WorldWideScience

Sample records for premier genetic model

  1. First experiments results about the engineering model of Rapsodie; Premiers resultats d'essais interessant le bloc pile de rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Chalot, A; Ginier, R; Sauvage, M [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [French] Ce rapport traite des premiers essais realises sur la maquette du bloc pile de Rapsodie et sur une installation annexe de sodium, implantees dans un hall d'essais de Cadarache. Il fait part: 1/- Des difficultes eprouvees lors du montage de la maquette et rassemble les resultats des premiers essais effectues sur cette installation (chargement des assemblages, prechauffage, chocs thermiques...). 2/- Des essais realises sur deux prototypes de mecanisme de barre de controle qui ont conduit a la conception du mecanisme definitif. L'ensemble des resultats obtenus a permis de confirmer la validite des principes adoptes pour la pile Rapsodie. (auteurs)

  2. QUALITY OF NURSING WORK LIFE IMPROVEMENT MODEL TO DECREASE NURSE INTENTION TO QUIT IN PREMIER SURABAYA HOSPITAL

    Directory of Open Access Journals (Sweden)

    Jany Prihastuty

    2017-04-01

    Full Text Available Introduction: Quality of Nursing Work Life (QNWL is a thing that needs attention by human resource management approach. The purpose of this research was to provide develop model to increase QNWL in order to lower nurse’s intention to quit the Premier Hospital Surabaya. Methods: Design used in the structure was explanatory research. The independent variables was Internal factors (Individual factors, social and environment conceptual factors, operational factors, administrative factors where as the dependent variable from this study was intention to quit, and moderator variables QNWL random sampling technique. Total sample was 160 nurses, taken according to inclusion criteria. The research was conducted in Premier Hospital Surabaya from October 2012 - July 2013. Data were collected by using structured questionnaire. Data were then analyzed by using multiple linear regression test with level of significance of ≤ 0.05. Result: The results showed, QNWL was influenced by relationships inter-professional part of variabel social and environment conceptual factors, supervision monitoring part of variabel operational factors, career development part of variabel administrative factors. Intention to quit influenced by relationships between nurses, inter-departmental and inter-professional part of variabel social and environment conceptual factors and salaries and benefits part of variabel administrative factors with significant value p = 0.005. Discussion: It can be concluded good inter-professional relation, supervision monitoring, and good career development affected QNWL. Good relationships between nurses, inter-departmental and inter- professional led to lower intention to quit. Low salary and benefits led nurse’s intention to quit getting stronger.

  3. Premier Hospital Historical Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — To provide a historical overview of the participating hospitals, before the first project report, Premier Healthcare Informatics has used data already available for...

  4. A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League

    NARCIS (Netherlands)

    Koopman, S.J.; Lit, R.

    2015-01-01

    Summary: We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results

  5. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  6. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  7. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  8. Behavior genetics: Bees as model

    International Nuclear Information System (INIS)

    Nates Parra, Guiomar

    2011-01-01

    The honeybee Apis mellifera (Apidae) is a model widely used in behavior because of its elaborate social life requiring coordinate actions among the members of the society. Within a colony, division of labor, the performance of tasks by different individuals, follows genetically determined physiological changes that go along with aging. Modern advances in tools of molecular biology and genomics, as well as the sequentiation of A. mellifera genome, have enabled a better understanding of honeybee behavior, in particular social behavior. Numerous studies show that aspects of worker behavior are genetically determined, including defensive, hygienic, reproductive and foraging behavior. For example, genetic diversity is associated with specialization to collect water, nectar and pollen. Also, control of worker reproduction is associated with genetic differences. In this paper, I review the methods and the main results from the study of the genetic and genomic basis of some behaviors in bees.

  9. Mastering Adobe Premiere Pro CS6

    CERN Document Server

    Ekert, Paul

    2013-01-01

    Designed to be practical and engaging, Mastering Adobe Premiere Pro CS6 is a project-based book to help you truly augment your skills and become a film editing hotshot.If you're just starting out or even migrating from existing video editing software, then this book is for you. With rapid progression through practical examples constructed to be both engaging and useful, Mastering Adobe Premiere Pro CS6 is ideal for learning the sometimes complex workflows of this powerful application.

  10. Scottish Premier League Reading Stars Evaluation Report

    Science.gov (United States)

    National Literacy Trust, 2009

    2009-01-01

    Scottish Premier League (SPL) Reading Stars uses the motivational power of football to attract families who need support with literacy into a positive and friendly learning environment. It ran for the first time between March and August 2009 and attracted 225 children and 190 adults to take part in a series of inspirational learning sessions in 23…

  11. Premier Wen hails sci-tech cooperation with CERN

    CERN Multimedia

    2004-01-01

    Premier Wen Jiabao met CERN's director general Dr Robert Aymar and physicist and Nobel laureate Dr Samuel Chao Chung Ting. Premier Wen emphasied the importance for China to collaborate on fundamental science (0.5 page)

  12. Market size and attendance in English Premier League football

    OpenAIRE

    Buraimo, B; Simmons, R

    2006-01-01

    This paper models the impacts of market size and team competition for fan base on matchday attendance in the English Premier League over the period 1997-2004 using a large panel data set. We construct a comprehensive set of control variables and use tobit estimation to overcome the problems caused by sell-out crowds. We also account for unobserved influences on attendance by means of random effects attached to home teams. Our treatment of market size, with its use of Geographical Information ...

  13. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  14. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  15. Management and marketing of sporting events: Nike Premier Cup Project

    OpenAIRE

    Nedbal, Jakub

    2008-01-01

    Title: Management and marketing ofsporting events: Nike Premier Cup project Points of thesis: Publish the Nike Premier Cup promotion campaign project and point out improvement possibilities for upcoming years based on analysis ofpast and present state. Methods: Data will be obtained by interview, observation, description analysis and SWOT analysis Results: Promotion campaign, improvement possibilities, final day schedule Keywords: SWOT analysis, promotion, management, marketing, Nike Premier ...

  16. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  17. THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...

    African Journals Online (AJOL)

    The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.

  18. Noise in Genetic Toggle Switch Models

    Directory of Open Access Journals (Sweden)

    Andrecut M.

    2006-06-01

    Full Text Available In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach for modeling the transcription and translation processes one can make the system to lock in one of the steady states for exponentially long times.

  19. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  20. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  1. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  2. The long-term effect of premier pay for performance on patient outcomes.

    Science.gov (United States)

    Jha, Ashish K; Joynt, Karen E; Orav, E John; Epstein, Arnold M

    2012-04-26

    found no evidence that the largest hospital-based pay-for-performance program led to a decrease in 30-day mortality. Expectations of improved outcomes for programs modeled after Premier HQID should therefore remain modest.

  3. Echographie devant une metrorragie du premier trimestre de ...

    African Journals Online (AJOL)

    Echographie devant une metrorragie du premier trimestre de grossesse sur uterus bicorne a issue favorable. Vaginal bleeding in a pregnant woman with a bicornuate uterus, ultrasound finding and favourable outcome.

  4. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  5. Genetic demographic networks: Mathematical model and applications.

    Science.gov (United States)

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  6. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...

  7. Population genetics models of local ancestry.

    Science.gov (United States)

    Gravel, Simon

    2012-06-01

    Migrations have played an important role in shaping the genetic diversity of human populations. Understanding genomic data thus requires careful modeling of historical gene flow. Here we consider the effect of relatively recent population structure and gene flow and interpret genomes of individuals that have ancestry from multiple source populations as mosaics of segments originating from each population. This article describes general and tractable models for local ancestry patterns with a focus on the length distribution of continuous ancestry tracts and the variance in total ancestry proportions among individuals. The models offer improved agreement with Wright-Fisher simulation data when compared to the state-of-the art and can be used to infer time-dependent migration rates from multiple populations. Considering HapMap African-American (ASW) data, we find that a model with two distinct phases of "European" gene flow significantly improves the modeling of both tract lengths and ancestry variances.

  8. Context trees for privacy-preserving modeling of genetic data

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.

    2016-01-01

    In this work, we use context trees for privacypreserving modeling of genetic sequences. The resulting estimated models are applied for functional comparison of genetic sequences in a privacy preserving way. Here we define privacy as uncertainty about the genetic source sequence given its model and

  9. Latent spatial models and sampling design for landscape genetics

    Science.gov (United States)

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  10. Evolutionary model with genetics, aging, and knowledge

    Science.gov (United States)

    Bustillos, Armando Ticona; de Oliveira, Paulo Murilo

    2004-02-01

    We represent a process of learning by using bit strings, where 1 bits represent the knowledge acquired by individuals. Two ways of learning are considered: individual learning by trial and error, and social learning by copying knowledge from other individuals or from parents in the case of species with parental care. The age-structured bit string allows us to study how knowledge is accumulated during life and its influence over the genetic pool of a population after many generations. We use the Penna model to represent the genetic inheritance of each individual. In order to study how the accumulated knowledge influences the survival process, we include it to help individuals to avoid the various death situations. Modifications in the Verhulst factor do not show any special feature due to its random nature. However, by adding years to life as a function of the accumulated knowledge, we observe an improvement of the survival rates while the genetic fitness of the population becomes worse. In this latter case, knowledge becomes more important in the last years of life where individuals are threatened by diseases. Effects of offspring overprotection and differences between individual and social learning can also be observed. Sexual selection as a function of knowledge shows some effects when fidelity is imposed.

  11. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  12. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  13. Policy Advice to Alberta’s New Premier

    Directory of Open Access Journals (Sweden)

    Jack M. Mintz

    2014-09-01

    Full Text Available On September 6th, 2014, members of the Progressive Conservative Party of Alberta elected Jim Prentice as leader of their party, and Premier of Alberta. The School of Public Policy assembled its key thinkers in economic, taxation, energy and natural resource policy to provide unsolicited but important advice to Premier Prentice on some areas of policy that matter most to Alberta, and that will demand the Premier’s attention as he takes office. These are opinion pieces, are not peer reviewed, and reflect the views of their authors alone.

  14. The Role of Internet in Marketing Premiering Movies

    OpenAIRE

    Tuohimaa, Suvi

    2010-01-01

    The objective of this thesis was to find out about the role of Internet today in premiering movie marketing and whether Internet is a good tool for it. The hope was to obtain new information provided by moviegoers and to contribute something useful to the art of marketing premiering movies. This thesis was a part of the School of Business and Information Management's Innomajakka-project but did not have an official commissioner, so the topic for the thesis came from the writer's personal and ...

  15. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  16. A Rational Model In Theoretical Genetics

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2008-07-01

    Full Text Available This model connects information processing in biological organisms with methods and concepts used in classical, technical information processing. The central concept shows copying and regulatory interaction between a logical sequence consisting of triplets and the amount of constituents of a set. The basic mathematical model of information processing within a biological cell has been worked out. The cell in the model copies its present state into a sequence and reads it off the sequence. The sequence comes in triplets and is not one sequence but appears in two almost identical varieties. We treat consecutive and contemporary assemblies of information carrying media as equally suited to contain information. Methods used so far utilised the consecutive property of media, while in biology one observes the concurrent existence of specific realisations of possibilities. Genetics connects the two approaches by using an interplay between consecutively (sequentially ordered logical markers (the DNA and the state of the set engulfing the DNA. Several mathematical tools have been evolved to assemble an interface between sequentially ordered carriers and the same number of carriers if they arrive contemporaneously. Using linguistic theory and formal logic one concludes that measurement(s on a cell are a (set of logical sentence(s relating to an assembly of n objects with group structures among each other. We linearise and count all possible group relations on a set of n objects and introduce the concept of multidimensional partitions hitherto left undefined. We introduce the concept of a maximally structured set by establishing an upper limit to the information carrying capacity of n objects used commutatively and sequentially at the same time (like genetics does. The copying and re-copying mechanism which is the core matter with genetics appears in the model as differing transmission efficiency coefficients of media if the media are used once sequentially

  17. Open Access Publishing in Indian Premier Research Institutions

    Science.gov (United States)

    Bhat, Mohammad Hanief

    2009-01-01

    Introduction: Publishing research findings in open access journals is a means of enhancing visibility and consequently increasing the impact of publications. This study provides an overview of open access publishing in premier research institutes of India. Method: The publication output of each institution from 2003 to 2007 was ascertained through…

  18. Trichoberoard gastrique : Premier cas observe en milieu bur kina be ...

    African Journals Online (AJOL)

    Le trichobezoard est une concretion de cheveux, de poils ou de fibres de tapis et de debris alimentaire, localisee habituellement dans l'estomac. Le trichobezoard est une pathologie rare qui survient habituellement chez des adolescentes presentant des troubles psychiques. La premiere observation de trichobezoard a ete ...

  19. Physiological response of one of South Africa's premier freshwater ...

    African Journals Online (AJOL)

    Physiological response of one of South Africa's premier freshwater sport angling species, the Orange-Vaal smallmouth yellowfish Labeobarbus aeneus, ... These data suggest that catch-and-release causes physiological stress to fish, but nonetheless this practice can be a valuable fisheries management tool to ensure the ...

  20. Premiere toob lavale jalgpallimeeskonna, inimkatsed ja punase tooli / Kairi Prints

    Index Scriptorium Estoniae

    Prints, Kairi, 1977-

    2012-01-01

    Premiere 2012 osalevad neli Eesti tantsukunstnikku: Svetlana Grigorjeva tantsulavastusega "sõp rus est", Kaisa Selde, Kristina-Maria Heinsalu ja Christin Lunts tantsulavastusega "fie", esmakordselt võtab osa välismaalane - sakslanna Mareike Franz tantsulavastusega "Duett". Kõik esietenduvad 9. veebruaril Kanuti gildi saalis

  1. Computers for Schools Kenya se classe au premier rang | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cinq ans après avoir remis en service ses premiers ordinateurs recyclés et leur avoir trouvé un nouveau nid, l'organisation non gouvernementale Computers for Schools Kenya (CFSK) s'est mérité un prix convoité à l'échelle de l'Afrique pour son travail.

  2. Linear Mixed Models in Statistical Genetics

    NARCIS (Netherlands)

    R. de Vlaming (Ronald)

    2017-01-01

    markdownabstractOne of the goals of statistical genetics is to elucidate the genetic architecture of phenotypes (i.e., observable individual characteristics) that are affected by many genetic variants (e.g., single-nucleotide polymorphisms; SNPs). A particular aim is to identify specific SNPs that

  3. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  4. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  5. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  6. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2014-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  7. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2013-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  8. The impact of dermatology in premier medicine journals.

    Science.gov (United States)

    Kheterpal, Meenal K; Ellis, Charles N

    2011-01-01

    In the past 15 years, research in dermatology has significantly increased. Dermatology-related contributions in premier medical journals such as The New England Journal of Medicine (NEJM) and The Journal of the American Medical Association (JAMA) are the representation of our field in the medical world. To analyze this representation, incidence of dermatology-related contributions in NEJM and JAMA during 3 separate years (during a 15-year period) was calculated.

  9. Market Segmentation, Targeting, Dan Brand Positioning Dari Winston Premier Surabaya

    OpenAIRE

    Tania, Debby

    2014-01-01

    Sejak tahun 2012 mulai terasa bahwa bisnis properti mengalami kenaikan di Indonesia. Banyak masyarakat Indonesia berinvestasi pada properti karena dianggap aman dan menguntungkan. Sehingga muncul banyak produk properti baru di Indonesia. Perkembangan properti di Indonesia menjadi peluang besar bagi Agen Properti untuk dapat menjalankan bisnisnya. Winston Premier sebagai salah satu Agen properti di Surabaya Barat yang baru berdiri memerlukan strategi pemasaran yang tepat untuk digunakan guna b...

  10. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  11. Teaching Genetic Counseling Skills: Incorporating a Genetic Counseling Adaptation Continuum Model to Address Psychosocial Complexity.

    Science.gov (United States)

    Shugar, Andrea

    2017-04-01

    Genetic counselors are trained health care professionals who effectively integrate both psychosocial counseling and information-giving into their practice. Preparing genetic counseling students for clinical practice is a challenging task, particularly when helping them develop effective and active counseling skills. Resistance to incorporating these skills may stem from decreased confidence, fear of causing harm or a lack of clarity of psycho-social goals. The author reflects on the personal challenges experienced in teaching genetic counselling students to work with psychological and social complexity, and proposes a Genetic Counseling Adaptation Continuum model and methodology to guide students in the use of advanced counseling skills.

  12. What’s a Cricketer’s Worth? Predicting Bid Prices for Indian Premier League Auctions

    Directory of Open Access Journals (Sweden)

    Siddhartha K. RASTOGI

    2017-04-01

    Full Text Available Indian Premier League is a twenty-over format cricket tournament of teams representing different Indian cities. Beginning 2008, it is established now as a grand annual affair. The team franchises are auctioned on long term basis, whereas cricketers are auctioned every season under certain conditions. Despite such wealth of information, studies on IPL auctions are rare barring four cited models. The present paper studies the results of year 2011 English-style auction of cricketers and recalibrates the old yet most accurate model by Rastogi and Deodhar (2009. Both models use ordinary least square method of regression albeit with different variable. The old models lack predictive power, whereas the recalibrated model presented displays better predictive capability as compared to earlier models. It also succeeds in reducing overall predictability gap and stands significantly parsimonious vis-à-vis previous models. Further, the final model presented is applied on 2013 and 2014 auction data to show superior results.

  13. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  14. Developing robotic behavior using a genetic programming model

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle's on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study

  15. Eco-genetic modeling of contemporary life-history evolution.

    Science.gov (United States)

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by

  16. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    Science.gov (United States)

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  17. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  19. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous ... Simulations are implemented using MATLAB with its genetic algorithm toolbox. .... selection, the process that drives biological evolution.

  20. ABOUT THE SMART SPORTS DEVELOPMENT. EVIDENCE FROM THE UK PREMIERE LEAGUE

    Directory of Open Access Journals (Sweden)

    Vlad Ionut Dumitrache

    2016-11-01

    Full Text Available Smart economy implies the development of key factors like global economy growth, competition, economic progress, economic prosperity, innovation. In the European top-level football, like the case of the British Premier League, financial indicators have demonstrated that the factors that define smart economy can be identified. The new rules of the financial fair-play policies and the ever growing revenues for television rights have created a new market in sports economy, one that identifies itself with the criteria identifies in studies regarding smart economy. This paper comparatively examines the determinants of four indicators of the football team quality in the British Premier League, in order to find out whether a common set of potential determinants could be effective in improving all four indicators of quality, without worsening any of them. This allows finding what measures undertaken at the level of football teams could raise the football team quality. Considering the subjective and multidimensional nature of the football team quality, we first propose four indicators that might be appropriate to define this latent summative measure. Then we select a number of four potentially common determinants of the football team quality, and finally discuss the empirical results, based on panel generalized least squares regression models. The television broadcasting rights are found to be the most important determinant of the football team quality.

  1. Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.

    Science.gov (United States)

    Dechow, C D; Rogers, G W

    2018-05-01

    Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    Science.gov (United States)

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S.; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P.; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E.

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene

  3. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    Directory of Open Access Journals (Sweden)

    Guillermo Sánchez-de la Vega

    2018-03-01

    Full Text Available Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma. Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango. We detected low

  4. The genetic analysis of repeated measures I: Simplex models

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Boomsma, D.I.

    1987-01-01

    Extends the simplex model to a model that may be used for the genetic and environmental analysis of covariance (ANCOVA) structures. This "double" simplex structure can be specified as a linear structural relationships model. It is shown that data that give rise to a simplex correlation structure,

  5. Modeling and simulation of critical parameters of the first chamber of the dimuon arm spectrometer of the Alice experiment; Modelisation et simulation de parametres critiques de la premiere station du spectrometre dimuons d'ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Guez, D

    2003-10-01

    The Alice experiment that is dedicated to the study of ultra-relativistic heavy ion collisions, will take place in the future large hadron collider (LHC) at CERN. The dimuon arm spectrometer of the Alice experiment is devoted to the search of a new signature of the existence of the quark gluon plasma (QGP). The first chapter is dedicated to the physics notions linked to the study of QGP, a few signatures are proposed for the detection of QGP, particularly the signature concerning the production rate of quarkonium. The second chapter deals with particle detection involved in Alice experiment, the dimuon arm spectrometer is a detector dedicated to the track reconstruction of muons issued from the decay of heavy mesons from J/{psi} and {upsilon} families. The third and the fourth chapters present the studies made to integrate a reliable model of the dimuon arm in the global simulation code of Alice (Aliroot). The fifth chapter presents the software TB{sup 2} that has been developed within the framework of this thesis in order to check and control the output data when the detector is tested with a real particle beam. The sixth chapter presents the results of the tests that have been performed with a 7 GeV/c pion beam. These tests have shown that the electronic noise is coherent with the specifications of Alice experiment. A factor 1,8 between the highest and the weakest values of the gain has been measured in the chamber. The detection efficiency of the chamber has been estimated to 99% in the different cases studied. (A.C.)

  6. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    Science.gov (United States)

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Population genetics of Setaria viridis, a new model system.

    Science.gov (United States)

    Huang, Pu; Feldman, Maximilian; Schroder, Stephan; Bahri, Bochra A; Diao, Xianmin; Zhi, Hui; Estep, Matt; Baxter, Ivan; Devos, Katrien M; Kellogg, Elizabeth A

    2014-10-01

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies. © 2014 John Wiley & Sons Ltd.

  8. Genetics of traffic assignment models for strategic transport planning

    NARCIS (Netherlands)

    Bliemer, M.C.J.; Raadsen, M.P.H.; Brederode, L.J.N.; Bell, M.G.H.; Wismans, Luc Johannes Josephus; Smith, M.J.

    2016-01-01

    This paper presents a review and classification of traffic assignment models for strategic transport planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic

  9. Genetic models of absence epilepsy: New concepts and insights

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Coenen, A.M.L.; Schwartzkroin, P.A.

    2009-01-01

    The discovery, development, and use of genetic rodent models of absence epilepsy have led to a new theory about the origin of absence seizures. A focal zone has been identified in the peri-oral region of the somatosensory cortex in WAG/Rij and GAERS – the two most commonly used models – from which

  10. Applicability of genetic algorithms to parameter estimation of economic models

    Directory of Open Access Journals (Sweden)

    Marcel Ševela

    2004-01-01

    Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.

  11. High-intensity running in English FA Premier League soccer matches

    DEFF Research Database (Denmark)

    Bradley, Paul S.; Sheldon, William; Wooster, Blake

    2009-01-01

    The aims of this study were to (1) determine the activity profiles of a large sample of English FA Premier League soccer players and (2) examine high-intensity running during elite-standard soccer matches for players in various playing positions. Twenty-eight English FA Premier League games were...

  12. Genetic pathways to Neurodegeneration Models and mechanisms ...

    Indian Academy of Sciences (India)

    Paige Rudich

    Models and mechanisms of repeat expansion disorders: a worm's eye view ..... retardation 1 gene FMR1 gives rise to a spectrum of neurological disorders (Saul and Tarleton ... autism. Shorter repeat expansion lengths from 55-200 cause the.

  13. ENU mutagenesis to generate genetically modified rat models.

    Science.gov (United States)

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  14. Introduction to genetic algorithms as a modeling tool

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    Genetic algorithms are search and classification techniques modeled on natural adaptive systems. This is an introduction to their use as a modeling tool with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in genetic algorithms and to recognize those which might impact on electric power engineering. Beginning with a discussion of genetic algorithms and their origin as a model of biological adaptation, their advantages and disadvantages are described in comparison with other modeling tools such as simulation and neural networks in order to provide guidance in selecting appropriate applications. In particular, their use is described for improving expert systems from actual data and they are suggested as an aid in building mathematical models. Using the Thermal Performance Advisor as an example, it is suggested how genetic algorithms might be used to make a conventional expert system and mathematical model of a power plant adapt automatically to changes in the plant's characteristics

  15. Sleep and Development in Genetically Tractable Model Organisms.

    Science.gov (United States)

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  16. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  17. An approximate multitrait model for genetic evaluation in dairy cattle with a robust estimation of genetic trends (Open Access publication

    Directory of Open Access Journals (Sweden)

    Madsen Per

    2007-07-01

    Full Text Available Abstract In a stochastic simulation study of a dairy cattle population three multitrait models for estimation of genetic parameters and prediction of breeding values were compared. The first model was an approximate multitrait model using a two-step procedure. The first step was a single trait model for all traits. The solutions for fixed effects from these analyses were subtracted from the phenotypes. A multitrait model only containing an overall mean, an additive genetic and a residual term was applied on these preadjusted data. The second model was similar to the first model, but the multitrait model also contained a year effect. The third model was a full multitrait model. Genetic trends for total merit and for the individual traits in the breeding goal were compared for the three scenarios to rank the models. The full multitrait model gave the highest genetic response, but was not significantly better than the approximate multitrait model including a year effect. The inclusion of a year effect into the second step of the approximate multitrait model significantly improved the genetic trend for total merit. In this study, estimation of genetic parameters for breeding value estimation using models corresponding to the ones used for prediction of breeding values increased the accuracy on the breeding values and thereby the genetic progress.

  18. Disease modeling in genetic kidney diseases: zebrafish.

    Science.gov (United States)

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  19. Genetic Evaluation and Ranking of Different Animal Models Using ...

    African Journals Online (AJOL)

    An animal model utilizes all relationships available in a given data set. Estimates for variance components for additive direct, additive maternal, maternal environmental and direct environmental effects, and their covariances between direct and maternal genetic effects for post weaning growth traits have been obtained with ...

  20. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  1. Use of Genetic Models to Study the Urinary Concentrating Mechanism

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Kortenoeven, Marleen L.A.; Fenton, Robert A.

    2015-01-01

    technology is providing critical new information about urinary concentrating processes and thus mechanisms for maintaining body water homeostasis. In this chapter we provide a brief overview of genetic mouse model generation, and then summarize findings in transgenic and knockout mice pertinent to our...

  2. Genetic models of absence epilepsy: New concepts and insights

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Stein, J.

    2017-01-01

    The discovery, development and use of genetic rodent models of absence epilepsy have led to a new theory about the origin of absence seizures, which has gained impact within the international epilepsy community. A focal zone has been identified in the perioral region of the somatosensory cortex in

  3. ENU mutagenesis to generate genetically modified rat models

    NARCIS (Netherlands)

    van Boxtel, R.; Gould, M.; Cuppen, E.; Smits, B.M.

