WorldWideScience

Sample records for premessenger rna pre-mrna

  1. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    Science.gov (United States)

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively

  2. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes.

    Science.gov (United States)

    Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik; Sowd, Gregory A; Qian, Juan; Hao, Caili; Dasgupta, Twishasri; Engelman, Alan N; Skowronski, Jacek

    2016-05-27

    HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.

  3. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    Science.gov (United States)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  4. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  5. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders.

    Science.gov (United States)

    Weitzer, Stefan; Hanada, Toshikatsu; Penninger, Josef M; Martinez, Javier

    2015-01-01

    Defects in RNA metabolic pathways are well-established causes for neurodegenerative disorders. Several mutations in genes involved in pre-messenger RNA (pre-mRNA) and tRNA metabolism, RNA stability and protein translation have been linked to motor neuron diseases. Our study on a mouse carrying a catalytically inactive version of the RNA kinase CLP1, a component of the tRNA splicing endonuclease complex, revealed a neurological disorder characterized by progressive loss of lower spinal motor neurons. Surprisingly, mutant mice accumulate a novel class of tRNA-derived fragments. In addition, patients with homozygous missense mutations in CLP1 (R140H) were recently identified who suffer from severe motor-sensory defects, cortical dysgenesis and microcephaly, and exhibit alterations in transfer RNA (tRNA) splicing. Here, we review functions of CLP1 in different RNA pathways and provide hypotheses on the role of the tRNA splicing machinery in the generation of tRNA fragments and the molecular links to neurodegenerative disorders. We further immerse the biology of tRNA splicing into topics of (t)RNA metabolism and oxidative stress, putting forward the idea that defects in tRNA processing leading to tRNA fragment accumulation might trigger the development of neurodegenerative diseases.

  6. Targeting RNA splicing for disease therapy.

    Science.gov (United States)

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  7. CLIP Identifies Nova-Regulated RNA Networks in the Brain

    Science.gov (United States)

    Ule, Jernej; Jensen, Kirk B.; Ruggiu, Matteo; Mele, Aldo; Ule, Aljaž; Darnell, Robert B.

    2003-11-01

    Nova proteins are neuron-specific antigens targeted in paraneoplastic opsoclonus myoclonus ataxia (POMA), an autoimmune neurologic disease characterized by abnormal motor inhibition. Nova proteins regulate neuronal pre-messenger RNA splicing by directly binding to RNA. To identify Nova RNA targets, we developed a method to purify protein-RNA complexes from mouse brain with the use of ultraviolet cross-linking and immunoprecipitation (CLIP). Thirty-four transcripts were identified multiple times by Nova CLIP. Three-quarters of these encode proteins that function at the neuronal synapse, and one-third are involved in neuronal inhibition. Splicing targets confirmed in Nova-/- mice include c-Jun N-terminal kinase 2, neogenin, and gephyrin; the latter encodes a protein that clusters inhibitory γ-aminobutyric acid and glycine receptors, two previously identified Nova splicing targets. Thus, CLIP reveals that Nova coordinately regulates a biologically coherent set of RNAs encoding multiple components of the inhibitory synapse, an observation that may relate to the cause of abnormal motor inhibition in POMA.

  8. Live-Cell Visualization of Pre-mRNA Splicing with Single-Molecule Sensitivity

    Directory of Open Access Journals (Sweden)

    Robert M. Martin

    2013-09-01

    Full Text Available Removal of introns from pre-messenger RNAs (pre-mRNAs via splicing provides a versatile means of genetic regulation that is often disrupted in human diseases. To decipher how splicing occurs in real time, we directly examined with single-molecule sensitivity the kinetics of intron excision from pre-mRNA in the nucleus of living human cells. By using two different RNA labeling methods, MS2 and λN, we show that β-globin introns are transcribed and excised in 20–30 s. Furthermore, we show that replacing the weak polypyrimidine (Py tract in mouse immunoglobulin μ (IgM pre-mRNA by a U-rich Py decreases the intron lifetime, thus providing direct evidence that splice-site strength influences splicing kinetics. We also found that RNA polymerase II transcribes at elongation rates ranging between 3 and 6 kb min−1 and that transcription can be rate limiting for splicing. These results have important implications for a mechanistic understanding of cotranscriptional splicing regulation in the live-cell context.

  9. Limited portability of G-patch domains in regulators of the Prp43 RNA helicase required for pre-mRNA splicing and ribosomal RNA maturation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Banerjee, Daipayan; McDaniel, Peter M; Rymond, Brian C

    2015-05-01

    The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition. Here yeast two-hybrid, domain-swap, and site-directed mutagenesis approaches are used to investigate G-patch domain activity and portability. Our results reveal that the Spp382, Sqs1, and Pxr1 G-patches differ in Prp43 two-hybrid response and in the ability to reconstitute the Spp382 and Pxr1 RNA processing factors. G-patch protein reconstitution did not correlate with the apparent strength of the Prp43 two-hybrid response, suggesting that this domain has function beyond that of a Prp43 tether. Indeed, while critical for Pxr1 activity, the Pxr1 G-patch appears to contribute little to the yeast two-hybrid interaction. Conversely, deletion of the primary Prp43 binding site within Pxr1 (amino acids 102-149) does not impede rRNA processing but affects small nucleolar RNA (snoRNA) biogenesis, resulting in the accumulation of slightly extended forms of select snoRNAs, a phenotype unexpectedly shared by the prp43 loss-of-function mutant. These and related observations reveal differences in how the Spp382, Sqs1, and Pxr1 proteins interact with Prp43 and provide evidence linking G-patch identity with pathway-specific DExD/H-box helicase activity.

  10. U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing.

    Science.gov (United States)

    Hilliker, Angela K; Mefford, Melissa A; Staley, Jonathan P

    2007-04-01

    To ligate exons in pre-messenger RNA (pre-mRNA) splicing, the spliceosome must reposition the substrate after cleaving the 5' splice site. Because spliceosomal small nuclear RNAs (snRNAs) bind the substrate, snRNA structures may rearrange to reposition the substrate. However, such rearrangements have remained undefined. Although U2 stem IIc inhibits binding of U2 snRNP to pre-mRNA during assembly, we found that weakening U2 stem IIc suppressed a mutation in prp16, a DExD/H box ATPase that promotes splicing after 5' splice site cleavage. The prp16 mutation was also suppressed by mutations flanking stem IIc, suggesting that Prp16p facilitates a switch from stem IIc to the mutually exclusive U2 stem IIa, which activates binding of U2 to pre-mRNA during assembly. Providing evidence that stem IIa switches back to stem IIc before exon ligation, disrupting stem IIa suppressed 3' splice site mutations, and disrupting stem IIc impaired exon ligation. Disrupting stem IIc also exacerbated the 5' splice site cleavage defects of certain substrate mutations, suggesting a parallel role for stem IIc at both catalytic stages. We propose that U2, much like the ribosome, toggles between two conformations--a closed stem IIc conformation that promotes catalysis and an open stem IIa conformation that promotes substrate binding and release.

  11. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2.

    Science.gov (United States)

    Hogg, Rebecca; de Almeida, Rogerio Alves; Ruckshanthi, Jayalath P D; O'Keefe, Raymond T

    2014-07-01

    Removal of intron regions from pre-messenger RNA (pre-mRNA) requires spliceosome assembly with pre-mRNA, then subsequent spliceosome remodeling to allow activation for the two steps of intron removal. Spliceosome remodeling is carried out through the action of DExD/H-box ATPases that modulate RNA-RNA and protein-RNA interactions. The ATPase Prp16 remodels the spliceosome between the first and second steps of splicing by catalyzing release of first step factors Yju2 and Cwc25 as well as destabilizing U2-U6 snRNA helix I. How Prp16 destabilizes U2-U6 helix I is not clear. We show that the NineTeen Complex (NTC) protein Cwc2 displays genetic interactions with the U6 ACAGAGA, the U6 internal stem loop (ISL) and the U2-U6 helix I, all RNA elements that form the spliceosome active site. We find that one function of Cwc2 is to stabilize U2-U6 snRNA helix I during splicing. Cwc2 also functionally cooperates with the NTC protein Isy1/NTC30. Mutation in Cwc2 can suppress the cold sensitive phenotype of the prp16-302 mutation indicating a functional link between Cwc2 and Prp16. Specifically the prp16-302 mutation in Prp16 stabilizes Cwc2 interactions with U6 snRNA and destabilizes Cwc2 interactions with pre-mRNA, indicating antagonistic functions of Cwc2 and Prp16. We propose that Cwc2 is a target for Prp16-mediated spliceosome remodeling during pre-mRNA splicing. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

    Science.gov (United States)

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-11-17

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.

  13. RNA helicases

    OpenAIRE

    Owttrim, George W.

    2013-01-01

    Similar to proteins, RNA molecules must fold into the correct conformation and associate with protein complexes in order to be functional within a cell. RNA helicases rearrange RNA secondary structure and RNA-protein interactions in an ATP-dependent reaction, performing crucial functions in all aspects of RNA metabolism. In prokaryotes, RNA helicase activity is associated with roles in housekeeping functions including RNA turnover, ribosome biogenesis, translation and small RNA metabolism. In...

  14. RNA topology

    OpenAIRE

    Frank-Kamenetskii, Maxim D.

    2013-01-01

    A new variety on non-coding RNA has been discovered by several groups: circular RNA (circRNA). This discovery raises intriguing questions about the possibility of the existence of knotted RNA molecules and the existence of a new class of enzymes changing RNA topology, RNA topoisomerases.

  15. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  16. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    2017-01-01

    for biosensorer,  der kan spore enten microRNA’er eller små molekyler, eksemplificeret ved S-adenosylmethionin (SAM). Slutteligt indikerer foreløbige resultater, at apta-FRET SAM sensoren kan udtrykkes i Escherichia coli-celler, hvilket viser, at RNA-origami arkitekturen muliggør cotransskriptionel foldning af......RNA-nanoteknologi feltet har demonstreret alsidigheden af RNA som byggemateriale, og rationelt designede RNA-nanostrukturer er blevet brugt i udviklingen af strukturelle platforme og dynamiske anordninger med anvendelser både in vitro og in vivo. Naturlige RNA-strukturer foldes cotransskriptionelt...... fra en enkelt RNA-streng, og udfører en lang række komplekse cellulære funktioner. Mange af funktionerne er blevet udnyttet til at skabe funktionelle RNA-baserede nanoapparater, men den nuværende litteratur giver kun få eksempler på cotranskriptionel produktion af RNA-nanostrukturer. I 2014...

  17. RNA granules

    OpenAIRE

    Anderson, Paul; Kedersha, Nancy

    2006-01-01

    Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationshi...

  18. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.

  19. RNA epigenetics

    OpenAIRE

    Liu, Nian; Pan, Tao

    2014-01-01

    Mammalian messenger and long non-coding RNA contain tens of thousands of post-transcriptional chemical modifications. Among these, the N6-methyl-adenosine (m6A) modification is the most abundant and can be removed by specific mammalian enzymes. M6A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modifi...

  20. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    in diabetes resulting from the diabetic state, a dysfunction that includes increased production of hydrogen peroxide. We suggest that the intracellular RNA oxidation is compartmentalized from the traditional biomarkers in the extracellular compartment, and therefore provides independent prognostic value...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  1. RNA. Introduction.

    Science.gov (United States)

    Bao, Marie Z; Kruger, Robert P; Rivas, Fabiola; Smith, Orla; Szewczak, Lara

    2009-02-20

    Two scientists walk into a bar. After a pint and an exchange of pleasantries, one says to the other, "Where do you come from? Scientifically, I mean." The queried scientist responds, "Out of the RNA world." "Don't we all," the asker responds chuckling. Fifteen years ago, the joke would have been made with a nod to the notion that life arose from an RNA-based precursor, the so-called "RNA world." Yet had this conversation happened last week, the scientists would also be grinning in appreciation of the extent to which contemporary cellular biology is steeped in all things RNA. Ours is truly an RNA world.In this year's special review issue, the Cell editorial team has brought together articles focused on RNA in the modern world, providing perspectives on classical and emerging areas of inquiry. We extend our thanks to the many distinguished experts who contributed their time and effort as authors and reviewers to make the issue informative, thought-provoking, and timely. We hope that this collection of articles, written as we stand on the verge of a new wave of RNA biology, edifies and inspires by revealing the inner workings of these versatile molecules and by highlighting the next key questions that need to be addressed as we strive to understand the full functional scope of RNA in cells.

  2. Engineering Structurally Interacting RNA (sxRNA)

    Science.gov (United States)

    Doyle, Francis; Lapsia, Sameer; Spadaro, Salvatore; Wurz, Zachary E.; Bhaduri-McIntosh, Sumita; Tenenbaum, Scott A.

    2017-01-01

    RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA “bait” sequence can be designed to interact with a specific microRNA “trigger” sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch “ON” translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present. PMID:28350000

  3. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles.

    Science.gov (United States)

    Afonin, Kirill A; Viard, Mathias; Kagiampakis, Ioannis; Case, Christopher L; Dobrovolskaia, Marina A; Hofmann, Jen; Vrzak, Ashlee; Kireeva, Maria; Kasprzak, Wojciech K; KewalRamani, Vineet N; Shapiro, Bruce A

    2015-01-27

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use.

  4. 肿瘤基因信使RNA可变剪接及其应用%Alternative splicing of tumor associated genes messenger RNA and application

    Institute of Scientific and Technical Information of China (English)

    张鑫桐; 岳文涛

    2014-01-01

    可变剪接作为基因的一种修饰方式,是真核细胞表达调控过程的重要因素。它使同一蛋白质编码基因能够产生多种转录本,极大地扩展了遗传信息的应用。在人类肿瘤细胞中前体信使RN A的可变剪接扮演着重要角色,一些重要基因通过可变剪接产生不同于正常细胞中的剪接异构体。这些肿瘤特异性剪接异构体的存在导致了肿瘤的发生、发展。深入探索肿瘤相关基因的可变剪接对肿瘤的诊断、治疗具有重要意义。%As a way of gene modification,alternative splicing is an important factor of eukaryotic gene expression and regulation.It makes various transcripts from one protein-coding gene,and greatly extends the genetic information.Alternative splicing of pre-messenger RNA plays an important role in tumor cells.By alter-native splicing,some important genes can generate splicing variants different from those in normal cells.The existence of tumor-specific splicing variants leads to the occurrence and progression of tumor.Therefore,explo-ration on the alternative splicing of tumor-associated genes may be of great significance in tumor diagnosis and treatment.

  5. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    Science.gov (United States)

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network.

  6. RNA chaperones encoded by RNA viruses

    Institute of Scientific and Technical Information of China (English)

    Jie Yang; Hongjie Xia; Qi Qian; Xi Zhou

    2015-01-01

    RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.

  7. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  8. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  9. The Vienna RNA Websuite

    Science.gov (United States)

    Gruber, Andreas R.; Lorenz, Ronny; Bernhart, Stephan H.; Neuböck, Richard; Hofacker, Ivo L.

    2008-01-01

    The Vienna RNA Websuite is a comprehensive collection of tools for folding, design and analysis of RNA sequences. It provides a web interface to the most commonly used programs of the Vienna RNA package. Among them, we find folding of single and aligned sequences, prediction of RNA–RNA interactions, and design of sequences with a given structure. Additionally, we provide analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA. The web server together with software packages for download is freely accessible at http://rna.tbi.univie.ac.at/. PMID:18424795

  10. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found...... to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  11. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when po...

  12. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  13. Combinatorics of RNA-RNA interaction.

    Science.gov (United States)

    Li, Thomas J X; Reidys, Christian M

    2012-02-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.

  14. Combinatorics of RNA-RNA interaction

    CERN Document Server

    Li, Thomas J X

    2010-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called ``zig-zag'' configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.

  15. Cytoplasmic Z-RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-09-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation.

  16. Raman crystallography of RNA.

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C

    2009-10-01

    Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.

  17. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future......While increasing evidence appoints diverse types of RNA as key players in the regulatory networks underlying cellular differentiation and metabolism, the potential functions of thousands of conserved RNA structures encoded in mammalian genomes remain to be determined. Since the functions of most...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...

  18. iRNA-seq

    DEFF Research Database (Denmark)

    Madsen, Jesper Grud Skat; Schmidt, Søren Fisker; Larsen, Bjørk Ditlev;

    2015-01-01

    RNA-seq is a sensitive and accurate technique to compare steady-state levels of RNA between different cellular states. However, as it does not provide an account of transcriptional activity per se, other technologies are needed to more precisely determine acute transcriptional responses. Here, we...... have developed an easy, sensitive and accurate novel computational method, IRNA-SEQ: , for genome-wide assessment of transcriptional activity based on analysis of intron coverage from total RNA-seq data. Comparison of the results derived from iRNA-seq analyses with parallel results derived using...... current methods for genome-wide determination of transcriptional activity, i.e. global run-on (GRO)-seq and RNA polymerase II (RNAPII) ChIP-seq, demonstrate that iRNA-seq provides similar results in terms of number of regulated genes and their fold change. However, unlike the current methods that are all...

  19. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  20. Single nucleotide RNA choreography.

    Science.gov (United States)

    Hsiao, Chiaolong; Mohan, Srividya; Hershkovitz, Eli; Tannenbaum, Allen; Williams, Loren Dean

    2006-01-01

    New structural analysis methods, and a tree formalism re-define and expand the RNA motif concept, unifying what previously appeared to be disparate groups of structures. We find RNA tetraloops at high frequencies, in new contexts, with unexpected lengths, and in novel topologies. The results, with broad implications for RNA structure in general, show that even at this most elementary level of organization, RNA tolerates astounding variation in conformation, length, sequence and context. However the variation is not random; it is well-described by four distinct modes, which are 3-2 switches (backbone topology variations), insertions, deletions and strand clips.

  1. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs....

  2. Topology of RNA-RNA interaction structures

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Huang, Fenix Wenda; Penner, Robert;

    2012-01-01

    Abstract The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exist...

  3. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation......, regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  4. Assessing integrity of insect RNA

    Science.gov (United States)

    Assessing total RNA integrity is important for the success of downstream RNA applications. The 2100 Bioanalyzer system with the RNA Integrity Number (RIN) provides a quantitative measure of RNA degradation. Although RINs may not be ascertained for RNA from all organisms, namely those with unusual or...

  5. Ab initio RNA folding.

    Science.gov (United States)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  6. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  7. microRNA

    OpenAIRE

    Xin, Xiong; Ning, Zhou

    2007-01-01

    MicroRNAs (miRNAs) are short, 20-22 nucleotide RNA molecules that function as negative regulators of gene expression in eukaryotic organisms. RNA mediated gene silencing pathways have essential roles in development, cell differentiation, proliferation, and cell death. It is becoming clear that microRNAs can play a very important role in regulation of gene expression. Understanding the basic mechanism of miRNA biogenesis is one of the central aims of molecular biologists in the future. MicroRN...

  8. Generation of siRNA Nanosheets for Efficient RNA Interference

    Science.gov (United States)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  9. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  10. RNA-Dependent RNA Polymerase Activity in Influenza Virions

    Science.gov (United States)

    Penhoet, Edward; Miller, Henry; Doyle, Michael; Blatti, Stanley

    1971-01-01

    An RNA-dependent RNA polymerase activity has been detected in purified preparations of influenza virus. In contrast to the replicase activity induced in influenza-infected cells, the virion-associated enzyme has an absolute requirement for Mn++. Most of the RNA synthesized in vitro is complementary to virion RNA. PMID:5288388

  11. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    2011-01-01

    The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases an...

  12. The RNA infrastructure: an introduction to ncRNA networks.

    Science.gov (United States)

    Collins, Lesley J

    2011-01-01

    The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.

  13. Topology of RNA-RNA interaction structures

    CERN Document Server

    Andersen, Jørgen E; Penner, Robert C; Reidys, Christian M

    2011-01-01

    The topological filtration of interacting RNA complexes is studied and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that for two interacting RNAs, called interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that for fixed genus there are only finitely many classes of interaction structures. In particular the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail and found to be expressed by a multiple context-free grammar extending the usual one for RNA secondary structures. We show that in $O(n^6)$ time and $O(n^4)$ space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partit...

  14. Chaperoning 5S RNA assembly

    National Research Council Canada - National Science Library

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-01-01

    ...—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP...

  15. The Functions of RNA-Dependent RNA Polymerases in Arabidopsis

    Science.gov (United States)

    Willmann, Matthew R.; Endres, Matthew W.; Cook, Rebecca T.; Gregory, Brian D.

    2011-01-01

    One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene transcripts, repetitive sequences, viruses, and mobile elements via RNA cleavage, translational inhibition, or transcriptional silencing through DNA methylation and heterochromatin formation. Early genetic screens in Arabidopsis were instrumental in uncovering numerous proteins required for these important regulatory pathways. Among the factors identified by these studies were RNA-dependent RNA polymerases (RDRs), which are proteins that synthesize siRNA-producing dsRNA molecules using a single-stranded RNA (ssRNA) molecule as a template. Recently, a growing body of evidence has implicated RDR-dependent RNA silencing in many different aspects of plant biology ranging from reproductive development to pathogen resistance. Here, we focus on the specific functions of the six Arabidopsis RDRs in RNA silencing, their ssRNA substrates and resulting RDR-dependent smRNAs, and the numerous biological functions of these proteins in plant development and stress responses. PMID:22303271

  16. Simultaneous RNA-DNA FISH.

    Science.gov (United States)

    Lai, Lan-Tian; Meng, Zhenyu; Shao, Fangwei; Zhang, Li-Feng

    2016-01-01

    A highly useful tool for studying lncRNAs is simultaneous RNA-DNA FISH, which reveals the localization and quantitative information of RNA and DNA in cellular contexts. However, a simple combination of RNA FISH and DNA FISH often generates disappointing results because the fragile RNA signals are often damaged by the harsh conditions used in DNA FISH for denaturing the DNA. Here, we describe a robust and simple RNA-DNA FISH protocol, in which amino-labeled nucleic acid probes are used for RNA FISH. The method is suitable to detect single-RNA molecules simultaneously with DNA.

  17. Stochastic Kinetics of Nascent RNA

    Science.gov (United States)

    Xu, Heng; Skinner, Samuel O.; Sokac, Anna Marie; Golding, Ido

    2016-09-01

    The stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in individual cells. However, cellular RNA reflects additional processes downstream of transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of transcription. We present a theoretical model for the stochastic kinetics of nascent RNA, which we solve to obtain the probability distribution of nascent RNA per gene. The model allows us to evaluate the kinetic parameters of transcription from single-cell measurements of nascent RNA. The model also predicts surprising discontinuities in the distribution of nascent RNA, a feature which we verify experimentally.

  18. Yeast nuclear RNA processing

    Institute of Scientific and Technical Information of China (English)

    Jade; Bernstein; Eric; A; Toth

    2012-01-01

    Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors.In this review,we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs,and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool.Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors.Similarly,the regulatory mechanisms that govern RNA processing are gradually coming into focus.Such advances invariably generate many new questions,which we highlight in this review.

  19. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  20. [Ribosomal RNA Evolution

    Science.gov (United States)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  1. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  2. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  3. Shaping tRNA

    Science.gov (United States)

    Priano, Christine

    2013-01-01

    This model-building activity provides a quick, visual, hands-on tool that allows students to examine more carefully the cloverleaf structure of a typical tRNA molecule. When used as a supplement to lessons that involve gene expression, this exercise reinforces several concepts in molecular genetics, including nucleotide base-pairing rules, the…

  4. The RNA interference revolution

    Directory of Open Access Journals (Sweden)

    G. Lenz

    2005-12-01

    Full Text Available The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.

  5. FTO, RNA epigenetics and epilepsy

    OpenAIRE

    2012-01-01

    Several recent landmark papers describing N6-methyladenosine (m6A) RNA modifications have provided valuable new insights as to the importance of m6A in the RNA transcriptome and in furthering the understanding of RNA epigenetics. One endogenous enzyme responsible for demethylating RNA m6A, FTO, is highly expressed in the CNS and is likely involved in mRNA metabolism, splicing or other nuclear RNA processing events. microRNAs (miRNAs), a family of small, non-coding transcripts that bind to tar...

  6. Messenger RNA (mRNA) nanoparticle tumour vaccination

    Science.gov (United States)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  7. RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology.

    Science.gov (United States)

    Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya

    2013-01-01

    RNA molecules are versatile biomaterials that act not only as DNA-like genetic materials but also have diverse functions in regulation of cellular biosystems. RNA is capable of regulating gene expression by sequence-specific hybridization. This feature allows the design of RNA-based artificial gene regulators (riboregulators). RNA can also build complex two-dimensional (2D) and 3D nanostructures, which afford protein-like functions and make RNA an attractive material for nanobiotechnology. RNA tectonics is a methodology in RNA nanobiotechnology for the design and construction of RNA nanostructures/nanoobjects through controlled self-assembly of modular RNA units (tectoRNAs). RNA nanostructures designed according to the concept of RNA tectonics are also attractive as tools in synthetic biology, but in vivo RNA tectonics is still in the early stages. This review presents a summary of the achievements of RNA tectonics and its related researches in vitro, and also introduces recent developments that facilitated the use of RNA nanostructures in bacterial cells.

  8. Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA

    OpenAIRE

    Smith, Cameron; Heyne, Steffen; Richter, Andreas S.; Will, Sebastian; Backofen, Rolf

    2010-01-01

    The Freiburg RNA tools web server integrates three tools for the advanced analysis of RNA in a common web-based user interface. The tools IntaRNA, ExpaRNA and LocARNA support the prediction of RNA–RNA interaction, exact RNA matching and alignment of RNA, respectively. The Freiburg RNA tools web server and the software packages of the stand-alone tools are freely accessible at http://rna.informatik.uni-freiburg.de.

  9. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double strand

  10. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double strand

  11. LigandRNA: computational predictor of RNA-ligand interactions.

    Science.gov (United States)

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  12. Quantitative Model of microRNA-mRNA interaction

    Science.gov (United States)

    Noorbakhsh, Javad; Lang, Alex; Mehta, Pankaj

    2012-02-01

    MicroRNAs are short RNA sequences that regulate gene expression and protein translation by binding to mRNA. Experimental data reveals the existence of a threshold linear output of protein based on the expression level of microRNA. To understand this behavior, we propose a mathematical model of the chemical kinetics of the interaction between mRNA and microRNA. Using this model we have been able to quantify the threshold linear behavior. Furthermore, we have studied the effect of internal noise, showing the existence of an intermediary regime where the expression level of mRNA and microRNA has the same order of magnitude. In this crossover regime the mRNA translation becomes sensitive to small changes in the level of microRNA, resulting in large fluctuations in protein levels. Our work shows that chemical kinetics parameters can be quantified by studying protein fluctuations. In the future, studying protein levels and their fluctuations can provide a powerful tool to study the competing endogenous RNA hypothesis (ceRNA), in which mRNA crosstalk occurs due to competition over a limited pool of microRNAs.

  13. siRNA and miRNA%干扰小RNA与微RNA

    Institute of Scientific and Technical Information of China (English)

    何晨; 陈薇; 谭军; 聂能

    2005-01-01

    干扰小RNA(small interfering RNA;siRNA)和微RNA(microRNA;miRNA)是两种序列特异性地转录后基因表达的调节因子,它们的相关性密切,既具有相似性,又具有差异性.该文主要介绍这两种小RNA分子的产生、作用机制,以及两者之间的联系与区别.

  14. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.

    2011-01-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive...... is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success...... in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our...

  15. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  16. iRNA-PseU: Identifying RNA pseudouridine sites

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-01-01

    Full Text Available As the most abundant RNA modification, pseudouridine plays important roles in many biological processes. Occurring at the uridine site and catalyzed by pseudouridine synthase, the modification has been observed in nearly all kinds of RNA, including transfer RNA, messenger RNA, small nuclear or nucleolar RNA, and ribosomal RNA. Accordingly, its importance to basic research and drug development is self-evident. Despite some experimental technologies have been developed to detect the pseudouridine sites, they are both time-consuming and expensive. Facing the explosive growth of RNA sequences in the postgenomic age, we are challenged to address the problem by computational approaches: For an uncharacterized RNA sequence, can we predict which of its uridine sites can be modified as pseudouridine and which ones cannot? Here a predictor called “iRNA-PseU” was proposed by incorporating the chemical properties of nucleotides and their occurrence frequency density distributions into the general form of pseudo nucleotide composition (PseKNC. It has been demonstrated via the rigorous jackknife test, independent dataset test, and practical genome-wide analysis that the proposed predictor remarkably outperforms its counterpart. For the convenience of most experimental scientists, the web-server for iRNA-PseU was established at http://lin.uestc.edu.cn/server/iRNA-PseU, by which users can easily get their desired results without the need to go through the mathematical details.

  17. Synthesizing topological structures containing RNA

    Science.gov (United States)

    Liu, Di; Shao, Yaming; Chen, Gang; Tse-Dinh, Yuk-Ching; Piccirilli, Joseph A.; Weizmann, Yossi

    2017-03-01

    Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.

  18. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels...

  19. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  20. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  1. Traversing the RNA World.

