Fluorescein isothiocyanate: Molecular characterization by theoretical calculations
Energy Technology Data Exchange (ETDEWEB)
Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No 69, Lleida E-25001 (Spain); Jacquemin, Denis [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: denis.jacquemin@fundp.ac.be; Perpete, Eric A. [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium); Aleman, Carlos [Departament d' Enginyeria Quimica, E. T. S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu
2008-12-10
Quantum mechanical calculations have been used to investigate the conformation, molecular geometry, basicity and spectroscopic properties of fluorescein isothiocyanate in both the gas-phase and aqueous solution. Specifically, calculations have been performed considering the neutral, monoanionic and dianionic forms of this important fluorescent compound. Results reveal that for the neutral form multiple conformational states are possible, all them with significant contributions, and the stability of the different conformers is similar in the gas-phase and aqueous solution. Calculation of the excitation energies revealed that spectroscopic properties are very sensitive to the relaxation effect in solution. A good agreement has been reached obtained between the experimental and theoretical values derived from time-dependent density functional theory methods for the neutral form, whereas for charged species the calculations fail to accurately reproduce the measured trends.
Theoretical Calculations of Atomic Data for Spectroscopy
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
HEU benchmark calculations and LEU preliminary calculations for IRR-1
International Nuclear Information System (INIS)
Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.
2004-01-01
We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)
Preliminary isodose calculation for gynecological curietherapy
International Nuclear Information System (INIS)
Bridier, A.; Dutreix, A.; Gerbaulet, A.; Chassagne, D.
1981-01-01
We present a preliminary method of calculating the dimensions of the reference isodose, based upon the geometrical distribution and length of the sources used, their linear activity and the length of treatment, that does not require use of a computer. Inversely, this method can be used to determine the factors necessary to produce a given shape of isodose, and also to predict the change in shape of the isodose that will be produced by altering the various factors. This method was derived from a systematic computer study of dose distribution in which each factor was varied independently of all others. The dimensions of the isodoses, calculated by this method, were found to be in agreement with those derived from computer calculation to within an error of about 2 mm. The method is only applicable for a limited range of positions of the vaginal sources. The influence of the positions of these sources along the line of the axis of uterine catheter and of their inclination to this line, are currently being studied. The results are presented as mathematical formulae relating each dimension of the isodose curves to the features of the application, but could equally well be expressed in tabular form that would be more convenient for everyday use. An example of the calculation used is given to facilitate understanding of the method [fr
Theoretical calculation of G-value
International Nuclear Information System (INIS)
Sato, Shin
1979-01-01
The slowing down spectra of secondary electrons seem to be the most important concept in the case of considering the initial process of radiation chemistry. This paper is described on the consideration for it and the approximation method used. G-value can be determined by the result of integration of the product of the whole slowing down spectrum and the total production cross section of a product to be determined over electron energy. After the relation of G-value to electron beam irradiation and γ-ray decomposition are described, the calculated and experimental values are compared, unexpected agreement is obtained. The reason why the plausible G-values were obtained to such extent by rough calculation is not known. From these G-values, the production of O 3 from O 2 , the radiolysis of NO, the chemical ionization of excited acetylene and others were estimated. The most interesting object in radiation chemistry is the condensing phase. A simple but important problem in radiation chemistry is the definition of the ionization in condensing phase. That is, it is of problem that what distance electrons have to come away from their original molecule to regard as the ionization. The considerations on the size of spur produced in water by γ-irradiation, the distribution of ion pairs in a spur, and Jesse effect are also made. (Wakatsuki, Y.)
Theoretical calculation possibilities of the computer code HAMMER
International Nuclear Information System (INIS)
Onusic Junior, J.
1978-06-01
With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt
Iwanejko, Leszek; Pokora, Ludwik; Stefanski, Miroslaw; Ujda, Zbigniew
1987-10-01
The paper presents the results of preliminary investigations, both theoretical and experimental, of XeC1 excimer laser pumped by transverse electric discharge with UU preionization. The medium was a mixture of gases He-Xe-HC1. A theoretical model of the XeC1 laser was worked out and a lot of laser parameters calculations were done. In the same time an excimer laser operating on the mixture He-Xe-HC1 was started, the generation of laser radiation was of energy about 20mJ.
