Subramanian, V., P. Domingo, and L. Vervisch (2010). Large-Eddy Simulation of forced igni- tion of an annular bluff-body burner. Combust

  5. Comparison of Performance and Leg Bone Characteristics of Broiler Fed Different Levels of Vitamin Premix in Floor and

    Directory of Open Access Journals (Sweden)

    H. Moravej


    Full Text Available Two experiments were carried out in order to comparison of the effect of different levels of vitamin premix in two raising systems of floor and cage on performance and leg bone characteristics of broiler chickens which were fed with adjusted diet base on wheat and barley during 29 to 42 days. The treatments were composed of 0, 33.33, 66.66 and 100 percent of vitamin premix (according to the recommendation of vitamin premix Producer Company which used from 29 to 42 days. Experiment in floor was carried out by using 288 male broiler chickens (Ross 308 with 4 treatments and 4 replicates in a completely randomized design in floor system. Experiment in cage battery system was carried out by using 80 male broiler chickens with 4 treatments and 4 replicates in raising cage. Feed intake and body weight gain of each replicate were calculated during two weeks of the experiment. During these two weeks, in experiment in floor, two broiler chickens were measured and in experiment in cage battery system one broiler chickens slaughtered and breast, thigh, percentage of abdominal fat and liver were measured. After slaughtered, right leg of each bird was used for determine ash, calcium, phosphorus and strength. The results of the experiment in floor showed that vitamin premix withdrawal at 29 days of age did not impair carcass characteristics and leg bone characteristics during the final rearing period. The results of battery cage system showed that withdrawal of vitamin premix from the diet of experimental birds; were induced negative effect on productive performance, weights of thigh, and breast and leg bone characteristics during 36-42 day of ages. Therefore, it seems that there is the possibility of vitamin premix levels reduction up to the approximate 33% level in finisher period while in the floor system; it is possible to withdraw vitamin supplements in broilers’ finisher diets and in this way the costs of poultry industry will reduce.

  6. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Li, Yuyang; Yuan, Tao


    An experimental and modeling study is reported on three premixed nitromethane/oxygen/argon flames at low pressure (4.655kPa) with equivalence ratios (ϕ) of 1.0, 1.5 and 2.0. Flame species were identified with tunable synchrotron vacuum ultraviolet photoionization. The mole fraction profiles of more...... against experimental results of all three flames. The computed predictions showed satisfactory agreement with the experimental results. Based on a rate-of-production analysis, reaction pathway diagrams were obtained to describe the hydrocarbon oxidation process and nitrogenous species chemistry...

  7. Flame holding tolerant fuel and air premixer for a gas turbine combustor (United States)

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve


    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  8. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)


    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  9. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor. (United States)

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru


    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  10. QUEOS, an experimental investigation of the premixing phase with hot spheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik


    A second series of experiments with hot spheres to investigate the premixing phase of a steam explosion has been performed in the QUEOS facility at FZK. The diameter of the sphere jet plunging into the water has been reduced from 180 mm to 100 mm and larger masses have been employed. Both changes led to longer pours, compared to the short pours in the first series. The data of seven experiments are presented using three types of spheres at 1800 K and total volumes of approximately two and four liters, respectively. High speed films were taken, pressures, water temperatures and the steaming rate were measured. (author)

  11. Determination of liquid-fuel prevaporization and premixing in gas-turbine combustion chambers (United States)

    Mrugalla, J.

    A semiempirical mathematical model of the evaporation and distribution of liquid fuel in the prevaporization-premixing zone of a stationary gas turbine is developed, and the predictions obtained are compared with published experimental data and with the results of photographic, suction-probe, two-focus-laser-velocimeter, and light-scattering measurements on water sprays from 65-deg hollow-cone nozzles in a wind tunnel operating at 64 m/s. Good agreement is obtained, and the applicability of the model to the design of turbine combustion chambers giving lower NO(x) and CO emissions is indicated.

  12. The steady expiratory pressure-flow relation in a model pulmonary bifurcation. (United States)

    Collins, J M; Shapiro, A H; Kimmel, E; Kamm, R D


    Experiments were conducted over a range of Reynolds numbers from 50 to 8000 to study the pressure-flow relationship for a single bifurcation in a multi-generation model during steady expiratory flow. Using the energy equation, the measured static pressure drop was decomposed into separate components due to fluid acceleration and viscous energy dissipation. The frictional pressure drop was found to closely approximate that for an equivalent length of curved tube with the same curvature ratio as in the model bifurcation. The sensitivity of these results to changes in airway cross-sectional shape, non-planar configuration, and flow regime (laminar-turbulent) was investigated. In separate experiments using dye visualization and hot-wire anemometry, a transition to turbulent flow was observed at Reynolds numbers between 1000 and 1500. Transition had very little effect on the pressure-flow relation.

  13. Vesicle Dynamics in a Confined Poiseuille Flow: From Steady-State to Chaos

    CERN Document Server

    Aouane, Othmane; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi


    Red blood cells (RBCs) are the major component of blood and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: i) the degree of confinement of vesicles within the channel, and ii) the flow strength. Rich and complex dynamics for vesicles are revealed ranging from steady-state shapes (in the form of parachute and slipper) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement, flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  14. Turbulent-laminar patterns in plane Poiseuille flow

    CERN Document Server

    Tuckerman, Laurette S; Schrobsdorff, Hecke; Schneider, Tobias M; Gibson, John F


    Turbulent-laminar banded patterns in plane Poiseuille flow are studied via direct numerical simulations in a tilted and translating computational domain using a parallel version of the pseudospectral code Channelflow. 3D visualizations via the streamwise vorticity of an instantaneous and a time-averaged pattern are presented, as well as 2D visualizations of the average velocity field and the turbulent kinetic energy. Simulations for Reynolds numbers descending from 2300 to 700 show the gradual development from uniform turbulence to a pattern with wavelength 20 half-gaps near Re=1900, to a pattern with wavelength 40 near Re=1300 and finally to laminar flow near Re=800. These transitions are tracked quantitatively via diagnostics using the amplitude and phase of the Fourier transform and its probability distribution. The propagation velocity of the pattern is approximately that of the mean flux and is a decreasing function of Reynolds number. Examination of the time-averaged flow shows that a turbulent band is ...

  15. Superhydrophobic drag reduction in laminar flows: a critical review (United States)

    Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin


    A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid-gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood.