    Science.gov (United States)

    Filipowicz, Witold

    2017-04-05

    An invitation to write a ″Reflections″ type of article creates a certain ambivalence: it is a great honor but it also infers the end of your professional career. Before you vanish for good, your colleagues look forward to an interesting but entertaining account of the ups-and-downs of your past research and your views on science in general, peppered with indiscrete anecdotes about your former competitors and collaborators. What follows will disappoint those who await complaint and criticism, for example about the difficulties of doing research in the 1960s and 1970s in Eastern Europe, or those seeking very personal revelations. My scientific life has in fact seen many happy coincidences, much good fortune, and several lucky escapes from situations that at the time were quite scary. I have also been fortunate with regard to competitors and collaborators. Particularly because, whenever possible, I tried to ″neutralize″ my rivals by collaborating with them - to the benefit of all. I recommend this strategy to young researchers to dispel the nightmares when competing against powerful contenders. I have been blessed with the selection of my research topic: RNA biology. Over the last five decades, new and unexpected RNA-related phenomena emerged almost yearly. I experienced them very personally while studying transcription, translation, RNA splicing, ribosome biogenesis, and more recently different classes of regulatory non-coding RNAs, including microRNAs. Some selected research and para-research stories, also covering many wonderful people I had a privilege to work with, are summarized below.

  2. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  3. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes.

    Science.gov (United States)

    Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J

    2012-04-01

    RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso-antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem-loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one.

  4. On RNA-RNA interaction structures of fixed topological genus.

    Science.gov (United States)

    Fu, Benjamin M M; Han, Hillary S W; Reidys, Christian M

    2015-04-01

    Interacting RNA complexes are studied via bicellular maps using a filtration via their topological genus. Our main result is a new bijection for RNA-RNA interaction structures and a linear time uniform sampling algorithm for RNA complexes of fixed topological genus. The bijection allows to either reduce the topological genus of a bicellular map directly, or to lose connectivity by decomposing the complex into a pair of single stranded RNA structures. Our main result is proved bijectively. It provides an explicit algorithm of how to rewire the corresponding complexes and an unambiguous decomposition grammar. Using the concept of genus induction, we construct bicellular maps of fixed topological genus g uniformly in linear time. We present various statistics on these topological RNA complexes and compare our findings with biological complexes. Furthermore we show how to construct loop-energy based complexes using our decomposition grammar. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Switching off small RNA regulation with trap-mRNA

    DEFF Research Database (Denmark)

    Overgaard, Martin; Johansen, Jesper; Møller-Jensen, Jakob

    2009-01-01

    Small non-coding regulatory RNAs in bacteria have been shown predominantly to be tightly regulated at the level of transcription initiation, and sRNAs that function by an antisense mechanism on trans-encoded target mRNAs have been shown or predicted to act stoichiometrically. Here we show that Mic......M, which silences the expression of an outer membrane protein, YbfM under most growth conditions, does not become destabilized by target mRNA overexpression, indicating that the small RNA regulator acts catalytically. Furthermore, our regulatory studies suggested that control of micM expression is unlikely...... to operate at the level of transcription initiation. By employing a highly sensitive genetic screen we uncovered a novel RNA-based regulatory principle in which induction of a trap-mRNA leads to selective degradation of a small regulatory RNA molecule, thereby abolishing the sRNA-based silencing of its...

  6. Quantification of miRNA-mRNA interactions.

    Directory of Open Access Journals (Sweden)

    Ander Muniategui

    Full Text Available miRNAs are small RNA molecules (' 22nt that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO.We used TaLasso on two public datasets that have paired expression levels of human miRNAs and mRNAs. The top ranked interactions recovered by TaLasso are especially enriched (more than using any other algorithm in experimentally validated targets. The functions of the genes with mRNA transcripts in the top-ranked interactions are meaningful. This is not the case using other algorithms.TaLasso is available as Matlab or R code. There is also a web-based tool for human miRNAs at http://talasso.cnb.csic.es/.

  7. Quantification of miRNA-mRNA interactions.

    Science.gov (United States)

    Muniategui, Ander; Nogales-Cadenas, Rubén; Vázquez, Miguél; Aranguren, Xabier L; Agirre, Xabier; Luttun, Aernout; Prosper, Felipe; Pascual-Montano, Alberto; Rubio, Angel

    2012-01-01

    miRNAs are small RNA molecules (' 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO).We used TaLasso on two public datasets that have paired expression levels of human miRNAs and mRNAs. The top ranked interactions recovered by TaLasso are especially enriched (more than using any other algorithm) in experimentally validated targets. The functions of the genes with mRNA transcripts in the top-ranked interactions are meaningful. This is not the case using other algorithms.TaLasso is available as Matlab or R code. There is also a web-based tool for human miRNAs at http://talasso.cnb.csic.es/.

  8. RNA-RNA interaction prediction based on multiple sequence alignments

    CERN Document Server

    Li, Andrew X; Qin, Jing; Reidys, Christian M

    2010-01-01

    Recently, $O(N^6)$ time and $O(N^4)$ space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes for pairs of RNA sequences. These algorithms and the biological requirement of more reliable interactions motivate to utilize the additional information contained in multiple sequence alignments and to generalize the above framework to the partition function and base pairing probabilities for multiple sequence alignments.

  9. Focus on RNA isolation: obtaining RNA for microRNA (miRNA) expression profiling analyses of neural tissue

    Science.gov (United States)

    Wang, Wang-Xia; Rajeev, Bernard W.; Baldwin, Donald A.; Isett, R. Benjamin; Ren, Na; Stromberg, Arnold; Nelson, Peter T.

    2008-01-01

    MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of ‘upstream’ variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15–E18 neurons versus rat primary E15–E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed. PMID:18316046

  10. microRNA Decay: Refining microRNA Regulatory Activity.

    Science.gov (United States)

    Pepin, Genevieve; Gantier, Michael P

    2016-01-01

    MicroRNAs (miRNAs) are short 19-25 nucleotide RNA molecules that impact on most biological processes by regulating the efficiency of messenger RNA (mRNA) translation. To date, most research activities have been focused on the control of miRNA expression and its functional consequences. Nonetheless, much remains unknown about the mechanisms affecting the level of specific miRNAs in the cell, a critical feature impacting their regulatory activity. This review focuses on the factors that regulate the abundance of miRNAs, including synthesis, post-transcriptional modifications, nucleases, target binding, and secretion.

  11. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  12. RNA interference and antiviral therapy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms,strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.

  13. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...

  14. The microRNA (miRNA): overview of the RNA genes that modulate gene function.

    Science.gov (United States)

    Ying, Shao-Yao; Chang, Donald C; Lin, Shi-Lung

    2008-03-01

    MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.

  15. High sensitivity RNA pseudoknot prediction

    OpenAIRE

    Huang, Xiaolu; Ali, Hesham

    2006-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. T...

  16. RNA nanoparticles come of age

    Institute of Scientific and Technical Information of China (English)

    John J.Rossi

    2011-01-01

    @@ RNA has multiple functions in nature, including informa- tional transfer (mRNA) Ill, adaptor function (tRNAs) [2], guide functions (snRNAs, snoRNAs) [3,4]catalytic func- tion (ribozymes and the large ribosomal RNA) [5-7], and environmental sensing (riboswitehes) [8].In contrast, DNA only serves as an information storage molecule, and proteins serve as structural and enzymatic molecules.

  17. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition.

    Science.gov (United States)

    Madina, Bhaskara R; Kumar, Vikas; Metz, Richard; Mooers, Blaine H M; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-07-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.

  18. 关于RNA

    Institute of Scientific and Technical Information of China (English)

    游古林

    2006-01-01

    RNA广泛存在于生物体中,它不仅是细胞某些结构的组成成分,而且还可以作为酶,作为遗传物质,尤其是在基因控制蛋白质的合成过程中起着重要作用。在高中《生物》教材中,有多处涉及到RNA,特别是“基因的表达”一节中,有关RNA的分子结构、种类以及作用等,学生极易混淆。下面就RNA的有关内容作一梳理。

  19. Hyperexpansion of RNA Bacteriophage Diversity

    Science.gov (United States)

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  20. Hyperexpansion of RNA Bacteriophage Diversity.

    Directory of Open Access Journals (Sweden)

    Siddharth R Krishnamurthy

    2016-03-01

    Full Text Available Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent.

  1. Hyperexpansion of RNA Bacteriophage Diversity.

    Science.gov (United States)

    Krishnamurthy, Siddharth R; Janowski, Andrew B; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-03-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent.

  2. RNase-assisted RNA chromatography

    Science.gov (United States)

    Michlewski, Gracjan; Cáceres, Javier F.

    2010-01-01

    RNA chromatography combined with mass spectrometry represents a widely used experimental approach to identify RNA-binding proteins that recognize specific RNA targets. An important drawback of most of these protocols is the high background due to direct or indirect nonspecific binding of cellular proteins to the beads. In many cases this can hamper the detection of individual proteins due to their low levels and/or comigration with contaminating proteins. Increasing the salt concentration during washing steps can reduce background, but at the cost of using less physiological salt concentrations and the likely loss of important RNA-binding proteins that are less stringently bound to a given RNA, as well as the disassembly of protein or ribonucleoprotein complexes. Here, we describe an improved RNA chromatography method that relies on the use of a cocktail of RNases in the elution step. This results in the release of proteins specifically associated with the RNA ligand and almost complete elimination of background noise, allowing a more sensitive and thorough detection of RNA-binding proteins recognizing a specific RNA transcript. PMID:20571124

  3. antaRNA: ant colony-based RNA sequence design

    National Research Council Canada - National Science Library

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-01-01

    ... ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online.

  4. Origin and Evolution of RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    de Farias, Savio T; Dos Santos Junior, Ariosvaldo P; Rêgo, Thais G; José, Marco V

    2017-01-01

    RNA-dependent RNA polymerases (RdRp) are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.

  5. Origin and Evolution of RNA-Dependent RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Savio T. de Farias

    2017-09-01

    Full Text Available RNA-dependent RNA polymerases (RdRp are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.

  6. Bringing RNA into View: RNA and Its Roles in Biology.

    Science.gov (United States)

    Atkins, John F.; Ellington, Andrew; Friedman, B. Ellen; Gesteland, Raymond F.; Noller, Harry F.; Pasquale, Stephen M.; Storey, Richard D.; Uhlenbeck, Olke C.; Weiner, Alan M.

    This guide presents a module for college students on ribonucleic acid (RNA) and its role in biology. The module aims to integrate the latest research and its findings into college-level biology and provide an opportunity for students to understand biological processes. Four activities are presented: (1) "RNA Structure: Tapes to Shapes"; (2) "RNA…

  7. Targeting the nuclear RNA exosome

    DEFF Research Database (Denmark)

    Meola, Nicola; Jensen, Torben Heick

    2017-01-01

    Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome...

  8. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  9. Exploration of RNA structure spaces

    Science.gov (United States)

    Fox, G. E.

    1991-01-01

    In order to understand the structure of real structure spaces, we are studying the 5S rRNA structure space experimentally. A plasmid containing a synthetic 5S rRNA gene, two rRNA promoters, and transcription terminators has been assembled. Assays are conducted to determine if the foreign 5S rRNA is expressed, and to see whether or not it is incorporated into ribosomes. Evolutionary competition is used to determine the relative fitness of strains containing the foreign 5S rRNA and a control 5S rRNA. By using site directed mutagenesis, a number of mutants can be made in order to study the boundaries of the structure space and how sharply defined they are. By making similar studies in the vicinity of structure space, it will be possible to determine how homogeneous the 5S rRNA structure space is. Useable experimental protocols have been developed, and a number of mutants have already been studied. Initial results suggest an explanation of why single stranded regions of the RNA are less subject to mutation than double stranded regions.

  10. Nuclear Export of Messenger RNA

    Science.gov (United States)

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  11. FTO, RNA epigenetics and epilepsy.

    Science.gov (United States)

    Rowles, Joie; Wong, Morgan; Powers, Ryan; Olsen, Mark

    2012-10-01

    Several recent landmark papers describing N(6) -methyladenosine (m(6) A) RNA modifications have provided valuable new insights as to the importance of m(6) A in the RNA transcriptome and in furthering the understanding of RNA epigenetics. One endogenous enzyme responsible for demethylating RNA m(6) A, FTO, is highly expressed in the CNS and is likely involved in mRNA metabolism, splicing or other nuclear RNA processing events. microRNAs (miRNAs), a family of small, non-coding transcripts that bind to target mRNAs and inhibit subsequent translation, are highly expressed in the CNS and are associated with several neurological disorders, including epilepsy. miRNAs frequently bind to recognition sequences in the 3'UTR, a region that is also enriched for m(6) A. Certain specific miRNAs are upregulated by neuronal activity and are coupled to epileptogenesis; these miRNAs contain a consensus m(6) A site that if methylated could possibly regulate miRNA processing or function. This commentary highlights aspects from recent papers to propose a functional association between FTO, RNA epigenetics and epilepsy.

  12. RNA er jo bare matematik!

    DEFF Research Database (Denmark)

    Blaavand, Jakob Lindblad

    2011-01-01

    Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener.......Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener....

  13. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer......, and are thought to play essential roles in cancer etiology and progression. Here, we aimed to identify epigenetic miRNA deregulation in bladder and oral carcinoma, and to develop a robust approach to epigenetic miRNA prediction and detection. In addition, non-canonical epigenetic functions directed by a nuclear...... miRNA were investigated. In summary, we report that the miR-200 family and miR-205 are coordinately epigenetically regulated in a variety of cell lines, tumors and normal tissues. MiR-200c expression is correlated with bladder cancer disease progression, and miR-375 levels in oral rinse can...

  14. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  15. Mechanisms of RNA catalysis.

    Science.gov (United States)

    Lilley, David M J

    2011-10-27

    Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.

  16. Deciphering the RNA landscape by RNAome sequencing

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); B. Misovic (Branislav); M.C.G.N. van den hout (Mirjam); C. Kockx (Christel); C.P. Gomez (Cesar Payan); R.W.W. Brouwer (Rutger); H. Vrieling (Harry); J.H.J. Hoeijmakers (Jan); W.F.J. van IJcken (Wilfred); J. Pothof (Joris)

    2015-01-01

    textabstractCurrent RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a

  17. Deciphering the RNA landscape by RNAome sequencing

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); B. Misovic (Branislav); M.C.G.N. van den hout (Mirjam); C. Kockx (Christel); C.P. Gomez (Cesar Payan); R.W.W. Brouwer (Rutger); H. Vrieling (Harry); J.H.J. Hoeijmakers (Jan); W.F.J. van IJcken (Wilfred); J. Pothof (Joris)

    2015-01-01

    textabstractCurrent RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a sin

  18. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  19. Radiation target analysis of RNA.

    Science.gov (United States)

    Benstein, S L; Kempner, E

    1996-06-25

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

  20. Cofactors in the RNA World

    Science.gov (United States)

    Ditzler, Mark A.

    2014-01-01

    RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.

  1. The structural basis of RNA-catalyzed RNA polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shechner, David M.; Bartel, David P. (Whitehead)

    2011-09-08

    Early life presumably required polymerase ribozymes capable of replicating RNA. Known polymerase ribozymes best approximating such replicases use as their catalytic engine an RNA-ligase ribozyme originally selected from random RNA sequences. Here we report 3.15-{angstrom} crystal structures of this ligase trapped in catalytically viable preligation states, with the 3'-hydroxyl nucleophile positioned for in-line attack on the 5'-triphosphate. Guided by metal- and solvent-mediated interactions, the 5'-triphosphate hooks into the major groove of the adjoining RNA duplex in an unanticipated conformation. Two phosphates and the nucleophile jointly coordinate an active-site metal ion. Atomic mutagenesis experiments demonstrate that active-site nucleobase and hydroxyl groups also participate directly in catalysis, collectively playing a role that in proteinaceous polymerases is performed by a second metal ion. Thus artificial ribozymes can use complex catalytic strategies that differ markedly from those of analogous biological enzymes.

  2. Alphavirus polymerase and RNA replication.

    Science.gov (United States)

    Pietilä, Maija K; Hellström, Kirsi; Ahola, Tero

    2017-01-16

    Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.

  3. RNA疫苗%RNA vaccines

    Institute of Scientific and Technical Information of China (English)

    吴浩飞; 罗丹

    2013-01-01

    Nucleic acid vaccines consist of plasmid DNA,viral vectors and RNA vaccines.Since the nucleic acid vaccines combine the benefits of live-attenuated vaccines,and avoid the problems of complication related to live-attenuated vaccine safety and production,they may change the way that next generation vaccines are produced.RNA vaccines,including those based on messenger RNA (mRNA) and self-amplifying RNA replicons,have the potential to break through the limitations of plasmid DNA and viral vectors.With solving the issue of cost and manufacturing feasibility,the commercialization of RNA vaccines has become promising.The concept of RNA vaccines has been demonstrated in humans,and the prospects for further development into commercial products are very encouraging.%核酸疫苗包括质粒DNA、病毒载体和RNA疫苗,极有可能促成新一代疫苗生产方式的变革,因为它既综合了减毒活疫苗的优势,又避免了减毒活疫苗的安全性及生产复杂性等问题.RNA疫苗,包括基于信使RNA(mRNA)和自我扩增RNA复制子的疫苗,能克服质粒DNA和病毒载体的局限性.随着RNA疫苗的生产可行性及成本问题的解决,RNA疫苗商业化的曙光已经显现.RNA疫苗概念在人体中已得到验证,其进一步开发为商业化产品的前景令人鼓舞.

  4. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tes

  5. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and

  6. SnoRNA derived small RNA%核仁小RNA源性小RNA

    Institute of Scientific and Technical Information of China (English)

    徐玲; 胡娜

    2010-01-01

    最新研究结果表明,一些与RNA介导基因沉默相关的小RNA由核仁小RNA(small nucleolar RNA,snoRNA)加工产生,这种小RNA被称为核仁小RNA源性小RNA(snoRNA derived small RNA,sdRNA).sdRNA现象分布物种广;涉及的snoRNA种类全,数量多;产生的小RNA分子大小不一,数量、种类多.表明这种小RNA在生物中存任着广泛的普遍性.sdRNA的发现拓展了snoRNA的功能,揭示了snoRNA与RNA介导的基因沉默之间的紧密关系,增强了SnoRNA在RNA调控网络中的重要性,并为进一步研究RNA调控网络开启了一扇门.

  7. RNA interference and small interference RNA%RNA干涉和小干涉RNA

    Institute of Scientific and Technical Information of China (English)

    张芹; 王勇; 钱凯先

    2005-01-01

    RNA干涉(RNA interference.RNAi)可以抑制诸多真核基因的表达,小干涉RNA(small intmference RNA,siRNA)是RNA干涉的引发物,不同的siRNA可以引导不同水平的RNA干涉,不同种细胞中siRNA的寡核苷酸链的性质也有很大的不同.非编码RNA中的微小RNA(micnoRNA,miRNA)与siRNA在结构及作用方式等方面有很多区别和联系.RNAi的作用机制大致有两种:在Drosophila中的一般作用模式和在C.elegans中的扩大作用模式.利用RNA干涉技术可以通过抑制基因的表达来研究其功能;RNA干涉作为基因治疗的工具,在肝炎和AIDS的治疗过程中有一定的作用.RNAi的高特异性、高效性、放大效应和无细胞特异性等特点在科研中得到了广泛的应用.

  8. MicroRNA and cancer

    National Research Council Canada - National Science Library

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    .... The best characterized non‐coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human...

  9. MicroRNA and cancer

    DEFF Research Database (Denmark)

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA......With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential...

  10. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily...... connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster...

  11. Shapes of RNA pseudoknot structures

    CERN Document Server

    Reidys, Christian M

    2009-01-01

    In this paper we study $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes of $k$-noncrossing, $\\sigma$-canonical RNA structures. These shapes, if induced by RNA secondary structures coincide with the $\\pi$- and $\\pi'$-shapes introduced by \\cite{Giegerich:04ashape}. Using a novel approach we compute the generating functions of $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes as well as the generating functions of all $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes induced by $k$-noncrossing, $\\sigma$-canonical RNA structures for fixed $n$. By means of singularity analysis of the generating functions, we derive explicit asymptotic expressions and can prove that $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes lead to a meaningful categorization of RNA pseudoknot structures.

  12. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  13. Insights into circular RNA biology

    DEFF Research Database (Denmark)

    Ebbesen, Karoline K; Hansen, Thomas B; Kjems, Jørgen

    2016-01-01

    Circular RNAs (circRNAs) are a novel class of non-coding RNA characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed backsplicing. CircRNAs are emerging as a heterogeneous class of molecules involved in modulating gene expression by regu...... and lastly, an outlook with a focus on unanswered questions regarding circRNA biology will be included....

  14. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression post-transcriptionally by binding to complementary sequences in the 3’UTR of target mRNAs in the cytoplasm. However, recent evidence suggests that certain miRNAs are enriched in the nucleus......, and their targets do not seem restricted to mRNA 3’UTRs. Therefore, miRNAs are predicted to have a variety functions throughout mammalian cells. MiRNA genes appear to be regulated in much the same way as coding genes, but current insight into transcriptional miRNA control lacks detail, as mapping miRNA promoters...... and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer...

  15. RNA tertiary structure prediction with ModeRNA.

    Science.gov (United States)

    Rother, Magdalena; Rother, Kristian; Puton, Tomasz; Bujnicki, Janusz M

    2011-11-01

    Noncoding RNAs perform important roles in the cell. As their function is tightly connected with structure, and as experimental methods are time-consuming and expensive, the field of RNA structure prediction is developing rapidly. Here, we present a detailed study on using the ModeRNA software. The tool uses the comparative modeling approach and can be applied when a structural template is available and an alignment of reasonable quality can be performed. We guide the reader through the entire process of modeling Escherichia coli tRNA(Thr) in a conformation corresponding to the complex with an aminoacyl-tRNA synthetase (aaRS). We describe the choice of a template structure, preparation of input files, and explore three possible modeling strategies. In the end, we evaluate the resulting models using six alternative benchmarks. The ModeRNA software can be freely downloaded from http://iimcb.genesilico.pl/moderna/ under the conditions of the General Public License. It runs under LINUX, Windows and Mac OS. It is also available as a server at http://iimcb.genesilico.pl/modernaserver/. The models and the script to reproduce the study from this article are available at http://www.genesilico.pl/moderna/examples/.

  16. miSolRNA: A tomato micro RNA relational database

    Directory of Open Access Journals (Sweden)

    Fernie Alisdair R

    2010-11-01

    Full Text Available Abstract Background The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA. Description We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit. Conclusions The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES and newly annotated sequences (BAC sequences released, ii to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii to retrieve expression data of target genes in tomato fruit along their developmental period and iv to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species.

  17. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  18. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  19. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  20. RNA structure. Structure of the HIV-1 RNA packaging signal.

    Science.gov (United States)

    Keane, Sarah C; Heng, Xiao; Lu, Kun; Kharytonchyk, Siarhei; Ramakrishnan, Venkateswaran; Carter, Gregory; Barton, Shawn; Hosic, Azra; Florwick, Alyssa; Santos, Justin; Bolden, Nicholas C; McCowin, Sayo; Case, David A; Johnson, Bruce A; Salemi, Marco; Telesnitsky, Alice; Summers, Michael F

    2015-05-22

    The 5' leader of the HIV-1 genome contains conserved elements that direct selective packaging of the unspliced, dimeric viral RNA into assembling particles. By using a (2)H-edited nuclear magnetic resonance (NMR) approach, we determined the structure of a 155-nucleotide region of the leader that is independently capable of directing packaging (core encapsidation signal; Ψ(CES)). The RNA adopts an unexpected tandem three-way junction structure, in which residues of the major splice donor and translation initiation sites are sequestered by long-range base pairing and guanosines essential for both packaging and high-affinity binding to the cognate Gag protein are exposed in helical junctions. The structure reveals how translation is attenuated, Gag binding promoted, and unspliced dimeric genomes selected, by the RNA conformer that directs packaging.

  1. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased.

  2. RNA INERFERENCE%RNA干扰

    Institute of Scientific and Technical Information of China (English)

    赵永娟; 章静波

    2006-01-01

    RNA干扰(RNA interference,RNAi)是几近年发现的基因表达调节新机制,双链RNA(double-strandedRNA,dsRNA)以调节子的身份降解目的mRNA,从而调节目的基因的表达.这一发现使人们重新认识了RNA在基因信息流控制过程中的重要性.RNAi的发生机制除了研究最多的转录后基因沉默外,还发现与翻译水平调节和基因组甲基化等事件有关.RNAi被应用于生命科学的很多方面:在基因功能研究中它已成为倍受青睐的基因敲下的工具,而且它正促使新一轮基因组范围内基因功能研究运动的蓬勃开展;在癌症、病毒疾病以及代谢失调症等重大疾病的治疗方面,RNAi正显示出巨大的临床应用潜力,犹如给医药界带来了新鲜空气一样令人振奋.

  3. RNA Matchmaking: Finding Cellular Pairing Partners.

    Science.gov (United States)

    Graveley, Brenton R

    2016-07-21

    RNA structure is intimately related to function, yet methods to identify base-paired RNA strands in a transcriptome-wide manner in cells have remained elusive. One recent paper in Cell and two in Molecular Cell describe related methods to identify RNA sequences that interact in living cells, setting the stage for breakthroughs in our understanding of RNA structure and function.

  4. Predicting RNA Structure Using Mutual Information

    DEFF Research Database (Denmark)

    Freyhult, E.; Moulton, V.; Gardner, P. P.

    2005-01-01

    Background: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is of...

  5. MicroRNA mimicry blocks pulmonary fibrosis

    NARCIS (Netherlands)

    Montgomery, Rusty L; Yu, Guoying; Latimer, Paul A; Stack, Christianna; Robinson, Kathryn; Dalby, Christina M; Kaminski, Naftali; van Rooij, Eva

    2014-01-01

    Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular diseas

  6. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  7. Combinatorics of RNA structures with pseudoknots.

    Science.gov (United States)

    Jin, Emma Y; Qin, Jing; Reidys, Christian M

    2008-01-01

    In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recursion, respectively. Furthermore, we enumerate for arbitrary k all k-noncrossing, restricted RNA structures i.e. k-noncrossing RNA structures without 2-arcs i.e. arcs of the form (i,i+2), for 1< or =i< or =n-2.

  8. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  9. Role of CBCA in RNA biogenesis

    DEFF Research Database (Denmark)

    Iasillo, Claudia

    RNA transcription and RNA processing are key steps in eukaryotic gene expression, which includes, therefore, RNA synthesis by RNA polymerase enzymes and a range of modifications of the pre-mRNA before the transcript can leave the nucleus and reach the cytoplasm for translation. Interestingly......, a large body of evidence suggests that these RNA processing events occur often already during transcription. One of these modifications, the co-transcriptional 5’ end capping of a nascent RNA, is occurring specifically during RNA polymerase II (RNAPII) transcription. The 5’ cap exerts its role via...... transcription and, they suggest that the protein is involved in the mechanism of promoter-proximal stalling. This role is partially shared by the protein ZC3H18 while exosome depletion does not affect the transcription of any RNA analyzed. The ChIP-seq data were complemented by RNA-seq after depletion of CBCA...

  10. RNA-Based Vaccines in Cancer Immunotherapy.

    Science.gov (United States)

    McNamara, Megan A; Nair, Smita K; Holl, Eda K

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  11. Borate Minerals and RNA Stability

    Directory of Open Access Journals (Sweden)

    Ernesto Di Mauro

    2010-08-01

    Full Text Available The abiotic origin of genetic polymers faces two major problems: a prebiotically plausible polymerization mechanism and the maintenance of their polymerized state outside a cellular environment. The stabilizing action of borate on ribose having been reported, we have explored the possibility that borate minerals stabilize RNA. We observe that borate itself does not stabilize RNA. The analysis of a large panel of minerals tested in various physical-chemical conditions shows that in general no protection on RNA backbone is exerted, with the interesting exception of ludwigite (Mg2Fe3+BO5. Stability is a fundamental property of nucleic polymers and borate is an abundant component of the planet, hence the prebiotic interest of this analysis.

  12. High sensitivity RNA pseudoknot prediction.

    Science.gov (United States)

    Huang, Xiaolu; Ali, Hesham

    2007-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. The PLM model is derived from the existing Pseudobase entries. The innovative DPSS approach calculates the optimally lowest stacking energy between two partner sequences. Combined with the Mfold, PLMM_DPSS can also be used in predicting complicated pseudoknots. The test results of PLMM_DPSS, PKNOTS, iterated loop matching, pknotsRG and HotKnots with Pseudobase sequences have shown that PLMM_DPSS is the most sensitive among the five methods. PLMM_DPSS also provides manageable pseudoknot folding scenarios for further structure determination.

  13. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen

    Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... RNAs include the 2´-5´ oligoadenylate synthetase system, the protein kinase R, RIG-I and Toll-like receptor activated pathways all resulting in antiviral defence mechanism. We have previously shown that antiviral innate immune reactions against double stranded RNAs could be detected in vivo as partial...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form...

  14. RNA干扰%RNA interference

    Institute of Scientific and Technical Information of China (English)

    江舸; 金由辛

    2003-01-01

    RNA干扰(RNA interference,RNAi)现象是指,当与内源性mRNA编码区某段序列同源的双链RNA(dsRNA)导入细胞后,该mRNA发生特异性的降解,而导致该基因表达的沉寂.这可能反映了生物防范病毒或转座子诱导DNA突变的一种防御机制.RNA干扰已经成为一种重要的研究基因功能的有力工具,并且有希望在对疾病的防御及治疗中发挥重要的作用.