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach

  4. Genetic Process Mining: Alignment-based Process Model Mutation

    NARCIS (Netherlands)

    Eck, van M.L.; Buijs, J.C.A.M.; Dongen, van B.F.; Fournier, F.; Mendling, J.

    2015-01-01

    The Evolutionary Tree Miner (ETM) is a genetic process discovery algorithm that enables the user to guide the discovery process based on preferences with respect to four process model quality dimensions: replay fitness, precision, generalization and simplicity. Traditionally, the ETM algorithm uses

  5. CMCpy: Genetic Code-Message Coevolution Models in Python

    Science.gov (United States)

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  6. Application of genetic algorithm in radio ecological models parameter determination

    Energy Technology Data Exchange (ETDEWEB)

    Pantelic, G. [Institute of Occupatioanl Health and Radiological Protection ' Dr Dragomir Karajovic' , Belgrade (Serbia)

    2006-07-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 {+-} 3) days and transfer coefficient from grass to milk is (0.019 {+-} 0.005). (authors)

  7. Application of genetic algorithm in radio ecological models parameter determination

    International Nuclear Information System (INIS)

    Pantelic, G.

    2006-01-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 ± 3) days and transfer coefficient from grass to milk is (0.019 ± 0.005). (authors)

  8. Monitoring evaluation of a spillway pilaster for Premiere Chute Dam

    Energy Technology Data Exchange (ETDEWEB)

    Crepeau, Louis; Kassem, Chakib [OSMOS Canada Inc., Montreal, (Canada)

    2010-07-01

    The Premiere-Chute hydroelectric power station, commissioned in 1968, has four hydraulic turbines for a total of 130 MW. One of the pilasters of the dam weir, built with pre-stressed concrete, showed a crack at the level of the post-tension cable. This paper presented an evaluation of the behaviour of the pilaster in question, No. 9. The main goal was to prevent any disruption to the gate opening through adequate monitoring for a long term data follow-up. Six long-base OSMOS type optical sensors were installed on each face of the spillway pilaster. The behaviour of the No. 9 pilaster was then compared with that of other pilasters with respect to the effects of temperature and water level fluctuation in the dam. After the pilasters had been monitored for six months, it was found that No. 9 pilaster showed the least deformation of all. It was therefore concluded that the behaviour of this pilaster was normal.

  9. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  10. Genetic demixing and evolution in linear stepping stone models

    Science.gov (United States)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial

  11. Central Ukraine Uranium Province: The genetic model

    International Nuclear Information System (INIS)

    Emetz, A.; Cuney, M.

    2014-01-01

    ramifications or intersections. In such places albitites are often altered by superimposed calcic and potassic metasomatism resulting in the replacement of aegirine and riebeckite by garnet, epidote, actinolite, calcite and lamellar phlogopite accompanying U-mineralization. All types of the metasomatic alterations gradually pinch out with depth. U-mineralized metasomatites are enriched in a complex of elements typically accumulated in the crust during regional metamorphism, and partial melting as indicated by pegmatite dike swarms in the Ingul Megablock. From seismic data interpretation, all U deposits in the CUUP are located over latitudinal mantle “deeps” or in the zones where the base of the lithosphere contrastingly subsides. In conclusion, Na-metasomatism is interpreted as a regional process resulting from the deep penetration of marine waters down along crustal scale shear zones during an extensional tectonic regime causing the regional collapse of the Ingul Megablock. Calcic and potassic alterations and U-mineralization are possibly connected with the crust dehydration and probable hotspot partial melting in the mantle initiated by the most unstable P-T conditions within zones of contrasting thickness of the lithosphere. The proposed models of Na-metasomatism and U-accumulation are useful for delineation of prospective territories having the potential to host U deposits associated with Na-metasomatites in Proterozoic terrains. (author)

  12. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    Science.gov (United States)

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Rapsodie first core manufacture. 1. part: processing plant; Fabrication du premier coeur de rapsodie. Premiere partie: l'atelier de fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Masselot, Y; Bataller, S; Ganivet, M; Guillet, H; Robillard, A; Stosskopf, F [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [French] Ce rapport est le premier d'une serie de trois qui decrivent les procedes, les resultats et les problemes techniques particuliers de la fabrication du du premier coeur de la pile a neutrons rapides Rapsodie. Il comporte une etude detaillee des procedes de fabrication (pastilles, aiguilles, assemblages combustibles) et des methodes de controle associees (matieres premieres, pastilles et aiguilles en cours de fabrication, assemblages fissiles avant livraison), ainsi qu'une decription complete des installations de l'atelier de fabrication et les modifications apportees pour une deuxieme campagne. (auteur)

  14. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    Science.gov (United States)

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up.

  15. An animal model of differential genetic risk for methamphetamine intake

    Directory of Open Access Journals (Sweden)

    Tamara ePhillips

    2015-09-01

    Full Text Available The question of whether genetic factors contribute to risk for methamphetamine (MA use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1 agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the

  16. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    Science.gov (United States)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  17. Predicting Football Matches Results using Bayesian Networks for English Premier League (EPL)

    Science.gov (United States)

    Razali, Nazim; Mustapha, Aida; Yatim, Faiz Ahmad; Aziz, Ruhaya Ab

    2017-08-01

    The issues of modeling asscoiation football prediction model has become increasingly popular in the last few years and many different approaches of prediction models have been proposed with the point of evaluating the attributes that lead a football team to lose, draw or win the match. There are three types of approaches has been considered for predicting football matches results which include statistical approaches, machine learning approaches and Bayesian approaches. Lately, many studies regarding football prediction models has been produced using Bayesian approaches. This paper proposes a Bayesian Networks (BNs) to predict the results of football matches in term of home win (H), away win (A) and draw (D). The English Premier League (EPL) for three seasons of 2010-2011, 2011-2012 and 2012-2013 has been selected and reviewed. K-fold cross validation has been used for testing the accuracy of prediction model. The required information about the football data is sourced from a legitimate site at http://www.football-data.co.uk. BNs achieved predictive accuracy of 75.09% in average across three seasons. It is hoped that the results could be used as the benchmark output for future research in predicting football matches results.

  18. Genetic algorithms and experimental discrimination of SUSY models

    International Nuclear Information System (INIS)

    Allanach, B.C.; Quevedo, F.; Grellscheid, D.

    2004-01-01

    We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)

  19. Dynamic modeling of genetic networks using genetic algorithm and S-system.

    Science.gov (United States)

    Kikuchi, Shinichi; Tominaga, Daisuke; Arita, Masanori; Takahashi, Katsutoshi; Tomita, Masaru

    2003-03-22

    The modeling of system dynamics of genetic networks, metabolic networks or signal transduction cascades from time-course data is formulated as a reverse-problem. Previous studies focused on the estimation of only network structures, and they were ineffective in inferring a network structure with feedback loops. We previously proposed a method to predict not only the network structure but also its dynamics using a Genetic Algorithm (GA) and an S-system formalism. However, it could predict only a small number of parameters and could rarely obtain essential structures. In this work, we propose a unified extension of the basic method. Notable improvements are as follows: (1) an additional term in its evaluation function that aims at eliminating futile parameters; (2) a crossover method called Simplex Crossover (SPX) to improve its optimization ability; and (3) a gradual optimization strategy to increase the number of predictable parameters. The proposed method is implemented as a C program called PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equations 1). Its performance was compared with the basic method. The comparison showed that: (1) the convergence rate increased about 5-fold; (2) the optimization speed was raised about 1.5-fold; and (3) the number of predictable parameters was increased about 5-fold. Moreover, we successfully inferred the dynamics of a small genetic network constructed with 60 parameters for 5 network variables and feedback loops using only time-course data of gene expression.

  20. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  1. Chemical event chain model of coupled genetic oscillators.

    Science.gov (United States)

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  2. Chemical event chain model of coupled genetic oscillators

    Science.gov (United States)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  3. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  4. The evolution of menstruation: A new model for genetic assimilation

    Science.gov (United States)

    Emera, D.; Romero, R.; Wagner, G.

    2012-01-01

    Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss. PMID:22057551

  5. Genetic modelling in schizophrenia according to HLA typing.

    Science.gov (United States)

    Smeraldi, E; Macciardi, F; Gasperini, M; Orsini, A; Bellodi, L; Fabio, G; Morabito, A

    1986-09-01

    Studying families of schizophrenic patients, we observed that the risk of developing the overt form of the illness could be enhanced by some factors. Among these various factors we focused our attention on a biological variable, namely the presence or the absence of particular HLA antigens: partitioning our schizophrenic patients according to their HLA structure (i.e. those with HLA-A1 or CRAG-A1 antigens and those with HLA-non-CRAG-A1 antigens, respectively), revealed different illness distribution in the two groups. From a genetic point of view, this finding suggests the presence of heterogeneity in the hypothetical liability system related to schizophrenia and we evaluated the heterogeneity hypothesis by applying alternative genetic models to our data, trying to detect more biologically homogeneous subgroups of the disease.

  6. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Modelling the genetic risk in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Felix Grassmann

    Full Text Available Late-stage age-related macular degeneration (AMD is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05 than patients aged 75 and above (1.45, 95% CI: 1.36-1.54. Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96 for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population. The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

  8. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  9. Examining behavioral processes through which lifestyle interventions promote weight loss: results from PREMIER.

    Science.gov (United States)

    Fitzpatrick, Stephanie L; Bandeen-Roche, Karen; Stevens, Victor J; Coughlin, Janelle W; Rubin, Richard R; Brantley, Phillip J; Funk, Kristine L; Svetkey, Laura P; Jerome, Gerald J; Dalcin, Arlene; Charleston, Jeanne; Appel, Lawrence J

    2014-04-01

    To examine the behavioral processes through which lifestyle interventions impacted weight loss. The analyses were limited to overweight and obese Black and White adults randomized to a PREMIER lifestyle intervention (N = 501). Structural equation modeling was conducted to test the direct and indirect relationships of session attendance, days of self-monitoring diet and exercise, change in diet composition and exercise, and 6-month weight change. Greater session attendance was associated with increased self-monitoring, which was in turn significantly related to reduction in percent energy from total fat consumed. Change in percent energy from fat and self-monitoring was associated with 6-month percent change in weight. Both a decrease in fat intake and increase in self-monitoring are potential mediators of the relationship between attendance and weight change. The findings provide a reasonable model that suggests regular session attendance and use of behavioral strategies like self-monitoring are associated with improved behavioral outcomes that are associated with weight loss. Copyright © 2013 The Obesity Society.

  10. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  12. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    Science.gov (United States)

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  13. Genetic fuzzy system modeling and simulation of vascular behaviour

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Boonen, Harrie C.M.

    Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes in c...... the pressure change of different blood vessels. Conclusion: Genetic fuzzy system is one of potential modeling methods in modeling and simulation of vascular behavior.......Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes...... in cardiovascular disease and ultimately improve pharmacotherapy. For this purpose, novel computational approaches incorporating adaptive properties, auto-regulatory control and rule sets will be assessed, properties that are commonly lacking in deterministic models based on differential equations. We hypothesize...

  14. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  15. Using genetic algorithms to calibrate a water quality model.

    Science.gov (United States)

    Liu, Shuming; Butler, David; Brazier, Richard; Heathwaite, Louise; Khu, Soon-Thiam

    2007-03-15

    With the increasing concern over the impact of diffuse pollution on water bodies, many diffuse pollution models have been developed in the last two decades. A common obstacle in using such models is how to determine the values of the model parameters. This is especially true when a model has a large number of parameters, which makes a full range of calibration expensive in terms of computing time. Compared with conventional optimisation approaches, soft computing techniques often have a faster convergence speed and are more efficient for global optimum searches. This paper presents an attempt to calibrate a diffuse pollution model using a genetic algorithm (GA). Designed to simulate the export of phosphorus from diffuse sources (agricultural land) and point sources (human), the Phosphorus Indicators Tool (PIT) version 1.1, on which this paper is based, consisted of 78 parameters. Previous studies have indicated the difficulty of full range model calibration due to the number of parameters involved. In this paper, a GA was employed to carry out the model calibration in which all parameters were involved. A sensitivity analysis was also performed to investigate the impact of operators in the GA on its effectiveness in optimum searching. The calibration yielded satisfactory results and required reasonable computing time. The application of the PIT model to the Windrush catchment with optimum parameter values was demonstrated. The annual P loss was predicted as 4.4 kg P/ha/yr, which showed a good fitness to the observed value.

  16. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    Deines, P.

    1984-01-01

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta 13 C P-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta 13 C E-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , MgO, Mg/(Mg + Fe), Na 2 O, K 2 O, TiO 2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  17. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    Science.gov (United States)

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  18. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  19. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    Science.gov (United States)

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  20. Cost optimization model and its heuristic genetic algorithms

    International Nuclear Information System (INIS)

    Liu Wei; Wang Yongqing; Guo Jilin

    1999-01-01

    Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model

  1. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  2. NASA Names Premier X-Ray Observatory and Schedules Launch

    Science.gov (United States)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  3. 40Ar-39Ar laser probe dating of individual clinopyroxene inclusions in Premier eclogitic diamonds

    International Nuclear Information System (INIS)

    Burgess, R.; Turner, G.; Laurenzi, M.; Harris, J.W.

    1989-01-01

    The ages of seven individual clinopyroxene inclusions in Premier diamonds of eclogitic association have been determined using the 40 Ar- 39 Ar dating technique. Syngenetic inclusions weighing between 10 and 130 μg were exposed on cleaved surfaces of the diamonds and analysed using a laser probe. The inclusion ages were found to be in the range 1111±35 to 1254±38 Ma with an average of 1185±94 Ma. The ages obtained are in good agreement with previous determinations made on aggregates of eclogitic inclusions from Premier diamonds and demonstrate the applicability of the laser probe to dating individual diamond inclusions. (orig.)

  4. How to Revise, and Revise Really Well, for Premier Academic Journals

    DEFF Research Database (Denmark)

    LaPlaca, Peter J.; Lindgreen, Adam; Vanhamme, Joelle

    2018-01-01

    Most of the premier academic journals in all fields routinely have rejection rates of 80%, 95%, or higher. All journals prefer articles that make significant contributions to the field. Revising a manuscript and responding properly to the comments of reviewers and editors often is challenging....... This article discusses how to revise effectively a manuscript according to the (minor or major) comments of reviewers and editors for premier academic journals. We provide a series of tips for helping the authors in their endeavor, making the process less arduous and improving the possibility of a positive...

  5. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  6. Effect of Keishibukuryogan on Genetic and Dietary Obesity Models

    Directory of Open Access Journals (Sweden)

    Fengying Gao

    2015-01-01

    Full Text Available Obesity has been recognized as one of the most important risk factors for a variety of chronic diseases, such as diabetes, hypertension/cardiovascular diseases, steatosis/hepatitis, and cancer. Keishibukuryogan (KBG, Gui Zhi Fu Ling Wan in Chinese is a traditional Chinese/Japanese (Kampo medicine that has been known to improve blood circulation and is also known for its anti-inflammatory or scavenging effect. In this study, we evaluated the effect of KBG in two distinct rodent models of obesity driven by either a genetic (SHR/NDmcr-cp rat model or dietary (high-fat diet-induced mouse obesity model mechanism. Although there was no significant effect on the body composition in either the SHR rat or the DIO mouse models, KBG treatment significantly decreased the serum level of leptin and liver TG level in the DIO mouse, but not in the SHR rat model. Furthermore, a lower fat deposition in liver and a smaller size of adipocytes in white adipose tissue were observed in the DIO mice treated with KBG. Importantly, we further found downregulation of genes involved in lipid metabolism in the KBG-treated liver, along with decreased liver TG and cholesterol level. Our present data experimentally support in fact that KBG can be an attractive Kampo medicine to improve obese status through a regulation of systemic leptin level and/or lipid metabolism.

  7. Helicobacter pylori genetic diversification in the Mongolian gerbil model.

    Science.gov (United States)

    Beckett, Amber C; Loh, John T; Chopra, Abha; Leary, Shay; Lin, Aung Soe; McDonnell, Wyatt J; Dixon, Beverly R E A; Noto, Jennifer M; Israel, Dawn A; Peek, Richard M; Mallal, Simon; Algood, Holly M Scott; Cover, Timothy L

    2018-01-01

    Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori -infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e -5 , which is similar to the rates detected previously in H. pylori- infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions ( fur , tonB1 , fecA2 , fecA3 , and frpB3 ) or encoding outer membrane proteins ( alpA, oipA, fecA2, fecA3, frpB3 and cagY ). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.

  8. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  9. MULTICRITERIA ANALYSIS OF FOOTBALL MATCH PERFORMANCES: COMPOSITION OF PROBABILISTIC PREFERENCES APPLIED TO THE ENGLISH PREMIER LEAGUE 2015/2016

    Directory of Open Access Journals (Sweden)

    Vitor Principe

    Full Text Available ABSTRACT This article aims to analyze the technical performance of football teams in the FA Premier League during the 2015/2016 season. Data of twenty clubs over 38 matches for each club are considered using 23 variables. These variables have been explored in the football literature and address different features of technical performance. The different configuration of the data for teams in detached segments motivated the multi-criteria approach, which enables identification of strong and weak sectors in each segment. The uncertainty as to the outcome of football matches and the imprecision of the measures indicated the use of Composition of Probabilistic Preferences (CPP to model the problem. “R” software was used in the modeling and computation. The CPP global scores obtained were more consistent with the final classification than those of other methods. CPP scores revealed different performances of particular groups of variables indicating aspects to be improved and explored.

  10. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  11. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  12. Quantitative genetic models of sexual selection by male choice.

    Science.gov (United States)

    Nakahashi, Wataru

    2008-09-01

    There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.

  13. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    Science.gov (United States)

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  14. Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM

    OpenAIRE

    Utsler, James

    2006-01-01

    A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...

  15. IMPROVEMENTS FOR THE OPERATION OF CHINESE FOOTBALL LEAGUE BY ANALYSING THE SUCCESS ASSETS OF ENGLISH PREMIER LEAGUE

    OpenAIRE

    Cao, Hanxiong

    2012-01-01

    The purpose of this thesis is going to analyze the success assets of English Premier League (which is now the most successful football league in the world) and the defects of Chinese Super League by analyzing the financial statements of the Premier League, and try to make some possible improvements for Chinese Super League according to the results of the analysis.

  16. Effectiveness of in-season manager changes in English Premier League Football

    NARCIS (Netherlands)

    Besters, Lucas; van Ours, Jan; van Tuijl, Martin

    We analyze the performance effects of in-season manager changes in English Premier League football during the seasons 2000/2001–2014/2015. We find that some managerial changes are successful, while others are counterproductive. On average, performance does not improve following a managerial

  17. Causal models in epidemiology: past inheritance and genetic future

    Directory of Open Access Journals (Sweden)

    Kriebel David

    2006-07-01

    Full Text Available Abstract The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of causality. We therefore explore different models of causality in the epidemiology of disease arising out of genes, environments, and the interplay between environments and genes. We begin from Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches, which provide additional insights into multifactorial causal processes. These include directed acyclic graphs and structural equation models. Caution is urged in the application of two essential and closely related concepts found in many studies: interaction (effect modification and the etiologic or attributable fraction. We review these concepts and present four important limitations. 1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic steps, and not a second-order phenomenon identified after first accounting for "main effects". 2. Standard methods of assessing interaction do not adequately consider the life course, and the temporal dynamics through which an individual's sufficient cause is completed. Different individuals may be at different stages of development along the path to disease, but this is not usually measurable. Thus, for example, acquired susceptibility in children can be an important source of variation. 3. A distinction must be made between individual-based and population-level models. Most epidemiologic discussions of causality fail to make this distinction. 4. At the population level, there is additional

  18. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  19. The use of genetic algorithms to model protoplanetary discs

    Science.gov (United States)

    Hetem, Annibal; Gregorio-Hetem, Jane

    2007-12-01

    The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.

  20. Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches

    OpenAIRE

    Kramer, Koen; van der Werf, D. C.

    2010-01-01

    The environment is changing and so are forests, in their functioning, in species composition, and in the species’ genetic composition. Many empirical and process-based models exist to support forest management. However, most of these models do not consider the impact of environmental changes and forest management on genetic diversity nor on the rate of adaptation of critical plant processes. How genetic diversity and rates of adaptation depend on management actions is a crucial next step in m...

  1. MODELING OF NAPHTHA PYROLYSIS WITH USING GENETIC ALGORITM

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available Summary. In operation of industrial pyrolysis furnaces, the main task is the selection of the optimal mode of thermal decomposition of the feedstock, depending on the yield of the desired products under conditions of technological limitations on the process. To solve this problem for an operating reactor, this paper considers the SRT-VI Large-Capacity industrial Furnace , the mathematical model of the pyrolysis process was constructed, using a kinetic scheme which consists of primary reaction of decomposition of raw materials and secondary elementary reactions of interaction of the considered mixture components, the heat balance equation and hydrodynamics of flow in the coil. The raw material for the selected installation type is naphtha (straight-run petrol. Output parameters of the model are the molar costs of marketable hydrocarbons. The reactor is described by the equation of ideal displacement in the static mode of operation. It is assumed that all reactions have a temperature dependence that follows the Arrhenius law. The activation energies of chemical processes were estimated using the PolanyiSemenov equation and identification of pre-exponential factors was carried out using a genetic algorithm (GA. This task requires solving simultaneous system of differential equations describing the pyrolysis process and a search for a large number of unknown parameters, and therefore it is proposed to modify the GA. Optimal scheme includes Gray encoding arithmetic operators, tournament selection, with tournament ranking more than 4, crossover with partial random choice of alleys, mutations with a high probability of occurring and elitism with competitive global competition. Using the proposed approach, the parametric identification of model process is accomplished. The analysis of the simulation results with the data of operating reactor showed its suitability for use in order to control the pyrolysis process.

  2. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic

  3. Modelling Autistic Features in Mice Using Quantitative Genetic Approaches

    NARCIS (Netherlands)

    Molenhuis, Remco T; Bruining, Hilgo; Kas, Martien J

    2017-01-01

    Animal studies provide a unique opportunity to study the consequences of genetic variants at the behavioural level. Human studies have identified hundreds of risk genes for autism spectrum disorder (ASD) that can lead to understanding on how genetic variation contributes to individual differences in

  4. A Realistic Model under which the Genetic Code is Optimal

    NARCIS (Netherlands)

    Buhrman, H.; van der Gulik, P.T.S.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L.

    2013-01-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By

  5. Use of a genetic algorithm in a subchannel model

    International Nuclear Information System (INIS)

    Alberto Teyssedou; Armando Nava-Dominguez

    2005-01-01

    Full text of publication follows: The channel of a nuclear reactor contains the fuel bundles which are made up of fuel elements distributed in a manner that creates a series of interconnected subchannels through which the coolant flows. Subchannel codes are used to determine local flow variables; these codes consider the complex geometry of a nuclear fuel bundle as being divided in simple parallel and interconnected cells called 'subchannels'. Each subchannel is bounded by the solid walls of the fuel rods or by imaginary boundaries placed between adjacent subchannels. In each subchannel the flow is considered as one dimensional, therefore lateral mixing mechanisms between subchannels should be taken into account. These mixing mechanisms are: Diversion cross-flow, Turbulent mixing, Turbulent void diffusion, Void drift and Buoyancy drift; they are implemented as independent contribution terms in a pseudo-vectorial lateral momentum equation. These mixing terms are calculated with correlations that require the use of empirical coefficients. It has been observed, however, that there is no unique set of coefficients and or correlations that can be used to predict a complete range of experimental conditions. To avoid this drawback, in this paper a Genetic Algorithm (GA) was coupled to a subchannel model. The use of a GA in conjunction with an appropriate objective function allows the subchannel model to internally determine the optimal values of the coefficients without user intervention. The subchannel model requires two diffusion coefficients, the drift flux two-phase flow distribution coefficient, C 0 , and a coefficient used to control the lateral pressure losses. The GA algorithm was implemented in order to find the most appropriate values of these four coefficients. Genetic algorithms (GA) are based on the theory of evolution; thus, the GA manipulates a population of individuals (chromosomes) in order to evolve them towards a best adaptation (fitness criterion) to

  6. Estimation and interpretation of genetic effects with epistasis using the NOIA model.

    Science.gov (United States)

    Alvarez-Castro, José M; Carlborg, Orjan; Rönnegård, Lars

    2012-01-01

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  7. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    , including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.

  8. Quantitative genetics of Taura syndrome resistance in Pacific (Penaeus vannamei): A cure model approach

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Gitterle, Thomas; Madsen, Per

    2011-01-01

    cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. Results: Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0....... However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these data. Using the current testing design, genetic variation in observed survival time and absolute survival at the end of test were most...

  9. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    Science.gov (United States)

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  10. Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Qihua; B Hjelmborg, Jacob V; Thomassen, Mads

    2014-01-01

    -effect models to explicitly model the genetic relationship. These have proved to be an efficient way of dealing with sample clustering in pedigree data. Although current algorithms implemented in popular statistical packages are useful for adjusting relatedness in the mixed modeling of genetic effects...... associated with blood pressure with estimated inflation factors of 0.99, suggesting that our modeling of random effects efficiently handles the genetic relatedness in pedigrees. Application to simulated data captures important variants specified in the simulation. Our results show that the method is useful......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed...

  11. Analisis Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan pada Hotel Santika Premiere Dyandra Medan

    OpenAIRE

    Purba, Mey Royani M.

    2013-01-01

    Quality of service is an expected level of excellence and control over the level of excellence to comply the customer wants. Satisfaction is the difference between the perceived performance with expectations. This study aimed to to identify and analyze the influence of the quality of services consisting of physical tangible, reliability, responsiveness, assurance, and empathy to customer satisfaction on Santika Premiere Dyandra Hotel. To measure service quality from the point of servic...

  12. Black Generation Y gender differences in Premier Soccer League spectator motives : sport marketing

    OpenAIRE

    T.E. Mofokeng; A.L. Bevan-Dye

    2014-01-01

    The purpose of this study was to determine whether there are gender differences concerning Premier Soccer League (PSL) spectator motives amongst black Generation Y students in South Africa. In South Africa, the black Generation Y cohort (individuals born between 1986 and 2005) represents an important but under-researched market segment in that, in 2013, they made up 32 percent of the country's population. From a PSL marketing perspective, understanding the motives that drive game spectatorshi...