  16. Cortical laminar necrosis in dengue encephalitis-a case report. (United States)

    Garg, Ravindra Kumar; Rizvi, Imran; Ingole, Rajan; Jain, Amita; Malhotra, Hardeep Singh; Kumar, Neeraj; Batra, Dhruv


    Dengue encephalitis is a rare neurological manifestation of dengue fever. Its clinical presentation is similar to other viral encephalitides and encephalopathy. No single specific finding on magnetic resonance imaging of dengue encephalitis has yet been documented. They are highly variable and atypical. A 15-year boy presented with fever, the headache and altered sensorium of 12-day duration. On neurological examination, his Glasgow Coma Scale score was 10 (E3M4V3). There was no focal neurological deficit. Laboratory evaluation revealed leukopenia and marked thrombocytopenia. Dengue virus IgM antibody was positive both in serum and cerebrospinal fluid. Magnetic resonance imaging of the brain revealed signal changes in bilateral parietooccipital and left frontal regions (left hemisphere more involved than the right hemisphere). There was gyriform enhancement bilateral parietooccipital regions consistent with cortical laminar necrosis. Bilaterally diffuse subcortical white matter was also involved and subtle T2 hyperintensity involving both basal ganglia was noted. Gradient echo sequence revealed presence of hemorrhage in the subcortical white matter. Patient was treated conservatively and received platelet transfusion. Patient became fully conscious after 7 days. In a patient with highly suggestive dengue e\\ephalitis, we describe an unusual magnetic resonance imaging finding. This report is possibly the first instance of cortical laminar necrosis in such a setting.


    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Yao Guangtao; Song Jinou; Wang Yinshan


    Numerical simulations of pilot fuel spray and compressing ignition for pre-mixed natural gas ignited by pilot diesel are described. By means of these modeling, the dual fuel and diesel fuel ignition mechanism of some phenomena investigated on an optional engine by technology of high-speed CCD is analyzed. It is demonstrated that the longer delay of ignition in dual fuel engine is not mainly caused by change of the mixture thermodynamics parameters. The analysis results illustrate that the ignition of pre-mixed natural gas ignited by pilot diesel taking place in dual fuel engine is a process of homogenous charge compression ignition.

  18. Aerodynamic coefficients of stationary dry inclined bridge cables in laminar flow

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos; Ricciardelli, Francesco


    conditions, i.e. dry, wet and icy, in laminar and turbulent flow, has been initiated at the new DTU/Force Climatic Wind Tunnel facility in Denmark. This paper covers selected results of the comparative study, i.e. aerodynamic coefficients of dry inclined cables in laminar flow conditions....

  19. Estudio Numérico de Flujos Turbulentos Isotérmicos en Canales y Flujos Laminares con Convección Mixta en Cavidades Numerical Study of Isothermal Turbulent Channel Flows and Mixed Convection Laminar Cavity Flows

    Directory of Open Access Journals (Sweden)

    Elizaldo D dos Santos


    Full Text Available Se ha realizado un estudio numérico sobre flujos estacionarios turbulentos, en canales tridimensionales y flujos transitorios laminares en cavidades con transferencia de calor por convección mixta. Las ecuaciones de conservación se resuelven a través del Método de Elementos Finitos utilizando esquema temporal explícito de Taylor-Galerkin. La simulación de Grandes Escalas se emplea para el tratamiento de la turbulencia. Para el caso isotérmico, flujos con Re = 3300 son simulados usando los modelos submalla de Smagorinsky y Dinámico. Este último modelo permitió mejorar los perfiles de velocidad media y las estadísticas de la turbulencia. Los campos transitorios de velocidad y temperatura se compararon con los resultados de la literatura, obteniéndose un desvío inferior a 6%.A numerical study about three-dimensional steady state turbulent channel flows and laminar transient cavity flows with mixed convection heat transfer has been done. The solution of the conservation equations is obtained by means of Finite Element Method and Taylor-Galerkin explicit scheme. Large Eddy Simulation is employed for the treatment of turbulence. For the isothermal case, flows with Re = 3300 were simulated using the Smagorinsky and Dynamical subgrid models. The latter model allowed improving the average velocity profiles as well as turbulence statistics. The transient velocity and temperature fields were compared with results of the literature, leading to a deviation lower than 6%.

  20. Oxidative stress in hoof laminar tissue of horses with lethal gastrointestinal diseases. (United States)

    Laskoski, Luciane Maria; Dittrich, Rosangela Locatelli; Valadão, Carlos Augusto Araújo; Brum, Juliana Sperotto; Brandão, Yara; Brito, Harald Fernando Vicente; de Sousa, Renato Silva


    Tissue damage caused by oxidative stress is involved in the pathogenesis of several diseases in animals and man, and is believed to play a role in the development of laminitis in horses. The aim of this study was to investigate the oxidative stress associated with laminar lesions in horses with lethal gastrointestinal disorders. Laminar tissue samples of the hoof of 30 horses were used. Tissue samples were divided as follows: six healthy horses (control group-CG), and 24 horses that died after complications of gastrointestinal diseases (group suffering from gastrointestinal disorders-GDG). Superoxide dismutase (SOD2) and nitrotyrosine immunostaining and the severity of laminar lesions were evaluated. Presence of laminar lesions and immunostaining for nitrotyrosine and SOD2 were only evident in horses from the GDG group. Thus, oxidative stress may play a role in the pathogenesis of laminar lesions secondary to gastrointestinal disorders.

  1. Effects of gravity on structure and entropy generation of confined laminar diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A. [Department of Power Engineering, Jadvapur University, Salt Lake Campus, Kolkata 700098 (India)


    A numerical prediction of a confined, co-flowing, laminar jet diffusion flame has been made to find the flow and scalar variables under steady state condition. These variables are used for the description of the flame structure and the evaluation of entropy generation rate and the rate of exergy loss. The exergy loss is compared against the exergy coming in, to evaluate the second law efficiency of the combustion process. The model is applied for diffusion flames in a confined geometry at various gravity levels to find the effect of gravity on the rate of entropy generation and second law efficiency. In general, the flame becomes wider in shape at reduced gravity. A correlation of the flame width against Froude number over a wide gravity range has been proposed. It is observed from the local volumetric entropy generation rate that a diffusion flame is more intense at its base than at the tip. The intensity of the flame becomes less at reduced gravity because of the lower rate of entrainment of oxygen. The entropy generation rate due to heat transfer increases considerably at normal gravity compared to that at zero gravity, because of the thermal stratification of the flow under the influence of buoyant acceleration. The rate of entropy generation due to chemical reaction and mass transfer remain almost unaltered at all gravity levels. The lowering of the total entropy generation rate and the corresponding exergy destruction increases the second law efficiency of a confined diffusion flame at reduced gravity compared to that at normal gravity. (authors)

  2. The relationships between muscle force steadiness and visual steadiness in young and old adults. (United States)

    Krupenevich, Rebecca L; Murray, Nick; Rider, Patrick M; Domire, Zachary J; DeVita, Paul


    Since vision is used in studies of muscle force control, reduced muscle force control might be related to reduced visual ability. We investigated relationships between steadiness in eye movements and quadriceps muscle torque (a surrogate for force) during isometric contractions of constant and varying torques. Nineteen young adults with an average age of 20.7 years and 18 old adults with an average age of 71.6 years performed three vision tasks, three vision and torque tasks at 40% maximal voluntary contraction (MVC), and three vision and torque tasks at 54 nm. Age groups had identical torque steadiness (CV) in 40%-MVC and 54-nm conditions (p > .05). Old had similar vertical (p > .05) but decreased horizontal visual steadiness (SD) (p .05). We were unable to identify a substantial relationship between muscle torque steadiness and eye movement, as a component of visual steadiness, and conclude that reduced visual steadiness does not contribute to reduced muscle torque steadiness.