Theoretical calculations of positron lifetimes for metal oxides
International Nuclear Information System (INIS)
Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu
2004-01-01
Our recent positron lifetime measurements for metal oxides suggest that positron lifetimes of bulk state in metal oxides are shorter than previously reported values. We have performed theoretical calculations of positron lifetimes for bulk and vacancy states in MgO and ZnO using first-principles electronic structure calculations and discuss the validity of positron lifetime calculations for insulators. By comparing the calculated positron lifetimes to the experimental values, it wa found that the semiconductor model well reproduces the experimental positron lifetime. The longer positron lifetime previously reported can be considered to arise from not only the bulk but also from the vacancy induced by impurities. In the case of cation vacancy, the calculated positron lifetime based on semiconductor model is shorter than the experimental value, which suggests that the inward relaxation occurs around the cation vacancy trapping the positron. (author)
Dye incorporation in polyphosphate gels: synthesis and theoretical calculations
Directory of Open Access Journals (Sweden)
Jordan Del Nero
2003-06-01
Full Text Available In this work we described theoretical calculations on the electronic structure and optical properties of the dyes crystal violet and malachite green based in semiempirical methods (Parametric Method 3 and Intermediate Neglect of Differential Overlap / Spectroscopic - Configuration Interaction and the synthesis of a new hybrid material based upon the incorporation of these dyes in an aluminum polyphosphate gel network. The samples are nearly transparent, free-standing thick films. The optical properties of the entrapped dyes are sensitive to chemical changes within the matrix caused either by gel aging or external stimulli such as exposition to acidic and basic vapors that can percolate within the matrix. Our theoretical modeling is in good agreement with the experimental results for the dyes.
Theoretical calculations on layered perovskites: implications for photocatalysis
Directory of Open Access Journals (Sweden)
Xiang Liu
2014-12-01
Full Text Available The application of first-principles calculations to the study of layered perovskites is reviewed here, with an emphasis on properties relevant to the use of these materials in photocatalysis. First, the accuracies of the theoretical methods in common use for the study of layered perovskites are compared. The main body of the article then reviews studies of the bulk atomic and electronic structures of pure and doped perovskites; first-principles thermodynamics studies; studies of surfaces and studies of adsorption on surfaces.
Review on theoretical calculation of the magnetite solubility
International Nuclear Information System (INIS)
Kim, Myongjin; Kim, Hongpyo
2013-01-01
FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study
Preliminary topical report on comparison reactor disassembly calculations
International Nuclear Information System (INIS)
McLaughlin, T.P.
1975-11-01
Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2-POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherent in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident
Theoretical calculation of solid particles deposition from the air
Directory of Open Access Journals (Sweden)
Bobro Milan
2002-03-01
Full Text Available This paper presents the calculation of harmful substance deposition (air pollution from the point source (Slanèo, et al., 2001 using equation (1. The point source shall be understood as e.g. chimneys of factory, heat plant, incinerator, boiler plant, local heating plant, etc.The theoretical calculation of concentration (1, or deposition (8 is based on the study of transfer and dispersion of pollution in air (Slanèo, et al., 2000a. The movement of pollution in air consists of a movement of the air itself and a relative movement of pollution particles and air, while the movement of harmful substance in the smoke trail is under the influence of turbulent diffusion, convection and gravitation. Molecular diffusion is not important in this process. When calculating concentrations (1 and deposition (8 of air pollution on a particular place near the source, it is assumed that the air speed is constant, the direction of wind does not change with the height and the source of air pollution is time-constant. The change in the wind speed with the height depends on the stability class of atmosphere (temperature gradient (Slanèo, et al., 2000a and it is calculated using equation (10.The theoretical calculation of concentration and or deposition of harmful substance from the point source (1 and (8 shall be applied if the harmful substance particles, which leave the source, have the same density (composition, shape (spherical and size.The experimental observations of dust deposition showed the significance of 0.1-20 µm particles. The application of equation (1 to calculate the concentration is conditioned, in addition to the recognition of source parameters and meteorological conditions, by the recognition of the particle sedimentation speed, which changes with the size of particle radius (2.For a practical calculation of deposition it is therefore necessary to know the differential distribution function f(r of particle radii, which can be made on the basis
Preliminary physics calculations for the Clinch River Breeder Reactor
International Nuclear Information System (INIS)
Kalimullah.