  15. RNA干扰%RNA interference

    Institute of Scientific and Technical Information of China (English)

    陈凌; 郑祥雄

    2003-01-01

    @@ 1998年,Fire等人首次发现双链RNA(dsRNA)能够特异地抑制秀丽新小杆线虫中的纹状肌细胞unc-22基因的表达,这种抑制效能比单独应用正义或反义 RNA强十几倍;进一步研究还发现,用少量dsRNA处理的线虫就能呈现基因沉默的现象,并且该抑制现象可以传给第二代.他们将这一现象称为RNA干扰(RNA interference,RNAi)+[1].因为RNAi作用发生在转录后水平,所以又被称为转录后基因沉默(post-transcriptional gene silencing,PTGS).

  16. Engineering RNA-binding proteins for biology

    OpenAIRE

    Chen,Yu; Varani, Gabriele

    2013-01-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequenc...

  17. Construction of shRNA lentiviral vector

    Directory of Open Access Journals (Sweden)

    Hong Song

    2010-12-01

    Full Text Available Lentiviruses have been adapted as gene delivery vehicles. This article summarized shRNA lentiviral vector methods generally used in research laboratories. The main procedures of shRNA lentiviral vector include that (1 Target sequences screening and shRNA oligonucleotides designing, (2 insert designed oligonucleotides into lentiviral vectors, (3 using packaging cells to produce shRNA lentivirus, and (4 transducing target cells with shRNA lentivirus.

  18. Mutual Interference between Genomic RNA Replication and Subgenomic mRNA Transcription in Brome Mosaic Virus

    OpenAIRE

    Grdzelishvili, Valery Z.; Garcia-Ruiz, Hernan; Watanabe, Tokiko; Ahlquist, Paul

    2005-01-01

    Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expres...

  19. How to find RNA thermometers

    Directory of Open Access Journals (Sweden)

    Francesco eRighetti

    2014-09-01

    Full Text Available Temperature is one of the decisive signals that a mammalian pathogen has entered its warm-blooded host. Among the many ways to register temperature changes, bacteria often use temperature-modulated structures in the untranslated region of mRNAs. In this article, we describe how such RNA thermometers have been discovered one by one upstream of heat shock and virulence genes in the past, and how next-generation sequencing approaches are able to reveal novel temperature-responsive RNA structures on a global scale.

  20. Automated RNA Sample Quality Control

    OpenAIRE

    Borg, Solange; Salowsky, Ruediger; Inche, Adam; Connelly, Matthew; Boland, Dierdre; Padmanabanv, Arunkumar; Graf, Eva; Liu, Melissa Huang

    2014-01-01

    The Agilent 2200 TapeStation system provides a flexible solution for automated analysis of up to 96 samples using pre-packaged reagents and minimal manual handling. Here we present a new assay – the RNA ScreenTape assay – to enable robust quantification and quality analysis of Total RNA samples from both eukaryotic and prokaryotic sources from 100 pg/μl to 500 ng/μl. The new assay additionally benefits from the ability to provide separation of contaminant genomic DNA allowing more accurate pu...

  1. GrowthinhibitioninducedbyshorthairpinRNA tosilencesurvivingeneinhumanpancreatic cancercells

    Institute of Scientific and Technical Information of China (English)

    Yong-Mei Shen; Xiao-Chun Yang; Miao-Li Song; Chen-Hao Qin; Chen Yang; Yi-Hui Sun

    2010-01-01

    BACKGROUND: Survivin is known to be overexpressed in various human malignancies, including pancreatic cancer, and mediates cancer cell proliferation and tumor growth, so the regulation of this molecule could be a new strategy for treating pancreatic cancer. In this study, short hairpin RNAs (shRNAs) speciifc to survivin were introduced into human pancreatic cancer Patu8988 cells to investigate the inhibitory effects on survivin expression and cell proliferation in vitro and in vivo. METHODS: Three kinds of shRNA speciifc to the survivin gene were designed and cloned into eukaryotic expression plasmid pGenesil-1 vector. Subsequently the recombinant plasmids were transfected into human pancreatic cancer Patu8988 cells with lipfectamineTM 2000 reagent. The mRNA and protein expressions of survivin in the transiently transfected Patu8988 cells were determined by RT-PCR, lfow cytometry, and Western blotting analysis. The proliferation inhibition rates of stably transfected Patu8988 cells were determined by MTT assay. The antitumor activities of the three kinds of survivin-shRNA plasmids were evaluated in BALB/c nude mice inoculated with Patu8988 cells and bearing human pancreatic cancer. RESULTS: The three survivin-shRNA plasmids named pGenesil-1-survivin-1, pGenesil-1-survivin-2 and pGenesil-1-survivin-1+2 (with double interfering RNA sites) were successfully constructed, and were conifrmed by restriction enzyme cutting and sequencing. At 48 hours after transfection, the expression of survivin mRNA and protein was inhibited in Patu8988 cells transfected with pGenesil-1-survivin-1, pGenesil-1-survivin-2, and pGenesil-1-survivin-1+2 when compared with that of either pGenesil-1-NC (with scrambled small interfering RNA) transfected cells or control cells (P CONCLUSIONS: shRNAs speciifc to survivin have gene silencing effects and inhibit pancreatic cancer cell proliferation. shRNA activity against survivin could be of potential value in gene therapy for pancreatic

  2. Biochemical characterization of rhinovirus RNA-dependent RNA polymerase.

    Science.gov (United States)

    Hung, Magdeleine; Gibbs, Craig S; Tsiang, Manuel

    2002-11-01

    Human rhinoviruses (HRV) represent the single most important causative agent of the common cold. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) designated 3D polymerase that is required for replication of the HRV RNA genome. We have expressed and purified recombinant HRV-16 3D polymerase to near homogeneity from Escherichia coli transformed with an expression plasmid containing the full-length 460 amino acid HRV-16 3D sequence with a methionine at the N-terminus and a glycine-serine linker followed by a 6-histidine affinity tag at the C-terminus. The purified recombinant protein has rifampicin-resistant activity in a poly(A)-dependent poly(U) polymerase assay while corresponding fractions similarly purified from E. coli transformed with an expression plasmid without the HRV-16 3D sequence showed no activity. The optimal conditions for temperature, pH, divalent cations Mg(2+) and Mn(2+), and KCl were determined. The recombinant protein has RNA polymerase activity on homopolymeric templates poly(A) and poly(C) and heteropolymeric RNA templates primed with either RNA or DNA oligonucleotide primers or self-primed by a copy-back mechanism. A unique, secondary structureless heteropolymeric RNA template that is an efficient substrate was developed to facilitate kinetic characterizations of the enzyme. In the presence of Mg(2+), the enzyme displayed strong base and sugar specificity. However, when Mg(2+) was replaced by Mn(2+) specificity for ribonucleotides was lost, utilization of deoxynucleotides became possible and primer-independent activity was observed on the poly(C) template. Zn(2+) was found to inhibit HRV-16 3D polymerase with an IC(50) as low as 0.6 microM by a mechanism distinct from the magnesium ion stimulation. The activity of this 6His-tagged HRV-16 3D polymerase was compared with that of a recombinant HRV-16 3D polymerase expressed without the 6His-tag and was found to be identical. The availability of recombinant rhinovirus RdRp in a

  3. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.C.J.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.Previously, an RNA-dependent RNA polymerase produced upon infection of Vigna unguiculata

  4. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten;

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  5. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing

    Science.gov (United States)

    Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki

    2017-01-01

    As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method. PMID:28148949

  6. miRNA Isolation from FFPET Specimen: A Technical Comparison of miRNA and Total RNA Isolation Methods.

    Science.gov (United States)

    Nagy, Zsófia Brigitta; Wichmann, Barnabás; Kalmár, Alexandra; Barták, Barbara Kinga; Tulassay, Zsolt; Molnár, Béla

    2016-07-01

    MiRNA remain stable for detection and PCR-based amplification in FFPE tissue samples. Several miRNA extraction kits are available, however miRNA fraction, as part of total RNA can be isolated using total RNA purification methods, as well. Our primary aim was to compare four different miRNA and total RNA isolation methods from FFPE tissues. Further purposes were to evaluate quantitatively and qualitatively the yield of the isolated miRNA. MiRNAs were isolated from normal colorectal cancer FFPE specimens from the same patients. Two miRNA isolation kits (High Pure miRNA Isolation Kit, miRCURY™ RNA Isolation Kit) and two total RNA isolation kits were compared (High Pure RNA Paraffin Kit, MagNA Pure 96 Cellular RNA LV Kit). Quantity and quality were determined, expression analysis was performed by real-time PCR using qPCR Human Panel I + II (Exiqon) method detecting 742 human miRNAs in parallel. The yield of total RNA was found to be higher than miRNA purification protocols (in CRC: Ex: 0203 ± 0021 μg; HPm: 1,45 ± 0,8 μg; HPp: 21,36 ± 4,98 μg; MP: 8,6 ± 5,1 μg). MiRNAs were detected in lower relative quantity of total RNA compared to the miRNA kits. Higher number of miRNAs could be detected by the miRNA isolation kits in comparison to the total RNA isolation methods. (Ex: 497 ± 16; HPm: 542 ± 11; HPp: 332 ± 36; MP: 295 ± 74). Colon specific miRNAs (miR-21-5p;-34-5p) give satisfying results by miRNA isolation kits. Although miRNA can be detected also after total RNA isolation methods, for reliable and reproducible miRNA expression profiling the use of miRNA isolation kits are more suitable.

  7. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-09-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  8. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA

    DEFF Research Database (Denmark)

    Kedde, Martijn; Strasser, Markus J; Boldajipour, Bijan

    2007-01-01

    MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally...... not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution. We therefore hypothesized that conserved regions in mRNAs may serve as docking platforms for modulators of miRNA activity. Here we demonstrate that the expression of dead end 1 (Dnd1......), an evolutionary conserved RNA-binding protein (RBP), counteracts the function of several miRNAs in human cells and in primordial germ cells of zebrafish by binding mRNAs and prohibiting miRNAs from associating with their target sites. These effects of Dnd1 are mediated through uridine-rich regions present...

  9. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and alig...... the methods based on the Sankoff algorithm. All the practical implementations of the algorithm use heuristics to make them run in reasonable time and memory. These heuristics are also described in this chapter.......Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...... two or more sequences. The advantage of this algorithm over those that separate the folding and alignment steps is that it makes better predictions. The disadvantage is that it is slower and requires more computer memory to run. The amount of computational resources needed to run the Sankoff algorithm...

  10. Small RNA in rice genome

    Institute of Scientific and Technical Information of China (English)

    王凯; 朱小蓬; 钟兰; 陈润生

    2002-01-01

    Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and noncoding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have homologs in 108 rice scaffolds, and almost all of them (99.41%) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special U14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants, 86% sequences of them can be compared as the same sequence in rice, Arabidopsis and maize; the other conserved sRNA XLHS7CU14 has a segment which appears in almost all these species from plants to animals. All these results indicate that sRNA do not have evident borderline between plants and animals.

  11. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  12. RNA isolation and fractionation with compaction agents

    Science.gov (United States)

    Murphy, J. C.; Fox, G. E.; Willson, R. C.

    2001-01-01

    A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.

  13. Aminoacyl-tRNA synthesis in Archaea.

    Science.gov (United States)

    Ibba, M; Celic, I; Curnow, A; Kim, H; Pelaschier, J; Tumbula, D; Vothknecht, U; Woese, C; Söll, D

    1997-01-01

    The mechanism of aminoacyl-tRNA synthesis differs substantially between Archaea, Bacteria and Eukarya. Sequencing of archaeal genomes has suggested that the asparaginyl-, cysteinyl-, glutaminyl- and lysyl-tRNA synthetases are absent from a number of organisms in this kingdom. The absence of the asparaginyl- and glutaminyl-tRNA synthetases is in agreement with the observation that Asn-tRNA and Gln-tRNA are synthesized by tRNA-dependent transamidation of Asp-tRNA and Glu-tRNA respectively in the archaeon Haloferax volcanii. Biochemical and genetic studies have now shown that while the cysteinyl- and lysyl-tRNA synthetases are present, the enzymes responsible for these activities are unique to Archaea.

  14. Hydration of protein–RNA recognition sites

    Science.gov (United States)

    Barik, Amita; Bahadur, Ranjit Prasad

    2014-01-01

    We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces. PMID:25114050

  15. RNA silencing and plant viral diseases.

    Science.gov (United States)

    Wang, Ming-Bo; Masuta, Chikara; Smith, Neil A; Shimura, Hanako

    2012-10-01

    RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.

  16. Analysis of MicroRNA Niches: Techniques to Measure Extracellular MicroRNA and Intracellular MicroRNA In Situ

    Science.gov (United States)

    Parikh, Victoria N.; Chan, Stephen Y.

    2013-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that negatively regulate gene expression and control a wide range of cellular processes. Extracellular forms of miRNA circulating in the bloodstream (circulating miRNA, c-miRNA) are of increasing interest for their potential as biomarkers and long-range physiological signaling molecules. Precise measurement of intracellular miRNA expression is possible but can be challenging, especially in the context of specialized tissue niches in vivo. The accurate measurement of extracellular miRNA presents other obstacles stemming from their low concentrations and confounding sources of intracellular miRNA that contaminate RNA extraction protocols. Here, we describe multiple methods to isolate extracellular miRNA from cell culture media, serum, and plasma in order to accurately measure their variable expression under different conditions. We additionally describe an in situ staining protocol designed not only to quantify, but also to localize miRNA in formalin-fixed paraffin-embedded (FFPE) tissue, that may prove useful in describing the action of c-miRNA before they leave their tissue of origin and after they potentially arrive at their target destination. PMID:23719949

  17. Overview of MicroRNA Biology

    OpenAIRE

    2015-01-01

    In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of mRNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA (siRNA). However, microRNA function is more complicated and nuanced than this ‘on-off’ model would suggest. Further, many microRNA targets are t...

  18. MicroRNA Delivery for Regenerative Medicine

    OpenAIRE

    Peng, Bo; Chen, Yongming; Leong, Kam W.

    2015-01-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages an...

  19. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.......Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  20. Modular arrangement of regulatory RNA elements

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-01-01

    ABSTRACT Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed. PMID:28010165

  1. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer ...

    African Journals Online (AJOL)

    Quantitative real-time polymerase chain reaction technology (qRT-PCR) was used to detect the expressions of ... RNA extraction and reverse transcription. Total RNA was .... Pfaendler KS, Wenzel L, Mechanic MB, Penner KR. Cervical cancer ...

  2. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs.

    Science.gov (United States)

    Thomas, Justin M; Beal, Peter A

    2017-02-20

    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X-ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable light on how the catalytic domains of these enzymes bind RNA and promote adenosine deamination. Here we review in detail the deaminase domain-RNA contact surfaces and present models of how full length ADARs, bearing double stranded RNA-binding domains (dsRBDs) and deaminase domains, could process naturally occurring substrate RNAs.

  3. Depletion of Ribosomal RNA Sequences from Single-Cell RNA-Sequencing Library.

    Science.gov (United States)

    Fang, Nan; Akinci-Tolun, Rumeysa

    2016-07-01

    Recent advances in single-cell RNA sequencing technologies have revealed high heterogeneity of gene expression profiles in individual cells. However, most current single-cell RNA-seq methods use oligo-dT priming in the reverse transcription steps and detect only polyA-positive for more accuracy, since there are also polyA-positive non-coding RNAs transcripts, not other important RNA species, such as polyA-negative noncoding RNA. Reverse transcription using random oligos enables detection of not only the noncoding RNA species without polyA tails, but also ribosomal RNA (rRNA). rRNA comprises more than 90% of the total RNA and should be depleted from the RNA-seq library to ensure efficient usage of the sequencing capacity. Commonly used hybridization-based rRNA depletion methods can preserve noncoding RNA in the standard RNA-seq library. However, such rRNA depletion methods require high input amounts of total RNA and do not work at the single-cell level or with limited input DNA. This unit describes a novel procedure for RNA-seq library construction from single cells or a minimal amount of RNA. A thermostable duplex-specific nuclease is used in this method to effectively remove ribosomal RNA sequences following whole-transcriptome amplification and sequencing library construction. © 2016 by John Wiley & Sons, Inc.

  4. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  5. RNA structural analysis by evolving SHAPE chemistry.

    Science.gov (United States)

    Spitale, Robert C; Flynn, Ryan A; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2014-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2'-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base-pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2' hydroxyl group reactivity. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (selective 2'- hydroxyl acylation and primer extension). Herein, we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being applied to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merging of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function.

  6. RNA Structural Analysis by Evolving SHAPE Chemistry

    Science.gov (United States)

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  7. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  8. Application of Live-Cell RNA Imaging Techniques to the Study of Retroviral RNA Trafficking

    Directory of Open Access Journals (Sweden)

    Darrin V. Bann

    2012-06-01

    Full Text Available Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA, which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.

  9. The yeast noncoding RNA interaction network.

    Science.gov (United States)

    Panni, Simona; Prakash, Ananth; Bateman, Alex; Orchard, Sandra

    2017-10-01

    This article describes the creation of the first expert manually curated noncoding RNA interaction networks for S. cerevisiae The RNA-RNA and RNA-protein interaction networks have been carefully extracted from the experimental literature and made available through the IntAct database (www.ebi.ac.uk/intact). We provide an initial network analysis and compare their properties to the much larger protein-protein interaction network. We find that the proteins that bind to ncRNAs in the network contain only a small proportion of classical RNA binding domains. We also see an enrichment of WD40 domains suggesting their direct involvement in ncRNA interactions. We discuss the challenges in collecting noncoding RNA interaction data and the opportunities for worldwide collaboration to fill the unmet need for this data. © 2017 Panni et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. The parallel universe of RNA folding.

    Science.gov (United States)

    Batey, R T; Doudna, J A

    1998-05-01

    How do large RNA molecules find their active conformations among a universe of possible structures? Two recent studies reveal that RNA folding is a rapid and ordered process, with surprising similarities to protein folding mechanisms.

  11. Inverse Folding of RNA Pseudoknot Structures

    CERN Document Server

    Gao, James Z M; Reidys, Christian M

    2010-01-01

    Background: RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and \\pairGU-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, {\\tt RNAinverse}, {\\tt RNA-SSD} as well as {\\tt INFO-RNA} are limited to RNA secondary structures, we present in this paper the inverse folding algorithm {\\tt Inv} which can deal with 3-noncrossing, canonical pseudoknot structures. Results: In this paper we present the inverse folding algorithm {\\tt Inv}. We give a detailed analysis of {\\tt Inv}, including pseudocodes. We show that {\\tt Inv} allows to...

  12. Epigenetic regulation by heritable RNA.

    Directory of Open Access Journals (Sweden)

    Reinhard Liebers

    2014-04-01

    Full Text Available Genomic concepts are based on the assumption that phenotypes arise from the expression of genetic variants. However, the presence of non-Mendelian inheritance patterns provides a direct challenge to this view and suggests an important role for alternative mechanisms of gene regulation and inheritance. Over the past few years, a highly complex and diverse network of noncoding RNAs has been discovered. Research in animal models has shown that RNAs can be inherited and that RNA methyltransferases can be important for the transmission and expression of modified phenotypes in the next generation. We discuss possible mechanisms of RNA-mediated inheritance and the role of these mechanisms for human health and disease.

  13. Mutation rates among RNA viruses

    OpenAIRE

    Drake, John W.; Holland, John J.

    1999-01-01

    The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viru...

  14. Radiation target analysis of RNA.

    OpenAIRE

    Benstein, S L; Kempner, E

    1996-01-01

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of i...

  15. Prediction for RNA planar pseudoknots

    Institute of Scientific and Technical Information of China (English)

    Li Hengwu; Zhu Daming; Liu Zhendong; Li Hong

    2007-01-01

    Based on m-stems and semi-extensible structure, a model is presented to represent RNA planar pseudoknots, and corresponding dynamic programming algorithm is designed and implemented to predict arbitrary planar pseudoknots and simple non-planar pseudoknots with O(n4) time and O(n3) space. The algorithm folds total 245 sequences in the Pseudobase database, and the test results indicate that the algorithm has good accuracy, sensitivity and specificity.

  16. RNA干扰%RNA Interference

    Institute of Scientific and Technical Information of China (English)

    陈颖; 朱明华

    2003-01-01

    RNA干扰(RNA interference,RNAi)是一种古老的生物抗病毒机制,能介导序列特异性的mRNA降解,是基因功能研究和蛋白组学的有效工具,在药物靶基因的筛选、抗病毒、肿瘤基因治疗等领域有很好的发展前景.

  17. Topology and prediction of RNA pseudoknots

    DEFF Research Database (Denmark)

    Reidys, Christian; Huang, Fenix; Andersen, Jørgen Ellegaard

    2011-01-01

    Motivation: Several dynamic programming algorithms for predicting RNA structures with pseudoknots have been proposed that differ dramatically from one another in the classes of structures considered. Results: Here, we use the natural topological classification of RNA structures in terms of irredu......Motivation: Several dynamic programming algorithms for predicting RNA structures with pseudoknots have been proposed that differ dramatically from one another in the classes of structures considered. Results: Here, we use the natural topological classification of RNA structures in terms...

  18. Current techniques for visualizing RNA in cells

    Science.gov (United States)

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  19. The extracellular RNA complement of Escherichia coli.

    Science.gov (United States)

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  20. RNA recombination in animal and plant viruses.

    OpenAIRE

    1992-01-01

    An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses ...

  1. Peptides as catalysts in the RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Luisi, Pier Luigi

    The emergence of RNA chains from prebiotic soup is considered a stumbling block in the RNA world theory (Orgel 2004). Both the activation of RNA monomers and their subsequent oligomerization is hard to achieve in accepted early Earth conditions, thus putting doubt on the prebiotic plausibility of...

  2. Some aspects of RNA repair and editing

    Directory of Open Access Journals (Sweden)

    Kovalchuk M. V.

    2010-11-01

    Full Text Available All cellular RNA molecules are damaged at the scale of DNA molecules, or even more. In the present review the RNA damaging agents, some mechanisms of RNA repair and editing, their difference from DNA repair mechanisms have been discussed.

  3. Concepts and introduction to RNA bioinformatics

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Ruzzo, Walter L.

    2014-01-01

    changes. These methods have been developed further and applied for computational screens of genomic sequence. Furthermore, a number of additional directions have emerged. These include methods to search for RNA 3D structure, RNA-RNA interactions, and design of interfering RNAs (RNAi) as well as methods...

  4. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  5. RNA-protein interactions: an overview

    DEFF Research Database (Denmark)

    Re, Angela; Joshi, Tejal; Kulberkyte, Eleonora;

    2014-01-01

    RNA binding proteins (RBPs) are key players in the regulation of gene expression. In this chapter we discuss the main protein-RNA recognition modes used by RBPs in order to regulate multiple steps of RNA processing. We discuss traditional and state-of-the-art technologies that can be used to stud...

  6. Peptides as catalysts in the RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Luisi, Pier Luigi

    The emergence of RNA chains from prebiotic soup is considered a stumbling block in the RNA world theory (Orgel 2004). Both the activation of RNA monomers and their subsequent oligomerization is hard to achieve in accepted early Earth conditions, thus putting doubt on the prebiotic plausibility of...

  7. RNA interference as a gene knockdown technique.

    Science.gov (United States)

    Shan, Ge

    2010-08-01

    Not many scientific breakthroughs bring significant advances simultaneously in both basic research and translational applications like the discovery of RNA interference. Along with the elucidation of the RNA interference pathway and the discovery of its participation in crucial biological events, a branch of science has grown to utilize the RNA interference pathway as a biotechnology for both basic and applied research. Small interference RNA, plasmid-, and virus-encoded short-hairpin RNA are now regular reagents in the tool box of biologists to knockdown the expression of specific genes posttranscriptionally. Efforts have also been made to develop RNA interference based therapeutics into reality. Many concerns about the RNA interference technique have now been answered through research and development, although hurdles are still present. In this review, the RNA interference/microRNA pathway is briefly introduced followed with a detailed summary about the design and application of the RNA interference experiments, along with examples of the utilization of the RNA interference technology in animal cells and model organisms. Recent progresses and current concerns are also highlighted. Two techniques, namely morpholino and external guide sequence, are discussed as complementary gene knockdown technology. RNA interference technology, along with several other alternative gene knockdown techniques, is now indispensable to modern biological and medical research.

  8. RNAome sequencing delineates the complete RNA landscape

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); J. Pothof (Joris)

    2015-01-01

    textabstractStandard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specif

  9. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  10. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle.

    Science.gov (United States)

    Kuhn, Claus-D

    2016-05-01

    tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis.

  11. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6

    DEFF Research Database (Denmark)

    Devert, Anthony; Fabre, Nicolas; Floris, Maina Huguette Joséphine

    2015-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA......-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer......-independent and primer-dependent RNA polymerase activities with different efficiencies. We further show that RDR2 and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs hybridized to complementary RNA template or by elongation of self-primed RNA template. These findings provide new...

  12. RNA Transferring Vector-pRNA%RNA转移载体-pRNA

    Institute of Scientific and Technical Information of China (English)

    杨燕; 张正茂; 杨东亮

    2005-01-01

    pRNA(packaging RNA)是枯草杆菌噬菌体ψ29前衣壳上分离出的一种小RNA分子,它作为一种效应分子的天然生物载体,可以保护效应分子不被核酸外切酶降解,防止效应分子在体内的错误折叠.pRNA能够形成二聚体、三聚体和六聚体,因此pRNA不仅可以携带效应分子,而且可以同时携带配体分子,使效应分子具有明确的靶向性.pRNA作为新一代基因转移载体,具有非常强大的应用前景.

  13. The first discovery of RNA interference by RNA restriction enzymes to inhibit protein synthesis.

    Science.gov (United States)

    Inouye, Masayori

    2017-01-15

    In this article, I review how an RNA restriction enzyme, a highly sequence-specific endoribonuclease, was for the first time discovered in 2003 and how the concept of RNA interference using RNA restriction enzymes or mRNA interferases has been developed.

  14. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation.

  15. Precursors of ribosomal RNA in yeast nucleus : Biosynthesis and relation to cytoplasmic ribosomal RNA

    NARCIS (Netherlands)

    Sillevis Smitt, W.W.; Vlak, J.M.; Schiphof, R.; Rozijn, Th.H.

    In vivo methylated precursors of ribosomal RNA in yeast have been characterized on acrylamide gels. The initial ribosomal precursor in the yeast nucleus is a 37S RNA component, which is processed to a nuclear 28S RNA. Both the 37S and the 28S RNA components are important constituents of the yeast

  16. Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    NARCIS (Netherlands)

    Vilfan, I.D.; Candelli, A.; Hage, S.; Aalto, A.P.; Poranen, M.M.; Bamford, D.H.; Dekker, N.H.

    2008-01-01

    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regul

  17. A telescope for the RNA universe : novel bioinformatic approaches to analyze RNA sequencing data

    NARCIS (Netherlands)

    Pulyakhina, Irina

    2016-01-01

    In this thesis I focus on the application of bioinformatics to analyze RNA. The type of experimental data of interest is sequencing data generated with various Next Generation Sequencing technique: nuclear RNA, cytoplasmic RNA, captured polyadenylated RNA fragments, etc. I highlight the necessity in

  18. RNA interference of influenza A virus replication by microRNA-adapted lentiviral loop short hairpin RNA.

    Science.gov (United States)

    Xu, Fang; Liu, Guanqun; Liu, Qiang; Zhou, Yan

    2015-10-01

    Limitations of the current vaccines and antivirals against influenza A virus (IAV) pandemic underscore the urgent need for developing novel anti-influenza strategies. RNA interference (RNAi) induced by small interfering RNA (siRNA) has become a powerful new means to inhibit viral infection in a gene-specific manner. However, the efficacy of the siRNA delivery platform and the relatively high cost of administration have hindered widespread application of siRNA. In this study, we developed a microRNA (miRNA)-30-based lentivirus delivery system by embedding a synthetic short hairpin RNA (shRNA) stem into the context of endogenous precursor of miRNA-30 (shRNAmir) to express a silencer of the influenza gene. We showed that the miRNA-based lentivirus vector was able to express and process a single nucleoprotein (NP)-targeting shRNAmir, which could potently inhibit IAV replication. We further showed that miRNA-based lentivirus vector carrying tandemly linked NP and polymerase PB1 shRNAmirs could express and process double shRNAmirs. Despite the relatively low levels of NP and PB1 miRNAs produced in the stably transduced cells, the combination of two miRNAs exerted a great degree of inhibition on influenza infection. Given the advantage of combinatorial RNAi in preventing emergence of mutant virus, miRNA-based lentiviral vectors are valuable tools for anitiviral activities. To the best of our knowledge, this is the first study demonstrating that a miRNA-based RNAi strategy can be applied for better control of influenza virus infection.

  19. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas

    2011-01-01

    RNA microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods....