  3. Non-Markovianity-assisted steady state entanglement. (United States)

    Huelga, Susana F; Rivas, Ángel; Plenio, Martin B


    We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

  4. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary


    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  5. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley


    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  6. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)


    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  7. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios


    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  8. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai


    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  9. Turbulent non-premixed combustion driven by the Richtmyer-Meshkov instability (United States)

    Varshochi, Hilda; Ramaprabhu, Praveen; Attal, Nitesh


    We report on 3D high resolution numerical simulations of a non-premixed, reacting Richmyer-Meshkov (RM) instability performed using the FLASH code. In the simulations, a Mach 1.6 shock traverses a diffuse, corrugated material interface separating Hydrogen at 1000 K and Oxygen at 300 K, so that local misalignments between pressure and density gradients induce baroclinic vorticity at the contact line. The vorticity deposition drives the RM instability, which in turn results in combustion and flame formation. We study the evolution of the interface and the flame as the resulting RM instability grows through linear, nonlinear and turbulent stages. We develop a detailed understanding of the effects of heat release and combustion on the underlying flow properties by comparing our results with a baseline non-reacting RM flow. We document the properties of the instability (growth rates, pdfs, spectra) and the flame (scalar dissipation rate, flame surface area, heat release rate) as well as the nature of the coupling between the two. Our findings are relevant to supernovae detonation, knocking in IC engines and scramjet performance, while the underlying flow problem defined here represents a novel canonical framework to understand the broader class of non-premixed turbulent flames.

  10. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook


    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  11. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata


    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  12. Influence of obstacle-produced turbulence on development of premixed flames

    Institute of Scientific and Technical Information of China (English)

    YU; Lixin(余立新); SUN; Wenchao(孙文超); WU; Chengkang(吴承康)


    An investigation into influence of obstructions on premixed flame propagation has been carried out in a semi-open tube.It is found that there exists flame acceleration and rising overpressure along the path of flame due to obstacles.According to the magnitude of flame speeds,the propagation of flame in the tube can be classified into three regimes:the quenching,the choking and the detonation regimes.In premixed flames near the flammability limits,the flame is observed first to accelerate and then to quench itself after propagating past a certain number of obstacles.In the choking regime,the maximum flame speeds are somewhat below the combustion product sound speeds,and insensitive to the blockage ratio.In the more sensitive mixtures,the transition to detonation (DDT) occurs when the equivalence ratio increases.The transition is not observed for the less sensitive mixtures.The dependence of overpressure on blockage ratio is not monotonous.Furthermore,a numerical study of flame acceleration and overpressure with the unsteady compressible flow model is performed,and the agreement between the simulation and measurements is good.``

  13. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)


    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  14. Considerations and calculations on the breakup of jets and drops of melt related to premixing

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, M.; Berg, E. von; Buck, M. [Inst. fuer Kernenergetik und Energiesysteme (IKE), Univ. of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)


    Various descriptions of jet and drop breakup are applied in premixing codes, presently. The main task is to check these descriptions over a wide range of conditions in order to assure extrapolation capabilities for the codes. Jet breakup under non-boiling conditions is relatively well described by IKEJET, based on Conte/Miles (CM) instability description and a relatively detailed stripping model, in contrast to using Kelvin/Helmholtz (KH) theory. Remaining open questions are elaborated. Especially, thick jet behavior with dominance of stripping even at small relative velocities must be distinguished from thin jets with coarse breakup. The application of IKEJET to cases with jet breakup under strong film boiling yielded significantly too little fragmentation. As a possible explanation line, multiphase effects on the wave growth and stripping are considered, due to entrainment of melt and water. Parametric checking calculations are performed with a strongly simplified approach for PREMIX and FARO experiments in order to reveal main effects and the possible physical explanation features as a basis for extended modelling. The results indicate that jet breakup may be essentially sufficient to explain the experimental behavior. Rather coalescence than further drop breakup may be expected. This is also indicated by calculations with IKE drop breakup models. (author)

  15. On the spatial linear growth of gravity-capillary water waves sheared by a laminar air flow

    NARCIS (Netherlands)

    Tsai, Y.S.; Grass, A.J.; Simons, R.R.


    The initial growth of mechanically generated small amplitude water waves below a laminar air stream was examined numerically and experimentally in order to explore the primary growth mechanism, that is, the interfacial instability of coupled laminar air and water flows. Measurements of the laminar v

  16. Melting phenomenon in magneto hydro-dynamics steady flow and heat transfer over a moving surface in the presence of thermal radiation (United States)

    Reda, G. Abdel-Rahman; M. Khader, M.; Ahmed, M. Megahed


    The Lie group method is applied to present an analysis of the magneto hydro-dynamics (MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation. By using the Lie group method, we have presented the transformation groups for the problem apart from the scaling group. The application of this method reduces the partial differential equations (PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations (ODEs) with appropriate boundary conditions. The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method (FDM). The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.

  17. Melting phenomenon in magneto hydro-dynamics steady flow and heat transfer over a moving surface in the presence of thermal radiation

    Institute of Scientific and Technical Information of China (English)

    Reda G.Abdel-Rahman; M.M.Khader; Ahmed M.Megahed


    The Lie group method is applied to present an analysis of the magneto hydro-dynamics (MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations (PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations (ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method (FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.

  18. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.


    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  19. Incompressible Laminar Flow Over a Three-Dimensional Rectangular Cavity

    Institute of Scientific and Technical Information of China (English)


    This paper investigates unsteady incompressible flow over cavities,Previous research in in compressible cavity-flow has included flow inside and past a 2-dimensional cavity,and flow inside a 3-dimensional cavity,driven by a moving lid.The present research is focused on incompressible flow past a 3-dimensional open shallow cavity.This involves the complex interaction etween the external flow and the re-circulating flow within the cavity.In particular,computation was performed on a 3-dimensonal shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000,respectively,A CFD approach,based on the unsteady Navier-Stokes equation for 3-dimensional incompressible flow,was used in the study.Typical results of the computation are presented.Theses results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.

  20. GASP cloud encounter statistics - Implications for laminar flow control flight (United States)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.


    The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.

  1. Cortical laminar necrosis in brain infarcts: serial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Siskas, N.; Lefkopoulos, A.; Ioannidis, I.; Charitandi, A.; Dimitriadis, A.S. [Radiology Department, AHEPA University Hospital, Aristotele University of Thessaloniki (Greece)


    High-signal cortical lesions are observed on T1-weighted images in cases of brain infarct. Histological examination has demonstrated these to be ''cortical laminar necrosis'', without haemorrhage or calcification. We report serial MRI in this condition in 12 patients with brain infarcts. We looked at high-signal lesions on T1-weighted images, chronological changes in signal intensity and contrast enhancement. High-signal cortical lesions began to appear about 2 weeks after the ictus, were prominent at 1 - 2 months, then became less evident, but occasionally remained for up to 1.5 years. They gave high signal or were isointense on T2-weighted images and did not give low signal at any stage. Contrast enhancement of these lesions was prominent at 1 - 2 months, and less apparent from 3 months, but was seen up to 5 months. (orig.)