1975-01-01
Calculations of sodium void, fuel, and clad worths, power distribution, and control rod worths have been carried out for an R-Z model of the CRBR, using diffusion theory and first-order perturbation theory for material worths. The power distribution and control rod worths have also been calculated in two-dimensional triangular mesh geometry. The present results are preliminary because of inaccuracy of the reactor model and the cross sections used, but the final results are not expected to be greatly different. (U.S.)
Measurements and theoretical calculations of diffused radiation and atmosphere lucidity
International Nuclear Information System (INIS)
Pelece, I.; Iljins, U.; Ziemelis, I.
2009-01-01
Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)
About possibilities using of theoretical calculation methods in radioecology
International Nuclear Information System (INIS)
Demoukhamedova, S.D.; Aliev, D.I.; Alieva, I.N.
2002-01-01
Full text: Increasing the radiation level into environment is accompanied by accumulation of radioactive compounds into organism and/or their migration into biosphere. Radiotoxins are accumulated into irradiated plants and animals in result of violation of exchanging processes. The are play an important role at the pathogenesis of irradiation. To date, there is well known that even small quantity of the pesticides capable intensified the radiation effect. To understand the mechanism of radiation effect on physiologically active compounds and their complexes, the knowledge of such molecules three-dimensional organization and electron structure is essential. This work is devoted to study the pesticides of carbamate range, i.e. 'sevin' and its derivatives the physiological activity of which has been connected with cholinesterase degradation. Spatial organization and conformational possibilities of the pesticides has been studied using a method of the theoretical conformational analysis on the base of computational program worked out in laboratory of Molecular Biophysics at the Baku State University. Quantum-chemical methods CNDO/2, AM1 and PM3 and complex programs 'LEV' were used in studies of electronic structures of 'sevin' and number of its analogues. Charge distribution on the atoms, optimization of geometrical electrooptic parameters, as well as molecular electrostatic potentials, electron density and nuclear forces were calculated. Visual maps and surface of valence electron density distribution in the given plane and surface of electron-nuclear forces distribution projection were constructed. The geometrical and energetic characteristics, charges on the atoms of investigated pesticides, as well as the maps and relief of the valence electron density distribution on the atoms have been received. According to calculation results, the changing of charge distribution in naphthalene ring is observed. The conclusion was made that the carbonyl group is essential for
Progress in theoretical calculation of transactinium isotope nuclear data
International Nuclear Information System (INIS)
Salvy, J.
1984-05-01
Considerable progress has been made in effective use of nuclear theory for evaluation purposes. During the past few years, a number of basic improvements have developed in nuclear models commonly used for data evaluation. Actinide data evaluation can also use such improvements, but in the actinide region a further complication arises from the presence of fission competition. Nevertheless, systematic prescriptions for calculating even predicting neutron cross sections within an extended actinide region are available. Many efforts in several laboratorie are currently devoted to improving nuclear codes to be used for evaluation purposes. However at the present time numerous basic parameters associated with the neutron-induced fission process as well as neutron and gamma-ray competition have to be predetermined as input. Systematic studies of the behaviour of these parameters have been initiated with the aim of finding general trends hopefully useful for extrapolation in cases where direct information is lacking. Such trends can emerge from suitable examination of a large number of coherent experimental data, coherent theoretical results, or a combination these. This seems at the present time to be the most promising means for improving the actinide data evaluation. The aim of this paper is only to review briefly some of the main improvements either achieved or under way. The concern will be theoretical aspects useful for evaluating actinide data in the restricted incident neutron energy range from 10 KeV to 20 MeV. It is intended to focus on examples of systematics and on some improvements expected from microscopic methods under development
Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC
Energy Technology Data Exchange (ETDEWEB)
Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)
2015-10-15
The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.