  20. Stable RNA hairpins in 88 coding regions of human mRNA

    Institute of Scientific and Technical Information of China (English)

    PAN Min; WANG Chuanming; LIU Ciquan

    2004-01-01

    RNA hairpins containing UNCG, GNRA, CUUG (N=A, U, C or G, R=G or A) loops are unusually thermodynamic stable and conserved structures. The structural features of these hairpin loops are very special, and they play very important roles in vivo. They are prevalent in rRNA, catalytic RNA and non-coding mRNA. However, the 5′ C(UUCG)G 3′ hairpin is not found in the folding structure of 88 human mRNA coding regions. It is also different from rRNA in that there is no preference for certain sequences among tetraloops in these 88 mRNA folding structures.

  1. The microRNA body map: dissecting microRNA function through integrative genomics

    OpenAIRE

    Mestdagh, Pieter; Lefever, Steve; Pattyn, Filip; Ridzon, Dana; Fredlund, Erik; Fieuw, Annelies; Ongenaert, Maté; Vermeulen, Joëlle; De Paepe, Anne; Wong, Linda; Speleman, Franki; Chen, Caifu; Vandesompele, Jo

    2011-01-01

    While a growing body of evidence implicates regulatory miRNA modules in various aspects of human disease and development, insights into specific miRNA function remain limited. Here, we present an innovative approach to elucidate tissue-specific miRNA functions that goes beyond miRNA target prediction and expression correlation. This approach is based on a multi-level integration of corresponding miRNA and mRNA gene expression levels, miRNA target prediction, transcription factor target predic...

  2. RNA catalysis and the origins of life

    Science.gov (United States)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  3. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  4. Predicting RNA structure: advances and limitations.

    Science.gov (United States)

    Hofacker, Ivo L; Lorenz, Ronny

    2014-01-01

    RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

  5. Synthesis of 2′-Fluoro RNA by Syn5 RNA polymerase

    Science.gov (United States)

    Zhu, Bin; Hernandez, Alfredo; Tan, Min; Wollenhaupt, Jan; Tabor, Stanley; Richardson, Charles C.

    2015-01-01

    The substitution of 2′-fluoro for 2′-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2′-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2′-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2′-fluoro-dNMPs by Syn5 RNA polymerase have been identified. PMID:25897116

  6. RNA interference-mediated simultaneous silencing of four genes using cross-shaped RNA.

    Science.gov (United States)

    Lee, Tae Yeon; Chang, Chan Il; Lee, Dooyoung; Hong, Sun Woo; Shin, Chanseok; Li, Chiang J; Kim, Soyoun; Haussecker, Dirk; Lee, Dong-Ki

    2013-04-01

    The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.

  7. Characteristics and Prediction of RNA Structure

    Directory of Open Access Journals (Sweden)

    Hengwu Li

    2014-01-01

    Full Text Available RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.

  8. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  9. RNA families in Epstein–Barr virus

    Science.gov (United States)

    Moss, Walter N; Lee, Nara; Pimienta, Genaro; Steitz, Joan A

    2014-01-01

    Epstein–Barr virus (EBV) is a tumorigenic human γ-herpesvirus, which produces several known structured RNAs with functional importance: two are implicated in latency maintenance and tumorigenic phenotypes, EBER1 and EBER2; a viral small nucleolar RNA (v-snoRNA1) that may generate a small regulatory RNA; and an internal ribosomal entry site in the EBNA1 mRNA. A recent bioinformatics and RNA-Seq study of EBV identified two novel EBV non-coding (nc)RNAs with evolutionary conservation in lymphocryptoviruses and likely functional importance. Both RNAs are transcribed from a repetitive region of the EBV genome (the W repeats) during a highly oncogenic type of viral latency. One novel ncRNA can form a massive (586 nt) hairpin, while the other RNA is generated from a short (81 nt) intron and is found in high abundance in EBV-infected cells. PMID:24441309

  10. RNA families in Epstein-Barr virus.

    Science.gov (United States)

    Moss, Walter N; Lee, Nara; Pimienta, Genaro; Steitz, Joan A

    2014-01-01

    Epstein-Barr virus (EBV) is a tumorigenic human γ-herpesvirus, which produces several known structured RNAs with functional importance: two are implicated in latency maintenance and tumorigenic phenotypes, EBER1 and EBER2; a viral small nucleolar RNA (v-snoRNA1) that may generate a small regulatory RNA; and an internal ribosomal entry site in the EBNA1 mRNA. A recent bioinformatics and RNA-Seq study of EBV identified two novel EBV non-coding (nc)RNAs with evolutionary conservation in lymphocryptoviruses and likely functional importance. Both RNAs are transcribed from a repetitive region of the EBV genome (the W repeats) during a highly oncogenic type of viral latency. One novel ncRNA can form a massive (586 nt) hairpin, while the other RNA is generated from a short (81 nt) intron and is found in high abundance in EBV-infected cells.

  11. [Physicochemical properties of Teschen disease virus RNA].

    Science.gov (United States)

    Tsybanov, S Zh; Sergeev, V A; Balysheva, V I

    1982-01-01

    The specific infectivity of virion RNA of teschen disease virus in a sensitive PP cell culture was 4-5 lg TCD50/ml per 1 microgram RNA. When virion RNA was inoculated into cell cultures insusceptible to the native virus, the virus replicated to a titre of 2.0-3.5 lg TCD50/ml. The molecular weight of virion RNA determined by two independent methods was 2.7 x 10(6) daltons. Tm calculated from the curve of virion RNA melting temperature was 57 degrees C. The double-stranded replicative form of RNA recovered from virus-infected PP cells was shown to have sucrose gradient sedimentation coefficient of 20 S. The specific infectivity was 2-3 lg TCD50/ml per 1 microgram of RNA.

  12. Systems perspectives on mRNA processing

    Institute of Scientific and Technical Information of China (English)

    Adrienne E McKee; Pamela A Silver

    2007-01-01

    The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.

  13. Advances in imaging RNA in plants

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Oparka, Karl J.; Tilsner, Jens

    2010-01-01

    Increasing evidence shows that many RNAs are targeted to specific locations within cells, and that RNA-processing pathways occur in association with specific subcellular structures. Compartmentation of mRNA translation and RNA processing helps to assemble large RNA–protein complexes, while RNA...... targeting allows local protein synthesis and the asymmetric distribution of transcripts during cell polarisation. In plants, intercellular RNA trafficking also plays an additional role in plant development and pathogen defence. Methods that allow the visualisation of RNA sequences within a cellular context......, and preferably at subcellular resolution, can help to answer important questions in plant cell and developmental biology. Here, we summarise the approaches currently available for localising RNA in vivo and address the specific limitations inherent with plant systems....

  14. Investigating RNA editing factors from trypanosome mitochondria

    Science.gov (United States)

    Aphasizheva, Inna; Zhang, Liye; Aphasizhev, Ruslan

    2016-01-01

    Mitochondrial U-insertion/deletion mRNA editing is carried out by two principal multiprotein assemblies, enzymatic RNA editing core (RECC) and RNA editing substrate binding (RESC) complexes, and a plethora of auxiliary factors. An integral part of mitochondrial gene expression, editing receives inputs from primary mRNA and gRNA precursor processing pathways, and generates substrates for mRNA polyadenylation and translation. Although nearly all RECC-embedded enzymes have been implicated in specific editing reactions, the majority of proteins that populate the RESC are also essential for generating edited mRNAs. However, lack of recognizable motifs in RESC subunits limits the prowess of bioinformatics in guiding biochemical experiments and elucidating their specific biological functions. In this chapter, we describe a generic workflow for investigating mitochondrial mRNA editing in Trypanosoma brucei and focus on several methods that proved instrumental is assigning definitive functions to editing factors lacking known signature sequences. PMID:27020893

  15. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  16. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Science.gov (United States)

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  17. The RIN: an RNA integrity number for assigning integrity values to RNA measurements

    OpenAIRE

    Gassmann Marcus; Leiber Michael; Salowsky Ruediger; Stocker Susanne; Mueller Odilo; Schroeder Andreas; Lightfoot Samar; Menzel Wolfram; Granzow Martin; Ragg Thomas

    2006-01-01

    Abstract Background The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughpu...

  18. The Influence of RNA Secondary Structure on the Efficiency of siRNA Silencing

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; GUI Jian-bin; CHEN Zhao-xue

    2015-01-01

    In the application of RNAi technology, it is an essential step to design siRNA applicable to target gene. At present, there are many researches and conclusions on siRNA design. This paper aims to the influences of mRNA secondary structure or siRNA antisense-strand secondary structure on siRNA silence efficiency. The paper also discusses the problems and sets out further insights in the research.

  19. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World.

    Science.gov (United States)

    Gavette, Jesse V; Stoop, Matthias; Hud, Nicholas V; Krishnamurthy, Ramanarayanan

    2016-10-10

    The RNA world hypothesis posits that DNA and proteins were later inventions of early life, or the chemistry that gave rise to life. Most scenarios put forth for the emergence of DNA assume a clean separation of RNA and DNA polymer, and a smooth transition between RNA and DNA. However, based on the reality of "clutter" and lack of sophisticated separation/discrimination mechanisms in a protobiological (and/or prebiological) world, heterogeneous RNA-DNA backbone containing chimeric sequences could have been common-and have not been fully considered in models transitioning from an RNA world to an RNA-DNA world. Herein we show that there is a significant decrease in Watson-Crick duplex stability of the heterogeneous backbone chimeric duplexes that would impede base-pair mediated interactions (and functions). These results point to the difficulties for the transition from one homogeneous system (RNA) to another (RNA/DNA) in an RNA world with a heterogeneous mixture of ribo- and deoxyribonucleotides and sequences, while suggesting an alternative scenario of prebiological accumulation and co-evolution of homogeneous systems (RNA and DNA).

  20. An all RNA hypercycle network

    Science.gov (United States)

    Vaidya, Nilesh; Lehman, Niles

    The RNA world hypothesis suggests RNA-based catalysis and information storage as the first step in the evolution of life on the Earth. The central process of the RNA world was the replica-tion of RNA, which may have involved the joining of oligonucleotides, perhaps by recombination rather than organization along a linear template. To assist this build-up of information, a hy-percycle may have played a significant role by allowing cooperation between autocatalytic units in a cyclic linkage in such a way that there is a mutual survival and regulated growth of all the units involved (1). Compared to non-coupled self-replicating units, which can only sustain a limited amount of genetic information, the hypercycle allows the maintenance of large amounts of information through cooperation among otherwise competitive units. However, hypercycles have never been empirically demonstrated in the absence of cell-like compartmentalization. In the current work, hypercyclic behavior is demonstrated in the autocatalytic assembly of Azoar-cus group I ribozyme (2). Three different constructs of the Azoarcus ribozyme with different internal guide sequences (IGS) -GUG (canonical), GAG, and GCG -are capable of a min-imal amount of self-assembly when broken into two fragments. Here, self-assembly depends on a mismatch with non-complementary sequences, CGU, CAU and CUU, respectively, to be recognized by IGS via autocatalysis. Yet when all three constructs are present in the same reaction vessel, concomitant assembly of all three is enhanced through an interdependent hy-percyclic reaction network. Analysis of these reactions indicates that each system is capable of guiding its own reproduction weakly, along with providing enhanced catalytic support for the reproduction of one other construct system through matched IGS-tag interactions. Also, when co-incubated with non-interacting (i.e., selfish) yet efficient self-assembly systems, the hypercyclic assembly outcompetes the selfish self

  1. Phenotypic MicroRNA Microarrays

    OpenAIRE

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

  2. MicroRNA-mediated target mRNA cleavage and 3'-uridylation in human cells.

    Science.gov (United States)

    Xu, Kai; Lin, Jing; Zandi, Roza; Roth, Jack A; Ji, Lin

    2016-07-21

    MicroRNAs (miRNAs) play an important role in targeted gene silencing by facilitating posttranscriptional and translational repression. However, the precise mechanism of mammalian miRNA-mediated gene silencing remains to be elucidated. Here, we used a stem-loop array reverse-transcription polymerase chain reaction assay to analyse miRNA-induced mRNA recognition, cleavage, posttranscriptional modification, and degradation. We detected endogenous let-7 miRNA-induced and Argonaute-catalysed endonucleolytic cleavage on target mRNAs at various sites within partially paired miRNA:mRNA sequences. Most of the cleaved mRNA 5'-fragments were 3'-oligouridylated by activities of terminal uridylyl transferases (TUTases) in miRNA-induced silencing complexes and temporarily accumulated in the cytosol for 5'-3' degradation or other molecular fates. Some 3'-5' decayed mRNA fragments could also be captured by the miRNA-induced silencing complex stationed at the specific miRNA:mRNA target site and oligouridylated by other TUTases at its proximity without involving Argonaute-mediated RNA cleavage. Our findings provide new insights into the molecular mechanics of mammalian miRNA-mediated gene silencing by coordinated target mRNA recognition, cleavage, uridylation and degradation.

  3. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production.

    Science.gov (United States)

    Dunn, Sianadh; Lombardi, Olivia; Cowling, Victoria H

    2017-02-01

    The mRNA cap is a structure added to RNA pol II transcripts in eukaryotes, which recruits factors involved in RNA processing, nuclear export and translation initiation. RNA guanine-7 methyltransferase (RNMT)-RNA-activating miniprotein (RAM), the mRNA cap methyltransferase complex, completes the basic functional mRNA cap structure, cap 0, by methylating the cap guanosine. Here, we report that RNMT-RAM co-ordinates mRNA processing with ribosome production. Suppression of RNMT-RAM reduces synthesis of the 45S ribosomal RNA (rRNA) precursor. RNMT-RAM is required for c-Myc expression, a major regulator of RNA pol I, which synthesises 45S rRNA. Constitutive expression of c-Myc restores rRNA synthesis when RNMT-RAM is suppressed, indicating that RNMT-RAM controls rRNA production predominantly by controlling c-Myc expression. We report that RNMT-RAM is recruited to the ribosomal DNA locus, which may contribute to rRNA synthesis in certain contexts. © 2017 The Author(s).

  4. RNA degradation compromises the reliability of microRNA expression profiling

    Directory of Open Access Journals (Sweden)

    Muckenthaler Martina U

    2009-12-01

    Full Text Available Abstract Background MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression and their expression is frequently altered in human diseases, including cancer. To correlate clinically relevant parameters with microRNA expression, total RNA is frequently prepared from samples that were archived for various time periods in frozen tissue banks but, unfortunately, RNA integrity is not always preserved in these frozen tissues. Here, we investigate whether experimentally induced RNA degradation affects microRNA expression profiles. Results Tissue samples were maintained on ice for defined time periods prior to total RNA extraction, which resulted in different degrees of RNA degradation. MicroRNA expression was then analyzed by microarray analysis (miCHIP or microRNA-specific real-time quantitative PCR (miQPCR. Our results demonstrate that the loss of RNA integrity leads to in unpredictability of microRNA expression profiles for both, array-based and miQPCR assays. Conclusion MicroRNA expression cannot be reliably profiled in degraded total RNA. For the profiling of microRNAs we recommend use of RNA samples with a RNA integrity number equal to or above seven.

  5. Selectively Constrained RNA Editing Regulation Crosstalks with piRNA Biogenesis in Primates.

    Science.gov (United States)

    Yang, Xin-Zhuang; Chen, Jia-Yu; Liu, Chu-Jun; Peng, Jiguang; Wee, Yin Rei; Han, Xiaorui; Wang, Chenqu; Zhong, Xiaoming; Shen, Qing Sunny; Liu, Hsuan; Cao, Huiqing; Chen, Xiao-Wei; Tan, Bertrand Chin-Ming; Li, Chuan-Yun

    2015-12-01

    Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.

  6. Self-assembled RNA interference microsponges for efficient siRNA delivery.

    Science.gov (United States)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K; Poon, Zhiyong; Hammond, Paula T

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell's RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  7. Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA SilencingW⃞

    Science.gov (United States)

    Dunoyer, Patrice; Lecellier, Charles-Henri; Parizotto, Eneida Abreu; Himber, Christophe; Voinnet, Olivier

    2004-01-01

    In plants, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are effectors of RNA silencing, a process involved in defense through RNA interference (RNAi) and in development. Plant viruses are natural targets of RNA silencing, and as a counterdefensive strategy, they have evolved highly diverse silencing suppressor proteins. Although viral suppressors are usually thought to act at distinct steps of the silencing machinery, there had been no consensus system so far that allowed a strict side-by-side analysis of those factors. We have set up such a system in Arabidopsis thaliana and used it to compare the effects of five unrelated viral silencing suppressors on the siRNA and miRNA pathways. Although all the suppressors inhibited RNAi, only three of them induced developmental defects, indicating that the two pathways are only partially overlapping. These developmental defects were remarkably similar, and their penetrance correlated with inhibition of miRNA-guided cleavage of endogenous transcripts and not with altered miRNA accumulation per se. Among the suppressors investigated, the tombusviral P19 protein coimmunoprecipitated with siRNA duplexes and miRNA duplexes corresponding to the primary cleavage products of miRNA precursors. Thus, it is likely that P19 prevents RNA silencing by sequestering both classes of small RNAs. Moreover, the finding here that P19 binds siRNAs and suppresses RNAi in Hela cells also suggests that this factor may be useful to dissect the RNA silencing pathways in animals. Finally, the differential effects of the silencing suppressors tested here upon other types of Arabidopsis silencing-related small RNAs revealed a surprising variety of biosynthetic and, presumably, functional pathways for those molecules. Therefore, silencing suppressors are valuable probes of the complexity of RNA silencing. PMID:15084715

  8. REDIdb: the RNA editing database.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla

    2007-01-01

    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.

  9. Modeling sRNA-Regulated Plasmid Maintenance

    Science.gov (United States)

    Klumpp, Stefan

    2017-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed. PMID:28085919

  10. Chicken rRNA Gene Cluster Structure.

    Directory of Open Access Journals (Sweden)

    Alexander G Dyomin

    Full Text Available Ribosomal RNA (rRNA genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5'ETS (1836 bp, 18S rRNA gene (1823 bp, ITS1 (2530 bp, 5.8S rRNA gene (157 bp, ITS2 (733 bp, 28S rRNA gene (4441 bp and 3'ETS (343 bp. The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region. The results have confirmed the chicken rRNA gene cluster validity.

  11. Controlled evolution of an RNA enzyme

    Science.gov (United States)

    Joyce, G. F.

    1991-01-01

    It is generally thought that prior to the origin of protein synthesis, life on earth was based on self-replicating RNA molecules. This idea has become especially popular recently due to the discovery of catalytic RNA (ribozymes). RNA has both genotypic and phenotypic properties, suggesting that it is capable of undergoing Darwinian evolution. RNA evolution is likely to have played a critical role in the early history of life on earth, and thus is important in considering the possibility of life elsewhere in the solar system. We have constructed an RNA-based evolving system in the laboratory, combining amplification and mutation of an RNA genotype with selection of a corresponding RNA phenotype. This system serves as a functional model of a primitive organism. It can also be used as a tool to explore the catalytic potential of RNA. By altering the selection constraints, we are attempting to modify the substrate specificity of an existing ribozyme in order to develop ribozymes with novel catalytic function. In this way, we hope to gain a better understanding of RNA's catalytic versatility and to assess its suitability for the role of primordial catalyst. All of the RNA enzymes that are known to exist in contemporary biology carry out cleavage/ligation reactions involving RNA substrates. The Tetrahymena ribozyme, for example, catalyzes phosphoester transfer between a guanosine containing and an oligopyrimidine containing substrate. We tested the ability of mutant forms of the Tetrahymena ribozyme to carry out a comparable reaction using DNA, rather than RNA substrate. An ensemble of structural variants of the ribozyme was prepared and tested for their ability to specifically cleave d(GGCCCTCT-A3TA3TA) at the phosphodiester bond following the sequence CCCTCT. We recovered a mutant form of the enzyme that cleaves DNA more efficiently than does the wild-type. Beginning with this selected mutant we have now scattered random mutations throughout the ribozyme and have begun

  12. PLGA microspheres encapsulating siRNA.

    Science.gov (United States)

    De Rosa, Giuseppe; Salzano, Giuseppina

    2015-01-01

    The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.

  13. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  14. Enhanced sensitivity RNA gel loading buffer that enables efficient RNA separation on native gels.

    Science.gov (United States)

    Gregg, Keqin; Zhou, Wenli; Ji, Wan; Davis, Sara

    2004-02-01

    RNA gel analysis is essential for quality assessment of RNA preparations for subsequent analysis such as microarrays and real-time PCRs. The routinely used standard electrophoresis of RNA through formaldehyde-containing agarose gels is not only labor-intensive and time-consuming, but also involves sizeable quantities of hazardous materials. Above all, it is not sensitive, requiring more than 1 microgram of RNA for the assay. Current gene expression profiling with microarrays and real-time PCR often involves limiting amounts of RNA. It is therefore important to have a more sensitive way to analyze RNA. Here we report an improved ethidium bromide-based RNA gel analysis system with our Superload buffer that increases sensitivity to 12.5 ng of total RNA and allows RNA analysis on a regular native Tris-acetate EDTA (TAE) agarose gel.

  15. 5S rRNA-derived and tRNA-derived SINEs in fruit bats.

    Science.gov (United States)

    Gogolevsky, Konstantin P; Vassetzky, Nikita S; Kramerov, Dmitri A

    2009-05-01

    Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.

  16. Signatures of RNA binding proteins globally coupled to effective microRNA target sites

    DEFF Research Database (Denmark)

    Jacobsen, Anders; Wen, Jiayu; Marks, Debora S

    2010-01-01

    may be modulated by other mRNA sequence elements such as binding sites for the hundreds of RNA binding proteins (RNA-BPs) expressed in any cell, and this aspect has not been systematically explored. Across a panel of published experiments, we systematically investigated to what extent sequence motifs...... proteins. This is the first systematic investigation of 3' UTR motifs that globally couple to regulation by miRNAs and may potentially antagonize or cooperate with miRNA/siRNA regulation. Our results suggest that binding sites of miRNAs and RNA-BPs should be considered in combination when interpreting......MicroRNAs (miRNAs) and small interfering RNAs (siRNAs), bound to Argonaute proteins (RISC), destabilize mRNAs through base-pairing with the mRNA. However, the gene expression changes after perturbations of these small RNAs are only partially explained by predicted miRNA/siRNA targeting. Targeting...

  17. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  18. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA.

    Science.gov (United States)

    Galka-Marciniak, Paulina; Olejniczak, Marta; Starega-Roslan, Julia; Szczesniak, Michal W; Makalowska, Izabela; Krzyzosiak, Wlodzimierz J

    2016-04-01

    shmiRs are pri-miRNA-based RNA interference triggers from which exogenous siRNAs are expressed in cells to silence target genes. These reagents are very promising tools in RNAi in vivo applications due to their good activity profile and lower toxicity than observed for other vector-based reagents such as shRNAs. In this study, using high-resolution northern blotting and small RNA sequencing, we investigated the precision with which RNases Drosha and Dicer process shmiRs. The fidelity of siRNA release from the commonly used pri-miRNA shuttles was found to depend on both the siRNA insert and the pri-miR scaffold. Then, we searched for specific factors that may affect the precision of siRNA release and found that both the structural features of shmiR hairpins and the nucleotide sequence at Drosha and Dicer processing sites contribute to cleavage site selection and cleavage precision. An analysis of multiple shRNA intermediates generated from several reagents revealed the complexity of shmiR processing by Drosha and demonstrated that Dicer selects substrates for further processing. Aside from providing new basic knowledge regarding the specificity of nucleases involved in miRNA biogenesis, our results facilitate the rational design of more efficient genetic reagents for RNAi technology.

  19. Roles of the linker region of RNA helicase A in HIV-1 RNA metabolism.

    Directory of Open Access Journals (Sweden)

    Li Xing

    Full Text Available RNA helicase A (RHA promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNA(Lys3 to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNA(Lys3 annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNA(Lys3 annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5'-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.

  20. Definition and identification of small RNA sponges: Focus on miRNA sequestration.

    Science.gov (United States)

    Migault, Mélodie; Donnou-Fournet, Emmanuelle; Galibert, Marie-Dominique; Gilot, David

    2017-03-15

    Targeting RNAs appears as an important opportunity to modulate biological processes. Here, we overviewed critical parameters implied in RNAs competition to bind small RNAs. These competitions influence small RNA availability and thereby gene expression and cell fate. We focused on the ability of RNAs to sequester small RNA, mainly the microRNAs (miRNAs) and proposed experimental workflows to demonstrate the existence and activity of RNA-sponge. From this basic science, we detailed tailored oligonucleotides, developed to challenge the binding of small RNA. In vitro and in vivo, these tailored oligonucleotides efficiently restore small RNA activity by preventing their sequestration on RNA-sponges.

  1. [Comparative study of nuclear RNA and polysomal mRNA in sunflower seedlings].

    Science.gov (United States)

    Kuntsevich, V I; Tishchenko, E N; Lobov, V P; Zhil'ko, T D

    1994-01-01

    A comparative study of nRNA and polysomal mRNA complexity in the sunflower seedlings by molecular DNA:RNA hybridization method was carried out. It is established that nRNA complexity 4 times exceeds that of mRNA and is equal to 4.85.10(8) bp. Thus the nuclear RNA is expressed from at least 50.47% of single-copy DNA or 10.40% of genome. This data allow the presence of regulation of sunflower genome expression on the posttranscriptional level to be assumed.

  2. Network of tRNA Gene Sequences

    Institute of Scientific and Technical Information of China (English)

    WEI Fang-ping; LI Sheng; MA Hong-ru

    2008-01-01

    A network of 3719 tRNA gene sequences was constructed using simplest alignment. Its topology, degree distribution and clustering coefficient were studied. The behaviors of the network shift from fluctuated distribution to scale-free distribution when the similarity degree of the tRNA gene sequences increases. The tRNA gene sequences with the same anticodon identity are more self-organized than those with different anticodon identities and form local clusters in the network. Some vertices of the local cluster have a high connection with other local clusters, and the probable reason was given. Moreover, a network constructed by the same number of random tRNA sequences was used to make comparisons. The relationships between the properties of the tRNA similarity network and the characters of tRNA evolutionary history were discussed.

  3. Probing complex RNA structures by mechanical force

    CERN Document Server

    Harlepp, S; Robert, J; Leger, J F; Xayaphoummine, A; Isambert, H; Chatenay, D

    2003-01-01

    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps",...

  4. Nanoscale imaging of RNA with expansion microscopy.

    Science.gov (United States)

    Chen, Fei; Wassie, Asmamaw T; Cote, Allison J; Sinha, Anubhav; Alon, Shahar; Asano, Shoh; Daugharthy, Evan R; Chang, Jae-Byum; Marblestone, Adam; Church, George M; Raj, Arjun; Boyden, Edward S

    2016-08-01

    The ability to image RNA identity and location with nanoscale precision in intact tissues is of great interest for defining cell types and states in normal and pathological biological settings. Here, we present a strategy for expansion microscopy of RNA. We developed a small-molecule linker that enables RNA to be covalently attached to a swellable polyelectrolyte gel synthesized throughout a biological specimen. Then, postexpansion, fluorescent in situ hybridization (FISH) imaging of RNA can be performed with high yield and specificity as well as single-molecule precision in both cultured cells and intact brain tissue. Expansion FISH (ExFISH) separates RNAs and supports amplification of single-molecule signals (i.e., via hybridization chain reaction) as well as multiplexed RNA FISH readout. ExFISH thus enables super-resolution imaging of RNA structure and location with diffraction-limited microscopes in thick specimens, such as intact brain tissue and other tissues of importance to biology and medicine.

  5. Replicon RNA Viral Vectors as Vaccines

    Science.gov (United States)

    Lundstrom, Kenneth

    2016-01-01

    Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. PMID:27827980

  6. Rapid RNA analysis of individual Caenorhabditis elegans☆

    Science.gov (United States)

    Ly, Kien; Reid, Suzanne J.; Snell, Russell G.

    2015-01-01

    Traditional RNA extraction methods rely on the use of hazardous chemicals such as phenol, chloroform, guanidinium thiocyanate to disrupt cells and inactivate RNAse simultaneously. RNA isolation from Caenorhabditis elegans presents another challenge due to its tough cuticle, therefore several repeated freeze–thaw cycles may be needed to disrupt the cuticle before the cell contents are released. In addition, a large number of animals are required for successful RNA isolation. To overcome these issues, we have developed a simple and efficient method using proteinase K and a brief heat treatment to release RNA of quality suitable for quantitative PCR analysis.The benefits of the method are: • Faster and safer compared to conventional RNA extraction methods • Released RNA can be used directly for cDNA synthesis without purification • As little as a single worm is sufficient PMID:26150972

  7. Designing synthetic RNA for delivery by nanoparticles

    Science.gov (United States)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  8. Predicting RNA Structure Using Mutual Information

    DEFF Research Database (Denmark)

    Freyhult, E.; Moulton, V.; Gardner, P. P.

    2005-01-01

    Background: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure......, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. Results: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall...... performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction...