  2. Oblique Laminar-Turbulent Interfaces in Plane Shear Flows (United States)

    Duguet, Yohann; Schlatter, Philipp


    Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.

  3. Laminar boundary-layer flow of non-Newtonian fluid (United States)

    Lin, F. N.; Chern, S. Y.


    A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.

  4. Laminar film boiling on inclined isothermal flat plates. (United States)

    Nagendra, H. R.


    Laminar film boiling from an inclined flat plate has been investigated analytically. Using the singular perturbation scheme, the complete set of Navier-Stokes equations is solved. The zeroth-order perturbation coinciding with the boundary-layer equations for vertical flat plates governs the problem. The higher-order perturbations become important near the leading edge and for large values of the inclination angle from the vertical. The assumption of zero interfacial velocity shows that, except for fluids having large (rho x mu) ratios, the results can be predicted using the vertical flat plate results by defining a modified Grashof parameter containing a cos phi term. When the interfacial shear is considered, the solutions indicate that for fluids having large (rho x mu) ratios, the heat transfer rates will be larger (approximately 15% maximum) than those predicted by the simplified model using zero interfacial velocity. In general, the inclination decreases the rate of heat transfer as well as the rate of evaporation.

  5. Pulsating laminar pipe flows with sinusoidal mass flux variations (United States)

    Ünsal, B.; Ray, S.; Durst, F.; Ertunç, Ö.


    Combined analytical and experimental investigation of sinusoidal mass flow-controlled, pulsating, laminar and fully developed pipe flow was carried out. The experimental investigation employed a mass flow control unit built at LSTM-Erlangen for the present investigation. For the analytical investigation, the equations describing such flows were normalized to allow for a general solution, depending only on the normalized amplitude mA* of the mass flow pulsation and the normalized frequency F. The analytical and experimental results are presented in this normalized way and it is shown that good agreement between the results of the authors is obtained. A diagram is presented for the condition of flow reversal in terms of the dimensionless frequency F and the mass flow rate amplitude mA*.

  6. Lineage-specific laminar organization of cortical GABAergic interneurons. (United States)

    Ciceri, Gabriele; Dehorter, Nathalie; Sols, Ignasi; Huang, Z Josh; Maravall, Miguel; Marín, Oscar


    In the cerebral cortex, pyramidal cells and interneurons are generated in distant germinal zones, and so the mechanisms that control their precise assembly into specific microcircuits remain an enigma. Here we report that cortical interneurons labeled at the clonal level do not distribute randomly but rather have a strong tendency to cluster in the mouse neocortex. This behavior is common to different classes of interneurons, independently of their origin. Interneuron clusters are typically contained within one or two adjacent cortical layers, are largely formed by isochronically generated neurons and populate specific layers, as revealed by unbiased hierarchical clustering methods. Our results suggest that different progenitor cells give rise to interneurons populating infra- and supragranular cortical layers, which challenges current views of cortical neurogenesis. Thus, specific lineages of cortical interneurons seem to be produced to primarily mirror the laminar structure of the cerebral cortex, rather than its columnar organization.

  7. Downstream plasma parameters in laminar shocks from ion kinetics (United States)

    Gedalin, M.


    Ion dynamics in oblique shocks is governed by the macroscopic electric and magnetic fields of the shock front. In laminar shocks, these fields are time-independent and depend only on the coordinate along the shock normal. The shock ramp is narrow and the ion motion across the shock is manifestly non-adiabatic. The ion distribution just behind the ramp is significantly non-gyrotropic. Gyrotropy is achieved well behind the ramp mainly due to the gyrophase mixing. The asymptotic values of the ion density and temperature are determined by the eventual collisionless relaxation of the gyrating ion distribution. Given a distribution at the downstream edge of the ramp, the moments of the distribution after gyrophase mixing are derived using proper spatial averaging. The obtained expressions can be used for independent determination of the downstream plasma state and implementation in Rankine-Hugoniot relations.

  8. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail:; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail:


    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.

  9. Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Meir Israelowitz


    Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.

  10. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.


    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced co

  11. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos


    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  12. Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame

    NARCIS (Netherlands)

    Kempf, A.M.; Geurts, B.J.; Oefelein, J.C.


    A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The errorlandscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion

  13. The global, centralized approach of the GAIN Premix Facility has made oil fortification in Indonesia more affordable. (United States)

    Jallier, Vincent; Guyondet, Christophe; Provent, Adeline; Laillou, Arnaud; Soekirman; Moench-Pfanner, Regina


    Access to high-grade micronutrients is a recurring challenge that often threatens the long-term sustainability of food fortification programs. To assess the efficiency of the Global Alliance for Improved Nutrition (GAIN) Premix Facility in procuring quality, affordable vitamin A for fortification of edible oil in Indonesia. A global approach to procurement of standard items was used by combining volumes across various demand streams in order to reduce the total cost of acquisition through economies of scale. The GAIN Premix Facility undertook a detailed analysis of vitamin A requirements across its existing customer base, which served as a basis for developing a reliable demand forecast. A consolidated, competitive tender was launched that resulted in the setting up of a long-term commercial agreement with the selected supplier to lock in the most competitive price for a given period of time. The direct benefit to oil manufacturers of fortifying with vitamin A is that the cost of fortification went down significantly compared with prices they would have been offered had they ordered vitamin A individually. In Indonesia, this consolidated procurement approach has allowed a 14.5% decrease in the unit price of vitamin A. The GAIN Premix Facility demonstrated its effectiveness in acting as a global procurement platform by aggregating demand across different customers and leveraging improved prices through increased volumes. Building on the success of this effort, the GAIN Premix Facility is replicating this global approach for procurement of other standard items being procured across fortification programs worldwide.

  14. Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

    NARCIS (Netherlands)

    Gersen, Sander; Mokhov, A. V.; Levinsky, H. B.


    Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for

  15. Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds

    NARCIS (Netherlands)

    Swart,; Bastiaans, R.J.M.; Oijen, J.A. van; Goey, L.P.H. de; Cant, R.S.


    In this paper we study the possibility to account for preferential diffusion effects in lean turbulent premixed flames in numerical predictions with reduced chemistry. We studied the situation when hydrogen is added to methane at levels of 20% and 40% by volume in the fuel, at lean combustion (φ=

  16. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan


    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  17. Experimental Study of Pre-mixed Flames on a Multi-Hole Matrix Burner

    Directory of Open Access Journals (Sweden)

    Vasudevan Raghavan


    Full Text Available This paper deals with an experimental investigation of the flame characteristics of premixed Liquefied Petroleum Gas (LPG - air mixtures with different equivalence ratios on a multi-hole matrix burner. Lowest possible fuel-lean mixing conditions are envisaged. Results show that the flame pattern changes into four different types which are oscillatory flames in the middle region, flames with oscillations along the centerline, flames with very little oscillations and stable flames from all the holes. Species concentration measurements are performed with the help of  gas analyzer and the results show that the concentrations of carbon-monoxide and oxygen decreases, whereas that of carbon-dioxide and nitric oxide increases with increase in the volumetric flow rate of LPG and air mixture. In addition to this, temperature measurements are carried out using a K-type thermocouple over the burner surface at different heights. Temperature contours for each plane have been presented.