Theoretical Calculation and Validation of the Water Vapor Continuum Absorption
Ma, Qiancheng; Tipping, Richard H.
1998-01-01
The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning
Evaluation of covariance in theoretical calculation of nuclear data
International Nuclear Information System (INIS)
Kikuchi, Yasuyuki
1981-01-01
Covariances of the cross sections are discussed on the statistical model calculations. Two categories of covariance are discussed: One is caused by the model approximation and the other by the errors in the model parameters. As an example, the covariances are calculated for 100 Ru. (author)
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...
Theoretical calculation of saturated absorption for multilevel atoms
International Nuclear Information System (INIS)
O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.
1998-01-01
We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement
Preliminary Analysis For Wolsong Par Effects Using ISACC Calculations
International Nuclear Information System (INIS)
Song, Yong Mann; Kim, Dong Ha
2012-01-01
In the paper, hydrogen control effects using PARs only are analyzed for severe SBO station blackout (SBO) sequences beyond the design basis accidents in WS-1 which are of CANDU6 type reactor. As a computational tool, the latest version of ISAAC4.3 (Integrated Severe Accident Analysis Code for CANDU), which is a fully integrated and lumped severe accident computer code, is used to simulate hydrogen generation and transport inside the reactor building (R/B) before its failure. For the performance of hydrogen removal, the depletion rate equation of K-PAR developed in Korea is applied. In a CANDU reactor, three areas are identified as sources of hydrogen under severe accidents: fuel-coolant interactions in intact channels, suspended fuel or debris interactions in-calandria tank and debris interactions in-calandria vault. The first two origins provide source for the late ('late' terminology is used because it takes more than one day before calandria tank failure) potential hydrogen combustion before calandria tank failure and all the three origins would provide source for the very late potential hydrogen combustion occurring at or after calaria tank failure. If the hydrogen mitigation system fails, the AICC (adiabatic isochoric complete combustion) burning of highly flammable hydrogen may cause Wolsong R/B failure. So hydrogen induced failure possibility is evaluated, using preliminary ISAAC calculations, under several SBO conditions with and without PAR for both late and very late accident periods
The confusion technique untangled: its theoretical rationale and preliminary classification.
Otani, A
1989-01-01
This article examines the historical development of Milton H. Erickson's theoretical approach to hypnosis using confusion. Review of the literature suggests that the Confusion Technique, in principle, consists of a two-stage "confusion-restructuring" process. The article also attempts to categorize several examples of confusion suggestions by seven linguistic characteristics: (1) antonyms, (2) homonyms, (3) synonyms, (4) elaboration, (5) interruption, (6) echoing, and (7) uncommon words. The Confusion Technique is an important yet little studied strategy developed by Erickson. More work is urged to investigate its nature and properties.
Theoretical model for calculation of molecular stopping power
International Nuclear Information System (INIS)
Xu, Y.J.
1984-01-01
A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field
Directory of Open Access Journals (Sweden)
Anderson Tiago Peixoto Gonçalves
2016-08-01
Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.
fp shell spectroscopy: numerical calculations and theoretical aspects
International Nuclear Information System (INIS)
Pasquini, E.A.
1976-01-01
The fp shell spectroscopy is reviewed and the fsup(n) model is introduced. It is shown that the two-body Hamiltonian monopolar terms play a very important part in the behavior of these spectra, and that realistic interactions do not reproduce them. The detailed study of the following nuclei was undertaken: 47 Ca, 48 Ca, 49 Ca, 56 Ni, 48 Sc, 50 Sc, 50 Ti, 46 Ti, 50 Cr, 47 V and 49 Cr. It is shown that very precise values of the few parameters defining the monopolar contributions could be extracted from the comparison between calculations and experimental data. The study of the binding energies of all the nuclei from 40 Ca to 56 Ni shows that it is necessary to introduce three-body forces. The results also reveal the effect of nondiagonal multipoles which are well reproduced by realistic interactions. A better understanding of the electromagnetic behavior of the fsup(n) nuclei of their conjugaison properties and of the relation between 42 Sc and 48 Sc was obtained. Several calculations of two-body transfer amplitudes were proposed [fr
Emergent Writing in Preschoolers: Preliminary Evidence for a Theoretical Framework
Puranik, Cynthia S.; Lonigan, Christopher J.