  9. Evaluation of DNA and RNA extraction methods.

    Science.gov (United States)

    Edwin Shiaw, C S; Shiran, M S; Cheah, Y K; Tan, G C; Sabariah, A R

    2010-06-01

    This study was done to evaluate various DNA and RNA extractions from archival FFPE tissues. A total of 30 FFPE blocks from the years of 2004 to 2006 were assessed with each modified and adapted method. Extraction protocols evaluated include the modified enzymatic extraction method (Method A), Chelex-100 extraction method (Method B), heat-induced retrieval in alkaline solution extraction method (Methods C and D) and one commercial FFPE DNA Extraction kit (Qiagen, Crawley, UK). For RNA extraction, 2 extraction protocols were evaluated including the enzymatic extraction method (Method 1), and Chelex-100 RNA extraction method (Method 2). Results show that the modified enzymatic extraction method (Method A) is an efficient DNA extraction protocol, while for RNA extraction, the enzymatic method (Method 1) and the Chelex-100 RNA extraction method (Method 2) are equally efficient RNA extraction protocols.

  10. RIsearch2: suffix array-based large-scale prediction of RNA-RNA interactions and siRNA off-targets

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Wenzel, Anne; Palasca, Oana

    2017-01-01

    and high level of complementarity between two RNA sequences is a powerful predictor of such interactions. Here, we present RIsearch2, a large-scale RNA-RNA interaction prediction tool that enables quick localization of potential near-complementary RNA-RNA interactions between given query and target...

  11. Primer-Dependent and Primer-Independent Initiation of Double Stranded RNA Synthesis by Purified Arabidopsis RNA-Dependent RNA Polymerases RDR2 and RDR6

    Science.gov (United States)

    Devert, Anthony; Fabre, Nicolas; Floris, Maïna; Canard, Bruno; Robaglia, Christophe; Crété, Patrice

    2015-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA) targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs) that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer-independent and primer-dependent RNA polymerase activities with different efficiencies. We further show that RDR2 and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs hybridized to complementary RNA template or by elongation of self-primed RNA template. These findings provide new insights into our understanding of the molecular mechanisms of RNA silencing in plants. PMID:25793874

  12. Near-optimal RNA-Seq quantification

    OpenAIRE

    Bray, Nicolas; Pimentel, Harold; Melsted, Páll; Pachter, Lior

    2015-01-01

    We present a novel approach to RNA-Seq quantification that is near optimal in speed and accuracy. Software implementing the approach, called kallisto, can be used to analyze 30 million unaligned paired-end RNA-Seq reads in less than 5 minutes on a standard laptop computer while providing results as accurate as those of the best existing tools. This removes a major computational bottleneck in RNA-Seq analysis.

  13. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus_minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  14. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  15. Inverse folding of RNA pseudoknot structures

    Directory of Open Access Journals (Sweden)

    Li Linda YM

    2010-06-01

    Full Text Available Abstract Background RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. Results In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. Conclusions The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  16. The Old and New RNA World

    Directory of Open Access Journals (Sweden)

    Zofia Szweykowska-Kulińska

    2014-12-01

    Full Text Available Among the numerous hypotheses offering a scenario for the origin of life on Earth, the one called “The RNA World” has gained the most attention. According to this hypothesis RNA acted as a genetic information storage material, as a catalyst of all metabolic reactions, and as a regulator of all processes in the primordial world. Various experiments show that RNA molecules could have been synthesized abiotically, with the potential to mediate a whole repertoire of metabolic reactions. Ribozymes carrying out aminoacyl-tRNA reactions have been found in SELEX (systematic evolution of ligands by exponential enrichment approaches and the development of a ribosome from a RNA-built protoribosome is easy to imagine. Transfer RNA aminoacylation, protoribosome origin, and the availability of amino acids on early Earth allowed the genetic code to evolve. Encoded proteins most likely stabilized RNA molecules and were able to create channels across membranes. In the modern cell, DNA replaced RNA as the main depositor of genetic information and proteins carry out almost all metabolic reactions. However, RNA is still playing versatile, crucial roles in the cell. Apart from its classical functions in the cell, a huge small RNA world is controlling gene expression, chromatin condensation, response to environmental cues, and protecting the cell against the invasion of various nucleic acids forms. Long non-coding RNAs act as crucial gene expression regulators. Riboswitches act at the level of transcription, splicing or translation and mediate feedback regulation on biosynthesis and transport of the ligand they sense. Alternative splicing generates genetic variability and increases the protein repertoire in response to developmental or environmental changes. All these regulatory functions are essential in shaping cell plasticity in the changing milieu. Recent discoveries of new, unexpected and important functions of RNA molecules support the hypothesis that we

  17. Development of Studies on RNA Interference

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Yaqiong ZHANG; Lina SHE; Wenting XU; Yangying JIA; Shiqing XIE; WenliSUN; Quan LIANG

    2012-01-01

    RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, and now it has developed into a kind of biotechnology as well as an important approach in post- genome era. This paper is to summarize the achievements of studies on RNAi tech- nology in basic biology, medicine, pharmacy, botany and other fields.

  18. Trophoblasts, invasion and micro RNA

    Directory of Open Access Journals (Sweden)

    Ludivine eDoridot

    2013-11-01

    Full Text Available MicroRNAs (miRNAs have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals into syncytiotrophoblast, villous trophoblast or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno-foetal immune dialogue regulation, trophoblast differentiation and angiogenesis at the materno-foetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.

  19. RNA silencing movement in plants

    Institute of Scientific and Technical Information of China (English)

    Glykeria Mermigka; Frederic Verret; Kriton Kalantidis

    2016-01-01

    Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant, respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review.

  20. Polyadenylation of ribosomal RNA in human cells

    OpenAIRE

    Slomovic, Shimyn; Laufer, David; Geiger, Dan; Schuster, Gadi

    2006-01-01

    The addition of poly(A)-tails to RNA is a process common to almost all organisms. In eukaryotes, stable poly(A)-tails, important for mRNA stability and translation initiation, are added to the 3′ ends of most nuclear-encoded mRNAs, but not to rRNAs. Contrarily, in prokaryotes and organelles, polyadenylation stimulates RNA degradation. Recently, polyadenylation of nuclear-encoded transcripts in yeast was reported to promote RNA degradation, demonstrating that polyadenylation can play a double-...

  1. SCOR: a structural classification of RNA database.

    Energy Technology Data Exchange (ETDEWEB)

    Klosterman, Peter S.; Tamura, Makio; Holbrook, Stephen R.; Brenner, Steven E.

    2001-10-10

    The Structural Classification of RNA (SCOR) database provides a survey of the three-dimensional motifs contained in 259 NMR and X-ray RNA structures. In one classification, the structures are grouped according to function. The RNA motifs, including internal and external loops, are also organized in a hierarchical classification. The 259 database entries contain 223 internal and 203 external loops; 52 entries consist of fully complementary duplexes. A classification of the well-characterized tertiary interactions found in the larger RNA structures is also included along with examples. The SCOR database is accessible at http://scor.lbl.gov.

  2. Small RNA biology is systems biology.

    Science.gov (United States)

    Jost, Daniel; Nowojewski, Andrzej; Levine, Erel

    2011-01-01

    During the last decade small regulatory RNA (srRNA) emerged as central players in the regulation of gene expression in all kingdoms of life. Multiple pathways for srRNA biogenesis and diverse mechanisms of gene regulation may indicate that srRNA regulation evolved independently multiple times. However, small RNA pathways share numerous properties, including the ability of a single srRNA to regulate multiple targets. Some of the mechanisms of gene regulation by srRNAs have significant effect on the abundance of free srRNAs that are ready to interact with new targets. This results in indirect interactions among seemingly unrelated genes, as well as in a crosstalk between different srRNA pathways. Here we briefly review and compare the major srRNA pathways, and argue that the impact of srRNA is always at the system level. We demonstrate how a simple mathematical model can ease the discussion of governing principles. To demonstrate these points we review a few examples from bacteria and animals.

  3. RNA interference and its application in plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    RNA interference (RNAi), a process that inhibits gene expression by the double-stranded RNA (dsRNA), causes the deg-radation of target messenger RNA molecules. RNAi exists in almost all organisms. We review the recent history of RNAi studies,RNAi molecular mechanisms, characteristics and RNAi applications in higher plants. At the same time, the prospect of RNAi appli-cations in functional genomics and genetic improvement of higher plants and possible future problems and possibilities are also dis-cussed.

  4. Affinity chromatography with an immobilized RNA enzyme.

    OpenAIRE

    Vioque, A; Altman, S

    1986-01-01

    M1 RNA, the catalytic subunit of Escherichia coli RNase P, has been covalently linked at its 3' terminus to agarose beads. Unlike M1 RNA, which is active in solution in the absence of the protein component (C5) of RNase P, the RNA linked to the beads is active only in the presence of C5 protein. Affinity chromatography of crude extracts of E. coli on a column prepared from the beads to which the RNA has been crosslinked results in the purification of C5 protein in a single step. The protein h...

  5. SCOR: a Structural Classification of RNA database.

    Science.gov (United States)

    Klosterman, Peter S; Tamura, Makio; Holbrook, Stephen R; Brenner, Steven E

    2002-01-01

    The Structural Classification of RNA (SCOR) database provides a survey of the three-dimensional motifs contained in 259 NMR and X-ray RNA structures. In one classification, the structures are grouped according to function. The RNA motifs, including internal and external loops, are also organized in a hierarchical classification. The 259 database entries contain 223 internal and 203 external loops; 52 entries consist of fully complementary duplexes. A classification of the well-characterized tertiary interactions found in the larger RNA structures is also included along with examples. The SCOR database is accessible at http://scor.lbl.gov.

  6. Rfam: updates to the RNA families database

    DEFF Research Database (Denmark)

    Gardner, Paul P; Daub, Jennifer; Tate, John G

    2008-01-01

    Rfam is a collection of RNA sequence families, represented by multiple sequence alignments and covariance models (CMs). The primary aim of Rfam is to annotate new members of known RNA families on nucleotide sequences, particularly complete genomes, using sensitive BLAST filters in combination...... with CMs. A minority of families with a very broad taxonomic range (e.g. tRNA and rRNA) provide the majority of the sequence annotations, whilst the majority of Rfam families (e.g. snoRNAs and miRNAs) have a limited taxonomic range and provide a limited number of annotations. Recent improvements...

  7. RNA structure prediction: progress and perspective

    CERN Document Server

    Shi, Ya-Zhou; Wang, Feng-Hua; Tan, Zhi-Jie

    2014-01-01

    Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.

  8. The RNA World and its origins

    Science.gov (United States)

    Schwartz, A. W.

    1995-01-01

    The theory of the "RNA World" states that the first molecular systems to display the properties of self-replication and evolution were RNA molecules. The origin of life not only depended crucially upon this event, but RNA molecules can even be viewed as the first "living" things. In recent years this theory has gained ascendancy over competing ideas and is now largely accepted by biologists as the most satisfactory explanation for the origin of life. The reasons for this development will be reviewed and the problem of the origin of the first RNA molecules will be discussed.

  9. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition.

    Science.gov (United States)

    Bosson, Andrew D; Zamudio, Jesse R; Sharp, Phillip A

    2014-11-06

    Target competition (ceRNA crosstalk) within miRNA-regulated gene networks has been proposed to influence biological systems. To assess target competition, we characterize and quantitate miRNA networks in two cell types. Argonaute iCLIP reveals that hierarchical binding of high- to low-affinity miRNA targets is a key characteristic of in vivo activity. Quantification of cellular miRNA and mRNA/ncRNA target pool levels indicates that miRNA:target pool ratios and an affinity partitioned target pool accurately predict in vivo Ago binding profiles and miRNA susceptibility to target competition. Using single-cell reporters, we directly test predictions and estimate that ?3,000 additional high-affinity target sites can affect active miRNA families with low endogenous miRNA:target ratios, such as miR-92/25. In contrast, the highly expressed miR-294 and let-7 families are not susceptible to increases of nearly 10,000 sites. These results show differential susceptibility based on endogenous miRNA:target pool ratios and provide a physiological context for ceRNA competition in vivo.

  10. Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases.

    Science.gov (United States)

    Zerby, D B; Patton, J R

    1997-12-01

    Small nuclear RNAs (snRNA), cofactors in the splicing of pre-mRNA, are highly modified. In this report the modification of human U4 RNA was studied using cell extracts and in vitro synthesized, and therefore unmodified, U4 RNA. The formation of pseudouridine (Psi) at positions 4, 72 and 79 in U4 RNA was dependent on an RNA-containing cofactor, since the activities in the extracts were micrococcal nuclease (MN) sensitive. Extracts were fractionated on glycerol gradients and there was a broad peak of reconstitution activity centered at 14 S. Reconstitution was not due to additional enzymatic activity, since the peak fraction was MN sensitive. Oligodeoxynucleotide-mediated RNase H digestion of U6 RNA in the extracts inhibited formation of Psi in U4 RNA. From glycerol gradient analysis we determined that exogenously added U4 RNA that is associated with U6 RNA (sedimentation velocity 16 S) was significantly higher in Psi content than U4 RNA not associated with U6 RNA (8 S). Competitive inhibitors of Psi synthases, 5-fluorouridine-containing (5-FU) wild-type and mutant U4 RNAs, were used to investigate formation of Psi in U4 RNA. Deletions and point mutations in these 5-FU-containing U4 RNAs affected their ability to inhibit Psi synthase in vitro. With the aid of these potent inhibitors it was determined that at least two separate activities modify the uridines at these positions.

  11. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  12. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA

    Energy Technology Data Exchange (ETDEWEB)

    Wasmuth, Elizabeth V.; Januszyk, Kurt; Lima, Christopher D. [MSKCC

    2014-08-20

    The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.

  13. In vitro transcription of Sonchus yellow net virus RNA by a virus-associated RNA-dependent RNA polymerase.

    NARCIS (Netherlands)

    Flore, P.H.

    1986-01-01

    The aim of the investigation presented in this thesis was to elucidate the nature of the RNA- dependent RNA polymerase, thought to be associated with Sonchus yellow net virus (SYNV), a rhabdovirus infecting plants. This research was initiated to shed light on the transcription activity in rhabdoviru

  14. Integrated analysis of microRNA and mRNA expression: Adding biological significance to microRNA target predictions

    NARCIS (Netherlands)

    M. van Iterson (Mat); S. Bervoets (Sander); E.J. de Meijer (Emile); H.P. Buermans (Henk); P.A.C. 't Hoen (Peter); R.X. Menezes (Renée); J.M. Boer (Judith)

    2013-01-01

    textabstractCurrent microRNA target predictions are based on sequence information and empirically derived rules but do not make use of the expression of microRNAs and their targets. This study aimed to improve microRNA target predictions in a given biological context, using in silico predictions, mi

  15. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Directory of Open Access Journals (Sweden)

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  16. siRNA and miRNA processing: new functions for Cajal bodies.

    Science.gov (United States)

    Pontes, Olga; Pikaard, Craig S

    2008-04-01

    In diverse eukaryotes, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs) regulate important processes that include mRNA inactivation, viral defense, chromatin modification, and transposon silencing. Recently, nucleolus-associated Cajal bodies in plants have been implicated as sites of siRNA and miRNA biogenesis, whereas in animals siRNA and miRNA dicing occurs in the cytoplasm. The plant nucleolus also contains proteins of the nonsense-mediated mRNA decay pathway that in animals are found associated with cytoplasmic processing bodies (P-bodies). P-bodies also function in the degradation of mRNAs subjected to miRNA and siRNA targeting. Collectively, these observations suggest interesting variations in the way siRNAs and miRNAs can accomplish their similar functions in plants and animals.

  17. Exploring the RNA editing potential of RNA-Seq data by ExpEdit.

    Science.gov (United States)

    D'Antonio, Mattia; Picardi, Ernesto; Castrignanò, Tiziana; D'Erchia, Anna Maria; Pesole, Graziano

    2015-01-01

    Revealing the impact of A-to-I RNA editing in RNA-Seq experiments is relevant in humans because RNA editing can influence gene expression. In addition, its deregulation has been linked to a variety of human diseases. Exploiting the RNA editing potential in complete RNA-Seq datasets, however, is a challenging task. Indeed, no dedicated software is available, and sometimes deep computational skills and appropriate hardware resources are required. To explore the impact of known RNA editing events in massive transcriptome sequencing experiments, we developed the ExpEdit web service application. In the present work, we provide an overview of ExpEdit as well as methodologies to investigate known RNA editing in human RNA-Seq datasets.

  18. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis.

    Science.gov (United States)

    Mohn, Fabio; Handler, Dominik; Brennecke, Julius

    2015-05-15

    In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3'-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3' and 5' ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3' end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5' and 3' ends. Copyright © 2015, American Association for the Advancement of Science.

  19. Dicer-2 processes diverse viral RNA species.

    Directory of Open Access Journals (Sweden)

    Leah R Sabin

    Full Text Available RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi is mediated by small interfering RNAs (siRNAs, which are liberated from double-stranded (dsRNA precursors by Dicer and guide the RNA-induced silencing complex (RISC to targets. Although principles governing small RNA sorting into RISC have been uncovered, the spectrum of RNA species that can be targeted by Dicer proteins, particularly the viral RNAs present during an infection, are poorly understood. Dicer-2 potently restricts viral infection in insects by generating virus-derived siRNAs from viral RNA. To better characterize the substrates of Dicer-2, we examined the virus-derived siRNAs produced during the Drosophila antiviral RNAi response to four different viruses using high-throughput sequencing. We found that each virus was uniquely targeted by the RNAi pathway; dicing substrates included dsRNA replication intermediates and intramolecular RNA stem loops. For instance, a putative intergenic RNA hairpin encoded by Rift Valley Fever virus generates abundant small RNAs in both Drosophila and mosquito cells, while repetitive sequences within the genomic termini of Vaccinia virus, which give rise to abundant small RNAs in Drosophila, were found to be transcribed in both insect and mammalian cells. Moreover, we provide evidence that the RNA species targeted by Dicer-2 can be modulated by the presence of a viral suppressor of RNAi. This study uncovered several novel, heavily targeted features within viral genomes, offering insight into viral replication, viral immune evasion strategies, and the mechanism of antiviral RNAi.

  20. A strategy for developing a hammerhead ribozyme for selective RNA cleavage depending on substitutional RNA editing.

    Science.gov (United States)

    Fukuda, Masatora; Kurihara, Kei; Tanaka, Yasuyoshi; Deshimaru, Masanobu

    2012-09-01

    Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.

  1. A strategy for developing a hammerhead ribozyme for selective RNA cleavage depending on substitutional RNA editing

    OpenAIRE

    Fukuda, Masatora; Kurihara, Kei; Tanaka, Yasuyoshi; Deshimaru, Masanobu

    2012-01-01

    Engineered site-specific RNA cleavage is widely used for gene regulation, RNA mapping, and synthetic RNA production. Here the authors extend the range of engineered recognition selectivity to include cleavage of sequence motifs containing naturally occurring base modifications. They describe and implement a designer hammerhead ribozyme that cleaves a target sequence 1 nt from a site of adenosine to inosine (A-to-I) or cytosine to uracil (C-to-U) editing in synthetic or physiological mRNA cont...

  2. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    OpenAIRE

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative perfor...

  3. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    Science.gov (United States)

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.

  4. Selectively Constrained RNA Editing Regulation Crosstalks with piRNA Biogenesis in Primates

    OpenAIRE

    2015-01-01

    Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing—a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with ...

  5. RNA recognition by a human antibody against brain cytoplasmic 200 RNA.

    Science.gov (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-06-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation.

  6. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.

    Science.gov (United States)

    Miao, Zhichao; Adamiak, Ryszard W; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-06-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.

  7. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures

    Science.gov (United States)

    Miao, Zhichao; Adamiak, Ryszard W.; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H.; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J.; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-01-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5–3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson–Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:25883046

  8. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming

    2012-01-01

    RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed a comput...

  9. Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

    Directory of Open Access Journals (Sweden)

    Brian J Belmont

    Full Text Available Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs, which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i the Tet Repressor protein (TetR genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.

  10. Rapid generation of microRNA sponges for microRNA inhibition.

    Directory of Open Access Journals (Sweden)

    Joost Kluiver

    Full Text Available MicroRNA (miRNA sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies.

  11. Is tRNA binding or tRNA mimicry mandatory for translation factors?

    Science.gov (United States)

    Kristensen, Ole; Laurberg, Martin; Liljas, Anders; Selmer, Maria

    2002-02-01

    tRNA is the adaptor in the translation process. The ribosome has three sites for tRNA, the A-, P-, and E-sites. The tRNAs bridge between the ribosomal subunits with the decoding site and the mRNA on the small or 30S subunit and the peptidyl transfer site on the large or 50S subunit. The possibility that translation release factors could mimic tRNA has been discussed for a long time, since their function is very similar to that of tRNA. They identify stop codons of the mRNA presented in the decoding site and hydrolyse the nascent peptide from the peptidyl tRNA in the peptidyl transfer site. The structures of eubacterial release factors are not yet known, and the first example of tRNA mimicry was discovered when elongation factor G (EF-G) was found to have a closely similar shape to a complex of elongation factor Tu (EF-Tu) with aminoacyl-tRNA. An even closer imitation of the tRNA shape is seen in ribosome recycling factor (RRF). The number of proteins mimicking tRNA is rapidly increasing. This primarily concerns translation factors. It is now evident that in some sense they are either tRNA mimics, GTPases or possibly both.

  12. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA.

    Science.gov (United States)

    Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk

    2013-07-19

    Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.

  13. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Luna, Joseph M; Liniger, Matthias;

    2016-01-01

    Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipi...

  14. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    NARCIS (Netherlands)

    Maatz, H.; Jens, M.; Liss, M.; Schafer, S.; Heinig, M.; Kirchner, M.; Adami, E.; Rintisch, C.; Dauksaite, V.; Radke, M.H.; Selbach, M.; Barton, P.J.; Cook, S.A.; Rajewsky, N.; Gotthardt, M.; Landthaler, M.; Hubner, N.

    2014-01-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and

  15. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    Science.gov (United States)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  16. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    Science.gov (United States)

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  17. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  18. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.

    Science.gov (United States)

    Haque, Farzin; Guo, Peixuan

    2015-01-01

    RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

  19. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    NARCIS (Netherlands)

    Maatz, H.; Jens, M.; Liss, M.; Schafer, S.; Heinig, M.; Kirchner, M.; Adami, E.; Rintisch, C.; Dauksaite, V.; Radke, M.H.; Selbach, M.; Barton, P.J.; Cook, S.A.; Rajewsky, N.; Gotthardt, M.; Landthaler, M.; Hubner, N.

    2014-01-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and

  20. Modeling microRNA-mRNA Interactions Using PLS Regression in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Li Xiaohong

    2011-05-01

    Full Text Available Abstract Background Changes in microRNA (miRNA expression patterns have been extensively characterized in several cancers, including human colon cancer. However, how these miRNAs and their putative mRNA targets contribute to the etiology of cancer is poorly understood. In this work, a bioinformatics computational approach with miRNA and mRNA expression data was used to identify the putative targets of miRNAs and to construct association networks between miRNAs and mRNAs to gain some insights into the underlined molecular mechanisms of human colon cancer. Method The miRNA and mRNA microarray expression profiles from the same tissues including 7 human colon tumor tissues and 4 normal tissues, collected by the Broad Institute, were used to identify significant associations between miRNA and mRNA. We applied the partial least square (PLS regression method and bootstrap based statistical tests to the joint expression profiles of differentially expressed miRNAs and mRNAs. From this analysis, we predicted putative miRNA targets and association networks between miRNAs and mRNAs. Pathway analysis was employed to identify biological processes related to these miRNAs and their associated predicted mRNA targets. Results Most significantly associated up-regulated mRNAs with a down-regulated miRNA identified by the proposed methodology were considered to be the miRNA targets. On average, approximately 16.5% and 11.0% of targets predicted by this approach were also predicted as targets by the common prediction algorithms TargetScan and miRanda, respectively. We demonstrated that our method detects more targets than a simple correlation based association. Integrative mRNA:miRNA predictive networks from our analysis were constructed with the aid of Cytoscape software. Pathway analysis validated the miRNAs through their predicted targets that may be involved in cancer-associated biological networks. Conclusion We have identified an alternative bioinformatics

  1. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1

    Directory of Open Access Journals (Sweden)

    Yu Lianbo

    2011-05-01

    Full Text Available Abstract Background MicroRNA (miRNA-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured

  2. Mammalian Mitochondrial ncRNA Database.

    Science.gov (United States)

    Anandakumar, Shanmugam; Vijayakumar, Saravanan; Arumugam, Nagarajan; Gromiha, M Michael

    2015-01-01

    Mammalian Mitochondrial ncRNA is a web-based database, which provides specific information on non-coding RNA in mammals. This database includes easy searching, comparing with BLAST and retrieving information on predicted structure and its function about mammalian ncRNAs. The database is available for free at http://www.iitm.ac.in/bioinfo/mmndb/.

  3. A comparison of RNA folding measures

    DEFF Research Database (Denmark)

    Freyhult, E.; Gardner, P. P.; Moulton, V.

    2005-01-01

    Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare...

  4. Alternative applications for distinct RNA sequencing strategies

    Science.gov (United States)

    Han, Leng; Vickers, Kasey C.; Samuels, David C.

    2015-01-01

    Recent advances in RNA library preparation methods, platform accessibility and cost efficiency have allowed high-throughput RNA sequencing (RNAseq) to replace conventional hybridization microarray platforms as the method of choice for mRNA profiling and transcriptome analyses. RNAseq is a powerful technique to profile both long and short RNA expression, and the depth of information gained from distinct RNAseq methods is striking and facilitates discovery. In addition to expression analysis, distinct RNAseq approaches also allow investigators the ability to assess transcriptional elongation, DNA variance and exogenous RNA content. Here we review the current state of the art in transcriptome sequencing and address epigenetic regulation, quantification of transcription activation, RNAseq output and a diverse set of applications for RNAseq data. We detail how RNAseq can be used to identify allele-specific expression, single-nucleotide polymorphisms and somatic mutations and discuss the benefits and limitations of using RNAseq to monitor DNA characteristics. Moreover, we highlight the power of combining RNA- and DNAseq methods for genomic analysis. In summary, RNAseq provides the opportunity to gain greater insight into transcriptional regulation and output than simply miRNA and mRNA profiling. PMID:25246237

  5. Modeling sRNA-regulated Plasmid Maintenance

    CERN Document Server

    Gong, Chen Chris

    2016-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin's mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, ...

  6. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  7. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  8. Beginning to understand microRNA function

    Institute of Scientific and Technical Information of China (English)

    Tingting Du; Phillip D Zamore

    2007-01-01

    @@ MicroRNAs (miRNAs) are -22 nt small RNAs expressed by plants, animals, viruses and at least one unicellular organism, the green alga, Chlamydomonas reinhardtii [1]. Most miRNAs are transcribed as primary miRNAs (pri-miRNAs) by RNA polymerase Ⅱ, although a few are transcribed by RNA polymerase Ⅲ.

  9. Messenger RNA surveillance: neutralizing natural nonsense

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Lykke-Andersen, Jens; Porse, Bo

    2005-01-01

    Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general...

  10. ACTH Action on Messenger RNA Stability Mechanisms

    Science.gov (United States)

    Desroches-Castan, Agnès; Feige, Jean-Jacques; Cherradi, Nadia

    2017-01-01

    The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3′-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology.

  11. The NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Alexandra M. Ainsztein

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c identifying exRNA biomarkers of disease, (d demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators.

  12. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  13. The RNA polymerase II elongation complex.

    Science.gov (United States)

    Aso, T; Conaway, J W; Conaway, R C

    1995-11-01

    The initiation stage of transcription by RNA polymerase II has long been regarded as the primary site for regulation of eukaryotic gene expression. Nevertheless, a growing body of evidence reveals that the RNA polymerase II elongation complex is also a major target for regulation. Biochemical studies are implicating an increasing number of transcription factors in the regulation of elongation, and these transcription factors are being found to function by a diverse collection of mechanisms. Moreover, unexpected features of the structure and catalytic mechanism of RNA polymerase II are forcing a reconsideration of long-held views on the mechanics of some of the most basic aspects of polymerase function. In this review, we will describe recent insights into the structures and functions of RNA polymerase II and the transcription factors that control its activity during the elongation stage of eukaryotic messenger RNA synthesis.

  14. Evidence for RNA template-directed elongation

    Science.gov (United States)

    Kakimoto, Y.; Fujinuma, A.; Sakamoto, T.; Kikuchi, Y.; Umekage, S.

    2015-02-01

    In vitro cryptic transcription product is often observed when using T7 RNA polymerase. We obtained a ca. 35 mer of cryptic RNA by-product, which was originally designed to be 23 mer by in vitro run-off transcription. Biochemical research and structural analysis indicated that the cryptic by-product was synthesized through the process of aberrant extension by the T7 RNA polymerase. This extension could have occurred through two pathways. One pathway could have been an aberrant termination of transcription, which met a conventional prolonged extension without precise transcription termination, and the other could have been a re-extension of nascent RNA by binding with T7 RNA polymerase.

  15. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    Recent research suggests that deregulation of microRNAs (miRNAs) is involved in initiation and progression of many cancers, including gliomas and that miRNAs hold great potential as future diagnostic and therapeutic tools in cancer. MiRNAs are a class of short non-coding RNA sequences (18......-24 nucleotides), which base-pair to target messenger RNA (mRNA) and thereby cause translational repression or mRNA degradation based on the level of complementarity between strands. Profiling miRNAs in clinical glioblastoma samples has shown aberrant expression of numerous miRNAs when compared to normal brain...... tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  16. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  17. Eukaryotic 5S rRNA biogenesis.