  18. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto


    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  19. Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Bidabadi, Mehdi; Rahbari, Alireza [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)


    This paper presents the effects of the temperature difference between gas and particle, different Lewis numbers, and heat loss from the walls in the structure of premixed flames propagation in a combustible system containing uniformly distributed volatile fuel particles in an oxidizing gas mixture. It is assumed that the fuel particles vaporize first to yield a gaseous fuel, which is oxidized in a gas phase. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large. The structure of the flame is composed of a preheat zone, reaction zone, and convection zone. The governing equations and required boundary conditions are applied in each zone, and an analytical method is used for solving these equations. The obtained results illustrate the effects of the above parameters on the variations of the dimensionless temperature, particle mass friction, flame temperature, and burning velocity for gas and particle

  20. Stabilization of premixed lean methane-air combustion using dielectric barrier discharge with low pollutant emissions (United States)

    Ono, Ryo; Ogura, Kazuaki; Mogi, Toshio


    Catalytic combustion is a promising technology to stabilize lean combustion with low pollutant emissions. Catalytic combustion has been applied to gas turbine combustors; however, some drawbacks of this technology remain to be addressed. In this work, a new concept is demonstrated to overcome the problems of catalytic combustion by using dielectric barrier discharge (DBD) instead of a catalyst. A premixed lean methane-air mixture preheated to 400 °C with an equivalence ratio of 0.45 is flowed through the DBD reactor under atmospheric pressure. Almost complete combustion is achieved with a DBD power of 0.7% of the net calorific value of the mixture. The exhaust emissions are NO = 20 ppm, NO2 = 2 ppm, CO = 2 ppm, and HC \\cong 0 ppm. This work demonstrates that DBD-assisted combustion is a potential alternative to catalytic combustion.

  1. Identifying combustion intermediates in premixed MTBE/gasoline/oxygen flame probed via synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    YAO Chunde; QI Fei; LI Jing; LI Qi; JI Qing; HUANG Chaoqun; WEI Lixia; WANG Jing; TIAN Zhenyu; LI Yuyang


    Molecular-beam sampling mass spectrometry (MBMS) combined with tunable synchrotron radiation photoionization technique offers obvious advantages for the study of flame chemistry over other techniques because of the precision measurement of the combustion intermediates and products in flame.In this paper,the results to identify combustion intermediates in low-pressure premixed gasoline/oxygen flame with the synchrotron radiation were reported.Based on the results obtained,the formation process of five products and the difference between gasoline/oxygen and MTBE/gasoline/oxygen flame were emphatically analyzed.The results achieved provide data basis for the analysis of intermediates and radicals in flame,and are helpful to establish the kinetic modeling of gasoline/oxygen and MTBE/gasoline/oxygen flames.

  2. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis (United States)

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.


    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H2-air flames with an equivalence ratio ϕ =0.7 . It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P ,Q , and R ) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  3. Explosive Combustion of a Neutron Star into a Quark Star: the non-premixed scenario

    CERN Document Server

    Ouyed, Rachid; Jaikumar, Prashanth


    We review aspects of the hydrodynamical combustion of nuclear matter to strange quark matter in a neutron star. Numerical studies on non-premixed combustion that consistently include hydrodynamical flows in a reactive-diffusive setup show that in 1D, the conversion (burning) front moves at sub-sonic speeds and stops short of converting the entire star to SQM, essentially due to advective forces. However, in the process, we also find that neutrino cooling of the interface causes it to wrinkle, laying a platform for a deflagrative-to-detonative transition (DDT). We outline progress on improvements in the burning code (Burn-UD: that will ultimately reveal the mechanism that can explode the outermost layers of even a dense compact object like a neutron star.

  4. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure (United States)

    Wang, Qing; Wu, Hao; Ihme, Matthias


    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  5. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames (United States)

    Orain, Mikaël; Hardalupas, Yannis


    Local temporally-resolved measurements of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH ∗/CH ∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH ∗/CH ∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.

  6. Flowfield characterization of a piloted lean premixed injector by particle image velocimetry (United States)

    Berdanier, Catherine G. P.

    Limiting atmospheric pollution, especially nitrous oxides, is an important endeavor for aviation technology companies. Technology-driving regulations from the International Civil Aviation Organization's (ICAO) Committee of Aviation Environmental Protection (CAEP) standards spur the combustion research and development community to find innovative engine technologies to decrease emissions in the coming years. As engine technologies are developed, testing is necessary to verify combustion models and expected flow patterns. Optical diagnostics provide a unique opportunity to visualize flowfields in complex practical combustor systems. For this thesis, Particle Image Velocimetry (PIV) was employed to characterize the flowfield in a piloted lean premixed injector under non-combusting conditions. Planes of PIV data were acquired at five spanwise locations and two streamwise locations, at two different pressure conditions in order to characterize the flowfields and structures throughout the optically accessible flowpath. Average velocity maps and time-resolved vector fields at these planes were analyzed for this thesis.

  7. Emissions measurements for a lean premixed propane/air system at pressures up to 30 atmospheres (United States)

    Roffe, G.


    A series of experiments was conducted in which the emissions of a lean premixed system of propane and air were measured at pressures of 5, 10, 20 and 30 atm in a flametube apparatus. Measurements were made for inlet temperatures between 600K and 1000K and combustor residence times from 1.0 to 3.0 msec. A schematic of the test rig is presented along with graphs showing emissions measurements for nitric oxide, carbon monoxide, and UHC as functions of bustor residence time for various equivalence ratios, entrance temperatures and pressures; typical behavior of emissions as a function of equivalence ratio for a fixed residence time. Correlations of nitric oxide emission index with adiabatic flame temperature for a fixed residence time of 2 msec and pressures from 5 to 30 atm; and adiabatic flame temperature corresponding to CO breakpoint conditions for 2 msec residence time as a function of inlet temperature.

  8. Identification of oxygenated ions in premixed flames of dimethyl ether and oxygen

    DEFF Research Database (Denmark)

    Frøsig Østergaard, L.; Egsgaard, H.; Hammerum, S.


    dimethyl ether, (CH3)(2)OH+. The flame-ion m/z 61 is a mixture of the trimethyloxonium ion, (CH3)(3)O+ and lesser amounts of protonated methyl formate and/or protonated ethyl methyl ether. The viability of an ionic mechanism to soot formation for dimethyl ether-oxygen flames is discussed on the background......The structure of characteristic flame-ions in premixed flames of dimethyl ether and oxygen was studied by ion-molecule reactions with ammonia and collision activation with argon. The results obtained show that the flame-ions m/z 45 and m/z 47 are the methoxymethyl cation, CH3OCH2+, and protonated...... of ions present in the dimethyl ether flames and the reactivity of the ions....