  13. Analisis Kualitas Pelayanan terhadap Kepuasan Konsumen Jasa Hotel Santika Premiere Semarang

    OpenAIRE

    Dewangga, Nandy; Hidayat, Wahyu; Widiartanto, Widiartanto

    2014-01-01

    The competition of global business today focusing on consumers is a strategic choice in business world in order to survive. For example, the tight competition of business in the company of hotel services is by improving the service quality to consumers. The problems in this research were the decreasing number of hotel service users and the increasing number of consumer complaint as the service users of Santika Premiere Hotel in Semarang from year to year. The aims of this research were to ide...

  14. Effectiveness of in-season manager changes in English Premier League Football

    OpenAIRE

    Besters, Lucas; van Ours, Jan; van Tuijl, Martin

    2016-01-01

    We analyze the performance effects of in-season manager changes in English Premier League football during the seasons 2000/2001–2014/2015. We find that some managerial changes are successful, while others are counterproductive. On average, performance does not improve following a managerial replacement. The successfulness of managerial turnover depends on specific highly unpredictable circumstances, as we illustrate through case-studies.

  15. Un premier service mobile en Égypte qui relie les petits exploitants ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Un premier service mobile en Égypte qui relie les petits exploitants aux acheteurs. Un homme qui parle sur un téléphone mobile. Les petits exploitants agricoles dominent l'agriculture égyptienne, mais leur manque de connaissances en matière de commercialisation et de compétences techniques, ainsi qu'une mauvaise ...

  16. A review of animal models used to evaluate potential allergenicity of genetically modified organisms (GMOs)

    DEFF Research Database (Denmark)

    Marsteller, Nathan; Bøgh, Katrine Lindholm; Goodman, Richard E.

    2017-01-01

    Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...... of genetically modified organisms (GMOs).......Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...

  17. Genetic and genomic analysis of RNases in model cyanobacteria.

    Science.gov (United States)

    Cameron, Jeffrey C; Gordon, Gina C; Pfleger, Brian F

    2015-10-01

    Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.

  18. Genetic correlations among body condition score, yield and fertility in multiparous cows using random regression models

    OpenAIRE

    Bastin, Catherine; Gillon, Alain; Massart, Xavier; Bertozzi, Carlo; Vanderick, Sylvie; Gengler, Nicolas

    2010-01-01

    Genetic correlations between body condition score (BCS) in lactation 1 to 3 and four economically important traits (days open, 305-days milk, fat, and protein yields recorded in the first 3 lactations) were estimated on about 12,500 Walloon Holstein cows using 4-trait random regression models. Results indicated moderate favorable genetic correlations between BCS and days open (from -0.46 to -0.62) and suggested the use of BCS for indirect selection on fertility. However, unfavorable genetic c...

  19. 40Ar/39Ar laser-probe dating of diamond inclusions from the Premier kimberlite

    International Nuclear Information System (INIS)

    Phillips, D.; Onstott, T.C.; Harris, J.W.; Strathclyde Univ., Glasgow

    1989-01-01

    Inclusions encapsulated by diamonds at the time of their formation provide a means for determining diamond crystallization ages and the chemistry of the surrounding upper mantle at that time. Sm-Nd studies of peridotitic inclusions, from Cretaceous-age kimberlites in southern Africa, suggest that the diamonds formed 3.3 Gyr ago. By contrast, eclogite-suite inclusions generally yield younger ages, sometimes approaching the time of kimberlite eruption. Here we report the results of 40 Ar/ 39 Ar laser-probe analyses of individual eclogitic clinopyroxene inclusions from Premier diamonds, which yield a mean age of 1,198±14 Myr. This age agrees well with Sm-Nd and 40 Ar/ 39 Ar analyses on similar Premier inclusions, and is indistinguishable from the inferred time of emplacement of the host kimberlite (1,150-1,230 Myr), which implies that diamond formation was essentially synchronous with kimberlite generation. The extrapolated non-radiogenic 40 Ar/ 36 Ar ratio of 334±102 is similar to the present-day atmospheric composition. This value is inconsistent with Sr and Nd isotopic signatures from Premier eclogite inclusions, which suggest a depleted mantle source ( 40 Ar/ 36 Ar>20,000). Pre-entrapment equilibration of the inclusions with an 36 Ar-rich fluid is the most probable explanation for the low non-radiogenic ( 40 Ar/ 36 Ar) composition. (author)

  20. Logistique de transport pour le projet LHC enseignements des premiers secteurs

    CERN Document Server

    Prodon, S

    2003-01-01

    Ce papier dresse un premier bilan de la logistique de transport mise en place pour l'installation du LHC. Les moyens de planification mis en oeuvre seront tout d'abord évoqués avec notamment les réunions avec les groupes utilisateurs, l'élaboration de procédures de transport, la génération de listings d'articles à transporter ou encore l'établissement d'un planning des ressources. Cependant, les premiers travaux d'installation du LHC ont fait apparaître des divergences importantes entre le planning logistique établi et la réalité du terrain. Ces écarts seront analysés, qu'il s'agisse de différences sur le volume de matériel à acheminer, d'opérations non planifiées, de changements de plannings entraînant de longues et délicates traversées de chantiers ou de manque de planification des besoins en personnel dans certaines zones. Tous ces enseignements acquis au cours des premiers travaux devraient permettre de dégager des voies d'amélioration à mettre en place pour les prochains secteur...

  1. Different concepts and models of information for family-relevant genetic findings: comparison and ethical analysis.

    Science.gov (United States)

    Lenk, Christian; Frommeld, Debora

    2015-08-01

    Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.

  2. Two-level mixed modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Q.

    2013-01-01

    of follow-up. Approaches have been proposed to integrate kinship correlation into the mixed effect models to explicitly model the genetic relationship which have been proven as an efficient way for dealing with sample clustering in pedigree data. Although useful for adjusting relatedness in the mixed...... assess the genetic associations with the mean level and the rate of change in a phenotype both with kinship correlation integrated in the mixed effect models. We apply our method to longitudinal pedigree data to estimate the genetic effects on systolic blood pressure measured over time in large pedigrees......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees which could affect statistical assessment of the genetic effects on both the mean level of the phenotype and its rate of change over the time...

  3. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    Science.gov (United States)

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  4. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  5. Applications of Systems Genetics and Biology for Obesity Using Pig Models

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Kadarmideen, Haja N.

    2016-01-01

    approach, a branch of systems biology. In this chapter, we will describe the state of the art of genetic studies on human obesity, using pig populations. We will describe the features of using the pig as a model for human obesity and briefly discuss the genetics of obesity, and we will focus on systems...

  6. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    Science.gov (United States)

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0529 TITLE: A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk PRINCIPAL INVESTIGATOR...AND SUBTITLE A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Prostate cancer is the most commonly diagnosed cancer in

  8. Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0681 TITLE: Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0681Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated...effects, urinary morbidity, rectal injury, sexual dysfunction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  9. Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz

    Science.gov (United States)

    Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao

    2018-05-01

    In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.

  10. Modelling and genetic algorithm based optimisation of inverse supply chain

    Science.gov (United States)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  11. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  12. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  13. Non-linear nuclear engineering models as genetic programming application

    International Nuclear Information System (INIS)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

  14. Modelling the co-evolution of indirect genetic effects and inherited variability.

    Science.gov (United States)

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of

  15. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  16. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  17. Les animateurs TICE du premier degré, quelle professionnalité ?

    OpenAIRE

    Villemonteix , François

    2007-01-01

    International audience; Les animateurs TICE du premier degré, quelle professionnalité ? Congrès international AREF 2007 (Actualité de la Recherche en Education et en Formation) François VILLEMONTEIX Doctorant Laboratoire EDA (Education et apprentissages) Université Paris 5 – La Sorbonne franç RÉSUMÉ. Dans le but de favoriser le développement d'usages instrumentés dans les classes de l'école primaire française, l'institution éducative a depuis les années 80 at...

  18. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  19. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  20. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Vernon, P.A.; Boomsma, D.I.

    2002-01-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard

  1. Model-based problem solving through symbolic regression via pareto genetic programming

    NARCIS (Netherlands)

    Vladislavleva, E.

    2008-01-01

    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust

  2. Glycemic index and glycemic load are associated with some cardiovascular risk factors among the PREMIER study participants

    Directory of Open Access Journals (Sweden)

    Pao-Hwa Lin

    2012-06-01

    Full Text Available Background: The clinical significance of glycemic index (GI and glycemic load (GL is inconclusive. Objective : This study was conducted to examine the association of GI and GL with clinical cardiovascular disease (CVD risk factors including body weight, blood pressure (BP, serum lipids, fasting glucose, insulin and homocysteine over time among the PREMIER participants. Design: PREMIER was an 18-month randomized lifestyle intervention trial, conducted from 2000 to 2002, designed to help participants reduce BP by following the Dietary Approaches to Stop Hypertension (DASH dietary pattern, losing weight, reducing sodium and increasing physical activity. GI and GL were estimated from 24 h diet recall data at baseline, 6 and 18 months after intervention. PROC MIXED model was used to examine the association of changes in GI or GL with changes in CVD risk factors. Results: A total of 756 randomized participants, 62% females and 34% African Americans and who averaged 50.0±0.3 years old and 95.3±0.7 kg, were included in this report. Neither GI nor GL changes was associated with changes in any risk factors at 6 months. At 18 months, however, the GI change was significantly and positively associated with total cholesterol (TC change only (p<0.05, β = 23.80±12.11 mg/dL or 0.62±0.31 mmol/L with a significant age interaction. The GL change was significantly associated with TC (p=0.02, β = 0.28±0.15 mg/dL or 0.01±0.00 mmol/L positively and with low density lipoprotein cholesterol (LDL-C changes negatively (p=0.03, β = − 0.01±0.00 mg/dL or −0.00±0.00 mmol/L, and significant age interactions were observed for both. Conclusion: GI and GL was associated with TC and LDL-C after controlling for energy, fat and fiber intake and other potential confounders and the associations were modified by age. Further investigation into this relationship is important because of its potential clinical impact.

  3. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  4. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  5. Modeling genetic imprinting effects of DNA sequences with multilocus polymorphism data

    Directory of Open Access Journals (Sweden)

    Staud Roland

    2009-08-01

    Full Text Available Abstract Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA sequence variation in the human genome and they have recently emerged as valuable genetic markers for revealing the genetic architecture of complex traits in terms of nucleotide combination and sequence. Here, we extend an algorithmic model for the haplotype analysis of SNPs to estimate the effects of genetic imprinting expressed at the DNA sequence level. The model provides a general procedure for identifying the number and types of optimal DNA sequence variants that are expressed differently due to their parental origin. The model is used to analyze a genetic data set collected from a pain genetics project. We find that DNA haplotype GAC from three SNPs, OPRKG36T (with two alleles G and T, OPRKA843G (with alleles A and G, and OPRKC846T (with alleles C and T, at the kappa-opioid receptor, triggers a significant effect on pain sensitivity, but with expression significantly depending on the parent from which it is inherited (p = 0.008. With a tremendous advance in SNP identification and automated screening, the model founded on haplotype discovery and statistical inference may provide a useful tool for genetic analysis of any quantitative trait with complex inheritance.

  6. Setaria viridis as a model system to advance millet genetics and genomics

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2016-11-01

    Full Text Available Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crop.

  7. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail ( Setaria viridis ) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica . These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  8. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  9. Asymmetry after hamstring injury in English Premier League: issue resolved, or perhaps not?

    Science.gov (United States)

    Barreira, P; Drust, B; Robinson, M A; Vanrenterghem, J

    2015-06-01

    Hamstring injuries constitute one of the most concerning injuries in English Premier League football, due to its high primary incidence but also its recurrence. Functional methods assessing hamstring function during high-risk performance tasks such as sprinting are vital to identify potential risk factors. The purpose of this study was to assess horizontal force deficits during maximum sprint running on a non-motorized treadmill in football players with previous history of hamstring strains as a pre-season risk-assessment in a club setting. 17 male football players from one Premier League Club were divided into 2 groups, experimental (n=6, age=24.5±2.3 years) and control (n=11, age=21.3±1.2 years), according to history of previous hamstring injury. Participants performed a protocol including a 10-s maximum sprint on a non-motorized treadmill. Force deficits during acceleration phase and steady state phases of the sprint were assessed between limbs and between groups. The main outcome measures were horizontal and vertical peak forces during the acceleration phase or steady state. There were no significant differences in peak forces between previously injured and non-injured limbs, or between groups, challenging the ideas around functional force deficits in sprint running as a diagnostic measure of hamstring re-injury risk. © Georg Thieme Verlag KG Stuttgart · New York.

  10. RANKING THE SPECTATORS’ DIFFICULTIES IN PURCHASING ELECTRONIC TICKETS OF FOOTBALL PREMIER LEAGUE

    Directory of Open Access Journals (Sweden)

    Ahmad Narimani

    2017-04-01

    Full Text Available This study aimed to rank the spectators’ difficulties in buying electronic tickets of football premier league matches at Azadi stadium. The population consisted of all spectators of Esteghlal-Persepolis match in the fifteenth league at Azadi stadium (N= 100000. According to Morgan table and using simple random sampling method, 500 participants were selected as sample. A researcher-made questionnaire was used for collecting the data; its face validity was confirmed by 15 experts and performing a pilot study on 30 subjects, its Cronbach’s alpha was calculated to be 0.86. Using SPSS 22, the descriptive and inferential (including Friedman test statistics was applied for analyzing the data. The findings showed that there was a significant difference between rankings of difficulties in buying electronic tickets of Football premier league matches at Azadi Stadium. The difficulties were ranked as: problem in ticket systems, early selling out of electronic tickets, lack of confidence to electronic ticket sale, lack of skill to work with the internet, low speed of internet, and lack of access to the internet

  11. Football fans and food: a case study of a football club in the English premier league.

    Science.gov (United States)

    Ireland, Robin; Watkins, Francine

    2010-05-01

    Although there is growing awareness of the impact of diet on health, little attention has been given to the food available in our sports stadia. We used a football club (Citygrene FC) - Citygrene is a fictional name - in the English Premier League as a case study to examine the attitudes of male and female football supporters to the food and drink available at their home stadium (Citygrene Stadium). The research design used five focus groups of male and female fans. The discourse was audiotaped, transcribed, coded and analysed for themes. A football stadium in the English Premier League, England. The participants were season ticket holders drawn from two stands at Citygrene Stadium. The research showed a high level of dissatisfaction with the food and drink supplied. There were key differences in the views of the male and female participants in the focus groups, with the women more concerned about wider issues such as the lack of healthy food. Both men and women were aware of their role as consumers and felt that there was an opportunity for Citygrene to improve their catering profits, if they provided a better selection of food and drink and an improved service. The study shows that there is a demand for healthier food options (and a wider choice of food and drink in general), which may provide an economic opportunity for stadium and catering managers. In addition, a stadium may be considered a potential 'healthy setting', which can serve as a supportive environment for healthier food choices.

  12. Report to New England Governors and Eastern Canadian Premiers on climate change projects

    International Nuclear Information System (INIS)

    2002-08-01

    The Premiers-Governors energy discussions are aimed at promoting joint energy cooperation between provinces and states. This report outlines the major accomplishments in the implementation of the Climate Change Action Plan adopted by the Conference in 1998. The project priorities for the coming year are also outlined. In 2001, the New England Governors (NEG) and the Eastern Canadian Premiers (ECP) directed the Environment Committee and the Northeast International Committee on Energy (NICE) to implement a plan to develop a regional emissions inventory so that participating jurisdictions would have common data for measuring progress. The plan also identified specific climate actions that could be readily implemented. This report describes the results of 5 working groups which were created to focus on the following potential categories: energy, transportation, inventory and registry, adaptation, and 'lead by example'. In addition to the working groups, the Climate Change Steering Committee developed 4 proposals for consideration for implementation. These were the LED Traffic Light Proposal, the College and University Partnerships in Emissions Reductions, State/Provincial Purchasing Programs for High Efficiency-Low Emission Office Equipment, and Use of Cleaner, More Energy-Efficient Vehicles in State/Provincial Fleets. The Steering Committee will also pursue other tasks in the coming year, including the study of other proposals for cost-effective measures that could contribute to the goals of the Climate Change Action Plan, examine Internet options for coordinating internal project work, examine opportunities to pursue climate action, and identify opportunities to improve vehicle fuel efficiency

  13. Alternate service delivery models in cancer genetic counseling: a mini-review

    Directory of Open Access Journals (Sweden)

    Adam Hudson Buchanan

    2016-05-01

    Full Text Available Demand for cancer genetic counseling has grown rapidly in recent years as germline genomic information has become increasingly incorporated into cancer care and the field has entered the public consciousness through high-profile celebrity publications. Increased demand and existing variability in the availability of trained cancer genetics clinicians place a priority on developing and evaluating alternate service delivery models for genetic counseling. This mini-review summarizes the state of science regarding service delivery models such as telephone counseling, telegenetics and group counseling. Research on comparative effectiveness of these models in traditional individual, in-person genetic counseling has been promising for improving access to care in a manner acceptable to patients. Yet, it has not fully evaluated the short- and long-term patient- and system-level outcomes that will help answer the question of whether these models achieve the same beneficial psychosocial and behavioral outcomes as traditional cancer genetic counseling. We propose a research agenda focused on comparative effectiveness of available service delivery models and how to match models to patients and practice settings. Only through this rigorous research can clinicians and systems find the optimal balance of clinical quality, ready and secure access to care, and financial sustainability. Such research will be integral to achieving the promise of genomic medicine in oncology.

  14. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Directory of Open Access Journals (Sweden)

    C. Fernandez-Lozano

    2013-01-01

    Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.

  15. Genetic algorithms used for PWRs refuel management automatic optimization: a new modelling

    International Nuclear Information System (INIS)

    Chapot, Jorge Luiz C.; Schirru, Roberto; Silva, Fernando Carvalho da

    1996-01-01

    A Genetic Algorithms-based system, linking the computer codes GENESIS 5.0 and ANC through the interface ALGER, has been developed aiming the PWRs fuel management optimization. An innovative codification, the Lists Model, has been incorporated to the genetic system, which avoids the use of variants of the standard crossover operator and generates only valid loading patterns in the core. The GENESIS/ALGER/ANC system has been successfully tested in an optimization study for Angra-1 second cycle. (author)

  16. Genetic Models in Evolutionary Game Theory: The Evolution of Altruism

    NARCIS (Netherlands)

    Rubin, Hannah

    2015-01-01

    While prior models of the evolution of altruism have assumed that organisms reproduce asexually, this paper presents a model of the evolution of altruism for sexually reproducing organisms using Hardy–Weinberg dynamics. In this model, the presence of reciprocal altruists allows the population to

  17. Application of random regression models to the genetic evaluation ...

    African Journals Online (AJOL)

    The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

  18. Review Genetic prediction models and heritability estimates for ...

    African Journals Online (AJOL)

    edward

    2015-05-09

    May 9, 2015 ... Instead, through stepwise inclusion of type traits in the PH model, the .... Great Britain uses a bivariate animal model for all breeds, ... Štípková, 2012) and then applying linear models to the combined datasets with the ..... multivariate analyses, it is difficult to use indicator traits to estimate longevity early in life ...

  19. Disease-threat model explains acceptance of genetically modified products

    Directory of Open Access Journals (Sweden)

    Prokop Pavol

    2013-01-01

    Full Text Available Natural selection favoured survival of individuals who were able to avoid disease. The behavioural immune system is activated especially when our sensory system comes into contact with disease-connoting cues and/or when these cues resemble disease threat. We investigated whether or not perception of modern risky technologies, risky behaviour, expected reproductive goals and food neophobia are associated with the behavioural immune system related to specific attitudes toward genetically modified (GM products. We found that respondents who felt themselves more vulnerable to infectious diseases had significantly more negative attitudes toward GM products. Females had less positive attitudes toward GM products, but engaging in risky behaviours, the expected reproductive goals of females and food neophobia did not predict attitudes toward GM products. Our results suggest that evolved psychological mechanisms primarily designed to protect us against pathogen threat are activated by modern technologies possessing potential health risks.

  20. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference Genetics Selection Evolution 2010, 42:29

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg

    2010-01-01

    Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where...... records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model). Conclusions The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...

  1. Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    International Nuclear Information System (INIS)

    D'Ambrosio, D.; Spataro, W.; Di Gregorio, S.; Calabria Univ., Cosenza; Crisci, G.M.; Rongo, R.; Calabria Univ., Cosenza

    2005-01-01

    Cellular Automata are highly nonlinear dynamical systems which are suitable far simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed far the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model far the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, far the parameters optimisation of the model SCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm far the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations

  2. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  3. Initial assessment of a model relating intratumoral genetic heterogeneity to radiological morphology

    Science.gov (United States)

    Noterdaeme, O; Kelly, M; Friend, P; Soonowalla, Z; Steers, G; Brady, M

    2010-01-01

    Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments. PMID:19690073

  4. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  5. Recent developments in computer modeling add ecological realism to landscape genetics

    Science.gov (United States)

    Background / Question / Methods A factor limiting the rate of progress in landscape genetics has been the shortage of spatial models capable of linking life history attributes such as dispersal behavior to complex dynamic landscape features. The recent development of new models...

  6. A model based on soil structural aspects describing the fate of genetically modified bacteria in soil

    NARCIS (Netherlands)

    Hoeven, van der N.; Elsas, van J.D.; Heijnen, C.E.

    1996-01-01

    A computer simulation model was developed which describes growth and competition of bacteria in the soil environment. In the model, soil was assumed to contain millions of pores of a few different size classes. An introduced bacterial strain, e.g. a genetically modified micro-organism (GEMMO), was

  7. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    Science.gov (United States)

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  8. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  9. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  10. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  11. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  12. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  13. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  14. Trans gene regulation in adaptive evolution: a genetic algorithm model.

    Science.gov (United States)

    Behera, N; Nanjundiah, V

    1997-09-21

    This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.

  15. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  16. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    Science.gov (United States)

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  17. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    Science.gov (United States)

    Bell, Richard L.; Hauser, Sheketha; Rodd, Zachary A.; Liang, Tiebing; Sari, Youssef; McClintick, Jeanette; Rahman, Shafiqur; Engleman, Eric A.

    2016-01-01

    The purpose of this review is to present up-to-date pharmacological, genetic and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein we sought to place the P rat’s behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this paper discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general. PMID:27055615

  18. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  19. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  20. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  1. Genetic correlations between body condition scores and fertility in dairy cattle using bivariate random regression models.

    Science.gov (United States)

    De Haas, Y; Janss, L L G; Kadarmideen, H N

    2007-10-01

    Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.

  2. [Analysis of genetic models and gene effects on main agronomy characters in rapeseed].

    Science.gov (United States)

    Li, J; Qiu, J; Tang, Z; Shen, L

    1992-01-01

    According to four different genetic models, the genetic patterns of 8 agronomy traits were analysed by using the data of 24 generations which included positive and negative cross of 81008 x Tower, both of the varieties are of good quality. The results showed that none of 8 characters could fit in with additive-dominance models. Epistasis was found in all of these characters, and it has significant effect on generation means. Seed weight/plant and some other main yield characters are controlled by duplicate interaction genes. The interaction between triple genes or multiple genes needs to be utilized in yield heterosis.

  3. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  4. Emerging technologies to create inducible and genetically defined porcine cancer models

    Directory of Open Access Journals (Sweden)

    Lawrence B Schook

    2016-02-01

    Full Text Available There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  5. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.

    Science.gov (United States)

    Schook, Lawrence B; Rund, Laurie; Begnini, Karine R; Remião, Mariana H; Seixas, Fabiana K; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  6. Une forme urbaine du premier âge touristique: les promenades littorales

    Directory of Open Access Journals (Sweden)

    Franck DEBIÉ

    1993-03-01

    Full Text Available Les promenades maritimes caractérisent les stations de bord de mer du premier âge touristique (1850-1930. Elles traduisent dans le paysage un urbanisme spéculatif, à rapprocher de celui qui produit le square et le boulevard, et donnent lieu à une urbanisation du littoral sous forme de vastes appendices linéaires. Les pratiques sociales associées à la promenade rappellent celles du jardin de plaisir, et renvoient au même rêve d’une urbanité idéale, libérée des miasmes, des promiscuités sociales, des contraintes qui pèsent sur les amours et les jeux.

  7. A parametric model for analyzing anticipation in genetically predisposed families

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Janne; Bernstein, Inge

    2009-01-01

    and are sensitive to right truncation of the data. We propose a normal random effects model that allows for right-censored observations and includes covariates, and draw statistical inference based on the likelihood function. We applied the model to the hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch...... syndrome family cohort from the national Danish HNPCC register. Age-at-onset was analyzed in 824 individuals from 2-4 generations in 125 families with proved disease-predisposing mutations. A significant effect from anticipation was identified with a mean of 3 years earlier age-at-onset per generation...

  8. Injury profile of a professional soccer team in the premier league of iran.

    Science.gov (United States)

    Hassabi, Mohammad; Mohammad-Javad Mortazavi, Seyed; Giti, Mohammad-Reza; Hassabi, Majid; Mansournia, Mohammad-Ali; Shapouran, Sara

    2010-12-01

    Despite numerous studies which have been done regarding soccer injuries worldwide, there is lack of available data considering the epidemiology of injuries in the Iranian soccer premier league, although it is the most popular sport in the country. The main goal of this research was to determine the incidence of physical injuries in the studied population, considering other characteristics such as site, type and mechanism as well. Twenty one adult male professional soccer players (age 24±3), members of a team (Tehran-Pas) participating in Iranian premier league, were followed during a 4-month period. The injury characteristics and exposure times were recorded by the team physician during all the matches and training sessions. The total exposure time was 2610 playing hours (2352 h of training versus 258 h of competition). Eighty six percent of the injuries were acute. Incidence of acute injuries was 16.5 (95% CI: 12-22) per 1000 hours of playing (11.5 per 1000 hrs of training and 62 per 1000 hrs of competition). The most common types of injuries were strains followed by contusions, each of which constituted 30% of acute injuries. More than 80% of injuries occurred in lower limbs, especially in thigh and groin regions. Nearly 60% of acute injuries occurred in dominant side of the body, and collision was the reason of about half of the acute injuries. Severity of more than 70% of the injuries was minor. On average each injury had led the player being off the field for about 10 days. The incidence of injury in this research is in range of numbers obtained in important international tournaments but the rate of injuries during training sessions is higher than comparable studies.