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2011-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. Copyright © 2011 John Wiley & Sons, Ltd.

  18. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  19. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...... in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding...

  20. MicroRNA Implication in Cancer

    Directory of Open Access Journals (Sweden)

    Iker BADIOLA

    2010-03-01

    Full Text Available MicroRNAs (miRNA are a new class of posttranscriptional regulators. These small non-coding RNAs regulate the expression of target mRNA transcripts and are linked to several human disease such as Alzheimer, cancer or heart disease. But it has been the cancer disease which has experimented the major number of studies of miRNA linked to the disease progression. In the last years it has been reported the deregulation pattern of the miRNAs in malignant cells which have disrupted the control of the proliferation, differentiation or apoptosis. The evidence of the presence of specific miRNA deregulated in concrete cancer types has become the miRNAs like possible biomarkers and therapeutic targets. The specific miRNA patterns deregulated in concrete cancer cell types open new opportunities to the diagnosis and therapy.

  1. Long noncoding RNA in hematopoiesis and immunity.

    Science.gov (United States)

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin;

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling......, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows...... conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation of RNA structure and dynamics in atomic detail....

  3. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  4. Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation.

    Science.gov (United States)

    Au, Phil Chi Khang; Helliwell, Chris; Wang, Ming-Bo

    2014-05-01

    RNA-immunoprecipitation (RNA-IP) is a method used to isolate and identify RNA molecules specifically associated with an RNA-binding protein. Non-coding RNAs are emerging as key regulators of many biological and developmental pathways and RNA-IP has become an important tool in studying their function(s). While RNA-IP is successfully used to determine protein-RNA interaction, specific details regarding the level of this association and the metabolic requirement of this interaction which can influence the success of RNA-IP remain unclear. Here, we investigate the conditions required for efficient nuclear RNA-IP using Arabidopsis AGO4 (Argonaute 4) and siRNA binding as the study model. We showed that formaldehyde cross-linking, but not UV cross-linking, allowed for efficient pull-down of 24-nt siRNAs, suggesting that AGO4-siRNA interaction involves other protein(s). We also showed that, while formaldehyde cross-linking could also be performed on purified nuclei, ATP supplementation to the nuclei isolation buffer was needed to efficiently pull down 24-nt siRNAs. This result indicates that ATP is required for efficient siRNA loading onto AGO4. As most of the known RNA-mediated regulatory processes occur in the nucleus, our findings on cross-linking conditions and metabolite requirement for successful AGO4 nuclear RNA-IP provide a valuable insight and future consideration when studying the function of protein-RNA interactions in plants.

  5. Jízdárna

    OpenAIRE

    2013-01-01

    Předmětem diplomové práce je návrh a posouzení nosné ocelové konstrukce jízdárny v Napajedlích. Jízdárna je řešena jako jednopodlažní halový objekt ve dvou variantách. Obě navržené varianty haly mají půdorys tvaru elipsy s hlavními osami délky 40 a 80 m. Nosná konstrukce zvolené varianty je tvořena příčně orientovanými sloupovými vazbami s osovou vzdáleností 6,0 m. Příčné vazby jsou tvořeny prostorovými příhradovými vazníky kloubově uloženými na vetknutých plnostěnných sloupech. Prostorová tu...

  6. DDX3 DEAD-Box RNA Helicase Is Required for Hepatitis C Virus RNA Replication▿

    OpenAIRE

    2007-01-01

    DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supern...

  7. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    Science.gov (United States)

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  8. PRI-Modeler: extracting RNA structural elements from PDB files of protein-RNA complexes.

    Science.gov (United States)

    Han, Kyungsook; Nepal, Chirag

    2007-05-01

    A complete understanding of protein and RNA structures and their interactions is important for determining the binding sites in protein-RNA complexes. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA, due in part to the very limited structural data so far available. We have developed a set of algorithms for extracting and visualizing secondary and tertiary structures of RNA and for analyzing protein-RNA complexes. These algorithms have been implemented in a web-based program called PRI-Modeler (protein-RNA interaction modeler). Given one or more protein data bank files of protein-RNA complexes, PRI-Modeler analyzes the conformation of the RNA, calculates the hydrogen bond (H bond) and van der Waals interactions between amino acids and nucleotides, extracts secondary and tertiary RNA structure elements, and identifies the patterns of interactions between the proteins and RNAs. This paper presents PRI-Modeler and its application to the hydrogen bond and van der Waals interactions in the most representative set of protein-RNA complexes. The analysis reveals several interesting interaction patterns at various levels. The information provided by PRI-Modeler should prove useful for determining the binding sites in protein-RNA complexes. PRI-Modeler is accessible at http://wilab.inha.ac.kr/primodeler/, and supplementary materials are available in the analysis results section at http://wilab.inha.ac.kr/primodeler/.

  9. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity.

    Science.gov (United States)

    Pefanis, Evangelos; Wang, Jiguang; Rothschild, Gerson; Lim, Junghyun; Kazadi, David; Sun, Jianbo; Federation, Alexander; Chao, Jaime; Elliott, Oliver; Liu, Zhi-Ping; Economides, Aris N; Bradner, James E; Rabadan, Raul; Basu, Uttiya

    2015-05-01

    We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.

  10. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase.

    Science.gov (United States)

    Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-08-21

    Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.

  11. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi.

    Science.gov (United States)

    Colmenares, Serafin U; Buker, Shane M; Buhler, Marc; Dlakić, Mensur; Moazed, Danesh

    2007-08-03

    The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.

  12. Current progress of siRNA/shRNA therapeutics in clinical trials.

    Science.gov (United States)

    Burnett, John C; Rossi, John J; Tiemann, Katrin

    2011-09-01

    Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.

  13. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  14. Terminal Continuation (TC RNA Amplification Enables Expression Profiling Using Minute RNA Input Obtained from Mouse Brain

    Directory of Open Access Journals (Sweden)

    Stephen D. Ginsberg

    2008-10-01

    Full Text Available A novel methodology named terminal continuation (TC RNA amplification has been developed to amplify RNA from minute amounts of starting material. Utility of the TC RNA amplification method is demonstrated with two new modifications including obviating the need for second strand synthesis, and purifying the amplification template using column filtration prior to in vitro transcription (IVT. Using four low concentrations of RNA extracted from mouse brain (1, 10, 25 and 50 ng, one round TC RNA amplification was compared to one round amplified antisense RNA (aRNA in conjunction with column filtration and drop dialysis purification. The TC RNA amplification without second strand synthesis performed extremely well on customdesigned cDNA array platforms, and column filtration was found to provide higher positive detection of individual clones when hybridization signal intensity was subtracted from corresponding negative control hybridization signal levels. Results indicate that TC RNA amplification without second strand synthesis, in conjunction with column filtration, is an excellent method for RNA amplification from extremely small amounts of input RNA from mouse brain and postmortem human brain, and is compatible with microaspiration strategies and subsequent microarray analysis.

  15. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency

    Science.gov (United States)

    Chen, Cheng; Zhu, Changhong; Huang, Jian; Zhao, Xian; Deng, Rong; Zhang, Hailong; Dou, Jinzhuo; Chen, Qin; Xu, Ming; Yuan, Haihua; Wang, Yanli; Yu, Jianxiu

    2015-01-01

    Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. PMID:26582366

  16. The RIN: an RNA integrity number for assigning integrity values to RNA measurements

    Directory of Open Access Journals (Sweden)

    Gassmann Marcus

    2006-01-01

    Full Text Available Abstract Background The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. Methods A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. Results This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN. Conclusion Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.

  17. RNA Detection in Live Bacterial Cells Using Fluorescent Protein Complementation Triggered by Interaction of Two RNA Aptamers with Two RNA-Binding Peptides

    Directory of Open Access Journals (Sweden)

    Charles R. Cantor

    2011-03-01

    Full Text Available Many genetic and infectious diseases can be targeted at the RNA level as RNA is more accessible than DNA. We seek to develop new approaches for detection and tracking RNA in live cells, which is necessary for RNA-based diagnostics and therapy. We recently described a method for RNA visualization in live bacterial cells based on fluorescent protein complementation [1-3]. The RNA is tagged with an RNA aptamer that binds an RNA-binding protein with high affinity. This RNA-binding protein is expressed as two split fragments fused to the fragments of a split fluorescent protein. In the presence of RNA the fragments of the RNA-binding protein bind the aptamer and bring together the fragments of the fluorescent protein, which results in its re-assembly and fluorescence development [1-3]. Here we describe a new version of the RNA labeling method where fluorescent protein complementation is triggered by paired interactions of two different closely-positioned RNA aptamers with two different RNA-binding viral peptides. The new method, which has been developed in bacteria as a model system, uses a smaller ribonucleoprotein complementation complex, as compared with the method using split RNA-binding protein, and it can potentially be applied to a broad variety of RNA targets in both prokaryotic and eukaryotic cells. We also describe experiments exploring background fluorescence in these RNA detection systems and conditions that improve the signal-to-background ratio.

  18. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system.

    Directory of Open Access Journals (Sweden)

    VICENTE ePALLAS

    2013-05-01

    Full Text Available RNA-binding proteins (RBPs govern a myriad of different essential processes in eukaryotic cells. Recent evidence reveals that apart from playing critical roles in RNA metabolism and RNA transport, RBPs perform a key function in plant adaption to various environmental conditions. Long distance RNA transport occurs in land plants through the phloem, a conducting tissue that integrates the wide range of signalling pathways required to regulate plant development and response to stress processes. The macromolecules in the phloem pathway vary greatly and include defence proteins, transcription factors, chaperones acting in long distance trafficking, and RNAs (mRNAs, siRNAs and miRNAs. How these RNA molecules translocate through the phloem is not well understood, but recent evidence indicates the presence of translocatable RNA-binding proteins in the phloem, which act as potential components of long distance RNA transport system. This review updates our knowledge on the characteristics and functions of RBPs present in the phloem.

  19. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway.

    Directory of Open Access Journals (Sweden)

    Samantha B Shelton

    2016-07-01

    Full Text Available RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA "epigenetic" marks. RNAs can be modified on many sites, including 5' and 3' ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that "write" and "erase" them as targets for therapeutic drug development.

  20. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway.

    Science.gov (United States)

    Shelton, Samantha B; Reinsborough, Calder; Xhemalce, Blerta

    2016-07-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA "epigenetic" marks. RNAs can be modified on many sites, including 5' and 3' ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that "write" and "erase" them as targets for therapeutic drug development.

  1. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases

    Directory of Open Access Journals (Sweden)

    Kozo eTomita

    2014-02-01

    Full Text Available The universal 3'-terminal CCA sequence of tRNA is built and/or synthesized by the CCA-adding enzyme, CTP:(ATP tRNA nucleotidyltransferase. This RNA polymerase has no nucleic acid template, but faithfully synthesizes the defined CCA sequence on the 3'-terminus of tRNA at one time, using CTP and ATP as substrates. The mystery of CCA-addition without a nucleic acid template by unique RNA polymerases has long fascinated researchers in the field of RNA enzymology. In this review, the mechanisms of RNA polymerization by the remarkable CCA-adding enzyme and its related enzymes are presented, based on their structural features.

  2. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.

    Science.gov (United States)

    Shanmugam, Raghuvaran; Aklujkar, Muktak; Schäfer, Matthias; Reinhardt, Richard; Nickel, Olaf; Reuter, Gunter; Lovley, Derek R; Ehrenhofer-Murray, Ann; Nellen, Wolfgang; Ankri, Serge; Helm, Mark; Jurkowski, Tomasz P; Jeltsch, Albert

    2014-06-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.

  3. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Directory of Open Access Journals (Sweden)

    Sedlacek Radislav

    2010-10-01

    Full Text Available Abstract Background RNA interference (RNAi is a powerful approach to study a gene function. Transgenic RNAi is an adaptation of this approach where suppression of a specific gene is achieved by expression of an RNA hairpin from a transgene. In somatic cells, where a long double-stranded RNA (dsRNA longer than 30 base-pairs can induce a sequence-independent interferon response, short hairpin RNA (shRNA expression is used to induce RNAi. In contrast, transgenic RNAi in the oocyte routinely employs a long RNA hairpin. Transgenic RNAi based on long hairpin RNA, although robust and successful, is restricted to a few cell types, where long double-stranded RNA does not induce sequence-independent responses. Transgenic RNAi in mouse oocytes based on a shRNA offers several potential advantages, including simple cloning of the transgenic vector and an ability to use the same targeting construct in any cell type. Results Here we report our experience with shRNA-based transgenic RNAi in mouse oocytes. Despite optimal starting conditions for this experiment, we experienced several setbacks, which outweigh potential benefits of the shRNA system. First, obtaining an efficient shRNA is potentially a time-consuming and expensive task. Second, we observed that our transgene, which was based on a common commercial vector, was readily silenced in transgenic animals. Conclusions We conclude that, the long RNA hairpin-based RNAi is more reliable and cost-effective and we recommend it as a method-of-choice when a gene is studied selectively in the oocyte.

  4. Analysis of extracellular RNA in cerebrospinal fluid

    Science.gov (United States)

    Saugstad, Julie A.; Lusardi, Theresa A.; Van Keuren-Jensen, Kendall R.; Phillips, Jay I.; Lind, Babett; Harrington, Christina A.; McFarland, Trevor J.; Courtright, Amanda L.; Reiman, Rebecca A.; Yeri, Ashish S.; Kalani, M. Yashar S.; Adelson, P. David; Arango, Jorge; Nolan, John P.; Duggan, Erika; Messer, Karen; Akers, Johnny C.; Galasko, Douglas R.; Quinn, Joseph F.; Carter, Bob S.; Hochberg, Fred H.

    2017-01-01

    ABSTRACT We examined the extracellular vesicle (EV) and RNA composition of pooled normal cerebrospinal fluid (CSF) samples and CSF from five major neurological disorders: Alzheimer’s disease (AD), Parkinson’s disease (PD), low-grade glioma (LGG), glioblastoma multiforme (GBM), and subarachnoid haemorrhage (SAH), representing neurodegenerative disease, cancer, and severe acute brain injury. We evaluated: (I) size and quantity of EVs by nanoparticle tracking analysis (NTA) and vesicle flow cytometry (VFC), (II) RNA yield and purity using four RNA isolation kits, (III) replication of RNA yields within and between laboratories, and (IV) composition of total and EV RNAs by reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNASeq). The CSF contained ~106 EVs/μL by NTA and VFC. Brain tumour and SAH CSF contained more EVs and RNA relative to normal, AD, and PD. RT-qPCR and RNASeq identified disease-related populations of microRNAs and messenger RNAs (mRNAs) relative to normal CSF, in both total and EV fractions. This work presents relevant measures selected to inform the design of subsequent replicative CSF studies. The range of neurological diseases highlights variations in total and EV RNA content due to disease or collection site, revealing critical considerations guiding the selection of appropriate approaches and controls for CSF studies. PMID:28717417

  5. Spermine Condenses DNA, but Not RNA Duplexes

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  6. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  7. Small RNA combination therapy for lung cancer

    Science.gov (United States)

    Xue, Wen; Dahlman, James E.; Tammela, Tuomas; Khan, Omar F.; Sood, Sabina; Dave, Apeksha; Cai, Wenxin; Chirino, Leilani M.; Yang, Gillian R.; Bronson, Roderick; Crowley, Denise G.; Sahay, Gaurav; Schroeder, Avi; Langer, Robert; Anderson, Daniel G.; Jacks, Tyler

    2014-01-01

    MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer. PMID:25114235

  8. The microRNA toolkit of insects

    Science.gov (United States)

    Ylla, Guillem; Fromm, Bastian; Piulachs, Maria-Dolors; Belles, Xavier

    2016-01-01

    Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families. PMID:27883064

  9. RNA interference and Register Machines (extended abstract

    Directory of Open Access Journals (Sweden)

    Masahiro Hamano

    2012-11-01

    Full Text Available RNA interference (RNAi is a mechanism whereby small RNAs (siRNAs directly control gene expression without assistance from proteins. This mechanism consists of interactions between RNAs and small RNAs both of which may be single or double stranded. The target of the mechanism is mRNA to be degraded or aberrated, while the initiator is double stranded RNA (dsRNA to be cleaved into siRNAs. Observing the digital nature of RNAi, we represent RNAi as a Minsky register machine such that (i The two registers hold single and double stranded RNAs respectively, and (ii Machine's instructions are interpreted by interactions of enzyme (Dicer, siRNA (with RISC com- plex and polymerization (RdRp to the appropriate registers. Interpreting RNAi as a computational structure, we can investigate the computational meaning of RNAi, especially its complexity. Initially, the machine is configured as a Chemical Ground Form (CGF, which generates incorrect jumps. To remedy this problem, the system is remodeled as recursive RNAi, in which siRNA targets not only mRNA but also the machine instructional analogues of Dicer and RISC. Finally, probabilistic termination is investigated in the recursive RNAi system.

  10. Stacking interactions in PUF-RNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen; Opperman, Laura; Gross, Leah; Tanaka Hall, Traci M; Wickens, Marvin [NIH; (UW)

    2012-07-02

    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.

  11. RNA Secondary Structure Analysis Using RNAstructure.

    Science.gov (United States)

    Mathews, David H

    2014-06-17

    RNAstructure is a user-friendly program for the prediction and analysis of RNA secondary structure. It is available as a Web server, as a program with a graphical user interface, or as a set of command-line tools. The programs are available for Microsoft Windows, Macintosh OS X, or Linux. This unit provides protocols for RNA secondary structure prediction (using the Web server or the graphical user interface) and prediction of high-affinity oligonucleotide biding sites to a structured RNA target (using the graphical user interface). Copyright © 2014 John Wiley & Sons, Inc.

  12. RNA topology remoulds electrostatic stabilization of viruses

    CERN Document Server

    Erdemci-Tandogan, Gonca; van der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2013-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell-the capsid. Spontaneous co-assembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to {\\sl maximize} the amount of encapsulated genome and make assembly more efficient, allowing viral RNAs to out-compete cellular RNAs during replication in infected host cells.

  13. The RNA polymerase I transcription machinery

    OpenAIRE

    Russell, Jackie; Zomerdijk, Joost C. B. M.

    2006-01-01

    The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transc...

  14. Diversifying microRNA sequence and function.

    Science.gov (United States)

    Ameres, Stefan L; Zamore, Phillip D

    2013-08-01

    MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.

  15. Bioengineering RNA silencing across the life kingdoms.

    Science.gov (United States)

    Alvarez-Fernandez, R; Lopez-Gomollon, S; Lopez-Martinez, A F; Nicolas, F E

    2011-08-01

    RNA silencing negatively regulates gene expression at transcriptional and posttranscriptional levels, guided by small RNA molecules. It modulates core regulatory pathways across the eukaryotes, such as developmental processes or stress responses. The widespread existence of this phenomenon and the key pathways regulated have led to the development of a new technology based on the modification of gene expression, which has been applied successfully in different areas such as medicine or agriculture. Here we review the most important patents related to RNA silencing across the life kingdoms, including biotechnological applications into medicine, crop science and bioengineering.

  16. Identification of plant microRNA homologs.

    Science.gov (United States)

    Dezulian, Tobias; Remmert, Michael; Palatnik, Javier F; Weigel, Detlef; Huson, Daniel H

    2006-02-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that regulate gene and protein expression in plants and animals. MiRNAs have so far been identified mostly by specific cloning of small RNA molecules, complemented by computational methods. We present a computational identification approach that is able to identify candidate miRNA homologs in any set of sequences, given a query miRNA. The approach is based on a sequence similarity search step followed by a set of structural filters.

  17. Circulating miRNA and cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    miRNAs are a class of small RNA molecules with regulatory function, and play an important role in tumor development and progression. It has been demonstrated that tumor-derived miRNAs exist in the circulating nucleic acids of cancer patients. This phenomenon implies that detection of the circulating miRNA may be an effective method for non-invasive diagnosis of cancer. In this review, we summarize the applications of the circulating miRNA as biomarkers in cancer diagnosis, as well as the latest research progress in this area.

  18. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.

    2013-01-01

    The emergence of catalytically active RNA enzymes (ribozymes) is widely believed to have been an important transition in the origin of life. In the context of a likely heterogeneous chemical environment, substrate specificity and selectivity of these primordial enzymes would have been critical...... for function. Here we have explored the chemical fidelity, i.e. substrate selectivity and specificity for both single and multiple catalytic steps of the Z RNA polymerase ribozyme-a modern day analogue of the primordial RNA replicase. Using a wide range of nucleotide analogues and ionic conditions, we observe...

  19. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    Science.gov (United States)

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  20. Efficient Interaction between Arenavirus Nucleoprotein (NP) and RNA-Dependent RNA Polymerase (L) Is Mediated by the Virus Nucleocapsid (NP-RNA) Template.

    Science.gov (United States)

    Iwasaki, Masaharu; Ngo, Nhi; Cubitt, Beatrice; de la Torre, Juan C

    2015-05-01

    In this study, we document that efficient interaction between arenavirus nucleoprotein (NP) and RNA-dependent RNA polymerase (L protein), the two trans-acting viral factors required for both virus RNA replication and gene transcription, requires the presence of virus-specific RNA sequences located within the untranslated 5' and 3' termini of the viral genome.

  1. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production.

    Science.gov (United States)

    Han, Bo W; Wang, Wei; Li, Chengjian; Weng, Zhiping; Zamore, Phillip D

    2015-05-15

    PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence. Copyright © 2015, American Association for the Advancement of Science.

  2. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  3. Interaction of tRNA with domain II of 23S rRNA.

    Science.gov (United States)

    Hill, W E; Tassanakajohn, A; Tapprich, W E

    1990-08-27

    The interaction of tRNA with domain II of 23S rRNA in E. coli ribosomes has been probed using short, complementary DNA oligodeoxyribonucleotides. Specifically, cDNA oligomers to the region 801-811 of the 23S rRNA were used to ascertain the interaction of this region with tRNA. It was found that when tRNA was bound to the P site, considerable competition occurred between tRNA and the cDNA oligomers which base paired with the nucleotides 807-811. However, A-site bound tRNA neither displaced, nor was displaced, by cDNA oligomers to this region. Additionally, the binding of tRNA lacking the CACCA nucleotides on the 3' terminus was unaffected by the presence a cDNA oligomer complementary to nucleotides 803-811, indicating that the cDNA-tRNA competition was dependent on the 3' terminal nucleotides of tRNA.

  4. Trans-Regulation of RNA-Binding Protein Motifs by MicroRNA

    Directory of Open Access Journals (Sweden)

    Scott eTenenbaum

    2014-04-01

    Full Text Available The wide array of vital functions that RNA performs is dependent on its ability to dynamically fold into different structures in response to intracellular and extracellular changes. RNA-binding proteins regulate much of this activity by targeting specific RNA structures or motifs. One of these structures, the 3-way RNA junction, is characteristically found in ribosomal RNA and results from the RNA folding in cis, to produce three separate helices that meet around a central unpaired region. Here we demonstrate that 3-way junctions can also form in trans as a result of the binding of microRNAs in an unconventional manner with mRNA by splinting two non-contiguous regions together. This may be used to reinforce the base of a stem-loop motif being targeted by an RNA-binding protein. Trans interactions between non-coding RNA and mRNA may be used to control the post-transcriptional regulatory code and suggests a possible role for some of the recently described transcripts of unknown function expressed from the human genome.

  5. siRNA, miRNA and HIV: promises and challenges

    Institute of Scientific and Technical Information of China (English)

    Man Lung YEUNG; Yamina BENNASSER; Shu Yun LE; Kuan Teh JEANG

    2005-01-01

    Small interfering RNA (siRNA) and microRNA (miRNA) are small RNAs of 18-25 nucleotides (nt) in length that play important roles in regulating gene expression. They are incorporated into an RNA-induced silencing complex (RISC) and serve as guides for silencing their corresponding target mRNAs based on complementary base-pairing.The promise of gene silencing has led many researchers to consider siRNA as an anti-viral tool. However, in long-term settings, many viruses appear to escape from this therapeutical strategy. An example of this may be seen in the case of human immunodeficiency virus type-1 (HIV-1) which is able to evade RNA silencing by either mutating the siRNAtargeted sequence or by encoding for a partial suppressor of RNAi (RNA interference). On the other hand, because miRNA targeting does not require absolute complementarity of base-pairing, mutational escape by viruses from miRNAspecified silencing may be more difficult to achieve. In this review, we discuss stratagems used by various viruses to avoid the cells' antiviral si/mi-RNA defenses and notions of how viruses might control and regulate host cell genes by encoding viral miRNAs (vmiRNAs).

  6. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself.

    Science.gov (United States)

    Liddicoat, Brian J; Piskol, Robert; Chalk, Alistair M; Ramaswami, Gokul; Higuchi, Miyoko; Hartner, Jochen C; Li, Jin Billy; Seeburg, Peter H; Walkley, Carl R

    2015-09-04

    Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)→Ala(861)). Adar1(E861A/E861A) embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)-sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3' untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1(E861A/E861A) were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts. Copyright © 2015, American Association for the Advancement of Science.

  7. Selective amplification of Brucella melitensis mRNA from a mixed host-pathogen total RNA

    Directory of Open Access Journals (Sweden)

    Galindo Cristi L

    2010-09-01

    Full Text Available Abstract Background Brucellosis is a worldwide anthropozoonotic disease caused by an in vivo intracellular pathogen belonging to genus Brucella. The characterization of brucelae transcriptome's during host-pathogen interaction has been limited due to the difficulty of obtaining an adequate quantity of good quality eukaryotic RNA-free pathogen RNA for downstream applications. Findings Here, we describe a combined protocol to prepare RNA from intracellular B. melitensis in a quantity and quality suitable for pathogen gene expression analysis. Initially, B. melitensis total RNA was enriched from a host:pathogen mixed RNA sample by reducing the eukaryotic RNA..Then, to increase the Brucella RNA concentration and simultaneously minimize the contaminated host RNA in the mixed sample, a specific primer set designed to anneal to all B. melitensis ORF allows the selective linear amplification of sense-strand prokaryotic transcripts in a previously enriched RNA sample. Conclusion The novelty of the method we present here allows analysis of the gene expression profile of B. melitensis when limited amounts of pathogen RNA are present, and is potentially applicable to both in vivo and in vitro models of infection, even at early infection time points.

  8. Alternative mRNA fates identified in microRNA-associated transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Carroll Adam P

    2012-10-01

    Full Text Available Abstract Background MicroRNA (miRNA are small non-coding RNA molecules which function as nucleic acid-based specificity factors in the universal RNA binding complex known as the RNA induced silencing complex (RISC. In the canonical gene-silencing pathway, these activated RISC particles are associated with RNA decay and gene suppression, however, there is evidence to suggest that in some circumstances they may also stabilise their target RNA and even enhance translation. To further explore the role of miRNA in this context, we performed a genome-wide expression analysis to investigate the molecular consequences of bidirectional modulation of the disease-associated miRNAs miR-181b and miR-107 in multiple human cell lines. Results This data was subjected to pathways analysis and correlated against miRNA targets predicted through seed region homology. This revealed a large number of both conserved and non-conserved miRNA target genes, a selection of which were functionally validated through reporter gene assays. Contrary to expectation we also identified a significant proportion of predicted target genes with both conserved and non-conserved recognition elements that were positively correlated with the modulated miRNA. Finally, a large proportion of miR-181b associated genes devoid of the corresponding miRNA recognition element, were enriched with binding motifs for the E2F1 transcription factor, which is encoded by a miR-181b target gene. Conclusions These findings suggest that miRNA regulate target genes directly through interactions with both conserved and non-conserved target recognition elements, and can lead to both a decrease and increase in transcript abundance. They also multiply their influence through interaction with transcription factor genes exemplified by the observed miR-181b/E2F1 relationship.

  9. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    OpenAIRE

    Ricardo Monroy-Contreras; Luis Vaca

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular fu...

  10. Minireview: The Roles of Small RNA Pathways in Reproductive Medicine

    OpenAIRE

    2011-01-01

    The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated...

  11. New aspects of RNA processing in prokaryotes.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2011-10-01

    The pivotal role of posttranscriptional gene regulation is strongly underlined by genome-wide analyses showing strikingly low correlation between mRNA and protein levels in bacterial and archaeal cells. The stability of an mRNA and its availability for translation contribute to posttranscriptional gene regulation, and are determined by the following factors: i) the cell-specific set of ribonucleases and related proteins, ii) regulatory RNAs, and iii) the sequence and structural features of the RNA molecule itself. High-resolution analyses of whole prokaryotic transcriptomes allow comprehensive mapping of processed transcripts, detection of essentially all expressed regulatory RNAs, and monitoring of the global impact of ribonucleases and other processing factors. This opens new perspectives for the understanding of the molecular mechanisms responsible for mRNA decay in prokaryotes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. MicroRNA Dysregulation in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Omar ede Faria Jr.

    2013-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic inflammatory disease characterized by central nervous system (CNS demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis (EAE non-coding small microRNAs (miRNAs are dysregulated in the immune and central nervous systems. Since individual miRNAs are able to downregulate multiple targeted mRNA transcripts, even minor changes in miRNA expression may lead to significant alterations in post-transcriptional gene expression. Herein, we review miRNA signatures reported in CNS tissue and immune cells of MS patients and consider how altered miRNA expression may influence MS pathology.