  9. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.


    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  10. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, K. K. [Mississippi State Univ., MS (United States). Dept. of Mechanical Engineering; Krishnan, S. R. [Mississippi State Univ., MS (United States). Dept. of Mechanical Engineering; Qi, Y. [Caterpillar, Inc., Peoria, IL (United States)


    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  11. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames (United States)

    Vervisch, Luc


    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  12. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.


    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  13. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie


    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  14. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.


    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  15. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education


    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  16. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others


    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  17. Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel - validity of heat and mass transfer analogy

    Energy Technology Data Exchange (ETDEWEB)

    Boukadida, N. [Faculte des Sciences, Dept. of Physics, Monastir (Tunisia); Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Dept. of Energetics (Tunisia)


    A detailed numerical analysis concerning the mechanism of heat and mass transfer during water evaporation in a two dimensional steady laminar flow of dry air or air-vapor mixture in a horizontal channel is studied. The gas is considered as absorbing, emitting and non-scattering medium with variable thermophysical properties. The results show the effect of different state variables on the coefficients of heat and mass transfer and the domain where the analogy between the heat and mass transfer is valid. They also show the effect of the thermal radiation on the ratio between Sherwood and Nusselt numbers. The comparison between the present results and those obtained in previous published studies [32-34] features to a satisfactory agreement. (authors)

  18. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars (United States)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid


    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  19. Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.


    Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.

  20. Cloud particle effects on laminar flow and instrumentation for their measurement aboard a NASA LFC aircraft (United States)

    Davis, R. E.; Fischer, M. C.


    Fuel costs account now for approximately 60 percent of the direct operating costs of airlines and future commercial transport will utilize advanced technologies for saving fuel on the basis of drag reduction. Laminar flow control (LFC) represents such an advanced technology. A new laminar flow wing on a reconfigured WB-66 aircraft was tested in the X-21 flight program. The tests confirmed that extensive laminar flow could be achieved at subsonic transport cruise conditions. Factors affecting adversely the maintenance of laminar flow were found to be related to ice particles encountered during the penetration of cirrus clouds or haze. The present investigation is concerned with the effect of ice particles on LFC, taking into account the results obtained in the Leading Edge Flight Test (LEFT) being conducted by NASA. Attention is given to ice particle measurements in the LEFT program.

  1. A short remark on Stewart 1962 variational principle for laminar flow in a uniform duct

    Directory of Open Access Journals (Sweden)

    Liu Hong-Yan


    Full Text Available This paper concludes that Stewart 1962 variational principle for laminar flow in a uniform duct is for a differential-difference. Some generalized variational principles are elucidated with or without Stewart’s discrete treatment.

  2. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  3. A method of rapidly estimating the position of the laminar separation point (United States)

    Von Doenhoff, Albert E


    A method is described of rapidly estimating the position of the laminar separation point from the given pressure distribution along a body; the method is applicable to a fairly wide variety of cases. The laminar separation point is found by the von Karman-Millikan method for a series of velocity distributions along a flat plate, which consist of a region of uniform velocity followed by a region of uniform decreased velocity. It is shown that such a velocity distribution can frequently replace the actual velocity distribution along a body insofar as the effects on laminar separation are concerned. An example of the application of the method is given by using it to calculate the position of the laminar separation point on the NACA 0012 airfoil section at zero lift. The agreement between the position of the separation point calculated according to the present method and that found from more elaborate computations is very good.

  4. A steady state theory for processive cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;


    . This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....... remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady......-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity...

  5. Multiple steady state phenomenon in martensitic transformation

    Institute of Scientific and Technical Information of China (English)


    Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.

  6. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian


    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  7. Absolute TDLAS based in-situ determination of acetylene concentration profiles in laminar cross-flow flames; Absolute TDLAS basierte in Situ Messung von Acetylen Konzentrationsprofilen in laminaren Gegenstromflammen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S.; Raith, P.; Klein, M.; Ebert, V. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Institut


    A system for the quantitative, local dissolved, sampling-free and calibration-free in-situ measurement of acetylene in a flame environment by means of the direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) was developed. Using a fibre-coupled Distributed Feedback Diode Lasers at a wavelength of 1,535 nm, spatially dissolved and absolute concentration profiles of acetylene in laminar, not premixed methane/air flames based on a modified Tsuji cross-flow burner could be measured. By adjustment of a multi line Voigt model to the spectrum measured by means TDLAS, optical resolutions of up to 1.10{sup -}4 (1{sigma}) in the flame (T up to 2,000 K) were obtained. Thus, temperature-dependent detection limits from 50 to 700 ppm acetylene at maximal concentrations of up to 1,200 ppm were obtained for the P17e line at 6,513 cm{sup -}1. Due to the DC engine supported shifting of the burner relative to the laser, spatially dissolved, absolute acetylene concentration profiles were measured along the flame with a spatial dissolution of 0.5 mm. Without further scaling or calibration, the TDLAS based vertical concentration profile of acetylene agrees well with the computed distribution of the acetylene concentration for the same flame at a comparable burner. Thus, these concentration data can be used for the validation of new models for the description of the chemiluminescence.

  8. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus (United States)

    Abrahamson, A. L.


    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  9. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    Yuan LI; Ya-li DUAN; Yan GUO; Ru-xun LIU


    In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.

  10. The laminar separation sensor - An advanced transition measurement method for use in wind tunnels and flight (United States)

    Manuel, G. S.; Carraway, D. L.; Croom, C. C.


    Wind tunnel and flight tests have recently been conducted by the NASA Langley Research Center to explore the ability of laminar separation hot-film sensors to identify the presence of laminar separation as the principal mode of instability amplification leading to transition. This paper describes the different sensor configurations evaluated during the course of testing and presents results from the flight and wind tunnel evaluations. Plans for the next generation of sensors are briefly discussed.


    Directory of Open Access Journals (Sweden)

    Potascheva Galina Anatol’evna


    Full Text Available This paper discusses the steady system disbalance from the standpoint of getting resources from the outside and Chaos (Entropy to Order transformation. It has been demonstrated that all live beings and the System reach for steadiness and effectiveness, which are essential properties and qualities of activities. Maintaining such properties and qualities in public life requires continuous life quality improvement of the population. One of the basic measures to ensure the life quality growth is distributing incomes using the Position Grading System.

  12. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18 (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.


    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  13. Natural versus forced convection in laminar starting plumes

    CERN Document Server

    Rogers, Michael C


    A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...

  14. Characterization of mixing in a laminar motionless mixer (United States)

    Ventresca, Amy L.; Cao, Qing; Prasad, Ajay K.