  9. First attempts of linking modelling, Postharvest behaviour and Melon Genetics

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Santos, Don N.; Obando-Ulloa, J.M.; Moreno, E.; Schouten, R.E.

    2008-01-01

    The onset of climacteric is associated with the end of melon fruit shelf-life. The aim of this research was to develop practical and applicable models of fruit ripening changes (hardness, moisture loss) also able to discriminate between climacteric and non-climacteric behaviour. The decrease in

  10. Review Genetic prediction models and heritability estimates for ...

    African Journals Online (AJOL)

    edward

    2015-05-09

    May 9, 2015 ... Heritability estimates for functional longevity have been expressed on an original or a logarithmic scale with PH models. Ducrocq & Casella (1996) defined heritability on a logarithmic scale and modified under simulation to incorporate the tri-gamma function (γ) as used by Sasaki et al. (2012) and Terawaki ...

  11. Stable cycling in discrete-time genetic models.

    OpenAIRE

    Hastings, A

    1981-01-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  12. Stable cycling in discrete-time genetic models.

    Science.gov (United States)

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  13. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.

    Science.gov (United States)

    Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I

    2002-05-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.

  14. Genetics on the Fly: A Primer on the Drosophila Model System

    Science.gov (United States)

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  15. Application of the genetic algorithm to blume-emery-griffiths model: Test Cases

    International Nuclear Information System (INIS)

    Erdinc, A.

    2004-01-01

    The equilibrium properties of the Blume-Emery-Griffiths (BEO) model Hamiltonian with the arbitrary bilinear (1), biquadratic (K) and crystal field interaction (D) are studied using the genetic algorithm technique. Results are compared with lowest approximation of the cluster variation method (CVM), which is identical to the mean field approximation. We found that the genetic algorithm to be very efficient for fast search at the average fraction of the spins, especially in the early stages as the system is far from the equilibrium state. A combination of the genetic algorithm followed by one of the well-tested simulation techniques seems to be an optimal approach. The curvature of the inverse magnetic susceptibility is also presented for the stable state of the BEG model

  16. Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome

    DEFF Research Database (Denmark)

    Boonstra, Philip S; Mukherjee, Bhramar; Taylor, Jeremy M G

    2011-01-01

    Summary Genetic anticipation, described by earlier age of onset (AOO) and more aggressive symptoms in successive generations, is a phenomenon noted in certain hereditary diseases. Its extent may vary between families and/or between mutation subtypes known to be associated with the disease phenotype....... In this article, we posit a Bayesian approach to infer genetic anticipation under flexible random effects models for censored data that capture the effect of successive generations on AOO. Primary interest lies in the random effects. Misspecifying the distribution of random effects may result in incorrect...... to cause hereditary nonpolyposis colorectal cancer, also called Lynch syndrome (LS). We find evidence for a decrease in AOO between generations in this article. Our model predicts family-level anticipation effects that are potentially useful in genetic counseling clinics for high-risk families....

  17. Selecting the Best Forecasting-Implied Volatility Model Using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Wafa Abdelmalek

    2009-01-01

    Full Text Available The volatility is a crucial variable in option pricing and hedging strategies. The aim of this paper is to provide some initial evidence of the empirical relevance of genetic programming to volatility's forecasting. By using real data from S&P500 index options, the genetic programming's ability to forecast Black and Scholes-implied volatility is compared between time series samples and moneyness-time to maturity classes. Total and out-of-sample mean squared errors are used as forecasting's performance measures. Comparisons reveal that the time series model seems to be more accurate in forecasting-implied volatility than moneyness time to maturity models. Overall, results are strongly encouraging and suggest that the genetic programming approach works well in solving financial problems.

  18. A Unifying Model for the Analysis of Phenotypic, Genetic and Geographic Data

    DEFF Research Database (Denmark)

    Guillot, Gilles; Rena, Sabrina; Ledevin, Ronan

    2012-01-01

    Recognition of evolutionary units (species, populations) requires integrating several kinds of data such as genetic or phenotypic markers or spatial information, in order to get a comprehensive view concerning the dierentiation of the units. We propose a statistical model with a double original...... advantage: (i) it incorporates information about the spatial distribution of the samples, with the aim to increase inference power and to relate more explicitly observed patterns to geography; and (ii) it allows one to analyze genetic and phenotypic data within a unied model and inference framework, thus...... an intricate case of inter- and intra-species dierentiation based on an original data-set of georeferenced genetic and morphometric markers obtained on Myodes voles from Sweden. A computer program is made available as an extension of the R package Geneland....

  19. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  20. Learning with Admixture: Modeling, Optimization, and Applications in Population Genetics

    DEFF Research Database (Denmark)

    Cheng, Jade Yu

    2016-01-01

    the foundation for both CoalHMM and Ohana. Optimization modeling has been the main theme throughout my PhD, and it will continue to shape my work for the years to come. The algorithms and software I developed to study historical admixture and population evolution fall into a larger family of machine learning...... geneticists strive to establish working solutions to extract information from massive volumes of biological data. The steep increase in the quantity and quality of genomic data during the past decades provides a unique opportunity but also calls for new and improved algorithms and software to cope...... including population splits, effective population sizes, gene flow, etc. Since joining the CoalHMM development team in 2014, I have mainly contributed in two directions: 1) improving optimizations through heuristic-based evolutionary algorithms and 2) modeling of historical admixture events. Ohana, meaning...

  1. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Andreev, S. G.; Eidelman, Y. A.; Salnikov, I. V.; Khvostunov, I. K.

    2006-01-01

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF MICROBIAL CONTAMINATION AGENTS IN DRINKING WATER, WATTS P{REMIER ULTRA 5 REVERSE OSMOSIS DRINKING WATER TREATMENT SYSTEM (POU)

    Science.gov (United States)

    The Watts Premier Ultra 5 system was tested for removal of bacteria and viruses at NSF International's Laboratory. Watts Premier submitted ten units, which were split into two groups of five. One group received 25 days of conditioning prior to challenge testing, while the secon...

  3. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER – WATTS PREMIER INC. WP-4V DRINKING WATER TREATMENT SYSTEM

    Science.gov (United States)

    The Watts Premier WP-4V POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The WP-4V employs a reverse osmosis (RO) m...

  4. The effect of playing formation on high-intensity running and technical profiles in English FA Premier League soccer matches

    DEFF Research Database (Denmark)

    Bradley, Paul S; Carling, Chris; Archer, Dave

    2011-01-01

    The aim of this study was to examine the effect of playing formation on high-intensity running and technical performance during elite soccer matches. Twenty English FA Premier League games were analysed using a multiple-camera computerized tracking system (n = 153 players). Overall ball possession...

  5. [Sõltumatu Tantsu Ühenduse poolt korraldatud sarjast "Premiere"] / Evelin Lagle ; küsinud Tambet Kaugema

    Index Scriptorium Estoniae

    Lagle, Evelin, 1986-

    2012-01-01

    Uutele koreograafidele pühendatud sarja "Premiere" programmis osalevad tantsulavastustega neli tantsukunstnikku Eestist - Tallinna Ülikooli lõpetanud Svetlana Grigorjeva, Turu Kunstiakadeemia lõpetanud Kaisa Selde, Viljandi Kultuuriakadeemia lõpetanud Kristina-Maria Heinsalu ja Tallinna Ülikooli lõpetanud Christin Lunts

  6. Disease activity, physical function, and radiographic progression after longterm therapy with adalimumab plus methotrexate: 5-year results of PREMIER

    NARCIS (Netherlands)

    van der Heijde, Désirée; Breedveld, Ferdinand C.; Kavanaugh, Arthur; Keystone, Edward C.; Landewé, Robert; Patra, Kaushik; Pangan, Aileen L.

    2010-01-01

    To evaluate the efficacy and safety of initial combination treatment with adalimumab (ADA) and methotrexate (MTX) versus monotherapy with ADA or MTX during an open-label extension of PREMIER. Patients with early rheumatoid arthritis (RA) received blinded ADA plus MTX, ADA alone, or MTX alone for 2

  7. Qualitative Impact Assessment 2010: An Independent Study Conducted by BDRC Continental, Ltd., February-July 2010. Premier League Reading Stars

    Science.gov (United States)

    National Literacy Trust, 2010

    2010-01-01

    Premier League Reading Stars (PLRS) is in its eighth year. To complement a pre-post quantitative survey, an impact evidence base was required to inform consideration of continued funding into 2011 and beyond. PLRS is very highly regarded among child participants, parents, and librarians. The structure of the scheme, its basis on football, and the…

  8. Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-12-01

    Full Text Available In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differential-algebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.

  9. The five-factor model of personality and borderline personality disorder: a genetic analysis of comorbidity.

    Science.gov (United States)

    Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I

    2009-12-15

    Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.

  10. Estimation of genetic parameters related to eggshell strength using random regression models.

    Science.gov (United States)

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  11. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect

    Science.gov (United States)

    Xu, Hanfu; O'Brochta, David A.

    2015-01-01

    Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed. PMID:26108630

  12. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  13. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.

    Science.gov (United States)

    Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E

    2017-12-01

    1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.

  14. A general framework for the evaluation of genetic association studies using multiple marginal models

    DEFF Research Database (Denmark)

    Kitsche, Andreas; Ritz, Christian; Hothorn, Ludwig A.

    2016-01-01

    OBJECTIVE: In this study, we present a simultaneous inference procedure as a unified analysis framework for genetic association studies. METHODS: The method is based on the formulation of multiple marginal models that reflect different modes of inheritance. The basic advantage of this methodology...

  15. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    Science.gov (United States)

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  16. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  17. Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome

    DEFF Research Database (Denmark)

    Boonstra, Philip S; Mukherjee, Bhramar; Taylor, Jeremy M G

    2011-01-01

    to cause hereditary nonpolyposis colorectal cancer, also called Lynch syndrome (LS). We find evidence for a decrease in AOO between generations in this article. Our model predicts family-level anticipation effects that are potentially useful in genetic counseling clinics for high-risk families....

  18. Technical and tactical training team «Helios» Kharkiv in the first round of 23 Ukrainian football championship in the premier league 2013–2014

    Directory of Open Access Journals (Sweden)

    Rebaz Sleman

    2014-10-01

    Full Text Available Purpose: to define the characteristics of the model command of technical and tactical training team participating in the Ukrainian Premier League First League. Material and Methods: the research was conducted using the method of peer review. The experts were involved 5 specialists football. Results: the mean values for the analyzed variables in 10 games. The various technical and tactical actions and their percentage in the overall structure of the game team statistics for 20 games, as well as some indicators of team play "Helios" Kharkov. Conclusions: the obtained quantitative and qualitative indicators (coefficient of marriage as a team on the technical and tactical actions, as well as separately for each technical and tactical reception. The performances allow you to make adjustments to the training process this command to improve sportsmanship.

  19. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    Science.gov (United States)

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation

  20. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    Directory of Open Access Journals (Sweden)

    Lin Chao

    2016-01-01

    Full Text Available Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington

  1. Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies

    NARCIS (Netherlands)

    van der Net, Jeroen B.; Janssens, A. Cecile J. W.; Eijkemans, Marinus J. C.; Kastelein, John J. P.; Sijbrands, Eric J. G.; Steyerberg, Ewout W.

    2008-01-01

    Cross-sectional genetic association studies can be analyzed using Cox proportional hazards models with age as time scale, if age at onset of disease is known for the cases and age at data collection is known for the controls. We assessed to what degree and under what conditions Cox proportional

  2. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  3. Genetic parameters for racing records in trotters using linear and generalized linear models.

    Science.gov (United States)

    Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

    2012-09-01

    Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.

  4. Mathematical programming models for solving in equal-sized facilities layout problems. A genetic search method

    International Nuclear Information System (INIS)

    Tavakkoli-Moghaddam, R.

    1999-01-01

    This paper present unequal-sized facilities layout solutions generated by a genetic search program. named Layout Design using a Genetic Algorithm) 9. The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computational results on test problems are reported as compared with layout solutions generated by the branch - and bound algorithm a hybrid method merging simulated annealing and local search techniques, and an optimization process of an enveloped block

  5. Genetic design of pigs as experimental models in the combat between chronic diseases and healthy aging

    DEFF Research Database (Denmark)

    Bolund, Lars

    2012-01-01

    with and without intervention. The genome of different pig breeds have been sequenced, revealing that the pig is genetically more similar to man than conventional laboratory animals - in agreement with the similarities in organ development, physiology and metabolism. Genetically designed minipigs (Göttingen...... pigs. We can also produce clones of pigs, some disease prone and some fluorescing, to perform experiments in regenerative medicine where the fate of healthy fluorescent cells can be followed in the, basically identical, disease prone animals. It is also our hope that our pig models can contribute...

  6. Models for genetic evaluations of claw health traits in Spanish dairy cattle.

    Science.gov (United States)

    Pérez-Cabal, M A; Charfeddine, N

    2015-11-01

    Genetic parameters of 7 claw health traits from Spanish dairy cattle were estimated and the predictive ability of linear and ordinal threshold models were compared and assessed. This study included data on interdigital and digital dermatitis (DE), sole ulcer (SU), white line disease (WL), interdigital hyperplasia (IH), interdigital phlegmon (IP), and chronic laminitis (CL) collected between July 2012 and June 2013 from 834 dairy herds visited by 21 trained trimmers. An overall claw disorder (OCD) was also considered an indicator the absence or the presence of at least 1 of the 6 disorders. Claw health traits were scored as categorical traits with 3 degrees of severity (nonaffected, mild, and severe disorder). Genetic parameters were estimated by fitting both a standard linear model and an ordinal threshold animal model. Around 21% of cows had at least 1 claw disorder, and the most frequent disorders were SU, DE, WL, and CL. Heritabilities of claw disorders estimated with a linear model ranged from 0.01 (IP) to 0.05 (OCD), whereas estimates from the ordinal threshold models ranged from 0.06 to 0.39 (for IP and IH, respectively). Repeatabilities of claw health estimated with the linear model varied from 0.03 to 0.18 and estimates with the ordinal threshold model ranged from 0.33 to 0.69. The global trait OCD was correlated with all disorders, except for IH and IP when the linear model was fitted. Two different genetic backgrounds of claw disorders were found. Digital dermatitis showed positive correlations with IH and IP, whereas SU was positively correlated with WL and CL. The predictive ability of the models was assessed using mean squared error and Pearson correlation between the real observation and the corresponding prediction using cross-validation. Regardless of the claw health status, the linear model led to smaller mean squared error. However, differences in predictive ability were found when predicting nonaffected and affected animals. For most traits

  7. See you at the match: Motivation for sport consumption and intrinsic psychological reward of premier football league spectators in South Africa

    Directory of Open Access Journals (Sweden)

    Frederick W. Stander

    2016-04-01

    Full Text Available Orientation: Local football contributes significantly to the social- and economic welfare of South Africa through its spectators. Understanding the motives and experiences of football spectators could provide opportunities for capitalising on football as revenue stream feeding the South African economy. Research purpose: To investigate how motives for sport consumption predict intrinsic psychological reward of South African premier league football spectators. Motivation for the study: Sport - particularly football - is an untapped resource for stimulating economic development and growth through its consumers. Spectators, who often experience their investment in the sport as deeply rewarding and meaningful, should participate more frequently in purchasing products or services associated with the sport. Through understanding the motives for sport consumption of South African premier league football spectators and the impact of these motives on intrinsic psychological reward experiences, football clubs are able to provide a targeted experience or service to spectators in order to further stimulate economic growth. Research design, approach and method: A census sample of 806 football spectators attending various matches at a football stadium in Soweto was drawn. A cross-sectional research design was implemented. This research was exploratory and descriptive. Structural equation modelling was implemented to assess the factor structures of the constructs, to confirm composite reliability of the measures and to assess the structural paths between the variables. Main findings: A predictive model for intrinsic psychological rewards (life satisfaction and meaning through the motivation for sport consumption (individual – and game related factors was confirmed. It was further established that motivation for sport consumption is significantly positively a related to and b associated with the experience of intrinsic psychological reward by South African

  8. Parameters Calculation of ZnO Surge Arrester Models by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    A. Bayadi

    2006-09-01

    Full Text Available This paper proposes to provide a new technique based on the genetic algorithm to obtain the best possible series of values of the parameters of the ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the results predicted with the experimental results available in the literature. Using the ATP-EMTP package an application of the arrester model on network system studies is presented and discussed.

  9. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  10. Nature and nurture: environmental influences on a genetic rat model of depression.

    Science.gov (United States)

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-03-29

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.

  11. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    International Nuclear Information System (INIS)

    Clegg, J; Robinson, M P

    2012-01-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole–Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz–10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit. (paper)

  12. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box–Cox transformations. Litter size data in rabbits and pigs that had previously been analysed...... in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box–Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis...... in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected...

  13. Genetic evaluation of calf and heifer survival in Iranian Holstein cattle using linear and threshold models.

    Science.gov (United States)

    Forutan, M; Ansari Mahyari, S; Sargolzaei, M

    2015-02-01

    Calf and heifer survival are important traits in dairy cattle affecting profitability. This study was carried out to estimate genetic parameters of survival traits in female calves at different age periods, until nearly the first calving. Records of 49,583 female calves born during 1998 and 2009 were considered in five age periods as days 1-30, 31-180, 181-365, 366-760 and full period (day 1-760). Genetic components were estimated based on linear and threshold sire models and linear animal models. The models included both fixed effects (month of birth, dam's parity number, calving ease and twin/single) and random effects (herd-year, genetic effect of sire or animal and residual). Rates of death were 2.21, 3.37, 1.97, 4.14 and 12.4% for the above periods, respectively. Heritability estimates were very low ranging from 0.48 to 3.04, 0.62 to 3.51 and 0.50 to 4.24% for linear sire model, animal model and threshold sire model, respectively. Rank correlations between random effects of sires obtained with linear and threshold sire models and with linear animal and sire models were 0.82-0.95 and 0.61-0.83, respectively. The estimated genetic correlations between the five different periods were moderate and only significant for 31-180 and 181-365 (r(g) = 0.59), 31-180 and 366-760 (r(g) = 0.52), and 181-365 and 366-760 (r(g) = 0.42). The low genetic correlations in current study would suggest that survival at different periods may be affected by the same genes with different expression or by different genes. Even though the additive genetic variations of survival traits were small, it might be possible to improve these traits by traditional or genomic selection. © 2014 Blackwell Verlag GmbH.

  14. Cross-validation analysis for genetic evaluation models for ranking in endurance horses.

    Science.gov (United States)

    García-Ballesteros, S; Varona, L; Valera, M; Gutiérrez, J P; Cervantes, I

    2018-01-01

    Ranking trait was used as a selection criterion for competition horses to estimate racing performance. In the literature the most common approaches to estimate breeding values are the linear or threshold statistical models. However, recent studies have shown that a Thurstonian approach was able to fix the race effect (competitive level of the horses that participate in the same race), thus suggesting a better prediction accuracy of breeding values for ranking trait. The aim of this study was to compare the predictability of linear, threshold and Thurstonian approaches for genetic evaluation of ranking in endurance horses. For this purpose, eight genetic models were used for each approach with different combinations of random effects: rider, rider-horse interaction and environmental permanent effect. All genetic models included gender, age and race as systematic effects. The database that was used contained 4065 ranking records from 966 horses and that for the pedigree contained 8733 animals (47% Arabian horses), with an estimated heritability around 0.10 for the ranking trait. The prediction ability of the models for racing performance was evaluated using a cross-validation approach. The average correlation between real and predicted performances across genetic models was around 0.25 for threshold, 0.58 for linear and 0.60 for Thurstonian approaches. Although no significant differences were found between models within approaches, the best genetic model included: the rider and rider-horse random effects for threshold, only rider and environmental permanent effects for linear approach and all random effects for Thurstonian approach. The absolute correlations of predicted breeding values among models were higher between threshold and Thurstonian: 0.90, 0.91 and 0.88 for all animals, top 20% and top 5% best animals. For rank correlations these figures were 0.85, 0.84 and 0.86. The lower values were those between linear and threshold approaches (0.65, 0.62 and 0.51). In

  15. Consequences of the genetic threshold model for observing partial migration under climate change scenarios.

    Science.gov (United States)

    Cobben, Marleen M P; van Noordwijk, Arie J

    2017-10-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the

  16. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    Science.gov (United States)

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A genetic model of progressively partial melting for uranium-bearing granites in south China

    International Nuclear Information System (INIS)

    Zhai Jianping.

    1989-01-01

    A genetic model of progressively partial and enrichment mechanism of uranium during partial melting of the sources of material studied and the significance of the genetic model in search of uranium deposits is elaborated. This model accounts better for some geological and geochemical features of uranium-bearing granties and suspects the traditional idea that igneous uranium-bearing granites were formed by fusion of U-rich strata surrounding these granites. Finally this paper points out that the infuence of U-rich strata of wall rocks of granites over uranium-bearing granites depends on variation of water solubility in the magma and assimilation of magma to wall rocks during its ascending and crystallization

  18. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    Science.gov (United States)

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  19. Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Directory of Open Access Journals (Sweden)

    Eccleston John A

    2009-04-01

    Full Text Available Abstract Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

  20. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    Science.gov (United States)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  1. Glycogen storage disease type Ia in canines: a model for human metabolic and genetic liver disease.

    Science.gov (United States)

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B; Lee, Young Mok; Chou, Janice Y; Byrne, Barry J; Correia, Catherine E; Mah, Cathryn S; Weinstein, David A; Conlon, Thomas J

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including "lactic acidosis", larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  2. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Directory of Open Access Journals (Sweden)

    Andrew Specht

    2011-01-01

    Full Text Available A canine model of Glycogen storage disease type Ia (GSDIa is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  3. Risk adjustment model of credit life insurance using a genetic algorithm

    Science.gov (United States)

    Saputra, A.; Sukono; Rusyaman, E.

    2018-03-01

    In managing the risk of credit life insurance, insurance company should acknowledge the character of the risks to predict future losses. Risk characteristics can be learned in a claim distribution model. There are two standard approaches in designing the distribution model of claims over the insurance period i.e, collective risk model and individual risk model. In the collective risk model, the claim arises when risk occurs is called individual claim, accumulation of individual claim during a period of insurance is called an aggregate claim. The aggregate claim model may be formed by large model and a number of individual claims. How the measurement of insurance risk with the premium model approach and whether this approach is appropriate for estimating the potential losses occur in the future. In order to solve the problem Genetic Algorithm with Roulette Wheel Selection is used.

  4. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental...... loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...... variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major...

  5. A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Wenjia Wang

    Full Text Available Results from Genome-Wide Association Studies (GWAS have shown that the genetic basis of complex traits often include many genetic variants with small to moderate effects whose identification remains a challenging problem. In this context multi-marker analysis at the gene and pathway level can complement traditional point-wise approaches that treat the genetic markers individually. In this paper we propose a novel statistical approach for multi-marker analysis based on the Rasch model. The method summarizes the categorical genotypes of SNPs by a generalized logistic function into a genetic score that can be used for association analysis. Through different sets of simulations, the false-positive rate and power of the proposed approach are compared to a set of existing methods, and shows good performances. The application of the Rasch model on Alzheimer's Disease (AD ADNI GWAS dataset also allows a coherent interpretation of the results. Our analysis supports the idea that APOE is a major susceptibility gene for AD. In the top genes selected by proposed method, several could be functionally linked to AD. In particular, a pathway analysis of these genes also highlights the metabolism of cholesterol, that is known to play a key role in AD pathogenesis. Interestingly, many of these top genes can be integrated in a hypothetic signalling network.

  6. Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.

    Science.gov (United States)

    Lewis, Cecil M; Long, Jeffrey C

    2008-03-01

    Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding

  7. Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach

    International Nuclear Information System (INIS)

    Kisi, Ozgur

    2014-01-01

    The study investigates the ability of FG (fuzzy genetic) approach in modeling solar radiation of seven cities from Mediterranean region of Anatolia, Turkey. Latitude, longitude, altitude and month of the year data from the Adana, K. Maras, Mersin, Antalya, Isparta, Burdur and Antakya cities are used as inputs to the FG model to estimate one month ahead solar radiation. FG model is compared with ANNs (artificial neural networks) and ANFIS (adaptive neruro fuzzzy inference system) models with respect to RMSE (root mean square errors), MAE (mean absolute errors) and determination coefficient (R 2 ) statistics. Comparison results indicate that the FG model performs better than the ANN and ANFIS models. It is found that the FG model can be successfully used for estimating solar radiation by using latitude, longitude, altitude and month of the year information. FG model with RMSE = 6.29 MJ/m 2 , MAE = 4.69 MJ/m 2 and R 2 = 0.905 in the test stage was found to be superior to the optimal ANN model with RMSE = 7.17 MJ/m 2 , MAE = 5.29 MJ/m 2 and R 2 = 0.876 and ANFIS model with RMSE = 6.75 MJ/m 2 , MAE = 5.10 MJ/m 2 and R 2 = 0.892 in estimating solar radiation. - Highlights: • SR (Solar radiation) of seven cities from Mediterranean region of Turkey is predicted. • FG (Fuzzy genetic) models are developed for accurately estimation of SR. • The ability of the FG models used in the study is found to be satisfactory. • FG models are compared with commonly used ANNs (artificial neural networks). • FG models are found to perform better than the ANNs models

  8. Genetic analysis of partial egg production records in Japanese quail using random regression models.

    Science.gov (United States)

    Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A

    2017-08-01

    The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.