  13. RNA interference in neuroscience: progress and challenges.

    Science.gov (United States)

    Miller, Victor M; Paulson, Henry L; Gonzalez-Alegre, Pedro

    2005-12-01

    1.RNA interference (RNAi) is a recently discovered biological pathway that mediates post-transcriptional gene silencing. The process of RNAi is orchestrated by an increasingly well-understood cellular machinery. 2. The common entry point for both natural and engineered RNAi are double stranded RNA molecules known as short interfering RNAs (siRNAs), that mediate the sequence-specific identification and degradation of the targeted messenger RNA (mRNA). The study and manipulation of these siRNAs has recently revolutionized biomedical research. 3. In this review, we first provide a brief overview of the process of RNAi, focusing on its potential role in brain function and involvement in neurological disease. We then describe the methods developed to manipulate RNAi in the laboratory and its applications to neuroscience. Finally, we focus on the potential therapeutic application of RNAi to neurological disease.

  14. Pooled shRNA screenings: computational analysis.

    Science.gov (United States)

    Yu, Jiyang; Putcha, Preeti; Califano, Andrea; Silva, Jose M

    2013-01-01

    Genome-wide RNA interference screening has emerged as a powerful tool for functional genomic studies of disease-related phenotypes and the discovery of molecular therapeutic targets for human diseases. Commercial short hairpin RNA (shRNA) libraries are commonly used in this area, and state-of-the-art technologies including microarray and next-generation sequencing have emerged as powerful methods to analyze shRNA-triggered phenotypes. However, computational analysis of this complex data remains challenging due to noise and small sample size from such large-scaled experiments. In this chapter we discuss the pipelines and statistical methods of processing, quality assessment, and post-analysis for both microarray- and sequencing-based screening data.

  15. An RNA motif that binds ATP

    Science.gov (United States)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  16. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... of action and turnover. During my PhD period we have shown that the STA1 protein, a factor for pre-mRNA splicing and mRNA stability, is specifically involved in the splicing of pri-miRNAs and in the modulation of DCL1 transcript levels. Also, we established a novel and essential regulatory network in which...

  17. Estrogen Regulation of Messenger RNA Stability

    Science.gov (United States)

    1990-08-17

    ribonuclease inhibitor, inhibits activity of RNase A-type enzymes. RNP-CS- ribonucleoprotein consensus sequence (K/R)G(F/Y)(G/A)FVX(F/Y) rRNA - ribosomal...CJ r i ɡ a 5S ^ S i C9 3 3 *» • - M 19 > • h- O C9 ^ h- 5 C9 > l - « < • - U f t - o CJ k u a u Q. < 2 C9 S C9 3 3 "ai t- 41 (9...mRNA molecules will need to be examined. Which of these factors degrade mRNAs? Which factors degrade other types of RNA molecules such as rRNA and

  18. Symbiont-mediated RNA interference in insects.

    Science.gov (United States)

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.

  19. From the RNA world to the clinic.

    Science.gov (United States)

    Sullenger, Bruce A; Nair, Smita

    2016-06-17

    The study of RNA has continually emphasized the structural and functional versatility of RNA molecules. This versatility has inspired translational and clinical researchers to explore the utility of RNA-based therapeutic agents for a wide variety of medical applications. Several RNA therapeutics, with diverse modes of action, are being evaluated in large late-stage clinical trials, and many more are in early clinical development. Hundreds of patients are enrolled in large trials testing messenger RNAs to combat cancer, small interfering RNAs to treat renal and hepatic disorders, and aptamers to combat ocular and cardiovascular disease. Results from these studies are generating considerable interest among the biomedical community and the public and will be important for the future development of this emerging class of therapeutic agents.

  20. Fight plant pests using RNA interference

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ CAS plant physiologists have recently invented a plant-mediated RNA interference (RNAi) technique to effectively and specifically control the gene expression of the cotton bollworm (Helicoverpa armigera) and stunt its growth.

  1. The NIH Extracellular RNA Communication Consortium.

    Science.gov (United States)

    Ainsztein, Alexandra M; Brooks, Philip J; Dugan, Vivien G; Ganguly, Aniruddha; Guo, Max; Howcroft, T Kevin; Kelley, Christine A; Kuo, Lillian S; Labosky, Patricia A; Lenzi, Rebecca; McKie, George A; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S; Srinivas, Pothur R; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A; Tucker, Jessica M; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

  2. Structural biology of bacterial RNA polymerase.

    Science.gov (United States)

    Murakami, Katsuhiko S

    2015-05-11

    Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  3. Optimization of yeast (Saccharomyces cerevisiae) RNA isolation ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... the center of research ranging from studies of human disease genes to experimental evolution and systems biology (Landry et al., 2006). ... cells and Lyticase as the most efficient in producing high quality yeast total RNA.

  4. RNA interference: past, present and future.

    Science.gov (United States)

    Campbell, Tessa N; Choy, Francis Y M

    2005-01-01

    RNA interference (RNAi) is the sequence-specific gene silencing induced by double-stranded RNA. RNAi is mediated by 21-23 nucleotide small interfering RNAs (siRNAs) which are produced from long double-stranded RNAs by RNAse II-like enzyme Dicer. The resulting siRNAs are incorporated into a RNA-induced silencing complex (RISC) that targets and cleaves mRNA complementary to the siRNAs. Since its inception in 1998, RNAi has been demonstrated in organisms ranging from trypanosomes to nematodes to vertebrates. Potential uses already in progress include the examination of specific gene function in living systems, the development of anti-viral and anti-cancer therapies, and genome-wide screens. In this review, we discuss the landmark discoveries that established the contextual framework leading up to our current understanding of RNAi. We also provide an overview of current developments and future applications.

  5. Purification of RNA from milk whey.

    Science.gov (United States)

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2013-01-01

    MicroRNAs (miRNAs) are small regulatory RNA molecules that modulate specific target mRNAs and play very important roles in physiological processes. They were recently detected in body fluids such as blood, urine, saliva, and milk. These body fluid miRNAs have been studied thoroughly as potential diagnostic biomarkers. However, there have been few studies of milk miRNAs, and their roles are not clearly understood. Milk is the only nutritional source for newborn infants, and bovine milk is used widely as a dairy product. Thus, it is important to study milk miRNAs. In general, body fluid RNA concentrations are extremely low and of diverse existence types. In this chapter, we compare two silica membrane column-based RNA purification kits, and also compare RNA obtained directly from whey with that isolated from whey-derived exosomes.

  6. Structural Biology of Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Katsuhiko S. Murakami

    2015-05-01

    Full Text Available Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477–42485, an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP. In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank, describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  7. Widespread RNA 3'-end oligouridylation in mammals.

    Science.gov (United States)

    Choi, Yun S; Patena, Weronika; Leavitt, Andrew D; McManus, Michael T

    2012-03-01

    Nontemplated 3'-end oligouridylation of RNA occurs in many species, including humans. Unlike the familiar phenomenon of polyadenylation, nontemplated addition of uridines to RNA is poorly characterized in higher eukaryotes. Recent studies have reported nontemplated 3'-end oligouridylation of small RNAs and mRNAs. Oligouridylation is involved in many aspects of microRNA biology from biogenesis to turnover of the mature species, and it may also mark long mRNAs for degradation by promoting decapping of the protective 5'-cap structure. To determine the prevalence of oligouridylation in higher eukaryotes, we used next-generation sequencing technology to deeply examine the population of small RNAs in human cells. Our data revealed widespread nontemplated nucleotide addition to the 3' ends of many classes of RNA, with short stretches of uridine being the most frequently added nucleotide.

  8. Tapping RNA silencing pathways for plant biotechnology.

    Science.gov (United States)

    Frizzi, Alessandra; Huang, Shihshieh

    2010-08-01

    Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.

  9. When RNA and protein degradation pathways meet

    Directory of Open Access Journals (Sweden)

    Pascal eGENSCHIK

    2014-04-01

    Full Text Available RNA silencing has become a major focus of molecular and biomedical research in the last decade. This mechanism, which is conserved in most eukaryotes, has been extensively studied and is associated to various pathways implicated in the regulation of development, in the control of transposition events, heterochromatin maintenance and also playing a role in defense against viruses. Despite of its importance, the regulation of the RNA silencing machinery itself remains still poorly explored. Recently several reports in both plants and metazoans revealed that key components of RNA silencing, such as RNA-induced silencing complex (RISC component ARGONAUTE proteins, but also the endonuclease Dicer are subjected to proteasomal and autophagic pathways. Here we will review these post-translational proteolytic regulations with a special emphasis on plant research and also discuss their functional relevance.

  10. Dependence among sites in RNA evolution

    DEFF Research Database (Denmark)

    Yu, Jiaye; Thorne, Jeffrey L

    2006-01-01

    this gap. In the model, RNA secondary structure links genotype and phenotype by treating the approximate free energy of a sequence folded into a secondary structure as a surrogate for fitness. The underlying idea is that a nucleotide substitution resulting in a more stable secondary structure should have...... a higher rate than a substitution that yields a less stable secondary structure. This free energy approach incorporates evolutionary dependencies among sequence positions beyond those that are reflected simply by jointly modeling change at paired positions in an RNA helix. Although there is not a formal...... a known phylogenetic tree topology. Analyses of 5S ribosomal RNA sequences are presented to illustrate and quantify the strong impact that RNA secondary structure has on substitution rates. Analyses on simulated sequences show that the new inference procedure has reasonable statistical properties...

  11. Alternative polyadenylation of mRNA precursors

    Science.gov (United States)

    Tian, Bin; Manley, James L.

    2017-01-01

    Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3′ termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation. PMID:27677860

  12. Mapping RNA-seq Reads with STAR

    Science.gov (United States)

    Dobin, Alexander; Gingeras, Thomas R.

    2015-01-01

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, signal visualization, and so forth. In this unit we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is Open Source software that can be run on Unix, Linux or Mac OS X systems. PMID:26334920

  13. Peptides as catalysts in the RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Luisi, Pier Luigi

    chemistry and the RNA world. Prebiotic soup likely contained complex mixtures of various molecules. Interaction of peptides and nucleotides shows that we should give more consideration to systems chemistry approach in the origin-of-life research. Gorlero M, Wieczorek R, Adamala K, Giorgi A, Schininà ME....... Biochem. Mol. Biol. 39(2):99-123. Rode BM. (1999) Peptides and the origin of life. Peptides 20(6): 773–786.......The emergence of RNA chains from prebiotic soup is considered a stumbling block in the RNA world theory (Orgel 2004). Both the activation of RNA monomers and their subsequent oligomerization is hard to achieve in accepted early Earth conditions, thus putting doubt on the prebiotic plausibility...

  14. MicroRNA and gynecological reproductive diseases.

    Science.gov (United States)

    Santamaria, Xavier; Taylor, Hugh

    2014-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs estimated to regulate the translation of mRNAs in 30% of all genes in animals by inhibiting translation. Aberrant miRNA expression is associated with many human diseases, including gynecological diseases, cancer, inflammatory diseases, and cardiovascular disorders. Abnormal expression of miRNAs has been observed in multiple human reproductive tract diseases including preeclampsia, endometrioid endometrial adenocarcinoma, uterine leiomyomata, ovarian carcinoma, endometriosis, and recurrent pregnancy loss. In the following review, an update of the role of microRNA and gynecological diseases is performed covering, not only impact of microRNA dysregulation in the origin of each disease, but also showing the potential useful diagnostic and therapeutic tool that miRNA may play in these gynecological pathologies.

  15. Characterization of RNA interference in rat PC12 cells

    DEFF Research Database (Denmark)

    Thonberg, Håkan; Schéele, Camilla C; Dahlgren, Cecilia

    2004-01-01

    Double-stranded RNA can initiate post transcriptional gene silencing in mammalian cell cultures via a mechanism known as RNA interference (RNAi). The sequence-specific degradation of homologous mRNA is triggered by 21-nucleotide RNA-duplexes termed short interfering RNA (siRNA). The homologous...... of the rat Golgi-ER protein 95 kDa (GERp95), an Argonaute family protein, by siRNA methodology. After GERp95-ablation, sequential knockdown of NPY by siRNA was shown to be impaired. Thus, we report that the GERp95 protein is functionally required for RNAi targeting NPY in rat PC12 cells....

  16. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Review of miRNA Technology

    Institute of Scientific and Technical Information of China (English)

    Zhang Tangyao

    2015-01-01

    miRNAs are non-coding RNA molecules exist in eukaryotic with 22 nucleotides. The abnormal expression of miRNAs are also lead to somedisease. The monitoring of cancer related miRNAs, oncomiRs, will help diagnose caners. The main methods to analyzing the profile of miRNA expression fordiagnosing cancer are microarray test and real-time PCR. The the studies on miRomics will bring revolutionary breakthrough to medicine and carcinobiology.

  18. Functional MicroRNA Involved in Endometriosis

    Science.gov (United States)

    Creighton, Chad J.; Han, Derek Y.; Zariff, Azam; Anderson, Matthew L.; Gunaratne, Preethi H.; Matzuk, Martin M.

    2011-01-01

    Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction. PMID:21436257

  19. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Science.gov (United States)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  20. Targeting RNA-Splicing for SMA Treatment

    OpenAIRE

    Zhou, Jianhua; Zheng, Xuexiu; SHEN, HAIHONG

    2012-01-01

    The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound...

  1. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Directory of Open Access Journals (Sweden)

    Sohan Jheeta

    2014-08-01

    Full Text Available This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1. Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7 produced only dimers from its monomers in water, addition of sodium chloride (1 M enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  2. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection

    Science.gov (United States)

    Flobinus, Alyssa; Hleibieh, Kamal; Klein, Elodie; Ratti, Claudio; Bouzoubaa, Salah; Gilmer, David

    2016-01-01

    Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3. PMID:27782046

  3. Flaviviral Replication Complex: Coordination between RNA Synthesis and 5'-RNA Capping.

    Science.gov (United States)

    Klema, Valerie J; Padmanabhan, Radhakrishnan; Choi, Kyung H

    2015-08-13

    Genome replication in flavivirus requires (-) strand RNA synthesis, (+) strand RNA synthesis, and 51-RNA capping and methylation. To carry out viral genome replication, flavivirus assembles a replication complex, consisting of both viral and host proteins, on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. Two major components of the replication complex are the viral non-structural (NS) proteins NS3 and NS5. Together they possess all the enzymatic activities required for genome replication, yet how these activities are coordinated during genome replication is not clear. We provide an overview of the flaviviral genome replication process, the membrane-bound replication complex, and recent crystal structures of full-length NS5. We propose a model of how NS3 and NS5 coordinate their activities in the individual steps of (-) RNA synthesis, (+) RNA synthesis, and 51-RNA capping and methylation.

  4. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis

    Science.gov (United States)

    te Velthuis, Aartjan J.W.; Fodor, Ervin

    2016-01-01

    The genome of influenza viruses consists of multiple segments of single stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, forming viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, how it carries out transcription and replication, and how its activities are modulated by viral and host factors. Furthermore, we discuss how advances in our understanding of polymerase function could help identifying new antiviral targets. PMID:27396566

  5. Experimental and Computational Considerations in the Study of RNA-Binding Protein-RNA Interactions.

    Science.gov (United States)

    Van Nostrand, Eric L; Huelga, Stephanie C; Yeo, Gene W

    2016-01-01

    After an RNA is transcribed, it undergoes a variety of processing steps that can change the encoded protein sequence (through alternative splicing and RNA editing), regulate the stability of the RNA, and control subcellular localization, timing, and rate of translation. The recent explosion in genomics techniques has enabled transcriptome-wide profiling of RNA processing in an unbiased manner. However, it has also brought with it both experimental challenges in developing improved methods to probe distinct processing steps, as well as computational challenges in data storage, processing, and analysis tools to enable large-scale interpretation in the genomics era. In this chapter we review experimental techniques and challenges in profiling various aspects of RNA processing, as well as recent efforts to develop analyses integrating multiple data sources and techniques to infer RNA regulatory networks.

  6. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication.

    Science.gov (United States)

    Ariumi, Yasuo; Kuroki, Misao; Abe, Ken-ichi; Dansako, Hiromichi; Ikeda, Masanori; Wakita, Takaji; Kato, Nobuyuki

    2007-12-01

    DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.

  7. Group II intron RNA catalysis of progressive nucleotide insertion: a model for RNA editing.

    Science.gov (United States)

    Mueller, M W; Hetzer, M; Schweyen, R J

    1993-08-20

    The self-splicing bl1 intron lariat from mitochondria of Saccharomyces cerevisiae catalyzed the insertion of nucleotidyl monomers derived from the 3' end of a donor RNA into an acceptor RNA in a 3' to 5' direction in vitro. In this catalyzed reaction, the site specificity provided by intermolecular base pair interactions, the formation of chimeric intermediates, the polarity of the nucleotidyl insertion, and its reversibility all resemble such properties in previously proposed models of RNA editing in kinetoplastid mitochondria. These results suggest that RNA editing occurs by way of a concerted, two-step transesterification mechanism and that RNA splicing and RNA editing might be prebiotically related mechanisms; possibly, both evolved from a primordial demand for self-replication.

  8. RNA LEGO: magnesium-dependent formation of specific RNA assemblies through kissing interactions.

    Science.gov (United States)

    Horiya, Satoru; Li, Xianglan; Kawai, Gota; Saito, Ryota; Katoh, Akira; Kobayashi, Koh; Harada, Kazuo

    2003-07-01

    The high affinity and specificity of nucleic acid base complementarity has been proven to be a powerful method for constructing specific molecular assemblies. On the other hand, recent structural studies of RNA have revealed the wide range of tertiary interactions utilized in RNA folding, which may potentially be used as tools for the design of specific macromolecular assemblies. Here, RNA building blocks containing two hairpin loops, based on the dimerization initiation site (DIS) of HIV RNA, connected by a short linker were used to construct large RNA assemblies through hairpin loop-loop ("kissing") interactions. We show that specific linear and circular assemblies can be constructed in a magnesium-dependent manner using several non-self-complementary loop-loop interactions designed in this study. These results show that the use of RNA tertiary interactions may broaden the repertoire of nucleic acid-based nanostructures.

  9. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures

    Indian Academy of Sciences (India)

    Gopinatha Suresh Kumar

    2012-07-01

    Studies on RNA targeting by small molecules to specifically control certain cellular functions is an area of remarkable current interest. For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are the protoberberines and aristolochia alkaloids distributed widely in many botanical families. Many of the alkaloids of these group exhibit excellent binding affinity to many RNA structures that may be exploited to develop RNA targeted therapeutics. This review attempts to present the current status on the understanding of the interaction of these alkaloids with various RNA structures, mainly highlighting the biophysical aspects.

  10. Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity

    Directory of Open Access Journals (Sweden)

    Zachary T. Campbell

    2012-05-01

    Full Text Available The control and function of RNA are governed by the specificity of RNA binding proteins. Here, we describe a method for global unbiased analysis of RNA-protein interactions that uses in vitro selection, high-throughput sequencing, and sequence-specificity landscapes. The method yields affinities for a vast array of RNAs in a single experiment, including both low- and high-affinity sites. It is reproducible and accurate. Using this approach, we analyzed members of the PUF (Pumilio and FBF family of eukaryotic mRNA regulators. Our data identify effects of a specific protein partner on PUF-RNA interactions, reveal subsets of target sites not previously detected, and demonstrate that designer PUF proteins can precisely alter specificity. The approach described here is, in principle, broadly applicable for analysis of any molecule that binds RNA, including proteins, nucleic acids, and small molecules.

  11. tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World

    Directory of Open Access Journals (Sweden)

    Savio T. de Farias

    2016-03-01

    Full Text Available Herein we present the tRNA core hypothesis, which emphasizes the central role of tRNAs molecules in the origin and evolution of fundamental biological processes. tRNAs gave origin to the first genes (mRNA and the peptidyl transferase center (rRNA, proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes then arose in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by three kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.

  12. RNA Relics and Origin of Life

    Directory of Open Access Journals (Sweden)

    Laurent Vial

    2009-07-01

    Full Text Available A number of small RNA sequences, located in different non-coding sequences and highly preserved across the tree of life, have been suggested to be molecular fossils, of ancient (and possibly primordial origin. On the other hand, recent years have revealed the existence of ubiquitous roles for small RNA sequences in modern organisms, in functions ranging from cell regulation to antiviral activity. We propose that a single thread can be followed from the beginning of life in RNA structures selected only for stability reasons through the RNA relics and up to the current coevolution of RNA sequences; such an understanding would shed light both on the history and on the present development of the RNA machinery and interactions. After presenting the evidence (by comparing their sequences that points toward a common thread, we discuss a scenario of genome coevolution (with emphasis on viral infectious processes and finally propose a plan for the reevaluation of the stereochemical theory of the genetic code; we claim that it may still be relevant, and not only for understanding the origin of life, but also for a comprehensive picture of regulation in present-day cells.

  13. RNA interference: Antiviral weapon and beyond

    Institute of Scientific and Technical Information of China (English)

    Quan-Chu Wang; Qing-He Nie; Zhi-Hua Feng

    2003-01-01

    RNA interference (RNAi) is a remarkable type of gene regulation based on sequence-specific targeting and degradation of RNA. The term encompasses related pathways found in a broad range of eukaryotic organisms, including fungi, plants, and animals. RNA interference is part of a sophisticated network of interconnected pathways for cellular defense, RNA surveillance, and development and it may become a powerful tool to manipulate gene expression experimentally. RNAi technology is currently being evaluated not only as an extremely powerful instrument for functional genomic analyses, but also as a potentially useful method to develop specific dsRNA based gene-silencing therapeutics.Several laboratories have been interested in using RNAi to control viral infection and many reports in Nature and in Cell show that short interfering (si) RNAs can inhibit infection by HIV-1, polio and hepatitis C viruses in a sequence-specific manner. RNA-based strategies for gene inhibition in mammalian cells have recently been described, which offer the promise of antiviral therapy.

  14. Transfer RNA's latest port of call

    DEFF Research Database (Denmark)

    Santos, Manuel A S; Orellana, Omar; Ibba, Michael

    2010-01-01

    Transfer RNA, or tRNA, has the dubious honor of being a recurring historical figure in molecular biology. Much like the lead character in Woody Allen's movie Zelig, tRNA keeps on turning up in history at the right place at the right time. In this respect the timing of the 23rd installment...... of the International tRNA Workshop just a few months after the awarding of the Nobel Prize for the structure of the ribosome was particularly fitting. Over 250 scientists gathered from January 28 to February 2, 2010 in the charming town of Aveiro on the Atlantic coast of Portugal to discuss the latest advances in our...... understanding of the myriad roles of tRNA, which stretch far beyond acting as a simple adaptor in protein synthesis. Topics covered ranged from well-established areas such as the complex post-transcriptional modification of tRNAs, tRNA aminoacylation and protein synthesis, to emerging areas...

  15. CBC bound proteins and RNA fate

    DEFF Research Database (Denmark)

    Giacometti, Simone

    ) complex (CBCN), were recently shown to target capped RNA either toward export or degradation, but the mechanisms by which they can discriminate between different RNA families and route them toward different metabolic pathways still remain unclear. A major question to be answered is how and when...... analysed NEXT-component RBM7. We report that: (i) CBP20, ARS2, PHAX and ZC3H18 bind close to the cap, while RBM7 and MTR4 bind throughout the mRNA body; (ii) CBP20, ARS2, PHAX and ZC3H18 associate with a broad set of RNA polymerase II (PolII)-derived RNAs and have only mild species preferences; (iii......) binding varies with the RNA maturation stage, with the CBC being highly enriched on mature mRNA, ARS2/PHAX/ZC3H18/MTR4 less so, and RMB7 preferentially bound to pre-mRNAs; (iv) MTR4 and RBM7 show different specificities, with RBM7 being highly enriched on introns and promoter upstream transcripts (PROMPTs...

  16. ViennaRNA Package 2.0

    Directory of Open Access Journals (Sweden)

    Lorenz Ronny

    2011-11-01

    Full Text Available Abstract Background Secondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties. Results The ViennaRNA Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the Turner 2004 parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying RNAlib and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as centroid structures and maximum expected accuracy structures derived from base pairing probabilities, or z-scores for locally stable secondary structures, and support for input in fasta format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions. Conclusions The ViennaRNA Package 2.0, supporting concurrent computations via OpenMP, can be downloaded from http://www.tbi.univie.ac.at/RNA.

  17. Template switching between PNA and RNA oligonucleotides

    Science.gov (United States)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  18. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  19. MicroRNA and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) were first described in 1993 by Lee and colleagues, and the term microRNA was only introduced in 2001 in a set of three articles in Science[1]. One of the biggest surprises in the past few years has been the emergence of miRNAs as a major new class of gene expression regulators. Recent studies suggest that miRNA alterations are involved in the initiation and progression of human cancer. The brain tumor,glioblastoma multiforme, is the most malignant and deadly form of gliomas.The prognosis is poor and the median survival with combined radiotherapy and chemotherapy is only 14.6 months. With the discovery of miRNA, the miRNA profiles may become useful biomarkers for brain tumor diagnostics,and miRNA therapy could be a powerful tool for brain tumor prevention and therapeutics. This review outlines the background of miRNA and its expression and therapeutic potential for brain tumors.

  20. Targeting RNA-splicing for SMA treatment.

    Science.gov (United States)

    Zhou, Jianhua; Zheng, Xuexiu; Shen, Haihong

    2012-03-01

    The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound discoveries of RNA regulation is RNA splicing. It has been estimated that 80% of pre-mRNA undergo alternative splicing, which exponentially increases biological information flow in cellular processes. However, an increased number of regulated steps inevitably accompanies an increased number of errors. Abnormal splicing is often found in cells, resulting in protein dysfunction that causes disease. Splicing of the survival motor neuron (SMN) gene has been extensively studied during the last two decades. Accumulating knowledge on SMN splicing has led to speculation and search for spinal muscular atrophy (SMA) treatment by stimulating the inclusion of exon 7 into SMN mRNA. This mini-review summaries the latest progress on SMN splicing research as a potential treatment for SMA disease.

  1. RNA relics and origin of life.

    Science.gov (United States)

    Demongeot, Jacques; Glade, Nicolas; Moreira, Andrés; Vial, Laurent

    2009-07-31

    A number of small RNA sequences, located in different non-coding sequences and highly preserved across the tree of life, have been suggested to be molecular fossils, of ancient (and possibly primordial) origin. On the other hand, recent years have revealed the existence of ubiquitous roles for small RNA sequences in modern organisms, in functions ranging from cell regulation to antiviral activity. We propose that a single thread can be followed from the beginning of life in RNA structures selected only for stability reasons through the RNA relics and up to the current coevolution of RNA sequences; such an understanding would shed light both on the history and on the present development of the RNA machinery and interactions. After presenting the evidence (by comparing their sequences) that points toward a common thread, we discuss a scenario of genome coevolution (with emphasis on viral infectious processes) and finally propose a plan for the reevaluation of the stereochemical theory of the genetic code; we claim that it may still be relevant, and not only for understanding the origin of life, but also for a comprehensive picture of regulation in present-day cells.

  2. Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA

    OpenAIRE

    Sydow, J.; Brueckner, F.; Cheung, A; Damsma, G.; Dengl, S.; Lehmann, E.; Vassylyev, D.; Cramer, P

    2009-01-01

    We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNA,RNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a T,U mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal i...

  3. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    OpenAIRE

    Fengfeng Wang; S. C. Cesar Wong; Lawrence W. C. Chan; Cho, William C. S.; S. P. Yip; Yung, Benjamin Y. M.

    2014-01-01

    Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopt...

  4. tRNA evolution from the proto-tRNA minihelix world

    Science.gov (United States)

    Root-Bernstein, Robert; Kim, Yunsoo; Sanjay, Adithya; Burton, Zachary F.

    2016-01-01

    ABSTRACT Multiple models have been advanced for the evolution of cloverleaf tRNA. Here, the conserved archaeal tRNA core (75-nt) is posited to have evolved from ligation of three proto-tRNA minihelices (31-nt) and two-symmetrical 9-nt deletions within joined acceptor stems (93 – 18 = 75-nt). The primary evidence for this conclusion is that the 5-nt stem 7-nt anticodon loop and the 5-nt stem 7-nt T loop are structurally homologous and related by coding sequence. We posit that the D loop was generated from a third minihelix (31-nt) in which the stem and loop became rearranged after 9-nt acceptor stem deletions and cloverleaf folding. The most 3´-5-nt segment of the D loop and the 5-nt V loop are apparent remnants of the joined acceptor stems (14 – 9 = 5-nt). Before refolding in the tRNA cloverleaf, we posit that the 3′-5-nt segment of the D loop and the 5-nt V loop were paired, and, in the tRNA cloverleaf, frequent pairing of positions 29 (D loop) and 47 (V loop) remains (numbered on a 75-nt tRNA cloverleaf core). Amazingly, after >3.5 billion years of evolutionary pressure on the tRNA cloverleaf structure, a model can be constructed that convincingly describes the genesis of 75/75-nt conserved archaeal tRNA core positions. Judging from the tRNA structure, cloverleaf tRNA appears to represent at least a second-generation scheme (and possibly a third-generation scheme) that replaced a robust 31-nt minihelix protein-coding system, evidence for which is preserved in the cloverleaf structure. Understanding tRNA evolution provides insights into ribosome and rRNA evolution. PMID:27636862

  5. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.