    An investigation of the dependence of mixing efficiency of a motionless mixer upon viscosity ratio, volume flux ratio and Reynolds number was performed. The liquids were aqueous solutions of carboxymethylcellulose (CMC). Viscosity ratios ranged from 1 to about 100, volume flux ratios ranged from 1 to 10; 0.001<= Re <= 10 ,where Reynolds number was based on mixing element gap thickness. The two transparent liquid streams were symmetrically injected side-by-side, into a pipe housing five elements of a Koch SMX laminar flow motionless mixer. One of the two streams was marked with a fluorescing dye. A downstream cross-section of pipe was evaluated using laser induced fluorescence (LIF). Highly resolved spatial variations of fluorescence intensity were recorded using a CCD camera. Mathematical evaluations using goodness of mix criteria, including Danckwerts statistics, the average and variance of cross-sectional striation thickness, interfacial area growth, and cross-section averaged structure radius, will be presented. This work was supported by Dupont.

  15. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth


    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is, how to average out the fluctuations and calculate their average influence on the flow, is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model.

    The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  16. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth


    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is how to average out the fluctuations and calculate their average influence on the flow is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model. The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  17. Conjugated laminar forced convective heat transfer from internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Quan Tao (Xi' an Jiaotong Univ., Shaanxi (China))


    The use of internal fins is a very effective means of augmenting heat transfer in a tubular heat exchanger, especially for the laminar flow case. Several theoretical investigations have been undertaken to determine heat transfer performance under fully developed conditions. Results reported in the literature are derived for prescribed thermal boundary conditions, wither with axially uniform heat flux with peripherally uniform temperature, or with constant temperature axially as well as circumferentially. However, for double pipe heat exchangers, the thermal boundary condition of the separating wall can not be prescribed a priori; it is determined by the thermal interaction between the fluid inside the tube and that in the annular space. Mikhailov and Shishedjiev (1981), and Tao (1986) have shown that Nusselt number of the tube and that of the annular are strongly dependent upon the heat capacity ratio of the two fluids. In this investigation, a performance analysis is conducted numerically for an internally finned tube which serves as the inner tube of a double pipe heat exchanger.

  18. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin


    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  19. Building a Practical Natural Laminar Flow Design Capability (United States)

    Campbell, Richard L.; Lynde, Michelle N.


    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  20. Simulation of Random Waves and Associated Laminar Bottom Shear Stresses

    Institute of Scientific and Technical Information of China (English)

    Mao-Lin SHEN; Ching-Jer HUANG


    This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves are determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the numerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug's model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.

  1. Laminar dust flames in a reduced-gravity environment (United States)

    Goroshin, Samuel; Tang, Francois-David; Higgins, Andrew J.; Lee, John H. S.


    The propagation of laminar dust flames in suspensions of iron in gaseous oxidizers was studied in a low-gravity environment onboard a parabolic flight aircraft. The reduction of buoyancy-induced convective flows and particle settling permitted the measurement of fundamental combustion parameters, such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. Experimentally measured flame speeds and quenching distances were found in good agreement with theoretical predictions of a simplified analytical model that assumes particles burning in a diffusive mode. However, the comparison of flame speeds in oxygen-argon and oxygen-helium iron suspensions indicates the possibility that fine micron-sized particles burn in the kinetic mode. Furthermore, when the particle spacing is large compared to the scale of the reaction zone, a theoretical analysis suggests the existence of a new so-called discrete flame propagation regime. Discrete flames are strongly dependent on particle density fluctuations and demonstrate directed percolation behavior near flame propagation limits. The experimental observation of discrete flames in particle suspensions will require low levels of gravity over extended periods available only on orbital platforms.

  2. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan


    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  3. Laminar flow of micropolar fluid in rectangular microchannels

    Institute of Scientific and Technical Information of China (English)

    Shangjun Ye; Keqin Zhu; Wen Wang


    Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.

  4. Correlation of Preston-tube data with laminar skin friction (United States)

    Reed, T. D.; Abu-Mostafa, A.; Steinle, F. W., Jr.


    Preston-tube data have been obtained on a sharp ten-degree cone in the NASA Ames Eleven-Foot Transonic Wind Tunnel. Data were obtained over a Mach number range of 0.30 to 0.95 and unit Reynolds numbers of 9.84, 13.1, and 16.4 million per meter. The portions of these data, that were obtained within laminar boundary layers, have been correlated with the corresponding values of theoretical skin friction. The rms scatter of skin-friction coefficient about the correlation is of the order of one percent, which is comparable to the reported accuracy for calibrations of Preston-tubes in incompressible pipe-flows. In contrast to previous works on Preston-tube/skin-friction correlations, which are based on the physical height of the probe's face, this very satisfactory correlation for compressible boundary-layer flows is achieved by accounting for the effects of a variable 'effective' height of the probe. The coefficients, which appear in the correlation, are dependent on the particular tunnel environment. The general procedure can be used to define correlations for other wind tunnels.

  5. An investigation of streaklike instabilities in laminar boundary layer flames (United States)

    Miller, Colin; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael


    Observations of coherent structures in boundary layer flames, particularly wildland fires, motivated an investigation on flame instabilities within a boundary layer. This experimental study examined streaklike structures in a stationary diffusion flame stabilized within a laminar boundary layer. Flame streaks were found to align with pre-existing velocity perturbations, enabling stabilization of these coherent structures. Thermocouple measurements were used to quantify streamwise amplification of flame streaks. Temperature mapping indicated a temperature rise in the flame streaks, while the region in between these streaks, the trough, decreased in temperature. The heat flux to the surface was measured with a total heat flux gauge, and the heat flux below the troughs was found to be higher at all measurement locations. This was likely a function of the flame standoff distance, and indicated that the flame streaks were acting to modify the spanwise distribution of heat flux. Instabilities in boundary layer combustion can have an effect on the spanwise distribution of heat transfer. This finding has significant implications for boundary layer combustion, indicating that instantaneous properties can vary significantly in a three-dimensional flow field.

  6. Laminar flow around corners triggers the formation of biofilm streamers. (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard A


    Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments.

  7. Water slip flow in superhydrophobic microtubes within laminar flow region

    Institute of Scientific and Technical Information of China (English)

    Zhijia Yu; Xinghua Liu; Guozhu Kuang


    The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as wel as to science and technology development. Experiments were car-ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam-inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc-tion ranges from 8%to 31%. It decreases with increasing Reynolds number when Re b 900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re N 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.

  8. Effects of rectangular microchannel aspect ratio on laminar friction constant (United States)

    Papautsky, Ian; Gale, Bruce K.; Mohanty, Swomitra K.; Ameel, Timothy A.; Frazier, A. Bruno


    In this paper, the effects of rectangular microchannel aspect ratio on laminar friction constant are described. The behavior of fluids was studied using surface micromachined rectangular metallic pipette arrays. Each array consisted of 5 or 7 pipettes with widths varying from 150 micrometers to 600 micrometers and heights ranging from 22.71 micrometers to 26.35 micrometers . A downstream port for static pressure measurement was used to eliminate entrance effects. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. The experimental data obtained for water for flows at Reynolds numbers below 10 showed an approximate 20% increase in the friction constant for a specified driving potential when compared to macroscale predictions from the classical Navier-Stokes theory. When the experimental data are studied as a function of aspect ratio, a 20% increase in the friction constant is evident at low aspect ratios. A similar increase is shown by the currently available experimental data for low Reynolds number (flows of water.