  9. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Linear systems surviving the first breakdown; Systemes unbaires survivant a la premiere panne

    Energy Technology Data Exchange (ETDEWEB)

    Uberschlag, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Various types of linear systems are described which are not affected by the first breakdown. They make it possible to operate continuously and are thus very reliable. This is because the first breakdown which occurs affects only very slightly the operation. These components can be replaced during working. The operation, the errors, and the detection are briefly considered in the case of three different designs of linear servo systems. An attempt at comparison is made, it could be developed in a particular case. (author) [French] On decrit divers types de systemes lineaires survivant a la premiere panne. Ils permettent un fonctionnement permanent et sont donc d'une tres grande fiabilite. En effet, une panne, qui peut etre signalee, perturbe peu le fonctionnement. Ces composants peuvent etre remplaces en marche. Les considerations de fonctionnement, d'erreur, de detection des pannes sont succinctement presentees, sur trois schemas de systemes lineaires asservis. Une tentative de comparaison est faite, qui pourrait etre developpee dans des cas precis. (auteur)

  11. Trace elements in diamonds from the Premier, Finsch, and Jagersfontein mines, and their petrogenetic significance

    International Nuclear Information System (INIS)

    Fesq, H.W.; Bibby, D.M.; Erasmus, C.S.; Kable, E.J.D.

    1975-01-01

    Neutron-activation studies of the impurity chemistry of more than 1500 natural diamonds from three South African kimberlite sources, Premier, Finsch, and Jagersfontein, provide evidence for the presence of submicroscopic inclusions of a quenched (or temperature re-equilibrated) melt from which these diamonds crystallized. These microscopic inclusions of parental magma contain variable amounts of fluids rich in water and carbon dioxide, as well as iron-nickelcopper-cobalt sulphides, and a major silicate phase, which is remarkably constant in composition irrespective of the source of the diamonds and the age of emplacement of their host kimberlite. These microscopic inclusions are present in varying amounts in all the diamonds that were analysed, and may even dominate the impurity chemistry of diamonds having observable mineral inclusions. An estimate of the composition of the major elements in the silicate melt indicates that the diamonds that were investigated crystallized from picritic magma rich in water and carbon dioxide in the presence of immiscible iron-nickel-copper-cobalt sulphides [af

  12. Design science research for decision support systems development: recent publication trends in the premier IS journals

    Directory of Open Access Journals (Sweden)

    Shah J Miah

    2016-11-01

    Full Text Available This paper presents a contemporary literature review of design science research (DSR studies in the domain of decision support systems (DSS development. The latest studies in the DSS design domain claim that DSR methodologies are the most popular design approach, but many details are still yet to be revealed for supporting this claim. In particular, it is important to thoroughly investigate the trends in either the form or deeper insights in use of DSR in this field. The aim of this study is to analyse the existing DSS design science studies to reveal insights into the use of DSR, so that we can outline research agenda for a special issue, based on findings of analysis. We selected articles (from 2005 to 2014 that were published in seven selected premier IS journals (ranked as A* in the ABDC journal ranking. The selected 57 sample articles are representative of DSS design studies that used DSR in theorising, designing, implementing, and evaluating DSS solutions. We discuss the theoretical positions of DSR for DSS development through six categories: DSS artefacts, DSR methods, DSR views, user involvement, DSS design innovations and problem domains. The findings indicate that new studies are needed to fill the knowledge gap in DSS design science, for more solid theoretical basis in near future.

  13. Daily Distribution of Macronutrient Intakes of Professional Soccer Players From the English Premier League.

    Science.gov (United States)

    Anderson, Liam; Naughton, Robert J; Close, Graeme L; Di Michele, Rocco; Morgans, Ryland; Drust, Barry; Morton, James P

    2017-12-01

    The daily distribution of macronutrient intake can modulate aspects of training adaptations, performance and recovery. We therefore assessed the daily distribution of macronutrient intake (as assessed using food diaries supported by the remote food photographic method and 24-hr recalls) of professional soccer players (n = 6) of the English Premier League during a 7-day period consisting of two match days and five training days. On match days, average carbohydrate (CHO) content of the prematch (recovery from an evening kick-off) were similar (p > .05) though such intakes were lower than contemporary guidelines considered optimal for prematch CHO intake and postmatch recovery. On training days, we observed a skewed and hierarchical approach (p lunch (0.6 g·kg -1 )>breakfast (0.3 g·kg -1 )>evening snacks (0.1 g·kg -1 ). We conclude players may benefit from consuming greater amounts of CHO in both the prematch and postmatch meals so as to increase CHO availability and maximize rates of muscle glycogen resynthesis, respectively. Furthermore, attention should also be given to ensuring even daily distribution of protein intake so as to potentially promote components of training adaptation.

  14. Evaluation of sports nutrition knowledge of New Zealand premier club rugby coaches.

    Science.gov (United States)

    Zinn, Caryn; Schofield, Grant; Wall, Clare

    2006-04-01

    Little is known about if and how team coaches disseminate nutrition information to athletes. In a census survey, New Zealand premier rugby coaches (n = 168) completed a psychometrically validated questionnaire, received by either Internet or standard mail (response rate, 46%), identifying their nutrition advice dissemination practices to players, their level of nutrition knowledge, and the factors determining this level of knowledge. The majority of coaches provided advice to their players (83.8%). Coaches responded correctly to 55.6% of all knowledge questions. An independent t-test showed coaches who imparted nutrition advice obtained a significantly greater score, 56.8%, than those not imparting advice, 48.4% (P = 0.008). One-way ANOVA showed significant relationships between total knowledge score of all coaches and qualifications [F(1,166) = 5.28, P = 0.001], own knowledge rating [F(3,164) = 6.88, P = 0.001] and nutrition training [F(1,166) = 9.83, P = 0.002]. We conclude that these rugby coaches were inadequately prepared to impart nutrition advice to athletes and could benefit from further nutrition training.

  15. Technical Performance Analysis of Iran Premier League Soccer Players in 2012-2013 Season

    Directory of Open Access Journals (Sweden)

    Javani Mohsen

    2015-10-01

    Full Text Available Background and purpose of study : analysis of IRAN premier league soccer players’ technical performance in season 2012-2013, using a computerized match analysis system (Borhan Mobin Development Management Co, IRAN. Material and methods: in this study, data were obtained from 120 players, who performed in competitions 90 minutes. The players were classified into 3 positional roles: defenders, midfielders and forwards. Technical performance variables analysis included: total passes, total successful passes, pass accuracy, total shots; total shots to target, shot accuracy, ball interception and ball losses. The data were statistically analyzed by one-way ANOVA, Kruskal-Wallis, Mann-Whitney U and Tukey post hoc test. Results : The findings of this study showed that players performed about 45 passes per competition. Midfielders and defenders had significantly higher number of passes than forwards. Pass accuracy was about 67% and there were no significant differences between positional roles. Also, the players performed about 0.8 shots per competition, forwards and midfielders had significantly higher number of shots than defenders. Shot accuracy was about 31%; midfielders and forwards had significantly higher shot accuracy than defenders. Forwards showed significantly lower ball interception and higher ball losses than other positions. Conclusion : The result of this study showed that there were significant differences between some technical actions in positional roles. Therefore, coaches can use this information for individualization of training according to playing positions and for optimization of training in the amateur game.

  16. Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model.

    Science.gov (United States)

    Brunker, K; Hampson, K; Horton, D L; Biek, R

    2012-12-01

    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes.

  17. Modeling the Isentropic Head Value of Centrifugal Gas Compressor using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Safiyullah Ferozkhan

    2016-01-01

    Full Text Available Gas compressor performance is vital in oil and gas industry because of the equipment criticality which requires continuous operations. Plant operators often face difficulties in predicting appropriate time for maintenance and would usually rely on time based predictive maintenance intervals as recommended by original equipment manufacturer (OEM. The objective of this work is to develop the computational model to find the isentropic head value using genetic programming. The isentropic head value is calculated from the OEM performance chart. Inlet mass flow rate and speed of the compressor are taken as the input value. The obtained results from the GP computational models show good agreement with experimental and target data with the average prediction error of 1.318%. The genetic programming computational model will assist machinery engineers to quantify performance deterioration of gas compressor and the results from this study will be then utilized to estimate future maintenance requirements based on the historical data. In general, this genetic programming modelling provides a powerful solution for gas compressor operators to realize predictive maintenance approach in their operations.

  18. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    Science.gov (United States)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  19. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    Science.gov (United States)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  20. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Page Michel

    2009-12-01

    Full Text Available Abstract Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks.

  1. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network and pathway analyses

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Pant, Sameer Dinkar; Fredholm, Merete

    2014-01-01

    .g. metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index...... investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation...... of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation...

  2. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient

    Directory of Open Access Journals (Sweden)

    Rossetto Maurizio

    2012-08-01

    Full Text Available Abstract Background Four of the five species of Telopea (Proteaceae are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation. Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Results Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR and six chloroplast microsatellites (cpSSR were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM. The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed

  3. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient.

    Science.gov (United States)

    Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L

    2012-08-20

    Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters

  4. Poisson versus threshold models for genetic analysis of clinical mastitis in US Holsteins.

    Science.gov (United States)

    Vazquez, A I; Weigel, K A; Gianola, D; Bates, D M; Perez-Cabal, M A; Rosa, G J M; Chang, Y M

    2009-10-01

    Typically, clinical mastitis is coded as the presence or absence of disease in a given lactation, and records are analyzed with either linear models or binary threshold models. Because the presence of mastitis may include cows with multiple episodes, there is a loss of information when counts are treated as binary responses. Poisson models are appropriated for random variables measured as the number of events, and although these models are used extensively in studying the epidemiology of mastitis, they have rarely been used for studying the genetic aspects of mastitis. Ordinal threshold models are pertinent for ordered categorical responses; although one can hypothesize that the number of clinical mastitis episodes per animal reflects a continuous underlying increase in mastitis susceptibility, these models have rarely been used in genetic analysis of mastitis. The objective of this study was to compare probit, Poisson, and ordinal threshold models for the genetic evaluation of US Holstein sires for clinical mastitis. Mastitis was measured as a binary trait or as the number of mastitis cases. Data from 44,908 first-parity cows recorded in on-farm herd management software were gathered, edited, and processed for the present study. The cows were daughters of 1,861 sires, distributed over 94 herds. Predictive ability was assessed via a 5-fold cross-validation using 2 loss functions: mean squared error of prediction (MSEP) as the end point and a cost difference function. The heritability estimates were 0.061 for mastitis measured as a binary trait in the probit model and 0.085 and 0.132 for the number of mastitis cases in the ordinal threshold and Poisson models, respectively; because of scale differences, only the probit and ordinal threshold models are directly comparable. Among healthy animals, MSEP was smallest for the probit model, and the cost function was smallest for the ordinal threshold model. Among diseased animals, MSEP and the cost function were smallest

  5. An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications

    International Nuclear Information System (INIS)

    Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W.

    2016-01-01

    Highlights: • We proposed a developed dynamic battery model suitable for photovoltaic systems. • We used genetic algorithm optimization method to find parameters that gives minimized error. • The validation was carried out with real measurements from stand-alone photovoltaic string. - Abstract: Modeling of batteries in photovoltaic systems has been a major issue related to the random dynamic regime imposed by the changes of solar irradiation and ambient temperature added to the complexity of battery electrochemical and electrical behaviors. However, various approaches have been proposed to model the battery behavior by predicting from detailed electrochemical, electrical or analytical models to high-level stochastic models. In this paper, an improvement of dynamic electrical battery model is proposed by automatic parameter extraction using genetic algorithm in order to give usefulness and future implementation for practical application. It is highlighted that the enhancement of 21 values of the parameters of CEIMAT model presents a good agreement with real measurements for different modes like charge or discharge and various conditions.

  6. Behavioral phenotypes in schizophrenic animal models with multiple combinations of genetic and environmental factors.

    Science.gov (United States)

    Hida, Hirotake; Mouri, Akihiro; Noda, Yukihiro

    2013-01-01

    Schizophrenia is a multifactorial psychiatric disorder in which both genetic and environmental factors play a role. Genetic [e.g., Disrupted-in-schizophrenia 1 (DISC1), Neuregulin-1 (NRG1)] and environmental factors (e.g., maternal viral infection, obstetric complications, social stress) may act during the developmental period to increase the incidence of schizophrenia. In animal models, interactions between susceptibility genes and the environment can be controlled in ways not possible in humans; therefore, such models are useful for investigating interactions between or within factors in the pathogenesis and pathophysiology of schizophrenia. We provide an overview of schizophrenic animal models investigating interactions between or within factors. First, we reviewed gene-environment interaction animal models, in which schizophrenic candidate gene mutant mice were subjected to perinatal immune activation or adolescent stress. Next, environment-environment interaction animal models, in which mice were subjected to a combination of perinatal immune activation and adolescent administration of drugs, were described. These animal models showed interaction between or within factors; behavioral changes, which were obscured by each factor, were marked by interaction of factors and vice versa. Appropriate behavioral approaches with such models will be invaluable for translational research on novel compounds, and also for providing insight into the pathogenesis and pathophysiology of schizophrenia.

  7. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    International Nuclear Information System (INIS)

    Chung, K K; Do, D Q

    2010-01-01

    In order to model relationships between chemical structures and biological effects in quantitative structure–activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data

  8. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  9. Genetic Determinants of Cardio-Metabolic Risk: A Proposed Model for Phenotype Association and Interaction

    Science.gov (United States)

    Blackett, Piers R; Sanghera, Dharambir K

    2012-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus it follows that the genetics of dyslipidemia, obesity, and non-alcoholic fatty liver (NAFLD) disease are central in triggering progression of the syndrome to overt expression of disease traits, and have become a key focus of interest for early detection and for designing prevention and treatments. To support the “birds’ eye view” approach we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacological targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. PMID:23351585

  10. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction.

    Science.gov (United States)

    Blackett, Piers R; Sanghera, Dharambir K

    2013-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  11. Pattern Discovery in Brain Imaging Genetics via SCCA Modeling with a Generic Non-convex Penalty.

    Science.gov (United States)

    Du, Lei; Liu, Kefei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Han, Junwei; Guo, Lei; Saykin, Andrew J; Shen, Li

    2017-10-25

    Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose [Formula: see text]-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the [Formula: see text]-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce the estimation bias in regression tasks. But using them in SCCA remains largely unexplored. In this paper, we design a unified non-convex SCCA model, based on seven non-convex functions, for unbiased estimation and stable feature selection simultaneously. We also propose an efficient optimization algorithm. The proposed method obtains both higher correlation coefficients and better canonical loading patterns. Specifically, these SCCA methods with non-convex penalties discover a strong association between the APOE e4 rs429358 SNP and the hippocampus region of the brain. They both are Alzheimer's disease related biomarkers, indicating the potential and power of the non-convex methods in brain imaging genetics.

  12. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments.

    Science.gov (United States)

    Veenstra-VanderWeele, Jeremy; Blakely, Randy D

    2012-01-01

    Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection. Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development, we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to accelerate the development of ASD diagnostics and therapeutics.

  13. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines

    Directory of Open Access Journals (Sweden)

    C Gutiérrez-Lovera

    2017-11-01

    Full Text Available In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.

  14. What Happens When Employers are Free to Discriminate? Evidence from the English Barclays Premier Fantasy Football League

    OpenAIRE

    Bryson, Alex; Chevalier, Arnaud

    2014-01-01

    Research on employers' hiring discrimination is limited by the unlawfulness of such activity. Consequently, researchers have focused on the intention to hire. Instead, we rely on a virtual labour market, the Fantasy Football Premier League, where employers can freely exercise their taste for racial discrimination in terms of hiring and firing. The setting allows us to eliminate co-worker, consumer-based and statistical discrimination as potential sources of discrimination, thus isolating the ...

  15. Chinese Dream——Concert in Commemoration of 115th Birth Anniversary of Premier Zhou Enlai Held

    Institute of Scientific and Technical Information of China (English)

    Our; Staff; Reporter

    2013-01-01

    <正>The theme song of the film The Founding of a Republic sung by male vocalists Dai Yuqiang and Wei Song reverberated in the Opera Hall at the National Center for the Performing Arts on the `evening of March 14. It marked the start of the concert in commemoration of the 115th anniversary of the birth of Premier Zhou Enlai, with "Chinese Dream" as the theme.

  16. Pengaruh Kualitas Pelayanan, Harga Dan Lokasi Terhadap Loyalitas Melalui Kepuasan Tamu Pada Santika Premiere Dyandra Hotel & Convention Medan

    OpenAIRE

    Tambunan, Susi Marta

    2016-01-01

    Santika Premiere Dyandra Hotel & Convention, Medan, is one of movers in hotel service industry which combines products and services, including the combination of service quality, price, and location in order to attract and provide satisfaction for its guests. It also pays attention to and gives expectation and needs for the guests by giving something correctly which are in line with the guests’ need by providing good performance so that they will be satisfied and will eventually be loyal to t...

  17. An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2017-01-01

    Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.

  18. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

    Directory of Open Access Journals (Sweden)

    C. I. Cho

    2016-05-01

    Full Text Available The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs, and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK, fat yield (FAT, protein yield (PROT, and solids-not-fat yield (SNF. The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP of the third to fifth order (L3–L5, fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order. The residual variances in the models were either homogeneous (HOM or heterogeneous (15 classes, HET15; 60 classes, HET60. A total of nine models (3 orders of polynomials×3 types of residual variance including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC and/or Schwarz Bayesian information criteria (BIC statistics to identify the model(s of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF and L4-HET15 (FAT, which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first

  19. Epidemiology and history of knee injury and its impact on activity limitation among football premier league professional referees.

    Science.gov (United States)

    Mahdavi Mohtasham, Hamid; Shahrbanian, Shahnaz; Khoshroo, Fatemeh

    2018-01-01

    The purpose of this study was to determine the epidemiology and history of knee injury and its impact on activity limitation among football premier league professional referees in Iran. This was a descriptive study. 59 Football Premier League professional referees participated in the study. The knee injury related information such as injury history and mechanism was recorded. Injury related symptoms and their impacts on the activity limitation, ability to perform activities of daily living as well participation in sports and recreational activities was obtained through the Knee Outcome Survey (KOS). The results indicated that 31 out of 59 participants reported the history of knee injury. In addition, 18.6%, 22.4% and 81% of the referees reported that they had been injured during the last 6 months of the last year, and at some point in their refereeing careers, respectively. Results further indicated that 48.8% of the injuries occurred in the non-dominant leg and they occurred more frequently during training sessions (52%). Furthermore, the value of KOS was 85 ± 13 for Activities of Daily Living subscale and 90 ± 9 for Sports and Recreational Activities subscale of the KOS. Knee injury was quite common among the Football Premier League professional referees. It was also indicated that the injuries occurred mainly due to insufficient physical fitness. Therefore, it is suggested that football referees undergo the proper warm-up program to avoid knee injury.

  20. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  1. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  2. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    Science.gov (United States)

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. Copyright © 2015 by the American Society of Nephrology.

  3. Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Friedman-Levi, Yael; Meiner, Zeev; Canello, Tamar; Frid, Kati; Kovacs, Gabor G.; Budka, Herbert; Avrahami, Dana; Gabizon, Ruth

    2011-01-01

    Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5–6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments. PMID:22072968

  4. Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    2011-11-01

    Full Text Available Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K, causing genetic Creutzfeldt-Jakob disease (gCJD in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments.

  5. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.

    Science.gov (United States)

    Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel

    2018-02-27

    Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .

  6. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models.

    Science.gov (United States)

    Berry, D P; Buckley, F; Dillon, P; Evans, R D; Rath, M; Veerkamp, R F

    2003-11-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.

  7. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    Full Text Available Rift Valley fever phlebovirus (RVFV causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51 and Zinga (rZinga strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  8. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    Science.gov (United States)

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. GSEVM v.2: MCMC software to analyse genetically structured environmental variance models

    DEFF Research Database (Denmark)

    Ibáñez-Escriche, N; Garcia, M; Sorensen, D

    2010-01-01

    This note provides a description of software that allows to fit Bayesian genetically structured variance models using Markov chain Monte Carlo (MCMC). The gsevm v.2 program was written in Fortran 90. The DOS and Unix executable programs, the user's guide, and some example files are freely available...... for research purposes at http://www.bdporc.irta.es/estudis.jsp. The main feature of the program is to compute Monte Carlo estimates of marginal posterior distributions of parameters of interest. The program is quite flexible, allowing the user to fit a variety of linear models at the level of the mean...

  10. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  11. Using genetic algorithms for calibrating simplified models of nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Canetta, Raffaele

    2004-01-01

    In this paper the use of genetic algorithms for the estimation of the effective parameters of a model of nuclear reactor dynamics is investigated. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest (e.g., reactor power, average fuel and coolant temperatures) to the actual evolution profiles, here simulated by the Quandry based reactor kinetics (Quark) code available from the Nuclear Energy Agency. Alternative schemes of single- and multi-objective optimization are investigated. The efficiency of convergence of the algorithm with respect to the different effective parameters to be calibrated is studied with reference to the physical relationships involved

  12. Using genetic algorithms for calibrating simplified models of nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Marseguerra, Marzio E-mail: marzio.marseguerra@polimi.it; Zio, Enrico E-mail: enrico.zio@polimi.it; Canetta, Raffaele

    2004-07-01

    In this paper the use of genetic algorithms for the estimation of the effective parameters of a model of nuclear reactor dynamics is investigated. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest (e.g., reactor power, average fuel and coolant temperatures) to the actual evolution profiles, here simulated by the Quandry based reactor kinetics (Quark) code available from the Nuclear Energy Agency. Alternative schemes of single- and multi-objective optimization are investigated. The efficiency of convergence of the algorithm with respect to the different effective parameters to be calibrated is studied with reference to the physical relationships involved.

  13. Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling

    Directory of Open Access Journals (Sweden)

    Nebot

    2012-04-01

    Full Text Available In this research a genetic fuzzy system (GFS is proposed that performs discretization parameter learning in the context of the Fuzzy Inductive Reasoning (FIR methodology and the Linguistic Rule FIR (LR-FIR algorithm. The main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR models and decision support (LR-FIR models. The GFS is evaluated in an e-learning context.

  14. Testing the limits of the 'joint account' model of genetic information: a legal thought experiment.

    Science.gov (United States)

    Foster, Charles; Herring, Jonathan; Boyd, Magnus

    2015-05-01

    We examine the likely reception in the courtroom of the 'joint account' model of genetic confidentiality. We conclude that the model, as modified by Gilbar and others, is workable and reflects, better than more conventional legal approaches, both the biological and psychological realities and the obligations owed under Articles 8 and 10 of the European Convention on Human Rights (ECHR). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. PENGARUH PEMBAGIAN KERJA TERHADAP PENINGKATAN EFISIENSI KERJA KARYAWAN PASTRY DI HOTEL SANTIKA PREMIERE MALANG

    Directory of Open Access Journals (Sweden)

    Estikowati Estikowati

    2017-12-01

    Full Text Available The study was conducted to determine the effect of the division of labor on the work efficiency of pastry employees at Hotel Santika Premiere Malang. Work efficiency relates to the product produced with the resources used. While the division of labor is a separator type of work done by individuals. Researchers used the Simple Linear Regression Analyze method to predict how far the value of the dependent variable will be changed if the independent variable is changed. From result of research of independent variable (X that is Division of labor and dependent variable (Y Work efficiency have significant relation. This is evidenced from the data processing is known significant value sebersar 0.003 <0.05, with the conclusion Ho rejected and Ha accepted that there is influence between the Division of labor (X on Efficiency of work. From the questionnaire data the authors conclude that the existing division of labor is not appropriate for employees so that the level of efficiency of employees decreased. Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-ansi-language:IN;} The study was conducted to determine the effect of the division of labor on the work efficiency of pastry employees at Hotel Santika Premiere Malang. Work efficiency relates to the product produced with the resources used. While the division of labor is

  16. Use of genomic models to study genetic control of environmental variance

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    . The genomic model commonly found in the literature, with marker effects affecting mean only, is extended to investigate putative effects at the level of the environmental variance. Two classes of models are proposed and their behaviour, studied using simulated data, indicates that they are capable...... of detecting genetic variation at the level of mean and variance. Implementation is via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a measure of global fit, in their ability to detect QTL effects and in terms of their predictive power. The models are subsequently fitted...... to back fat thickness data in pigs. The analysis of back fat thickness shows that the data support genomic models with effects on the mean but not on the variance. The relative sizes of experiment necessary to detect effects on mean and variance is discussed and an extension of the McMC algorithm...

  17. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  18. The first metallurgical tests on plutonium; Premiers essais metallurgiques sur le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E; Abramson, R; Anselin, F; Monti, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Metallic plutonium was first prepared in France in January 1956, as soon as we had access to quantities of the order of several grams of plutonium, which had been extracted from the rods of the pile EL2 at Saclay. Since up to the present this reactor, of thermal power 2 000 kW, has been our only source of plutonium, we have so far only worked on experimental quantities sufficient for the basic tests but not for tests on a scale of possible applications. It is this work, carried out during this phase of preliminary research, which is described below. With the starting up of the plutonium extraction plant at Marcoule, where the reactor G1 has been operating at power for more than a year, we shall go on next to a another order of magnitude which will allow the manufacture and experimentation of prototype fuel elements. (author) [French] La premiere elaboration de plutonium metallique en France fut faite en janvier 1956, des que nous pumes disposer de quantites de plutonium de l'ordre de quelques grammes, qui avaient ete retires des barreaux de la pile EL2 de Saclay. Ce reacteur, d'une puissance thermique de 2 000 kW, ayant ete jusqu'a present notre seule source de plutonium, nous n'avons encore travaille que sur des quantites experimentales suffisantes pour les essais de base, mais non pour des essais a l'echelle d'applications possibles. Ce sont les travaux effectues pendant cette phase de recherches preliminaires qui seront evoques ci-dessous. Avec la mise eu route de l'usine d'extraction de plutonium de Marcoule, ou le reacteur G1 fonctionne en puissance depuis plus d'un an, nous allons passer prochainement a un autre ordre de grandeur, qui nous permettra la fabrication et l'experimentation d'elements combustibles prototypes. (auteur)

  19. Corporate social responsibility and mental health: the Premier League football Imagine Your Goals programme.

    Science.gov (United States)

    Henderson, Claire; O'Hara, Stefanie; Thornicroft, Graham; Webber, Martin

    2014-08-01

    Football is increasingly used to facilitate recovery in mental health services, often in partnership with football clubs. However, few clubs have made mental health part of their corporate social responsibility programmes until recently. We report the impact on participants of the 'Imagine Your Goals' programme, run by 16 Premier League football clubs in conjunction with England's Time to Change programme to reduce mental health-related stigma and discrimination. Mixed methods evaluation used pre/post measures of well-being, access to social capital, focus groups held early on and towards the end of the two-year programmes, and questionnaires for coaching staff. There were no significant changes to participants' mental well-being scores between baseline and follow-up, nor to the total number of social resources accessible through their networks. However, there was a statistically significant increase at follow-up in the mean score of the personal skills subscale of the Resource Generator-UK. Participants' individual skills were also higher at follow-up. Qualitative data showed programmes had largely met participants' expectations in terms of socializing, providing structure and improving fitness levels, exceeded expectations in relationships with coaching staff and additional activities, but did not always meet them in improving football skills. Participants varied in their knowledge of exit opportunities, depending on which club's programme they attended. A minority of clubs reported difficulties in recruitment and concerns about planning for the future of the projects. Football clubs and the charitable foundations they set up can successfully deliver programmes to people with mental health problems which improve access to personal skills social capital and have other potential benefits.