    Science.gov (United States)

    Hernández, Armando R; Peterson, Larryn W; Kool, Eric T

    2012-08-17

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.

  6. Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis.

    Science.gov (United States)

    Boswell, Sarah A; Snavely, Andrew; Landry, Heather M; Churchman, L Stirling; Gray, Jesse M; Springer, Michael

    2017-03-06

    Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.

  7. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    SUDHANSHU YADAV; AMIT SONKAR; NAFEES AHAMAD; SHAKIL AHMED

    2016-06-01

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report the isolation of a mutant allele of rna14 in fission yeast,Schizosaccharomyces pombe that exhibits reduction in protein level of Chk1 at the nonpermissive temperature, primarily due to the defects in posttranscriptional processing. Reverse transcriptase-polymerase chain reaction analysis reveals defective splicing of the chk1¹+transcript at the nonpermissive temperature. Apart from chk1¹+, the splicing of some other genes were also found to be defective at the nonpermissive temperature suggesting that Rna14 might be involved in pre-mRNA splicing. Subsequently, genetic interaction of Rna14 with prp1 and physical interactions with Prp28 suggest that the Rna14 might be part of a larger protein complex responsible for the pre-mRNA maturation.

  8. Transcriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma.

    Science.gov (United States)

    Moore, Lynette M; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N; Zhang, Wei; Nykter, Matti

    2013-02-01

    Altered expression of oncogenic and tumour-suppressing microRNAs (miRNAs) is widely associated with tumourigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumours. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and examined expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression.

  9. Mutational analysis of the SDD sequence motif of a PRRSV RNA-dependent RNA polymerase.

    Science.gov (United States)

    Zhou, Yan; Zheng, Haihong; Gao, Fei; Tian, Debin; Yuan, Shishan

    2011-09-01

    The subgenomic mRNA transcription and genomic replication of the porcine reproductive and respiratory syndrome virus (PRRSV) are directed by the viral replicase. The replicase is expressed in the form of two polyproteins and is subsequently processed into smaller nonstructural proteins (nsps). nsp9, containing the viral replicase, has characteristic sequence motifs conserved among the RNA-dependent RNA polymerases (RdRp) of positive-strand (PS) RNA viruses. To test whether the conserved SDD motif can tolerate other conserved motifs of RNA viruses and the influence of every residue on RdRp catalytic activity, many amino acids substitutions were introduced into it. Only one nsp9 substitution, of serine by glycine (S3050G), could rescue mutant viruses. The rescued virus was genetically stable. Alteration of either aspartate residue was not tolerated, destroyed the polymerase activity, and abolished virus transcription, but did not eliminate virus replication. We also found that the SDD motif was essentially invariant for the signature sequence of PRRSV RdRp. It could not accommodate other conserved motifs found in other RNA viral polymerases, except the GDD motif, which is conserved in all the other PS RNA viruses. These findings indicated that nidoviruses are evolutionarily related to other PS RNA viruses. Our studies support the idea that the two aspartate residues of the SDD motif are critical and essential for PRRSV transcription and represent a sequence variant of the GDD motif in PS RNA viruses.

  10. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.

    Science.gov (United States)

    Saldi, Tassa; Cortazar, Michael A; Sheridan, Ryan M; Bentley, David L

    2016-06-19

    Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Temporal Translational Control by a Metastable RNA Structure

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Franch, Thomas; Gerdes, Kenn

    2001-01-01

    Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok m......RNA is translatable but can also bind the inhibitory Sok antisense RNA. Binding of Sok RNA leads to irreversible mRNA inactivation by an RNase III-dependent mechanism. A coherent model predicts that during transcription hok mRNA must be refractory to translation and antisense RNA binding. Here we provide genetic...... evidence for the existence of a 5' metastable structure in hok mRNA that locks the nascent transcript in an inactive configuration in vivo. Consistently, the metastable structure reduces the rate of Sok RNA binding and completely blocks hok translation in vitro. Structural analyses of native RNAs strongly...

  12. Minireview: The Roles of Small RNA Pathways in Reproductive Medicine

    Science.gov (United States)

    Buchold, Gregory M.

    2011-01-01

    The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists. PMID:21546411

  13. Genome-wide measurement of RNA folding energies.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  14. Free RNA polymerase in Escherichia coli.

    Science.gov (United States)

    Patrick, Michael; Dennis, Patrick P; Ehrenberg, Mans; Bremer, Hans

    2015-12-01

    The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

  15. ncRNA-class Web Tool: Non-coding RNA feature extraction and pre-miRNA classification web tool

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2012-01-01

    Until recently, it was commonly accepted that most genetic information is transacted by proteins. Recent evidence suggests that the majority of the genomes of mammals and other complex organisms are in fact transcribed into non-coding RNAs (ncRNAs), many of which are alternatively spliced and/or processed into smaller products. Non coding RNA genes analysis requires the calculation of several sequential, thermodynamical and structural features. Many independent tools have already been developed for the efficient calculation of such features but to the best of our knowledge there does not exist any integrative approach for this task. The most significant amount of existing work is related to the miRNA class of non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a significant role in gene regulation and their prediction is a challenging bioinformatics problem. Non-coding RNA feature extraction and pre-miRNA classification Web Tool (ncRNA-class Web Tool) is a publicly available web tool ( http://150.140.142.24:82/Default.aspx ) which provides a user friendly and efficient environment for the effective calculation of a set of 58 sequential, thermodynamical and structural features of non-coding RNAs, plus a tool for the accurate prediction of miRNAs. © 2012 IFIP International Federation for Information Processing.

  16. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    Science.gov (United States)

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA.

  17. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and miRNA

  18. The HIV RNA setpoint theory revisited

    Directory of Open Access Journals (Sweden)

    Hubert Jean-Baptiste

    2007-09-01

    Full Text Available Abstract Background The evolution of plasma viral load after HIV infection has been described as reaching a setpoint, only to start rising again shortly before AIDS diagnosis. In contrast, CD4 T-cell count is considered to show a stable decrease. However, characteristics of marker evolution over time depend on the scale that is used to visualize trends. In reconsidering the setpoint theory for HIV RNA, we analyzed the evolution of CD4 T-cell count and HIV-1 RNA level from HIV seroconversion to AIDS diagnosis. Follow-up data were used from two cohort studies among homosexual men (N = 400, restricting to the period before highly active antiretroviral therapy became widely available (1984 until 1996. Individual trajectories of both markers were fitted and averaged, both from seroconversion onwards and in the four years preceding AIDS diagnosis, using a bivariate random effects model. Both markers were evaluated on a scale that is directly related to AIDS risk. Results Individuals with faster AIDS progression had higher HIV RNA level six months after seroconversion. For CD4 T-cell count, this ordering was less clearly present. However, HIV RNA level and CD4 T-cell count showed qualitatively similar evolution over time after seroconversion, also when stratified by rate of progression to AIDS. In the four years preceding AIDS diagnosis, a non-significant change in HIV RNA increase was seen, whereas a significant biphasic pattern was present for CD4 T-cell decline. Conclusion HIV RNA level has more setpoint behaviour than CD4 T-cell count as far as the level shortly after seroconversion is concerned. However, with respect to the, clinically more relevant, marker evolution over time after seroconversion, a setpoint theory holds as much for CD4 T-cell count as for HIV RNA level.

  19. Vitamin D and alternative splicing of RNA.

    Science.gov (United States)

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  20. T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis

    Directory of Open Access Journals (Sweden)

    Zhuang Fanglei

    2011-07-01

    Full Text Available Abstract Background T4 RNA ligases 1 and 2 are useful tools for RNA analysis. Their use upstream of RNA analyses such as high-throughput RNA sequencing and microarrays has recently increased their importance. The truncated form of T4 RNA ligase 2, comprising amino acids 1-249 (T4 Rnl2tr, is an attractive tool for attachment of adapters or labels to RNA 3'-ends. Compared to T4 RNA ligase 1, T4 Rnl2tr has a decreased ability to ligate 5'-PO4 ends in single-stranded RNA ligations, and compared to the full-length T4 Rnl2, the T4 Rnl2tr has an increased activity for joining 5'-adenylated adapters to RNA 3'-ends. The combination of these properties allows adapter attachment to RNA 3'-ends with reduced circularization and concatemerization of substrate RNA. Results With the aim of further reducing unwanted side ligation products, we substituted active site residues, known to be important for adenylyltransferase steps of the ligation reaction, in the context of T4 Rnl2tr. We characterized the variant ligases for the formation of unwanted ligation side products and for activity in the strand-joining reaction. Conclusions Our data demonstrate that lysine 227 is a key residue facilitating adenylyl transfer from adenylated ligation donor substrates to the ligase. This reversal of the second step of the ligation reaction correlates with the formation of unwanted ligation products. Thus, T4 Rn2tr mutants containing the K227Q mutation are useful for reducing undesired ligation products. We furthermore report optimal conditions for the use of these improved T4 Rnl2tr variants.

  1. Characterization of Circulating Transfer RNA-Derived RNA Fragments in Cattle

    Directory of Open Access Journals (Sweden)

    Eduardo eCasas

    2015-08-01

    Full Text Available The objective was to characterize naturally occurring circulating transfer RNA-derived RNA Fragments (tRFs in cattle. Serum from eight clinically normal adult dairy cows was collected, and small non-coding RNAs were extracted immediately after collection and sequenced by Illumina MiSeq. Sequences aligned to transfer RNA (tRNA genes or their flanking sequences were characterized. Sequences aligned to the beginning of 5’ end of the mature tRNA were classified as tRF5; those aligned to the 3’ end of mature tRNA were classified as tRF3; and those aligned to the beginning of the 3’ end flanking sequences were classified as tRF1. There were 3,190,962 sequences that mapped to transfer RNA and small non-coding RNAs in the bovine genome. Of these, 2,323,520 were identified as tRF5s, 562 were tRF3s, and 81 were tRF1s. There were 866,799 sequences identified as other small non-coding RNAs (MicroRNA, rRNA, snoRNA, etc. and were excluded from the study. The tRF5s ranged from 28 to 40 nucleotides; and 98.7% ranged from 30 to 34 nucleotides in length. The tRFs with the greatest number of sequences were derived from tRNA of histidine, glutamic acid, lysine, glycine, and valine. There was no association between number of codons for each amino acid and number of tRFs in the samples. The reason for tRF5s being the most abundant can only be explained if these sequences are associated with function within the animal.

  2. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein.

    Science.gov (United States)

    White, Michael R; Garcin, Elsa D

    2016-01-01

    The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.

  3. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5' leader sequence.

    Science.gov (United States)

    Obana, Nozomu; Shirahama, Yu; Abe, Kimihiro; Nakamura, Kouji

    2010-09-01

    The small RNA (sRNA), VR-RNA that is directly regulated by the VirR/VirS two-component system, regulates many genes including toxin genes such as collagenase (colA) and phospholipase C (plc) in Clostridium perfringens. Although the VR-RNA 3' region is sufficient to regulate the colA and plc genes, the molecular mechanism of toxin gene regulation by VR-RNA remains unclear. Here, we found that colA mRNA is cleaved at position -79 and -78 from the A of the first codon (ATG) in the presence of VR-RNA. The processed transcripts were stable compared with longer intact transcripts. On the other hand, colA mRNA was labile in a VR-RNA-deficient strain, and processed transcripts were undetectable. The stability and processing of colA mRNA were restored by transformation of the 3' region of VR-RNA-expression vector. The 3' region of VR-RNA and colA mRNA had significant complementation and interacted in vitro. These results show that VR-RNA base pairs with colA mRNA and induces cleavage in the 5' untranslated region (UTR) of colA mRNA, which leads to the stabilization of colA mRNA and the activation of colA expression. © 2010 Blackwell Publishing Ltd.

  4. Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing.

    Science.gov (United States)

    Bremer, H; Ehrenberg, M

    1995-05-17

    A recently reported comparison of stable RNA (rRNA, tRNA) and mRNA synthesis rates in ppGpp-synthesizing and ppGpp-deficient (delta relA delta spoT) bacteria has suggested that ppGpp inhibits transcription initiation from stable RNA promoters, as well as synthesis of (bulk) mRNA. Inhibition of stable RNA synthesis occurs mainly during slow growth of bacteria when cytoplasmic levels of ppGpp are high. In contrast, inhibition of mRNA occurs mainly during fast growth when ppGpp levels are low, and it is associated with a partial inactivation of RNA polymerase. To explain these observations it has been proposed that ppGpp causes transcriptional pausing and queuing during the synthesis of mRNA. Polymerase queuing requires high rates of transcription initiation in addition to polymerase pausing, and therefore high concentrations of free RNA polymerase. These conditions are found in fast growing bacteria. Furthermore, the RNA polymerase queues lead to a promoter blocking when RNA polymerase molecules stack up from the pause site back to the (mRNA) promoter. This occurs most frequently at pause sites close to the promoter. Blocking of mRNA promoters diverts RNA polymerase to stable RNA promoters. In this manner ppGpp could indirectly stimulate synthesis of stable RNA at high growth rates. In the present work a mathematical analysis, based on the theory of queuing, is presented and applied to the global control of transcription in bacteria. This model predicts the in vivo distribution of RNA polymerase over stable RNA and mRNA genes for both ppGpp-synthesizing and ppGpp-deficient bacteria in response to different environmental conditions. It also shows how small changes in basal ppGpp concentrations can produce large changes in the rate of stable RNA synthesis.

  5. Overcoming HIV-1 resistance to RNA interference.

    Science.gov (United States)

    Boden, Daniel; Pusch, Oliver; Ramratnam, Bharat

    2007-05-01

    RNAi refers to the sequence-specific degradation of RNA that follows the cellular introduction of homologous short interfering (si) RNA. RNAi has emerged as a powerful tool to probe the function of genes of known sequence in vitro and in vivo. Advances in vector design permit the effective expression of siRNA in human cells. Numerous recent investigations have described the ability of RNAi to decrease the replication of human immunodeficiency virus type 1 (HIV-1) in lymphocytic cells using siRNA targeting viral (e.g. tat, gag, rev) and host (e.g. CCR5, CD4) proteins. Can RNAi be used as a form of genetic therapy for HIV-1 infection? Recent data indicate that the dynamic replication kinetics of HIV-1 pose a considerable barrier to achieving durable virus suppression by RNAi with the rapid emergence of HIV-1 mutants resistant to siRNA. This review summarizes recent work on HIV-1 specific RNAi with a focus on potential strategies to overcome HIV-1 resistance to RNAi.

  6. Physiological roles of small RNA molecules.

    Science.gov (United States)

    Michaux, Charlotte; Verneuil, Nicolas; Hartke, Axel; Giard, Jean-Christophe

    2014-06-01

    Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.

  7. A comparison of RNA folding measures

    Directory of Open Access Journals (Sweden)

    Gardner Paul P

    2005-10-01

    Full Text Available Abstract Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE than random sequences with the same dinucleotide frequency. Moreover, even when the MFE is significant, many ncRNAs appear to not have a unique fold, but rather several alternative folds, at least when folded in silico. Furthermore, we find that the six investigated measures are correlated to varying degrees. Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score and the other to see if the sequence has a unique fold (the average base-pair distance, D.

  8. Interaction of sulforaphane with DNA and RNA.

    Directory of Open Access Journals (Sweden)

    Farzaneh Abassi Joozdani

    Full Text Available Sulforaphane (SFN is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN-DNA and -RNA complexes by Fourier transform infrared (FTIR and UV-Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2, while RNA binding is through G, U, A bases with some degree of SFN-phosphate (PO2 interaction. Overall binding constants were estimated to be K(SFN-DNA=3.01 (± 0.035×10(4 M(-1 and K(SFN-RNA= 6.63 (±0.042×10(3 M(-1. At high SFN concentration (SFN/RNA = 1/1, DNA conformation changed from B to A occurred, while RNA remained in A-family structure.

  9. MicroRNA and esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiaoting He; Xiufeng Cao

    2007-01-01

    Objective:An abundant class of non-coding small RNA molecules, 21-25 nucleotide in length, are widely found in animals and plants and named microRNA(miRNA)[1-2]. MiRNAs are highly evolutionarily conserved, expressing in specific tissue and timing[2], and negatively regulate the gene expressions at the posttranscriptional level[3], and subsequently control crucial physiological processes such as metabolism, amplification, differentiation, development and apoptosis[4-7]. Therefore, miRNAs could provide an access to many human diseases in theory. Recent evidence demonstrates that miRNAs play an important role in the initiation and progression of human cancer, mainly by interrupting the cell cycle at the cellular level and by interacting with signaling [7-11] The expression profiling of miRNAs can be used as a tool of diagnosis, staging, prognosis and biotherapy of some tumors, as has already been proven to have superiority to mRNA, in the categorization of tumors. This review focuses on the genesis, mechanism of action of miRNA and its relationship to tumors, detection methods and its potential effect on the diagnosis, staging, and biotherapy in esophageal carcinoma.

  10. tRNA Biology in Mitochondria

    Directory of Open Access Journals (Sweden)

    Thalia Salinas-Giegé

    2015-02-01

    Full Text Available Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.

  11. Multiscale methods for computational RNA enzymology

    Science.gov (United States)

    Panteva, Maria T.; Dissanayake, Thakshila; Chen, Haoyuan; Radak, Brian K.; Kuechler, Erich R.; Giambaşu, George M.; Lee, Tai-Sung; York, Darrin M.

    2016-01-01

    RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multi-dimensional “problem space” of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues and bond breaking/forming in the chemical steps of the reaction. The goal of this article is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics (MD) simulations, reference interaction site model (RISM) calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics (HREMD) and quantum mechanical/molecular mechanical (QM/MM) simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme (HDVr) and RNase A. PMID:25726472

  12. Interaction of Sulforaphane with DNA and RNA

    Science.gov (United States)

    Abassi Joozdani, Farzaneh; Yari, Faramarz; Abassi Joozdani, Parvaneh; Nafisi, Shohreh

    2015-01-01

    Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN–DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV–Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN–phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN–DNA)=3.01 (± 0.035)×104 M-1 and K(SFN–RNA)= 6.63 (±0.042)×103 M-1. At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure. PMID:26030290

  13. Accurate detection of differential RNA processing

    Science.gov (United States)

    Drewe, Philipp; Stegle, Oliver; Hartmann, Lisa; Kahles, André; Bohnert, Regina; Wachter, Andreas; Borgwardt, Karsten; Rätsch, Gunnar

    2013-01-01

    Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation. PMID:23585274

  14. tRNA Biology in Mitochondria

    Science.gov (United States)

    Salinas-Giegé, Thalia; Giegé, Richard; Giegé, Philippe

    2015-01-01

    Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation. PMID:25734984

  15. 21 CFR 866.4070 - RNA Preanalytical Systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false RNA Preanalytical Systems. 866.4070 Section 866....4070 RNA Preanalytical Systems. (a) Identification. RNA Preanalytical Systems are devices intended to collect, store, and transport patient specimens, and stabilize intracellular RNA from the specimens,...

  16. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Su

  17. How Amino Acids and Peptides Shaped the RNA World

    NARCIS (Netherlands)

    Gulik, P.T.S. van der; Speijer, D.

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this

  18. How Amino Acids and Peptides Shaped the RNA World

    NARCIS (Netherlands)

    P.T.S. van der Gulik (Peter); D. Speijer (Dave)

    2015-01-01

    htmlabstractThe “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein

  19. A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation.

    Science.gov (United States)

    Atianand, Maninjay K; Hu, Wenqian; Satpathy, Ansuman T; Shen, Ying; Ricci, Emiliano P; Alvarez-Dominguez, Juan R; Bhatta, Ankit; Schattgen, Stefan A; McGowan, Jason D; Blin, Juliana; Braun, Joerg E; Gandhi, Pallavi; Moore, Melissa J; Chang, Howard Y; Lodish, Harvey F; Caffrey, Daniel R; Fitzgerald, Katherine A

    2016-06-16

    Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.

  20. Quantitative assessment of RNA-protein interactions with high-throughput sequencing-RNA affinity profiling.

    Science.gov (United States)

    Ozer, Abdullah; Tome, Jacob M; Friedman, Robin C; Gheba, Dan; Schroth, Gary P; Lis, John T

    2015-08-01

    Because RNA-protein interactions have a central role in a wide array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay that couples sequencing on an Illumina GAIIx genome analyzer with the quantitative assessment of protein-RNA interactions. This assay is able to analyze interactions between one or possibly several proteins with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of the EGFP and negative elongation factor subunit E (NELF-E) proteins with their corresponding canonical and mutant RNA aptamers. Here we provide a detailed protocol for HiTS-RAP that can be completed in about a month (8 d hands-on time). This includes the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, HiTS and protein binding with a GAIIx instrument, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, quantitative analysis of RNA on a massively parallel array (RNA-MaP) and RNA Bind-n-Seq (RBNS), for quantitative analysis of RNA-protein interactions.

  1. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2014-01-01

    Full Text Available Background. MicroRNA (miRNA is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC, and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI and chromosomal instability (CIN signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC.

  2. Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bassam Berry

    Full Text Available BACKGROUND: In plants and insects, RNA interference (RNAi is the main responder against viruses and shapes the basis of antiviral immunity. Viruses counter this defense by expressing viral suppressors of RNAi (VSRs. While VSRs in Drosophila melanogaster were shown to inhibit RNAi through different modes of action, whether they act on other silencing pathways remained unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that expression of various plant and insect VSRs in transgenic flies does not perturb the Drosophila microRNA (miRNA pathway; but in contrast, inhibits antiviral RNAi and the RNA silencing response triggered by inverted repeat transcripts, and injection of dsRNA or siRNA. Strikingly, these VSRs also suppressed transposon silencing by endogenous siRNAs (endo-siRNAs. CONCLUSIONS/SIGNIFICANCE: Our findings identify VSRs as tools to unravel small RNA pathways in insects and suggest a cosuppression of antiviral RNAi and endo-siRNA silencing by viruses during fly infections.

  3. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  4. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity.

    Science.gov (United States)

    Echeverria, Gloria V; Cooper, Thomas A

    2012-06-26

    Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.

  5. Archaeal rRNA operons, intron splicing and homing endonucleases, RNA polymerase operons and phylogeny

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Aagaard, Claus Sindbjerg; Andersen, Morten;

    1994-01-01

    Over the past decade our laboratory has had a strong interest in defining the phylogenetic status of the archaea. This has involved determining and analysing the sequences of operons of both rRNAs and RNA polymerases and it led to the discovery of the first archaeal rRNA intron. What follows...

  6. Unveiling Chloroplast RNA Editing Events Using Next Generation Small RNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Nureyev F. Rodrigues

    2017-09-01

    Full Text Available Organellar RNA editing involves the modification of nucleotide sequences to maintain conserved protein functions, mainly by reverting non-neutral codon mutations. The loss of plastid editing events, resulting from mutations in RNA editing factors or through stress interference, leads to developmental, physiological and photosynthetic alterations. Recently, next generation sequencing technology has generated the massive discovery of sRNA sequences and expanded the number of sRNA data. Here, we present a method to screen chloroplast RNA editing using public sRNA libraries from Arabidopsis, soybean and rice. We mapped the sRNAs against the nuclear, mitochondrial and plastid genomes to confirm predicted cytosine to uracil (C-to-U editing events and identify new editing sites in plastids. Among the predicted editing sites, 40.57, 34.78, and 25.31% were confirmed using sRNAs from Arabidopsis, soybean and rice, respectively. SNP analysis revealed 58.2, 43.9, and 37.5% new C-to-U changes in the respective species and identified known and new putative adenosine to inosine (A-to-I RNA editing in tRNAs. The present method and data reveal the potential of sRNA as a reliable source to identify new and confirm known editing sites.

  7. Fast production of homogeneous recombinant RNA--towards large-scale production of RNA

    NARCIS (Netherlands)

    Nelissen, F.H.; Leunissen, E.H.P.; Laar, L. van de; Tessari, M.; Heus, H.A.; Wijmenga, S.S.

    2012-01-01

    In the past decades, RNA molecules have emerged as important players in numerous cellular processes. To understand these processes at the molecular and atomic level, large amounts of homogeneous RNA are required for structural, biochemical and pharmacological investigations. Such RNAs are generally

  8. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure.

    Science.gov (United States)

    Takeuchi, Yosuke; Endo, Masayuki; Suzuki, Yuki; Hidaka, Kumi; Durand, Guillaume; Dausse, Eric; Toulmé, Jean-Jacques; Sugiyama, Hiroshi

    2016-01-01

    RNA molecules uniquely form a complex through specific hairpin loops, called a kissing complex. The kissing complex is widely investigated and used for the construction of RNA nanostructures. Molecular switches have also been created by combining a kissing loop and a ligand-binding aptamer to control the interactions of RNA molecules. In this study, we incorporated two kinds of RNA molecules into a DNA origami structure and used atomic force microscopy to observe their ligand-responsive interactions at the single-molecule level. We used a designed RNA aptamer called GTPswitch, which has a guanosine triphosphate (GTP) responsive domain and can bind to the target RNA hairpin named Aptakiss in the presence of GTP. We observed shape changes of the DNA/RNA strands in the DNA origami, which are induced by the GTPswitch, into two different shapes in the absence and presence of GTP, respectively. We also found that the switching function in the nanospace could be improved by using a cover strand over the kissing loop of the GTPswitch or by deleting one base from this kissing loop. These newly designed ligand-responsive aptamers can be used for the controlled assembly of the various DNA and RNA nanostructures.

  9. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase

    Directory of Open Access Journals (Sweden)

    Kim Chan-Mi

    2007-07-01

    Full Text Available Abstract Background Japanese encephalitis virus (JEV NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp domains. It is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins. The biochemical properties of JEV NS5 have not been characterized due to the lack of a robust in vitro RdRp assay system, and the molecular mechanisms for the initiation of RNA synthesis by JEV NS5 remain to be elucidated. Results To characterize the biochemical properties of JEV RdRp, we expressed in Escherichia coli and purified an enzymatically active full-length recombinant JEV NS5 protein with a hexahistidine tag at the N-terminus. The purified NS5 protein, but not the mutant NS5 protein with an Ala substitution at the first Asp of the RdRp-conserved GDD motif, exhibited template- and primer-dependent RNA synthesis activity using a poly(A RNA template. The NS5 protein was able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template revealed that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template. Conclusion As a first step toward the understanding of the molecular mechanisms for JEV RNA replication and ultimately for the in vitro reconstitution of viral RNA replicase complex, we for the first time established an in vitro JEV RdRp assay system with a functional full-length recombinant JEV NS5 protein and characterized the mechanisms of RNA synthesis from nonviral and viral RNA templates. The full-length recombinant JEV NS5 will be useful for the elucidation of the structure-function relationship of this enzyme and for the

  10. Use of tiling array data and RNA secondary structure predictions to identify noncoding RNA genes

    DEFF Research Database (Denmark)

    Weile, Christian; Gardner, Paul P; Hedegaard, Mads M

    2007-01-01

    BACKGROUND: Within the last decade a large number of noncoding RNA genes have been identified, but this may only be the tip of the iceberg. Using comparative genomics a large number of sequences that have signals concordant with conserved RNA secondary structures have been discovered in the human...... genome. Moreover, genome wide transcription profiling with tiling arrays indicate that the majority of the genome is transcribed. RESULTS: We have combined tiling array data with genome wide structural RNA predictions to search for novel noncoding and structural RNA genes that are expressed in the human...... of 3 of the hairpin structures and 3 out of 9 high covariance structures in SK-N-AS cells. CONCLUSION: Our results demonstrate that many human noncoding, structured and conserved RNA genes remain to be discovered and that tissue specific tiling array data can be used in combination with computational...

  11. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  12. Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that doublestranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of methylation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants.

  13. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    Science.gov (United States)

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  14. RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs.

    Science.gov (United States)

    Simon, Anne E; Gehrke, Lee

    2009-01-01

    The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cycle before being targeted by cellular defenses. Viral genomic RNAs must switch between translation and replication, and untranslated subviral RNAs must control other activities such as RNA editing or self-cleavage. Unlike well characterized riboswitches in cellular RNAs, the control of infectious RNA activities by altering the configuration of functional RNA domains has only recently been recognized. In this review, we will present some of these molecular rearrangements found in RNA viruses, viroids and virus-associated RNAs, relating how these dynamic regions were discovered, the activities that might be regulated, and what factors or conditions might cause a switch between conformations.

  15. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner

    2015-01-01

    Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution....... These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D...

  16. Structural features of the tmRNA-ribosome interaction.

    Science.gov (United States)

    Bugaeva, Elizaveta Y; Surkov, Serhiy; Golovin, Andrey V; Ofverstedt, Lars-Göran; Skoglund, Ulf; Isaksson, Leif A; Bogdanov, Alexey A; Shpanchenko, Olga V; Dontsova, Olga A

    2009-12-01

    Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.

  17. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate miRNA...... expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  18. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate miRNA...... expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  19. Nucleolin Is Required for RNA Polymerase I Transcription In Vivo▿

    Science.gov (United States)

    Rickards, Brenden; Flint, S. J.; Cole, Michael D.; LeRoy, Gary

    2007-01-01

    Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin. PMID:17130237

  20. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.