  9. Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces (United States)

    Ou, Jia; Perot, Blair; Rothstein, Jonathan


    In devices where the fluid flow is laminar, there are currently no methods for reducing drag. We will present a series of experiments which demonstrate a 20-30% drag reduction for the flow of water through microchannels using hydrophobic surfaces with micron sized roughness. These 'ultrahydrophobic' surfaces are fabricated using photolithography to etch microposts and microridges with specific size, spacing and arrangement into silicon. The surfaces are then reacted with an organosilane to make them hydrophobic. The resulting surfaces have contact angles greater than 150 degrees. Pressure drop measurements are made for a series of ultrahydrophobic surface patterns, flow rates and microchannel heights. Pressure drop measurements across hydrophobic smooth surfaces are found to correlate precisely with theory while the drag reduction observed for the flow across these ultrahydrophobic surfaces is found to increase with increasing micropost spacing and decreasing micropost area. A physical model will be presented which explains the drag reduction in terms of a shear-free air-water interface between microposts supported by surface tension. Confirmation of the model will be presented with optical measurements of the displacement of the air-water interface under flow.

  10. Drag Measurements in Laminar Flows over Superhydrophobic Porous Membranes (United States)

    Ozsun, Ozgur; Yakhot, Victor; Ekinci, Kamil L.


    An anomalous hydrodynamic response has recently been observed in oscillating flows on mesh-like porous superhydrophobic membranes.ootnotetextS. Rajauria, O. Ozsun, J. Lawall, V. Yakhot, and K. L. Ekinci, Phys. Rev. Lett. 107, 174501 (2011) This effect was attributed to a stable Knudsen layer of gas at the solid-liquid interface. In this study, we investigate laminar channel flow over these porous superhydrophobic membranes. We have fabricated surfaces with solid area fraction φs, which can maintain intimate contact with both air and water reservoirs on either side. Typical structures have linear dimensions of 1.5 mm x 15 mm x 1 μm and pore area of 10 μm x 10 μm. The surfaces are enclosed with precisely machined plastic microchannels, where pressure driven flow of DI water is generated. Pressure drop across the microchannels is measured as a function of flow rate. Slip lengths are inferred from the Poiseuille relation as a function of φs and compared to that of similar standard superhydrophobic surfaces, which lack intimate contact with an air reservoir.

  11. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr


    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  12. Some Finite Difference Solutions of the Laminar Compressible Boundary Layer Showing the Effects of Upstream Transpiration Cooling (United States)

    Howe, John T.


    Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.

  13. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev


    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  14. Steady water waves with multiple critical layers

    CERN Document Server

    Ehrnström, Mats; Wahlén, Erik


    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  15. Multigrid for steady gas dynamics problems

    NARCIS (Netherlands)

    Hemker, P.W.; Koren, B.; Lioen, W.M.; Nool, M.; van der Maarel, H.T.M.; Hafez, M.; Oshima, K.


    This paper consists of two parts. In the first part we give a review of a good multigrid method for solving the steady Euler equations of gas dynamics on a locally refined mesh. The method is selfadaptive and makes use of unstructured grids that can be considered as parts of a nested sequence of str

  16. Marketing aspects of steady growth business strategy


    GONCHAR V.; Kalinin, O.


    The article analyzed the importance of marketing to achieve steady business growth, the main strategy of internal development and marketing of its level of development, achieving competitive advantage and the main directions of marketing management. The examples of marketing strategies for leading corporations were described. The problems and prospects of the business strategy of extensive growth and diversification were made.

  17. Marketing aspects of steady growth business strategy


    Gonchar, V.; Kalinin, O.


    The article analyzed the importance of marketing to achieve steady business growth, the main strategy of internal development and marketing of its level of development, achieving competitive advantage and the main directions of marketing management. The examples of marketing strategies for leading corporations were described. The problems and prospects of the business strategy of extensive growth and diversification were made.

  18. [The application of artificial protein premixes for nutritive support of patients with chronic renal insufficiency, being treated by perinateal dialysis]. (United States)

    Pichugina, I S; Vetchinnikova, O N; Vereshchagina, V M; Gapparov, M M; Vatazin, A V


    As a result of a survey of 56 patients with chronic renal insufficiency, who undergone hemodialysis, it was established, that clinical condition of patients, biochemical and hematological blood indices as well as results of anthropometric research improve upon application of artificial balanced high-protein premixes -"Nutrinil" and "Nutrien-Nefro". Irrespective of way of administration - introperitoneal ("Nutrinil" solution) or enteral ("Nutrien-Nefro" mixture) protein-energetic insufficiency diminishes or totally disappears, body weight, fat and muscle content of the body weight, as well as indices of whole protein, albumine, lymphocytes, haemoglobin, pH approache the norm. Intraperitoneal way of administration of artificial protein premixes increase patients adherence to this procedure, though enteral way of their administration is more preferable from economic point of view.

  19. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos (United States)

    Voorhies, Coerte V.


    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  20. Effects of Prandtl number on the laminar cross flow past a heated cylinder (United States)

    Ajith Kumar, S.; Mathur, Manikandan; Sameen, A.; Anil Lal, S.


    Flow past a heated cylinder at constant surface temperature is computationally simulated and analyzed in the laminar regime at moderate buoyancy. The parameters governing the flow dynamics are the Reynolds number, Re, the Richardson number, Ri, and the Prandtl number, Pr. We perform our computations in the range 10 ≤ Re ≤ 35, for which the flow past an unheated cylinder results in a steady separation bubble, and vary the other two parameters in the range 0 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤ 100. The heat transfer from the entire cylinder surface, quantified by the average Nusselt number Nuavg, is shown to obey Nuavg = 0.7435Re0.44Pr0.346 in the mixed convection regime we investigate. For a fixed Re and Pr, the flow downstream of the cylinder becomes asymmetric as Ri is increased from zero, followed by a complete disappearance of the vortices in the recirculation bubble beyond a threshold value of Ri. For a fixed Re and Ri, the vortices in the recirculation bubble are again observed to disappear beyond a threshold Pr, but with the reappearance of both the vortices above a larger threshold of Pr. In the limit of large Pr, the time-averaged flow outside the thermal boundary layer but within the near-wake region regains symmetry about the centerline and ultimately converges to a flow field similar to that of Ri = 0; in the far-wake region, however, we observe asymmetric vortex shedding for moderate Pr. The thermal plume structure in the cylinder wake is then discussed, and the plume generation is identified at points on the cylinder where the Nusselt number is a local minimum. The difference between the plume generation and the flow separation locations on the cylinder is shown to converge to zero in the limit of large Pr. We conclude by plotting the lift and drag coefficients as a function of Ri and Pr, observing that CD decreases with Ri for Pr Prt), where Prt ≈ 7.5.