  20. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  1. Descriptive epidemiology of injuries in a Brazilian premier league soccer team

    Directory of Open Access Journals (Sweden)

    Fachina RJ

    2013-06-01

    Full Text Available Rafael Júlio de Freitas Guina Fachina,1,2 Marília dos Santos Andrade,3 Fernando Roberto Silva,4 Silas Waszczuk-Junior,4 Paulo César Montagner,1 João Paulo Borin,1 Claudio Andre Barbosa de Lira5 1Departamento de Ciência do Esporte, Faculdade de Educação Física, Universidade Estadual de Campinas (UNICAMP, Campinas, Brazil; 2Confederação Brasileira de Basketball (CBB, Rio de Janeiro, Brazil; 3Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil; 4Grêmio Barueri Futebol LTDA, Barueri, Brazil; 5Setor de Fisiologia Humana e do Exercício, Universidade Federal de Goiás, Câmpus Jataí, Jataí, Brazil Abstract: Soccer, which has a large number of participants, has a high injury incidence that causes both financial and time burdens. Therefore, knowledge about the epidemiology of soccer injuries could allow sports-medicine professionals, such as physicians and physiotherapists, to direct their work in specific preventive programs. Thus, our aim was to conduct an epidemiological survey of injuries sustained by professional soccer players from the same team who participated in the Brazilian championship premier league in 2009. To this end, we evaluated retrospectively player medical records from the team, which included name, date of birth, position, date of injury, mechanism of injury, and type of injury. In the period of study, 95 injuries were recorded: 42 (44.2% were recorded during matches, and 53 (55.8% during the training period. Injuries occurred more frequently in midfielders and strikers. All injuries happened in the lower limb, most of the injuries were muscular, and most occurred as the result of collisions with other athletes. In summary, this study demonstrates that there is a need for greater safety awareness in the training environment. Keywords: injuries, epidemiology, soccer players

  2. Genetic screening and testing in an episode-based payment model: preserving patient autonomy.

    Science.gov (United States)

    Sutherland, Sharon; Farrell, Ruth M; Lockwood, Charles

    2014-11-01

    The State of Ohio is implementing an episode-based payment model for perinatal care. All costs of care will be tabulated for each live birth and assigned to the delivering provider, creating a three-tiered model for reimbursement for care. Providers will be reimbursed as usual for care that is average in cost and quality, while instituting rewards or penalties for those outside the expected range in either domain. There are few exclusions, and all methods of genetic screening and diagnostic testing are included in the episode cost calculation as proposed. Prenatal ultrasonography, genetic screening, and diagnostic testing are critical components of the delivery of high-quality, evidence-based prenatal care. These tests provide pregnant women with key information about the pregnancy, which, in turn, allows them to work closely with their health care provider to determine optimal prenatal care. The concepts of informed consent and decision-making, cornerstones of the ethical practice of medicine, are founded on the principles of autonomy and respect for persons. These principles recognize that patients' rights to make choices and take actions are based on their personal beliefs and values. Given the personal nature of such decisions, it is critical that patients have unbarred access to prenatal genetic tests if they elect to use them as part of their prenatal care. The proposed restructuring of reimbursement creates a clear conflict between patient autonomy and physician financial incentives.

  3. Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine.

    Science.gov (United States)

    Honnen, Sebastian

    2017-05-01

    In view of increased life expectancy the risk for disturbed integrity of genetic information increases. This inevitably holds the implication for higher incidence of age-related diseases leading to considerable cost increase in health care systems. To develop preventive strategies it is crucial to evaluate external and internal noxae as possible threats to our DNA. Especially the interplay of DNA damage response (DDR) and DNA repair (DR) mechanisms needs further deciphering. Moreover, there is a distinct need for alternative in vivo test systems for basic research and also risk assessment in toxicology. Especially the evaluation of combinational toxicity of environmentally present genotoxins and adverse effects of clinically used DNA damaging anticancer drugs is a major challenge for modern toxicology. This review focuses on the applicability of Caenorhabditis elegans as a model organism to unravel and tackle scientific questions related to the biological consequences of genotoxin exposure and highlights methods for studying DDR and DR. In this regard large-scale in vivo screens of mixtures of chemicals and extensive parallel sequencing are highlighted as unique advantages of C. elegans. In addition, concise information regarding evolutionary conserved molecular mechanisms of the DDR and DR as well as currently available data obtained from the use of prototypical genotoxins and preferential read-outs of genotoxin testing are discussed. The use of established protocols, which are already available in the community, is encouraged to facilitate and further improve the implementation of C. elegans as a powerful genetic model system in genetic toxicology and biomedicine.

  4. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction

    Science.gov (United States)

    Danandeh Mehr, Ali; Kahya, Ercan

    2017-06-01

    Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.

  5. Cumulative t-link threshold models for the genetic analysis of calving ease scores

    Directory of Open Access Journals (Sweden)

    Tempelman Robert J

    2003-09-01

    Full Text Available Abstract In this study, a hierarchical threshold mixed model based on a cumulative t-link specification for the analysis of ordinal data or more, specifically, calving ease scores, was developed. The validation of this model and the Markov chain Monte Carlo (MCMC algorithm was carried out on simulated data from normally and t4 (i.e. a t-distribution with four degrees of freedom distributed populations using the deviance information criterion (DIC and a pseudo Bayes factor (PBF measure to validate recently proposed model choice criteria. The simulation study indicated that although inference on the degrees of freedom parameter is possible, MCMC mixing was problematic. Nevertheless, the DIC and PBF were validated to be satisfactory measures of model fit to data. A sire and maternal grandsire cumulative t-link model was applied to a calving ease dataset from 8847 Italian Piemontese first parity dams. The cumulative t-link model was shown to lead to posterior means of direct and maternal heritabilities (0.40 ± 0.06, 0.11 ± 0.04 and a direct maternal genetic correlation (-0.58 ± 0.15 that were not different from the corresponding posterior means of the heritabilities (0.42 ± 0.07, 0.14 ± 0.04 and the genetic correlation (-0.55 ± 0.14 inferred under the conventional cumulative probit link threshold model. Furthermore, the correlation (> 0.99 between posterior means of sire progeny merit from the two models suggested no meaningful rerankings. Nevertheless, the cumulative t-link model was decisively chosen as the better fitting model for this calving ease data using DIC and PBF.

  6. Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.

    2017-01-01

    This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

  7. Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and Subfertility: Insights into Polycystic Ovary Syndrome

    Science.gov (United States)

    Huang-Doran, Isabel; Franks, Stephen

    2016-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women and a leading cause of female infertility worldwide. Defined clinically by the presence of hyperandrogenemia and oligomenorrhoea, PCOS represents a state of hormonal dysregulation, disrupted ovarian follicle dynamics, and subsequent oligo- or anovulation. The syndrome’s prevalence is attributed, at least partly, to a well-established association with obesity and insulin resistance (IR). Indeed, the presence of severe PCOS in human genetic obesity and IR syndromes supports a causal role for IR in the pathogenesis of PCOS. However, the molecular mechanisms underlying this causality, as well as the important role of hyperandrogenemia, remain poorly elucidated. As such, treatment of PCOS is necessarily empirical, focusing on symptom alleviation. The generation of knockout and transgenic rodent models of obesity and IR offers a promising platform in which to address mechanistic questions about reproductive dysfunction in the context of metabolic disease. Similarly, the impact of primary perturbations in rodent gonadotrophin or androgen signaling has been interrogated. However, the insights gained from such models have been limited by the relatively poor fidelity of rodent models to human PCOS. In this mini review, we evaluate the ovarian phenotypes associated with rodent models of obesity and IR, including the extent of endocrine disturbance, ovarian dysmorphology, and subfertility. We compare them to both human PCOS and other animal models of the syndrome (genetic and hormonal), explore reasons for their discordance, and consider the new opportunities that are emerging to better understand and treat this important condition. PMID:27375552

  8. A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available In this paper, we proposed a hybrid system to predict corporate bankruptcy. The whole procedure consists of the following four stages: first, sequential forward selection was used to extract the most important features; second, a rule-based model was chosen to fit the given dataset since it can present physical meaning; third, a genetic ant colony algorithm (GACA was introduced; the fitness scaling strategy and the chaotic operator were incorporated with GACA, forming a new algorithm—fitness-scaling chaotic GACA (FSCGACA, which was used to seek the optimal parameters of the rule-based model; and finally, the stratified K-fold cross-validation technique was used to enhance the generalization of the model. Simulation experiments of 1000 corporations’ data collected from 2006 to 2009 demonstrated that the proposed model was effective. It selected the 5 most important factors as “net income to stock broker’s equality,” “quick ratio,” “retained earnings to total assets,” “stockholders’ equity to total assets,” and “financial expenses to sales.” The total misclassification error of the proposed FSCGACA was only 7.9%, exceeding the results of genetic algorithm (GA, ant colony algorithm (ACA, and GACA. The average computation time of the model is 2.02 s.

  9. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    Science.gov (United States)

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  10. Applying ecological models to communities of genetic elements: the case of neutral theory.

    Science.gov (United States)

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  11. OPTIMIZATION OF LAND USE SUITABILITY FOR AGRICULTURE USING INTEGRATED GEOSPATIAL MODEL AND GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    S. B. Mansor

    2012-08-01

    Full Text Available In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  12. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  13. Probability Model of Allele Frequency of Alzheimer’s Disease Genetic Risk Factor

    Directory of Open Access Journals (Sweden)

    Afshin Fayyaz-Movaghar

    2016-06-01

    Full Text Available Background and Purpose: The identification of genetics risk factors of human diseases is very important. This study is conducted to model the allele frequencies (AFs of Alzheimer’s disease. Materials and Methods: In this study, several candidate probability distributions are fitted on a data set of Alzheimer’s disease genetic risk factor. Unknown parameters of the considered distributions are estimated, and some criterions of goodness-of-fit are calculated for the sake of comparison. Results: Based on some statistical criterions, the beta distribution gives the best fit on AFs. However, the estimate values of the parameters of beta distribution lead us to the standard uniform distribution. Conclusion: The AFs of Alzheimer’s disease follow the standard uniform distribution.

  14. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  15. Genetic coding and united-hypercomplex systems in the models of algebraic biology.

    Science.gov (United States)

    Petoukhov, Sergey V

    2017-08-01

    Structured alphabets of DNA and RNA in their matrix form of representations are connected with Walsh functions and a new type of systems of multidimensional numbers. This type generalizes systems of complex numbers and hypercomplex numbers, which serve as the basis of mathematical natural sciences and many technologies. The new systems of multi-dimensional numbers have interesting mathematical properties and are called in a general case as "systems of united-hypercomplex numbers" (or briefly "U-hypercomplex numbers"). They can be widely used in models of multi-parametrical systems in the field of algebraic biology, artificial life, devices of biological inspired artificial intelligence, etc. In particular, an application of U-hypercomplex numbers reveals hidden properties of genetic alphabets under cyclic permutations in their doublets and triplets. A special attention is devoted to the author's hypothesis about a multi-linguistic in DNA-sequences in a relation with an ensemble of U-numerical sub-alphabets. Genetic multi-linguistic is considered as an important factor to provide noise-immunity properties of the multi-channel genetic coding. Our results attest to the conformity of the algebraic properties of the U-numerical systems with phenomenological properties of the DNA-alphabets and with the complementary device of the double DNA-helix. It seems that in the modeling field of algebraic biology the genetic-informational organization of living bodies can be considered as a set of united-hypercomplex numbers in some association with the famous slogan of Pythagoras "the numbers rule the world". Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction.

    Science.gov (United States)

    Cadoni, Cristina

    2016-01-01

    Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40-60% of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore, the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis on differences in mesolimbic dopamine (DA) transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neuron functionality. Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigation, results from the reviewed studies might open new vistas in understanding aberrant

  17. Fischer 344 and Lewis rat strains as a model of genetic vulnerability to drug addiction

    Directory of Open Access Journals (Sweden)

    Cristina eCadoni

    2016-02-01

    Full Text Available Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40-60 % of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis to differences in mesolimbic dopamine (DA transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neurons functionality.Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigations, results from the reviewed studies might open new vistas in

  18. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    He, Bin Z; Ludwig, Michael Z; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Vilhjálmsson, Bjarni J; Jiang, Pengyao; Park, Soo-Young; Tamarina, Natalia A; Selleck, Scott B; Wittkopp, Patricia J; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.

  19. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure

    Science.gov (United States)

    Cheng, Chun-Tian; Zhao, Ming-Yan; Chau, K. W.; Wu, Xin-Yu

    2006-01-01

    Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall-runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually involves the multiple criteria for judging the performances of observed data. However, it is often difficult to derive all objective functions for the parameter calibration problem of a conceptual model. Thus, a new method to the multiple criteria parameter calibration problem, which combines GA with TOPSIS (technique for order performance by similarity to ideal solution) for Xinanjiang model, is presented. This study is an immediate further development of authors' previous research (Cheng, C.T., Ou, C.P., Chau, K.W., 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. Journal of Hydrology, 268, 72-86), whose obvious disadvantages are to split the whole procedure into two parts and to become difficult to integrally grasp the best behaviors of model during the calibration procedure. The current method integrates the two parts of Xinanjiang rainfall-runoff model calibration together, simplifying the procedures of model calibration and validation and easily demonstrated the intrinsic phenomenon of observed data in integrity. Comparison of results with two-step procedure shows that the current methodology gives similar results to the previous method, is also feasible and robust, but simpler and easier to apply in practice.

  20. Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    Park, Soo-Young; Ludwig, Michael Z; Tamarina, Natalia A; He, Bin Z; Carl, Sarah H; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Williams, Calvin L; Miles, Cecelia M; Philipson, Louis H; Steiner, Donald F; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance

  1. On the Reliability of Nonlinear Modeling using Enhanced Genetic Programming Techniques

    Science.gov (United States)

    Winkler, S. M.; Affenzeller, M.; Wagner, S.

    The use of genetic programming (GP) in nonlinear system identification enables the automated search for mathematical models that are evolved by an evolutionary process using the principles of selection, crossover and mutation. Due to the stochastic element that is intrinsic to any evolutionary process, GP cannot guarantee the generation of similar or even equal models in each GP process execution; still, if there is a physical model underlying to the data that are analyzed, then GP is expected to find these structures and produce somehow similar results. In this paper we define a function for measuring the syntactic similarity of mathematical models represented as structure trees; using this similarity function we compare the results produced by GP techniques for a data set representing measurement data of a BMW Diesel engine.

  2. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  3. A genetic algorithm solution for a nuclear power plant risk-cost maintenance model

    International Nuclear Information System (INIS)

    Tong Jiejuan; Mao Dingyuan; Xue Dazhi

    2004-01-01

    Reliability Centered Maintenance (RCM) is one of the popular maintenance optimization methods according to certain kinds of priorities. Traditional RCM usually analyzes and optimizes the maintenance strategy from the viewpoint of component instead of the whole maintenance program impact. Research presented in this paper is a pilot study using PSA techniques in RCM. How to reflect the effect on component unavailability by the maintenance activities such as surveillance testing and preventive maintenance in PSA model is discussed firstly. Based on the discussion, a maintenance risk-cost model is established for global maintenance optimization in a nuclear power plant, and a genetic algorithm (GA) is applied to solve such a model to get the global optimized maintenance strategy. Finally, the result got from a simple test case based on a risk-cost model consisting of 10 components is presented

  4. Comparative evaluation of fuzzy logic and genetic algorithms models for portfolio optimization

    Directory of Open Access Journals (Sweden)

    Heidar Masoumi Soureh

    2017-03-01

    Full Text Available Selection of optimum methods which have appropriate speed and precision for planning and de-cision-making has always been a challenge for investors and managers. One the most important concerns for them is investment planning and optimization for acquisition of desirable wealth under controlled risk with the best return. This paper proposes a model based on Markowitz the-orem by considering the aforementioned limitations in order to help effective decisions-making for portfolio selection. Then, the model is investigated by fuzzy logic and genetic algorithms, for the optimization of the portfolio in selected active companies listed in Tehran Stock Exchange over the period 2012-2016 and the results of the above models are discussed. The results show that the two studied models had functional differences in portfolio optimization, its tools and the possibility of supplementing each other and their selection.

  5. A genetic algorithm-based job scheduling model for big data analytics.

    Science.gov (United States)

    Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei

    Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.

  6. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  7. The true meaning of 'exotic species' as a model for genetically engineered organisms.

    Science.gov (United States)

    Regal, P J

    1993-03-15

    The exotic or non-indigenous species model for deliberately introduced genetically engineered organisms (GEOs) has often been misunderstood or misrepresented. Yet proper comparisons of of ecologically competent GEOs to the patterns of adaptation of introduced species have been highly useful among scientists in attempting to determine how to apply biological theory to specific GEO risk issues, and in attempting to define the probabilities and scale of ecological risks with GEOs. In truth, the model predicts that most projects may be environmentally safe, but a significant minority may be very risky. The model includes a history of institutional follies that also should remind workers of the danger of oversimplifying biological issues, and warn against repeating the sorts of professional misjudgements that have too often been made in introducing organisms to new settings. We once expected that the non-indigenous species model would be refined by more analysis of species eruptions, ecological genetics, and the biology of select GEOs themselves, as outlined. But there has been political resistance to the effective regulation of GEOs, and a bureaucratic tendency to focus research agendas on narrow data collection. Thus there has been too little promotion by responsible agencies of studies to provide the broad conceptual base for truly science-based regulation. In its presently unrefined state, the non-indigenous species comparison would overestimate the risks of GEOs if it were (mis)applied to genetically disrupted, ecologically crippled GEOs, but in some cases of wild-type organisms with novel engineered traits, it could greatly underestimate the risks. Further analysis is urgently needed.

  8. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    Directory of Open Access Journals (Sweden)

    Daqing Zhang

    2015-01-01

    Full Text Available Blood-brain barrier (BBB is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

  9. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  10. Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance

    Directory of Open Access Journals (Sweden)

    Misztal Ignacy

    2009-01-01

    Full Text Available Abstract A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale.

  11. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Deficits in fine motor skills in a genetic animal model of ADHD

    Directory of Open Access Journals (Sweden)

    Qian Yu

    2010-09-01

    Full Text Available Abstract Background In an attempt to model some behavioral aspects of Attention Deficit/Hyperactivity Disorder (ADHD, we examined whether an existing genetic animal model of ADHD is valid for investigating not only locomotor hyperactivity, but also more complex motor coordination problems displayed by the majority of children with ADHD. Methods We subjected young adolescent Spontaneously Hypertensive Rats (SHRs, the most commonly used genetic animal model of ADHD, to a battery of tests for motor activity, gross motor coordination, and skilled reaching. Wistar (WIS rats were used as controls. Results Similar to children with ADHD, young adolescent SHRs displayed locomotor hyperactivity in a familiar, but not in a novel environment. They also had lower performance scores in a complex skilled reaching task when compared to WIS rats, especially in the most sensitive measure of skilled performance (i.e., single attempt success. In contrast, their gross motor performance on a Rota-Rod test was similar to that of WIS rats. Conclusion The results support the notion that the SHR strain is a useful animal model system to investigate potential molecular mechanisms underlying fine motor skill problems in children with ADHD.

  13. Comparison between a sire model and an animal model for genetic evaluation of fertility traits in Danish Holstein population

    DEFF Research Database (Denmark)

    Sun, C; Madsen, P; Nielsen, U S

    2009-01-01

    Comparisons between a sire model, a sire-dam model, and an animal model were carried out to evaluate the ability of the models to predict breeding values of fertility traits, based on data including 471,742 records from the first lactation of Danish Holstein cows, covering insemination years from...... the results suggest that the animal model, rather than the sire model, should be used for genetic evaluation of fertility traits......Comparisons between a sire model, a sire-dam model, and an animal model were carried out to evaluate the ability of the models to predict breeding values of fertility traits, based on data including 471,742 records from the first lactation of Danish Holstein cows, covering insemination years from...... 1995 to 2004. The traits in the analysis were days from calving to first insemination, calving interval, days open, days from first to last insemination, number of inseminations per conception, and nonreturn rate within 56 d after first service. The correlations between sire estimated breeding value...

  14. Genetic parameters of calving ease using sire-maternal grandsire model in Korean Holsteins

    Directory of Open Access Journals (Sweden)

    Mahboob Alam

    2017-09-01

    Full Text Available Objective Calving ease (CE is a complex reproductive trait of economic importance in dairy cattle. This study was aimed to investigate the genetic merits of CE for Holsteins in Korea. Methods A total of 297,614 field records of CE, from 2000 to 2015, from first parity Holstein heifers were recorded initially. After necessary data pruning such as age at first calving (18 to 42 mo, gestation length, and presence of sire information, final datasets for CE consisted of 147,526 and 132,080 records for service sire calving ease (SCE and daughter calving ease (DCE evaluations, respectively. The CE categories were ordered and scores ranged from CE1 to CE5 (CE1, easy; CE2, slight assistance; CE3, moderate assistance; CE4, difficult calving; CE5, extreme difficulty calving. A linear transformation of CE score was obtained on each category using Snell procedure, and a scaling factor was applied to attain the spread between 0 (CE5 and 100% (CE1. A sire-maternal grandsire model analysis was performed using ASREML 3.0 software package. Results The estimated direct heritability (h2 from SCE and DCE evaluations were 0.11±0.01 and 0.08±0.01, respectively. Maternal h2 estimates were 0.05±0.02 and 0.04±0.01 from SCE and DCE approaches, respectively. Estimates of genetic correlations between direct and maternal genetic components were −0.68±0.09 (SCE and −0.71±0.09 (DCE. The average direct genetic effect increased over time, whereas average maternal effect was low and consistent. The estimated direct predicted transmitting ability (PTA was desirable and increasing over time, but the maternal PTA was undesirable and decreasing. Conclusion The evidence on sufficient genetic variances in this study could reflect a possible selection improvement over time regarding ease of calving. It is expected that the estimated genetic parameters could be a valuable resource to formulate sire selection and breeding plans which would be directed towards the reduction of

  15. Generating Improved Experimental Designs with Spatially and Genetically Correlated Observations Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Lazarus K. Mramba

    2018-03-01

    Full Text Available The aim of this study was to generate and evaluate the efficiency of improved field experiments while simultaneously accounting for spatial correlations and different levels of genetic relatedness using a mixed models framework for orthogonal and non-orthogonal designs. Optimality criteria and a search algorithm were implemented to generate randomized complete block (RCB, incomplete block (IB, augmented block (AB and unequally replicated (UR designs. Several conditions were evaluated including size of the experiment, levels of heritability, and optimality criteria. For RCB designs with half-sib or full-sib families, the optimization procedure yielded important improvements under the presence of mild to strong spatial correlation levels and relatively low heritability values. Also, for these designs, improvements in terms of overall design efficiency (ODE% reached values of up to 8.7%, but these gains varied depending on the evaluated conditions. In general, for all evaluated designs, higher ODE% values were achieved from genetically unrelated individuals compared to experiments with half-sib and full-sib families. As expected, accuracy of prediction of genetic values improved as levels of heritability and spatial correlations increased. This study has demonstrated that important improvements in design efficiency and prediction accuracies can be achieved by optimizing how the levels of a treatment are assigned to the experimental units.

  16. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Science.gov (United States)

    Chlumecký, Martin; Buchtele, Josef; Richta, Karel

    2017-10-01

    The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.

  17. Genetic parameters for direct and maternal calving ease in Walloon dairy cattle based on linear and threshold models.

    Science.gov (United States)

    Vanderick, S; Troch, T; Gillon, A; Glorieux, G; Gengler, N

    2014-12-01

    Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33,155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85,118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice. © 2014 Blackwell Verlag GmbH.

  18. On theoretical models of gene expression evolution with random genetic drift and natural selection.

    Directory of Open Access Journals (Sweden)

    Osamu Ogasawara

    2009-11-01

    Full Text Available The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference.In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1 our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2 cytological constraints can be explicitly formulated to describe long-term evolution; (3 the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances.The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.

  19. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    Science.gov (United States)

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  20. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure.

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2017-07-01

    Full Text Available The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system.

  1. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics.

    Science.gov (United States)

    Campbell, Ian M; Stewart, Jonathan R; James, Regis A; Lupski, James R; Stankiewicz, Paweł; Olofsson, Peter; Shaw, Chad A

    2014-10-02

    Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development.

    Science.gov (United States)

    Teichert, Ines; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2014-01-01

    Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  4. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Myers, Julia E; Keiffer, Timothy R; DiGiuseppe, Stephen; Polk, Paula; Bodily, Jason M; Scott, Rona S; Sapp, Martin

    2018-03-01

    Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16). This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  5. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Directory of Open Access Journals (Sweden)

    Malgorzata Bienkowska-Haba

    2018-03-01

    Full Text Available Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16. This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  6. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin

    Science.gov (United States)

    Calmus, Megan L.; Macksoud, Elyse E.; Tucker, Richard; Iozzo, Renato V.; Lechner, Beatrice E.

    2011-01-01

    Preterm premature rupture of membranes is responsible for one third of preterm births. Ehlers-Danlos syndrome (EDS) is associated with preterm premature rupture of membranes in humans. Notably, an EDS variant is caused by a genetic mutation resulting in abnormal secretion of biglycan and decorin, two small leucine-rich proteoglycans highly expressed in reproductive tissues. Because biglycan/decorin null mutant (Bgn−/−Dcn−/−) mice demonstrate phenotypic changes similar to EDS, we utilized this model to test whether either or both biglycan and decorin play a role in the attainment of successful term gestation. Wild-type, biglycan null mutant, decorin null mutant and biglycan/decorin null mutant pregnancies were assessed for length of gestation, pup and placenta weight and litter size. Quantitative real-time polymerase chain reaction was performed to measure biglycan and decorin gene expression and immunohistochemistry was performed to assess protein expression in placenta and fetal membranes at embryonic day E12, E15 and E18. Bgn−/−Dcn−/− dams displayed preterm birth, whereas the possession of at least two biglycan or decorin wild-type alleles was protective of preterm birth. Bgn−/−Dcn−/− pups were decreased at postnatal day P1 but not at E18. Biglycan and decorin were upregulated in the placenta in each other’s absence and were developmentally regulated in fetal membranes, suggesting that these two proteoglycans demonstrate genetic complementation and contribute to gestational success in a dose dependent manner. Thus, the biglycan/decorin null mutant mouse is a model of genetically induced preterm birth and perinatal loss. This model presents novel targets for preventive or therapeutic manipulation of preterm birth. PMID:21502335

  7. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond

    Directory of Open Access Journals (Sweden)

    Guillem de Valles-Ibáñez

    2018-05-01

    Full Text Available Common variable immunodeficiency (CVID is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as

  8. Dynamics of radioecological and genetic processes in populations of mammalian model species at contamination of ecosystems

    International Nuclear Information System (INIS)

    Ryabokon', N.I.; Goncharova, R.I.

    2008-01-01

    A short review of data on the time course of radiobiological and genetic processes in natural populations of mammalian model species inhabiting radiocontaminated ecosystems over many generations is presented here. The described time-courses of biological end-points in these populations do not reflect the time course of the whole-body dose rates, but do the outcome of multiple processes, including the direct response to individual irradiation, the transgeneration transmission and accumulation of induced damages and the development of adaptation. (authors)

  9. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Czech Academy of Sciences Publication Activity Database

    Chlumecký, M.; Buchtele, Josef; Richta, K.

    2017-01-01

    Roč. 553, October (2017), s. 350-355 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : genetic algorithm * optimisation * rainfall-runoff modeling * random generator Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.483, year: 2016 https://ac.els-cdn.com/S0022169417305516/1-s2.0-S0022169417305516-main.pdf?_tid=fa1bad8a-bd6a-11e7-8567-00000aab0f27&acdnat=1509365462_a1335d3d997e9eab19e23b1eee977705

  10. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    Science.gov (United States)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  11. Genetic programming for evolving due-date assignment models in job shop environments.

    Science.gov (United States)

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  12. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  13. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts......Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...

  14. Model selection emphasises the importance of non-chromosomal information in genetic studies.

    Directory of Open Access Journals (Sweden)

    Reda Rawi

    Full Text Available Ever since the case of the missing heritability was highlighted some years ago, scientists have been investigating various possible explanations for the issue. However, none of these explanations include non-chromosomal genetic information. Here we describe explicitly how chromosomal and non-chromosomal modifiers collectively influence the heritability of a trait, in this case, the growth rate of yeast. Our results show that the non-chromosomal contribution can be large, adding another dimension to the estimation of heritability. We also discovered, combining the strength of LASSO with model selection, that the interaction of chromosomal and non-chromosomal information is essential in describing phenotypes.

  15. Information geometry and population genetics the mathematical structure of the Wright-Fisher model

    CERN Document Server

    Hofrichter, Julian; Tran, Tat Dat

    2017-01-01

    The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

  16. Optimizing models for production and inventory control using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dragan S. Pamučar

    2012-01-01

    Full Text Available In order to make the Economic Production Quantity (EPQ model more applicable to real-world production and inventory control problems, in this paper we expand this model by assuming that some imperfect items of different product types being produced such as reworks are allowed. In addition, we may have more than one product and supplier along with warehouse space and budget limitation. We show that the model of the problem is a constrained non-linear integer program and propose a genetic algorithm to solve it. Moreover, a design of experiments is employed to calibrate the parameters of the algorithm for different problem sizes. In the end, a numerical example is presented to demonstrate the application of the proposed methodology.

  17. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction

    Directory of Open Access Journals (Sweden)

    Bianca Jupp

    2013-03-01

    Full Text Available Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.

  18. PDE Modeling of a Microfluidic Thermal Process for Genetic Analysis Application

    Directory of Open Access Journals (Sweden)

    Reza Banaei Khosroushahi

    2013-01-01

    Full Text Available This paper details the infinite dimensional dynamics of a prototype microfluidic thermal process that is used for genetic analysis purposes. Highly effective infinite dimensional dynamics, in addition to collocated sensor and actuator architecture, require the development of a precise control framework to meet the very tight performance requirements of this system, which are not fully attainable through conventional lumped modeling and controller design approaches. The general partial differential equations describing the dynamics of the system are separated into steady-state and transient parts which are derived for a carefully chosen three-dimensional axisymmetric model. These equations are solved analytically, and the results are verified using an experimentally verified precise finite element method (FEM model. The final combined result is a framework for designing a precise tracking controller applicable to the selected lab-on-a-chip device.

  19. Radio-over-fiber linearization with optimized genetic algorithm CPWL model.

    Science.gov (United States)

    Mateo, Carlos; Carro, Pedro L; García-Dúcar, Paloma; De Mingo, Jesús; Salinas, Íñigo

    2017-02-20

    This article proposes an optimized version of a canonical piece-wise-linear (CPWL) digital predistorter in order to enhance the linearity of a radio-over-fiber (RoF) LTE mobile fronthaul. In this work, we propose a threshold allocation optimization process carried out by a genetic algorithm (GA) in order to optimize the CPWL model (GA-CPWL). Firstly, experiments show how the CPWL model outperforms the classical memory polynomial DPD in an intensity modulation/direct detection (IM/DD) RoF link. Then, the GA-CPWL predistorter is compared with the CPWL model in several scenarios, in order to verify that the proposed DPD offers better performance in different optical transmission conditions. Experimental results reveal that with a proper threshold allocation, the GA-CPWL predistorter offers very promising outcomes.

  20. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  1. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    Science.gov (United States)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  2. Using genetic algorithm to solve a new multi-period stochastic optimization model

    Science.gov (United States)

    Zhang, Xin-Li; Zhang, Ke-Cun

    2009-09-01

    This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.

  3. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  4. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  5. Comparing ESC and iPSC-Based Models for Human Genetic Disorders.

    Science.gov (United States)

    Halevy, Tomer; Urbach, Achia

    2014-10-24

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  6. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.

    Science.gov (United States)

    Cardoso, F F; Tempelman, R J

    2012-07-01

    The objectives of this work were to assess alternative linear reaction norm (RN) models for genetic evaluation of Angus cattle in Brazil. That is, we investigated the interaction between genotypes and continuous descriptors of the environmental variation to examine evidence of genotype by environment interaction (G×E) in post-weaning BW gain (PWG) and to compare the environmental sensitivity of national and imported Angus sires. Data were collected by the Brazilian Angus Improvement Program from 1974 to 2005 and consisted of 63,098 records and a pedigree file with 95,896 animals. Six models were implemented using Bayesian inference and compared using the Deviance Information Criterion (DIC). The simplest model was M(1), a traditional animal model, which showed the largest DIC and hence the poorest fit when compared with the 4 alternative RN specifications accounting for G×E. In M(2), a 2-step procedure was implemented using the contemporary group posterior means of M(1) as the environmental gradient, ranging from -92.6 to +265.5 kg. Moreover, the benefits of jointly estimating all parameters in a 1-step approach were demonstrated by M(3). Additionally, we extended M(3) to allow for residual heteroskedasticity using an exponential function (M(4)) and the best fitting (smallest DIC) environmental classification model (M(5)) specification. Finally, M(6) added just heteroskedastic residual variance to M(1). Heritabilities were less at harsh environments and increased with the improvement of production conditions for all RN models. Rank correlations among genetic merit predictions obtained by M(1) and by the best fitting RN models M(3) (homoskedastic) and M(5) (heteroskedastic) at different environmental levels ranged from 0.79 and 0.81, suggesting biological importance of G×E in Brazilian Angus PWG. These results suggest that selection progress could be optimized by adopting environment-specific genetic merit predictions. The PWG environmental sensitivity of

  7. From animal models to human disease: a genetic approach for personalized medicine in ALS.

    Science.gov (United States)

    Picher-Martel, Vincent; Valdmanis, Paul N; Gould, Peter V; Julien, Jean-Pierre; Dupré, Nicolas

    2016-07-11

    Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.

  8. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project.

    Science.gov (United States)

    Cutting, Elizabeth M; Overby, Casey L; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R; Beitelshees, Amber L

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease.

  9. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    Science.gov (United States)

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  10. Etat des lieux des soins de premier recours des malades mentaux à Antananarivo : étude rétrospective

    Science.gov (United States)

    Bakohariliva, Hasina Andrianarivony; Rafehivola, Imisanavalona Hanitrinihaja; Raobelle, Evah Norotiana; Raharivelo, Adeline; Rajaonarison, Bertille Hortense

    2018-01-01

    Résumé Religion et guérisseurs traditionnels occupent encore une place prépondérante dans la prise en charge des maladies mentales à Madagascar. Ainsi, nous nous sommes fixés comme objectif d'établir un état des lieux sur les soins de premier recours des malades mentaux. Nous avons mené une étude rétrospective descriptive s'étalant sur une période de 16 mois allant de janvier 2014 en avril 2015 au sein du service de psychiatrie du CHU de Befelatanana à Antananarivo. La prévalence des psychoses était de 25%. Le genre féminin (53%), l'ethnie merina (77%), les étudiants (45%), le niveau d'étude secondaire (40%), les célibataires (72%), la religion protestante (45%), ainsi que le niveau socio-économique moyen (57,5%) étaient prédominants. Dans les paramètres cliniques, le mode de début brutal (52%), le premier recours à la religion (40%), la présence d'antécédents des cas similaire (90%), étaient majoritaires. La schizophrénie était la pathologie la plus rencontrée dans la moitié des cas. Le délai d'amélioration en cas de traitement religieux et traditionnels était dans la moitié des cas de plus de 10 jours d'hospitalisation. Les patients ayant reçu une prise en charge psychiatrique en premier recours, étaient améliorés dans 75 % cas en moins de 10jours. Le retard du recours aux soins psychiatriques est une réalité à Madagascar qui aggrave le pronostic des psychoses. PMID:29632623

  11. Parallelized Genetic Identification of the Thermal-Electrochemical Model for Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2013-01-01

    Full Text Available The parameters of a well predicted model can be used as health characteristics for Lithium-ion battery. This article reports a parallelized parameter identification of the thermal-electrochemical model, which significantly reduces the time consumption of parameter identification. Since the P2D model has the most predictability, it is chosen for further research and expanded to the thermal-electrochemical model by coupling thermal effect and temperature-dependent parameters. Then Genetic Algorithm is used for parameter identification, but it takes too much time because of the long time simulation of model. For this reason, a computer cluster is built by surplus computing resource in our laboratory based on Parallel Computing Toolbox and Distributed Computing Server in MATLAB. The performance of two parallelized methods, namely Single Program Multiple Data (SPMD and parallel FOR loop (PARFOR, is investigated and then the parallelized GA identification is proposed. With this method, model simulations running parallelly and the parameter identification could be speeded up more than a dozen times, and the identification result is batter than that from serial GA. This conclusion is validated by model parameter identification of a real LiFePO4 battery.

  12. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models of ...... filter applications: random walk model could give online prediction of breeding values. Hence without waiting for whole lactation records, genetic evaluation could be made when the daily or monthly data is available......Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models...... of maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...

  13. Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening.

    Science.gov (United States)

    Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su

    2015-01-20

    In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model

    Science.gov (United States)

    Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.

    2009-04-01

    The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.

  15. Shirt sponsorship by gambling companies in the English and Scottish Premier Leagues: global reach and public health concerns

    OpenAIRE

    Bunn, C.; Ireland, R.; Minton, J.; Holman, D.J.; Philpott, M.; Chambers, S.

    2018-01-01

    While the nature of gambling practices is contested, a strong evidence\\ud base demonstrates that gambling can become a serious disorder and have\\ud a range of detrimental effects for individuals, communities and societies.\\ud Over the last decade, football in the UK has become visibly entwined with\\ud gambling marketing. To explore this apparent trend, we tracked shirt\\ud sponsors in both the English and Scottish Premier Leagues since 1992 and\\ud found a pronounced increase in the presence of...

  16. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    Science.gov (United States)

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  17. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    Directory of Open Access Journals (Sweden)

    Grzegorz eKreiner

    2015-03-01

    Full Text Available Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.

  18. Drag reduction of a car model by linear genetic programming control

    Science.gov (United States)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  19. Genetic basis of hindlimb loss in a naturally occurring vertebrate model

    Directory of Open Access Journals (Sweden)

    Emily K. Don

    2016-03-01

    Full Text Available Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS of T-box transcription factor 4 (Tbx4 that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development.

  20. Modeling misidentification errors that result from use of genetic tags in capture-recapture studies

    Science.gov (United States)

    Yoshizaki, J.; Brownie, C.; Pollock, K.H.; Link, W.A.

    2011-01-01

    Misidentification of animals is potentially important when naturally existing features (natural tags) such as DNA fingerprints (genetic tags) are used to identify individual animals. For example, when misidentification leads to multiple identities being assigned to an animal, traditional estimators tend to overestimate population size. Accounting for misidentification in capture-recapture models requires detailed understanding of the mechanism. Using genetic tags as an example, we outline a framework for modeling the effect of misidentification in closed population studies when individual identification is based on natural tags that are consistent over time (non-evolving natural tags). We first assume a single sample is obtained per animal for each capture event, and then generalize to the case where multiple samples (such as hair or scat samples) are collected per animal per capture occasion. We introduce methods for estimating population size and, using a simulation study, we show that our new estimators perform well for cases with moderately high capture probabilities or high misidentification rates. In contrast, conventional estimators can seriously overestimate population size when errors due to misidentification are ignored. ?? 2009 Springer Science+Business Media, LLC.

  1. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  2. Using genetic algorithms to calibrate the user-defined parameters of IIST model for SBLOCA analysis

    International Nuclear Information System (INIS)

    Tsai, Chiung-Wen; Shih, Chunkuan; Wang, Jong-Rong

    2014-01-01

    Highlights: • The genetic algorithm is proposed to search the user-defined parameters of important correlations. • The TRACE IIST model was employed as a case study to demonstrate the capability of GAs. • The multi-objective optimization strategy was incorporated to evaluate multi objective functions simultaneously. - Abstract: The thermal–hydraulic system codes, i.e., TRACE, have been designed to predict, investigate, and simulate nuclear reactor transients and accidents. Implementing relevant correlations, these codes are able to represent important phenomena such as two-phase flow, critical flow, and countercurrent flow. Furthermore, the thermal–hydraulic system codes permit users to modify the coefficients corresponding to the correlations, providing a certain degree of freedom to calibrate the numerical results, i.e., peak cladding temperature. These coefficients are known as user-defined parameters (UDPs). Practically, defining a series of UDPs is complex, highly relied on expert opinions and engineering experiences. This study proposes another approach – the genetic algorithms (GAs), providing rigorous procedures and mitigating human judgments and mistakes, to calibrate the UDPs of important correlations for a 2% small break loss of coolant accident (SBLOCA). The TRACE IIST model was employed as a case study to demonstrate the capability of GAs. The UDPs were evolved by GAs to reduce the deviations between TRACE results and IIST experimental data

  3. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  4. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    Science.gov (United States)

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  5. Mixing Energy Models in Genetic Algorithms for On-Lattice Protein Structure Prediction

    Directory of Open Access Journals (Sweden)

    Mahmood A. Rashid

    2013-01-01

    Full Text Available Protein structure prediction (PSP is computationally a very challenging problem. The challenge largely comes from the fact that the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A high resolution 20×20 energy model could better capture the behaviour of the actual energy function than a low resolution energy model such as hydrophobic polar. However, the fine grained details of the high resolution interaction energy matrix are often not very informative for guiding the search. In contrast, a low resolution energy model could effectively bias the search towards certain promising directions. In this paper, we develop a genetic algorithm that mainly uses a high resolution energy model for protein structure evaluation but uses a low resolution HP energy model in focussing the search towards exploring structures that have hydrophobic cores. We experimentally show that this mixing of energy models leads to significant lower energy structures compared to the state-of-the-art results.

  6. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    Science.gov (United States)

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  7. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.

    Science.gov (United States)

    Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C

    2010-05-01

    Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

  8. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Marseguerra, M.; Zio, E.; Canetta, R. [Polytechnic of Milan, Dept. of Nuclear Engineering, Milano (Italy)

    2005-07-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  9. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.; Canetta, R.

    2005-01-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  10. Investigation of the three-dimensional lattice HP protein folding model using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Fábio L. Custódio

    2004-01-01

    Full Text Available An approach to the hydrophobic-polar (HP protein folding model was developed using a genetic algorithm (GA to find the optimal structures on a 3D cubic lattice. A modification was introduced to the scoring system of the original model to improve the model's capacity to generate more natural-like structures. The modification was based on the assumption that it may be preferable for a hydrophobic monomer to have a polar neighbor than to be in direct contact with the polar solvent. The compactness and the segregation criteria were used to compare structures created by the original HP model and by the modified one. An islands' algorithm, a new selection scheme and multiple-points crossover were used to improve the performance of the algorithm. Ten sequences, seven with length 27 and three with length 64 were analyzed. Our results suggest that the modified model has a greater tendency to form globular structures. This might be preferable, since the original HP model does not take into account the positioning of long polar segments. The algorithm was implemented in the form of a program with a graphical user interface that might have a didactical potential in the study of GA and on the understanding of hydrophobic core formation.

  11. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    Science.gov (United States)

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  12. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.

    Science.gov (United States)

    Gompert, Zachariah

    2016-01-01

    Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur

  13. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.

    Directory of Open Access Journals (Sweden)

    Zachariah Gompert

    Full Text Available Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20 SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure, particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among

  14. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    2008-02-01

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  15. Ensemble Genetic Fuzzy Neuro Model Applied for the Emergency Medical Service via Unbalanced Data Evaluation

    Directory of Open Access Journals (Sweden)

    Muammar Sadrawi

    2018-03-01

    Full Text Available Equally partitioned data are essential for prediction. However, in some important cases, the data distribution is severely unbalanced. In this study, several algorithms are utilized to maximize the learning accuracy when dealing with a highly unbalanced dataset. A linguistic algorithm is applied to evaluate the input and output relationship, namely Fuzzy c-Means (FCM, which is applied as a clustering algorithm for the majority class to balance the minority class data from about 3 million cases. Each cluster is used to train several artificial neural network (ANN models. Different techniques are applied to generate an ensemble genetic fuzzy neuro model (EGFNM in order to select the models. The first ensemble technique, the intra-cluster EGFNM, works by evaluating the best combination from all the models generated by each cluster. Another ensemble technique is the inter-cluster model EGFNM, which is based on selecting the best model from each cluster. The accuracy of these techniques is evaluated using the receiver operating characteristic (ROC via its area under the curve (AUC. Results show that the AUC of the unbalanced data is 0.67974. The random cluster and best ANN single model have AUCs of 0.7177 and 0.72806, respectively. For the ensemble evaluations, the intra-cluster and the inter-cluster EGFNMs produce 0.7293 and 0.73038, respectively. In conclusion, this study achieved improved results by performing the EGFNM method compared with the unbalanced training. This study concludes that selecting several best models will produce a better result compared with all models combined.

  16. Study on fitness functions of genetic algorithm for dynamically correcting nuclide atmospheric diffusion model

    International Nuclear Information System (INIS)

    Ji Zhilong; Ma Yuanwei; Wang Dezhong

    2014-01-01

    Background: In radioactive nuclides atmospheric diffusion models, the empirical dispersion coefficients were deduced under certain experiment conditions, whose difference with nuclear accident conditions is a source of deviation. A better estimation of the radioactive nuclide's actual dispersion process could be done by correcting dispersion coefficients with observation data, and Genetic Algorithm (GA) is an appropriate method for this correction procedure. Purpose: This study is to analyze the fitness functions' influence on the correction procedure and the forecast ability of diffusion model. Methods: GA, coupled with Lagrange dispersion model, was used in a numerical simulation to compare 4 fitness functions' impact on the correction result. Results: In the numerical simulation, the fitness function with observation deviation taken into consideration stands out when significant deviation exists in the observed data. After performing the correction procedure on the Kincaid experiment data, a significant boost was observed in the diffusion model's forecast ability. Conclusion: As the result shows, in order to improve dispersion models' forecast ability using GA, observation data should be given different weight in the fitness function corresponding to their error. (authors)

  17. Genetic instability model for cancer risk in A-bomb survivors

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    1998-01-01

    This review was written rather against Mendelsohn's reductionist model for cancer risk in A-bomb survivors in following chapters. Assumptions for carcinogenic process: mutation of a cell to the cancer cell and its proliferation. Multi-step theory for carcinogenesis and age of crisis: induction of cancer by accumulation of cancer-related gene mutations which being linear to time (age). Effect of exogenous hit in the multi-step theory: radiation as an exogenous hit to damage DNA. Dose-effect relationship for cancer risk in the survivors and the problem for the latent period: for solid tumors, dose-effect relationship is linear and shortening of the latent period is not observed. Considerations on cancer data in adulthood exposure/Indirect effect model in radiation carcinogenesis: solid cancer data supporting the indirect effect model. Possible mechanism for radiation-induced long-term increase of natural mutation frequency: genetic instability remaining in the irradiated cells which being a basis of the indirect effect model. Notes for considerations of carcinogenicity in exposed people/Difference in carcinogenic mechanisms due to age. The author concluded that the radiation-induced carcinogenesis is deeply related with the natural carcinogenesis and particularly for solid cancers, it can not be explained by the classic reductionist model. (K.H.)

  18. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  19. Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.

    2017-01-01

    This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.

  20. Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials

    Directory of Open Access Journals (Sweden)

    Maria Gabriela Campolina Diniz Peixoto

    2014-05-01

    Full Text Available The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524 of test-day milk yield (TDMY from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects, whereas the contemporary group, calving age (linear and quadratic effects and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.

  1. Premier League academy soccer players' experiences of competing in a tournament bio-banded for biological maturation.

    Science.gov (United States)

    Cumming, Sean P; Brown, Daniel J; Mitchell, Siobhan; Bunce, James; Hunt, Dan; Hedges, Chris; Crane, Gregory; Gross, Aleks; Scott, Sam; Franklin, Ed; Breakspear, Dave; Dennison, Luke; White, Paul; Cain, Andrew; Eisenmann, Joey C; Malina, Robert M

    2018-04-01

    Individual differences in the growth and maturation have been shown to impact player performance and development in youth soccer. This study investigated Premier League academy players' experiences of participating in a tournament bio-banded for biological maturation. Players (N = 66) from four professional soccer clubs aged 11 and 14 years and between 85-90% of adult stature participated in a tournament. Players competed in three 11 vs 11 games on a full size pitch with 25-min halves. Sixteen players participated in four 15-min focus groups and were asked to describe their experiences of participating in the bio-banded tournament in comparison to age group competition. All players described their experience as positive and recommended the Premier League integrate bio-banding into the existing games programme. In comparison to age-group competitions, early maturing players described the bio-banded games more physically challenging, and found that they had to adapt their style of play placing a greater emphasis on technique and tactics. Late maturing players considered the games to be less physically challenging, yet appreciated the having more opportunity to use, develop and demonstrate their technical, physical, and psychological competencies. Bio-banding strategies appear to contribute positively towards the holistic development of young soccer players.

  2. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  3. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model.

    Directory of Open Access Journals (Sweden)

    Ramy A Fodah

    Full Text Available Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS, CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype was internalized at higher levels than ATCC 43816 (K2 and NTUH-K2044 (K1, consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU while MGH 78578 is relatively avirulent.

  4. Geology of gemstone deposit Ugljarevats (Central Serbia) and contributions to genetic model

    International Nuclear Information System (INIS)

    Kureshevicj, Lidija; Vushovicj, Olivera; Delicj-Nikolicj, Ivana

    2017-01-01

    Silica gemstone deposit Ugljarevats is situated within the ophiolite sequence of the Vardar zone central deep fault. Genetic processes of this deposit are connected to the Neogene calc-alkaline magmatic activity of the Vardar zone and hydrothermal activity triggered by it. Based on surface occurrences of listwenitized serpentinite containing silica mineralization, it can be inferred that the ore body is an elongated oval stock. Within the stock of hydrothermally altered serpentinite, the gemstone mineralization occurs as veins, stock works and irregular bodies. Present gemstone types include chalcedony varieties (jasper, colourless and greenish chalcedony, carnelian and sard) and opal (opalized serpentinite). Homogenous pieces are very rare. Most often, various types of silica are intimately intermixed and combined. The mineralization has formed in two distinct hydrothermal phases, apparently in close time succession. Jasper and coloured chalcedony (and rare magnesite) are the products of the first phase of hydro- thermal activity, while the colourless chalcedony is formed in the second phase. Newly discovered type of silica vein with central-symmetrical parallel banding gives new contributions to a genetic model, proving the precipitation process and its products are unpredictably changeable, heterogeneous and depending on the evolution of the local environment physico-chemical conditions, notably the contents of impurities and system's openness degree. (author)

  5. Genetics of borderline personality disorder: systematic review and proposal of an integrative model.

    Science.gov (United States)

    Amad, Ali; Ramoz, Nicolas; Thomas, Pierre; Jardri, Renaud; Gorwood, Philip

    2014-03-01

    Borderline personality disorder (BPD) is one of the most common mental disorders and is characterized by a pervasive pattern of emotional lability, impulsivity, interpersonal difficulties, identity disturbances, and disturbed cognition. Here, we performed a systematic review of the literature concerning the genetics of BPD, including familial and twin studies, association studies, and gene-environment interaction studies. Moreover, meta-analyses were performed when at least two case-control studies testing the same polymorphism were available. For each gene variant, a pooled odds ratio (OR) was calculated using fixed or random effects models. Familial and twin studies largely support the potential role of a genetic vulnerability at the root of BPD, with an estimated heritability of approximately 40%. Moreover, there is evidence for both gene-environment interactions and correlations. However, association studies for BPD are sparse, making it difficult to draw clear conclusions. According to our meta-analysis, no significant associations were found for the serotonin transporter gene, the tryptophan hydroxylase 1 gene, or the serotonin 1B receptor gene. We hypothesize that such a discrepancy (negative association studies but high heritability of the disorder) could be understandable through a paradigm shift, in which "plasticity" genes (rather than "vulnerability" genes) would be involved. Such a framework postulates a balance between positive and negative events, which interact with plasticity genes in the genesis of BPD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Limitations to estimating bacterial cross-speciestransmission using genetic and genomic markers: inferencesfrom simulation modeling

    Science.gov (United States)

    Julio Andre, Benavides; Cross, Paul C.; Luikart, Gordon; Scott, Creel

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.

  7. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.

    Science.gov (United States)

    Stachowiak, M; Szczerbal, I; Switonski, M

    2016-01-01

    The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  9. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings.

    Science.gov (United States)

    Dichter, Gabriel S; Damiano, Cara A; Allen, John A

    2012-07-06

    This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  10. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

    Directory of Open Access Journals (Sweden)

    Dichter Gabriel S

    2012-07-01

    Full Text Available Abstract This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders, neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder, and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome. We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  11. Genetic biasing through cultural transmission: do simple Bayesian models of language evolution generalize?

    Science.gov (United States)

    Dediu, Dan

    2009-08-07

    The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the "acquisitionist" assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).

  12. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  13. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  14. Evaluation of genetically inactivated alpha toxin for protection in multiple mouse models of Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Brady

    Full Text Available Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.

  15. Genetic Algorithms for Models Optimization for Recognition of Translation Initiation Sites

    KAUST Repository

    Mora, Arturo Magana

    2011-06-01

    This work uses genetic algorithms (GA) to reduce the complexity of the artificial neural networks (ANNs) and decision trees (DTs) for the accurate recognition of translation initiation sites (TISs) in Arabidopsis Thaliana. The Arabidopsis data was extracted directly from genomic DNA sequences. Methods derived in this work resulted in both reduced complexity of the predictors, as well as in improvement in prediction accuracy (generalization). Optimization through use of GA is generally a computationally intensive task. One of the approaches to overcome this problem is to use parallelization of code that implements GA, thus allowing computation on multiprocessing infrastructure. However, further improvement in performance GA implementation could be achieved through modification done to GA basic operations such as selection, crossover and mutation. In this work we explored two such improvements, namely evolutive mutation and GA-Simplex crossover operation. In this thesis we studied the benefit of these modifications on the problem of TISs recognition. Compared to the non-modified GA approach, we reduced the number of weights in the resulting model\\'s neural network component by 51% and the number of nodes in the model\\'s DTs component by 97% whilst improving the model\\'s accuracy at the same time. Separately, we developed another methodology for reducing the complexity of prediction models by optimizing the composition of training data subsets in bootstrap aggregation (bagging) methodology. This optimization is achieved by applying a new GA-based bagging methodology in order to optimize the composition of each of the training data subsets. This approach has shown in our test cases to considerably enhance the accuracy of the TIS prediction model compared to the original bagging methodology. Although these methods are applied to the problem of accurate prediction of TISs we believe that these methodologies have a potential for wider scope of application.

  16. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    Science.gov (United States)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence

  17. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  18. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy ...

  19. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  20. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  1. Characterization of PV panel and global optimization of its model parameters using genetic algorithm

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Genetic Algorithm optimization ability had been utilized to extract parameters of PV panel model. • Effect of solar radiation and temperature variations was taken into account in fitness function evaluation. • We used Matlab-Simulink to simulate operation of the PV-panel to validate results. • Different cases were analyzed to ascertain which of them gives more accurate results. • Accuracy and applicability of this approach to be used as a valuable tool for PV modeling were clearly validated. - Abstract: This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimization ability of a genetic algorithm, with different parameters of the PV module being computed via this approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as it is imperative in the context of any further studies concerning different PV applications. Simulation, optimization and the design of the hybrid systems that include PV are examples of these applications. The global optimization of the parameters and the applicability for the entire range of the solar radiation and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet information is used as a basis for the purpose of parameter optimization, with an average absolute error fitness function formulated; and a numerical iterative method used to solve the voltage-current relation of the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain which of them are more accurate. Other cases are also analyzed in this paper for the purpose of comparison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending on the extracted parameters. The results of the simulation are compared with the Data Sheet information, which is obtained via experimentation in order to validate the reliability of the approach. Three types of PV modules

  2. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  3. Genome-wide association study of handedness excludes simple genetic models

    Science.gov (United States)

    Armour, J AL; Davison, A; McManus, I C

    2014-01-01

    Handedness is a human behavioural phenotype that appears to be congenital, and is often assumed to be inherited, but for which the developmental origin and underlying causation(s) have been elusive. Models of the genetic basis of variation in handedness have been proposed that fit different features of the observed resemblance between relatives, but none has been decisively tested or a corresponding causative locus identified. In this study, we applied data from well-characterised individuals studied at the London Twin Research Unit. Analysis of genome-wide SNP data from 3940 twins failed to identify any locus associated with handedness at a genome-wide level of significance. The most straightforward interpretation of our analyses is that they exclude the simplest formulations of the ‘right-shift' model of Annett and the ‘dextral/chance' model of McManus, although more complex modifications of those models are still compatible with our observations. For polygenic effects, our study is inadequately powered to reliably detect alleles with effect sizes corresponding to an odds ratio of 1.2, but should have good power to detect effects at an odds ratio of 2 or more. PMID:24065183

  4. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  5. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    Science.gov (United States)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  6. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    Science.gov (United States)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  7. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity

    Directory of Open Access Journals (Sweden)

    Vanessa Almendro

    2014-02-01

    Full Text Available Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  8. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    International Nuclear Information System (INIS)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; Van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

  9. Transforming growth factor-β and breast cancer: Lessons learned from genetically altered mouse models

    International Nuclear Information System (INIS)

    Wakefield, Lalage M; Yang, Yu-an; Dukhanina, Oksana

    2000-01-01

    Transforming growth factor (TGF)-βs are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-βaction in the context of the whole animal. Overexpression of TGF-β can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-β function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-β response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-βs have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-β receptors seen in some human breast hyperplasias may play a causal role in tumor development

  10. Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mingying Zhang

    2016-12-01

    Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.

  11. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development...... of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative...

  12. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    Science.gov (United States)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  13. Multivariate genetic divergence among sugarcane clones by multivariate analysis associated with mixed models

    Directory of Open Access Journals (Sweden)

    Valéria Rosa Lopes

    2014-02-01

    Full Text Available This work had the aim to evaluate the genetic divergence in sugarcane clones using the methodology of graphic dispersion by principal components analysis associated to linear mixed models, indentifying the more divergent and productive genotypes with more precision, for a subsequent combination. 138 sugarcane clones of the RB97 series of the Sugarcane Breeding Program of the Universidade Federal do Parana, more two standard cultivars were evaluated in three environments, with two replications. The two first components explained 96% of the total variation, sufficiently for explaining the divergence found. The variable that contributed the most to de divergence was kilogram of brix per plot (BKP followed by brix, mass of 10 stalks and number of stalks per plot. The more divergent sugarcane clones were RB975008, RB975112, RB975019, RB975153 and RB975067 and the more productive clones were RB975269, RB977533, RB975102, RB975317 and RB975038.

  14. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  15. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    Directory of Open Access Journals (Sweden)

    Cassidy C. D’Aloia

    2015-10-01

    Full Text Available The origin of sea lamprey (Petromyzon marinus in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA and mitochondrial DNA (mtDNA markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp and NCII (173 bp all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events.

  16. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    Directory of Open Access Journals (Sweden)

    Mathilde Doyard

    Full Text Available Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.

  17. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation.

    Science.gov (United States)

    Chung, Vera Y; Turney, Benjamin W

    2017-11-28

    Urolithiasis is a significant healthcare issue but the pathophysiology of stone disease remains poorly understood. Drosophila Malpighian tubules were known to share similar physiological function to human renal tubules. We have used Drosophila as a genetic model to study the transcriptional response to stone formation secondary to dietary manipulation. Wild-type male flies were raised on standard medium supplemented with lithogenic agents: control, sodium oxalate (NaOx) and ethylene glycol (EG). At 2 weeks, Malpighian tubules were dissected under polarized microscope to visualize crystals. The parallel group was dissected for RNA extraction and subsequent next-generation RNA sequencing. Crystal formation was visualized in 20%(±2.2) of flies on control diet, 73%(±3.6) on NaOx diet and 84%(±2.2) on EG diet. Differentially expressed genes were identified in flies fed with NaOx and EG diet comparing with the control group. Fifty-eight genes were differentially expressed (FDR <0.05, p < 0.05) in NaOx diet and 20 genes in EG diet. The molecular function of differentially expressed genes were assessed. Among these, Nervana 3, Eaat1 (Excitatory amino acid transporter 1), CG7912, CG5404, CG3036 worked as ion transmembrane transporters, which were possibly involved in stone pathogenesis. We have shown that by dietary modification, stone formation can be manipulated and visualized in Drosophila Malpighian tubules. This genetic model could be potentially used to identify the candidate genes that influence stone risk hence providing more insight to the pathogenesis of human stone disease.

  18. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking.

    Science.gov (United States)

    Phillips, T J; Mootz, J R K; Reed, C

    2016-01-01

    Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction. © 2016 Elsevier Inc. All rights reserved.

  19. Addition of host genetic variants in a prediction rule for post meningitis hearing loss in childhood: a model updating study.

    Science.gov (United States)

    Sanders, Marieke S; de Jonge, Rogier C J; Terwee, Caroline B; Heymans, Martijn W; Koomen, Irene; Ouburg, Sander; Spanjaard, Lodewijk; Morré, Servaas A; van Furth, A Marceline

    2013-07-23

    Sensorineural hearing loss is the most common sequela in survivors of bacterial meningitis (BM). In the past we developed a validated prediction model to identify children at risk for post-meningitis hearing loss. It is known that host genetic variations, besides clinical factors, contribute to severity and outcome of BM. In this study it was determined whether host genetic risk factors improve the predictive abilities of an existing model regarding hearing loss after childhood BM. Four hundred and seventy-one Dutch Caucasian childhood BM were genotyped for 11 single nucleotide polymorphisms (SNPs) in seven different genes involved in pathogen recognition. Genetic data were added to the original clinical prediction model and performance of new models was compared to the original model by likelihood ratio tests and the area under the curve (AUC) of the receiver operating characteristic curves. Addition of TLR9-1237 SNPs and the combination of TLR2 + 2477 and TLR4 + 896 SNPs improved the clinical prediction model, but not significantly (increase of AUC's from 0.856 to 0.861 and from 0.856 to 0.875 (p = 0.570 and 0.335, respectively). Other SNPs analysed were not linked to hearing loss. Although addition of genetic risk factors did not significantly improve the clinical prediction model for post-meningitis hearing loss, AUC's of the pre-existing model remain high after addition of genetic factors. Future studies should evaluate whether more combinations of SNPs in larger cohorts has an additional value to the existing prediction model for post meningitis hearing loss.

  20. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation.

    Science.gov (United States)

    Ciezka, Magdalena; Acosta, Milena; Herranz, Cristina; Canals, Josep M; Pumarola, Martí; Candiota, Ana Paula; Arús, Carles

    2016-08-01

    The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100β-v-erbB/inK4a-Arf (+/-) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice.

  1. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  2. Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model

    DEFF Research Database (Denmark)

    Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø

    2011-01-01

    ,233 Danish Holstein cows, were extracted from the national milk recording database. Each data set was analyzed with random regression models using AI-REML. Fixed effects in all models were age at first calving, herd test day, days carrying calf, effects of germ plasm importation (e.g. additive breed effects......) and low between the beginning and the end of lactation. The estimated environmental correlations were lower than the genetic correlations, but the trends were similar. Based on test-day records, the accuracy of genetic evaluations for SCC should be improved when the variation in heritabilities...

  3. Using probability modelling and genetic parentage assignment to test the role of local mate availability in mating system variation.

    Science.gov (United States)

    Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B

    2012-02-01

    The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.

  4. Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

    Science.gov (United States)

    Wen, Yalu; Shen, Xiaoxi; Lu, Qing

    2018-05-31

    With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.

  5. ESTIMATION OF GENETIC PARAMETERS IN TROPICARNE CATTLE WITH RANDOM REGRESSION MODELS USING B-SPLINES

    Directory of Open Access Journals (Sweden)

    Joel Domínguez Viveros

    2015-04-01

    Full Text Available The objectives were to estimate variance components, and direct (h2 and maternal (m2 heritability in the growth of Tropicarne cattle based on a random regression model using B-Splines for random effects modeling. Information from 12 890 monthly weightings of 1787 calves, from birth to 24 months old, was analyzed. The pedigree included 2504 animals. The random effects model included genetic and permanent environmental (direct and maternal of cubic order, and residuals. The fixed effects included contemporaneous groups (year – season of weighed, sex and the covariate age of the cow (linear and quadratic. The B-Splines were defined in four knots through the growth period analyzed. Analyses were performed with the software Wombat. The variances (phenotypic and residual presented a similar behavior; of 7 to 12 months of age had a negative trend; from birth to 6 months and 13 to 18 months had positive trend; after 19 months were maintained constant. The m2 were low and near to zero, with an average of 0.06 in an interval of 0.04 to 0.11; the h2 also were close to zero, with an average of 0.10 in an interval of 0.03 to 0.23.

  6. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-08-01

    Full Text Available Apolipoprotein C-II (APOC2 is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.

  7. The interaction of genetics and environmental toxicants in amyotrophic lateral sclerosis: results from animal models

    Institute of Scientific and Technical Information of China (English)

    Roger B. Sher

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in the progres-sive death of motor neurons, leading to paralysis and eventual death. There is presently no cure for ALS, and only two drugs are available, neither of which provide significant extension of life. The wide variation in onset and progression of the disease, both in sporadic and even in strongly penetrant monogenic famil-ial forms of ALS, indicate that in addition to background genetic variation impacting the disease process, environmental exposures are likely contributors. Epidemiological evidence worldwide implicates exposures to bacterial toxins, heavy metals, pesticides, and trauma as probable environmental factors. Here, we review current advances in gene-environment interactions in ALS animal models. We report our recent discov-eries in a zebrafish model of ALS in relation to exposure to the cyanobacterial toxin BMAA, and discuss several results from mouse models that show interactions with exposure to mercury and statin drugs, both leading to acceleration of the disease process. The increasing research into this combinatorial gene-environ-ment process is just starting, but shows early promise to uncover the underlying biochemical pathways that instigate the initial motor neuron defects and lead to their rapidly progressive dysfunction.

  8. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2017-02-01

    Full Text Available Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory using two different environmental cues (rectangular geometry, striped landmark in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12 and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12. This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  9. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.

    Science.gov (United States)

    Li, Pinghua; Brutnell, Thomas P

    2011-05-01

    Setaria italica and its wild ancestor Setaria viridis are diploid C(4) grasses with small genomes of ∼515 Mb. Both species have attributes that make them attractive as model systems. Setaria italica is a grain crop widely grown in Northern China and India that is closely related to the major food and feed crops maize and sorghum. A large collection of S. italica accessions are available and thus opportunities exist for association mapping and allele mining for novel variants that will have direct application in agriculture. Setaria viridis is the weedy relative of S. italica with many attributes suitable for genetic analyses including a small stature, rapid life cycle, and prolific seed production. Setaria sp. are morphologically similar to most of the Panicoideae grasses, including major biofuel feedstocks, switchgrass (Panicum virgatum) and Miscanthus (Miscanthus giganteus). They are broadly distributed geographically and occupy diverse ecological niches. The cross-compatibility of S. italica and S. viridis also suggests that gene flow is likely between wild and domesticated accessions. In addition to serving as excellent models for C(4) photosynthesis, these grasses provide novel opportunities to study abiotic stress tolerance and as models for bioenergy feedstocks.

  10. Genetic Algorithms for Estimating Effective Parameters in a Lumped Reactor Model for Reactivity Predictions

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico

    2001-01-01

    The control system of a reactor should be able to predict, in real time, the amount of reactivity to be inserted (e.g., by control rod movements and boron injection and dilution) to respond to a given electrical load demand or to undesired, accidental transients. The real-time constraint renders impractical the use of a large, detailed dynamic reactor code. One has, then, to resort to simplified analytical models with lumped effective parameters suitably estimated from the reactor data.The simple and well-known Chernick model for describing the reactor power evolution in the presence of xenon is considered and the feasibility of using genetic algorithms for estimating the effective nuclear parameters involved and the initial nonmeasurable xenon and iodine conditions is investigated. This approach has the advantage of counterbalancing the inherent model simplicity with the periodic reestimation of the effective parameter values pertaining to each reactor on the basis of its recent history. By so doing, other effects, such as burnup, are automatically taken into account

  11. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    Science.gov (United States)

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  12. Social and genetic structure of paper wasp cofoundress associations: tests of reproductive skew models.

    Science.gov (United States)

    Field, J; Solís, C R; Queller, D C; Strassmann, J E

    1998-06-01

    Recent models postulate that the members of a social group assess their ecological and social environments and agree a "social contract" of reproductive partitioning (skew). We tested social contracts theory by using DNA microsatellites to measure skew in 24 cofoundress associations of paper wasps, Polistes bellicosus. In contrast to theoretical predictions, there was little variation in cofoundress relatedness, and relatedness either did not predict skew or was negatively correlated with it; the dominant/subordinate size ratio, assumed to reflect relative fighting ability, did not predict skew; and high skew was associated with decreased aggression by the rank 2 subordinate toward the dominant. High skew was associated with increased group size. A difficulty with measuring skew in real systems is the frequent changes in group composition that commonly occur in social animals. In P. bellicosus, 61% of egg layers and an unknown number of non-egg layers were absent by the time nests were collected. The social contracts models provide an attractive general framework linking genetics, ecology, and behavior, but there have been few direct tests of their predictions. We question assumptions underlying the models and suggest directions for future research.

  13. Efficient multiple-trait association and estimation of genetic correlation using the matrix-variate linear mixed model.

    Science.gov (United States)

    Furlotte, Nicholas A; Eskin, Eleazar

    2015-05-01

    Multiple-trait association mapping, in which multiple traits are used simultaneously in the identification of genetic variants affecting those traits, has recently attracted interest. One class of approaches for this problem builds on classical variance component methodology, utilizing a multitrait version of a linear mixed model. These approaches both increase power and provide insights into the genetic architecture of multiple traits. In particular, it is possible to estimate the genetic correlation, which is a measure of the portion of the total correlation between traits that is due to additive genetic effects. Unfortunately, the practical utility of these methods is limited since they are computationally intractable for large sample sizes. In this article, we introduce a reformulation of the multiple-trait association mapping approach by defining the matrix-variate linear mixed model. Our approach reduces the computational time necessary to perform maximum-likelihood inference in a multiple-trait model by utilizing a data transformation. By utilizing a well-studied human cohort, we show that our approach provides more than a 10-fold speedup, making multiple-trait association feasible in a large population cohort on the genome-wide scale. We take advantage of the efficiency of our approach to analyze gene expression data. By decomposing gene coexpression into a genetic and environmental component, we show that our method provides fundamental insights into the nature of coexpressed genes. An implementation of this method is available at http://genetics.cs.ucla.edu/mvLMM. Copyright © 2015 by the Genetics Society of America.

  14. [Pierre Chirac "premier physician" of the king and the aborted plan to create an "Académie de médecine" in Paris (1731-1732)].

    Science.gov (United States)

    Lunel, Alexandre

    2005-03-01

    After being appointed "premier physician" in 1731, Pierre Chirac, thanks to his influence with the king, tried to realize an ambitious project. Inspired by the creation of an Academie de Chirurgie by the "premier surgeon", Chirac decided to creation an Académie de Médecine in Paris. Under his guidance, it was planned to collect opinions from all doctors of the kingdom in order to enhance global knowledge of disease, symptoms and treatments. However, threatened with the loss of its secular superiority, the Paris University Medical School immediately opposed the project. Although well advanced, the project was finally abandoned on Chirac's death.

  15. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China.

    Directory of Open Access Journals (Sweden)

    Hong-Lian Ruan

    Full Text Available To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC relies on the sero-status of the Epstein-Barr virus (EBV. By contrast, the risk assessment models proposed here include environmental risk factors, family history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic curves (AUC. To compare the discriminatory improvement of models with and without genetic information, we estimated the net reclassification improvement (NRI and integrated discrimination index (IDI. Well-established environmental risk factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years. The environmental model alone shows modest discriminatory ability (AUC = 0.68; 95% CI: 0.66, 0.70, which is only slightly increased by the addition of data on family history of NPC (AUC = 0.70; 95% CI: 0.68, 0.72. With the addition of data on genetic variants, however, our model's discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76. The improvements in NRI and IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data from NPC-endemic areas could well lead to earlier detection of NPC.

  16. Genetic Algorithms for Optimization of Machine-learning Models and their Applications in Bioinformatics

    KAUST Repository

    Magana-Mora, Arturo

    2017-04-29

    Machine-learning (ML) techniques have been widely applied to solve different problems in biology. However, biological data are large and complex, which often result in extremely intricate ML models. Frequently, these models may have a poor performance or may be computationally unfeasible. This study presents a set of novel computational methods and focuses on the application of genetic algorithms (GAs) for the simplification and optimization of ML models and their applications to biological problems. The dissertation addresses the following three challenges. The first is to develop a generalizable classification methodology able to systematically derive competitive models despite the complexity and nature of the data. Although several algorithms for the induction of classification models have been proposed, the algorithms are data dependent. Consequently, we developed OmniGA, a novel and generalizable framework that uses different classification models in a treeXlike decision structure, along with a parallel GA for the optimization of the OmniGA structure. Results show that OmniGA consistently outperformed existing commonly used classification models. The second challenge is the prediction of translation initiation sites (TIS) in plants genomic DNA. We performed a statistical analysis of the genomic DNA and proposed a new set of discriminant features for this problem. We developed a wrapper method based on GAs for selecting an optimal feature subset, which, in conjunction with a classification model, produced the most accurate framework for the recognition of TIS in plants. Finally, results demonstrate that despite the evolutionary distance between different plants, our approach successfully identified conserved genomic elements that may serve as the starting point for the development of a generic model for prediction of TIS in eukaryotic organisms. Finally, the third challenge is the accurate prediction of polyadenylation signals in human genomic DNA. To achieve

  17. Measuring and modeling for the assessment of the genetic background behind cognitive processes in donkeys.

    Science.gov (United States)

    Navas, Francisco Javier; Jordana, Jordi; León, José Manuel; Arando, Ander; Pizarro, Gabriela; McLean, Amy Katherine; Delgado, Juan Vicente

    2017-08-01

    New productive niches can offer new commercial perspectives linked to donkeys' products and human therapeutic or leisure applications. However, no assessment for selection criteria has been carried out yet. First, we assessed the animal inherent features and environmental factors that may potentially influence several cognitive processes in donkeys. Then, we aimed at describing a practical methodology to quantify such cognitive processes, seeking their inclusion in breeding and conservation programmes, through a multifactorial linear model. Sixteen cognitive process-related traits were scored on a problem-solving test in a sample of 300 Andalusian donkeys for three consecutive years from 2013 to 2015. The linear model assessed the influence and interactions of four environmental factors, sex as an animal-inherent factor, age as a covariable, and the interactions between these factors. Analyses of variance were performed with GLM procedure of SPSS Statistics for Windows, Version 24.0 software to assess the relative importance of each factor. All traits were significantly (P<0.05) affected by all factors in the model except for sex that was not significant for some of the cognitive processes, and stimulus which was not significant (P<0.05) for all of them except for the coping style related ones. The interaction between all factors within the model was non-significant (P<0.05) for almost all cognitive processes. The development of complex multifactorial models to study cognitive processes may counteract the inherent variability in behavior genetics and the estimation and prediction of related breeding parameters, key for the implementation of successful conservation programmes in apparently functionally misplaced endangered breeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Efficacy of Sunitinib and Radiotherapy in Genetically Engineered Mouse Model of Soft-Tissue Sarcoma

    International Nuclear Information System (INIS)

    Yoon, Sam S.; Stangenberg, Lars; Lee, Yoon-Jin; Rothrock, Courtney; Dreyfuss, Jonathan M.; Baek, Kwan-Hyuck; Waterman, Peter R.; Nielsen, G. Petur; Weissleder, Ralph; Mahmood, Umar; Park, Peter J.; Jacks, Tyler

    2009-01-01

    Purpose: Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). Methods and Materials: Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy x 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. Results: The mean fluorescence in the tumors was not decreased by RT but decreased 38-44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm 3 after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. Conclusion: SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS.

  19. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm

    Science.gov (United States)

    Hao, Yufang; Xie, Shaodong

    2018-03-01

    Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting-California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.

  20. Energy Intake and Expenditure of Professional Soccer Players of the English Premier League: Evidence of Carbohydrate Periodization.

    Science.gov (United States)

    Anderson, Liam; Orme, Patrick; Naughton, Robert J; Close, Graeme L; Milsom, Jordan; Rydings, David; O'Boyle, Andy; Di Michele, Rocco; Louis, Julien; Hambly, Catherine; Speakman, John Roger; Morgans, Ryland; Drust, Barry; Morton, James P

    2017-06-01

    In an attempt to better identify and inform the energy requirements of elite soccer players, we quantified the energy expenditure (EE) of players from the English Premier League (n = 6) via the doubly labeled water method (DLW) over a 7-day in-season period. Energy intake (EI) was also assessed using food diaries, supported by the remote food photographic method and 24 hr recalls. The 7-day period consisted of 5 training days (TD) and 2 match days (MD). Although mean daily EI (3186 ± 367 kcals) was not different from (p > .05) daily EE (3566 ± 585 kcals), EI was greater (p recovery from match play was not in accordance with guidelines to promote muscle glycogen storage.