2014-01-01
Researchers and educators use the term emergent literacy to refer to a broad set of skills and attitudes that serve as foundational skills for acquiring success in later reading and writing; however, models of emergent literacy have generally focused on reading and reading-related behaviors. Hence, the primary aim of this study was to articulate and evaluate a theoretical model of the components of emergent writing. Alternative models of the structure of individual and developmental differences of emergent writing and writing-related skills were examined in 372 preschool children who ranged in age from 3- to 5-years using confirmatory factor analysis. Results from a confirmatory factor analysis provide evidence that these emergent writing skills are best described by three correlated but distinct factors, (a) Conceptual Knowledge, (b) Procedural Knowledge, and (c) Generative Knowledge. Evidence that these three emergent writing factors show different patterns of relations to emergent literacy constructs is presented. Implications for understanding the development of writing and assessment of early writing skills are discussed. PMID:25316955
Review of theoretical calculations of hydrogen storage in carbon-based materials
Energy Technology Data Exchange (ETDEWEB)
Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)
2001-02-01
In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-06-15
Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.
Preliminary core design calculations for the ACPR Upgrade
International Nuclear Information System (INIS)
Pickard, P.S.
1976-01-01
The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)
Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto
2016-01-01
Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
East Area Irradiation Test Facility: Preliminary FLUKA calculations
Lebbos, E; Calviani, M; Gatignon, L; Glaser, M; Moll, M; CERN. Geneva. ATS Department
2011-01-01
In the framework of the Radiation to Electronics (R2E) mitigation project, the testing of electronic equipment in a radiation field similar to the one occurring in the LHC tunnel and shielded areas to study its sensitivity to single even upsets (SEU) is one of the main topics. Adequate irradiation test facilities are therefore required, and one installation is under consideration in the framework of the PS East area renovation activity. FLUKA Monte Carlo calculations were performed in order to estimate the radiation field which could be obtained in a mixed field facility using the slowly extracted 24 GeV/c proton beam from the PS. The prompt ambient dose equivalent as well as the equivalent residual dose rate after operation was also studied and results of simulations are presented in this report.
International Nuclear Information System (INIS)
Bandi, F.; Khan, A.; Phillips, C.R.
1987-01-01
Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol
International Nuclear Information System (INIS)
Aleksakov, A.N.; Emel'yanov, I.Ya.; Nikolaev, E.V.; Panin, V.M.; Podlazov, L.N.; Rogova, V.D.
1987-01-01
Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered
International Nuclear Information System (INIS)
Koo, Bon Seung; Lee, Kyung Hoon; Song, Jae Seung; Park, Sang Yoon
2013-01-01
In this paper, the basic nuclear characteristics of major emitter materials were surveyed. In addition, preliminary calculations of Cobalt-Vanadium fixed incore detector were performed using the Monte Carlo code. Calculational results were cross-checked by KARMA. KARMA is a two-dimensional multigroup transport theory code developed by the KAERI and approved by Korean regularity agency to be employed as a nuclear design tool for a Korean commercial pressurizer water reactor. The nuclear characteristics of the major emitter materials were surveyed, and preliminary calculations of the hybrid fixed incore detector were performed with the MCNP code. The eigenvalue and pin-by-pin fission power distributions were calculated and showed good agreement with the KARMA calculation results. As future work, gamma power distributions as well as several types of XS of the emitter, insulator, and collector regions for a Co-V ICI assembly will be evaluated and compared
International Nuclear Information System (INIS)
Baguena, A.; Shaw, M.; Williart, A.; Baguena, A.; Garcia, G.
2006-01-01
We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)
Energy Technology Data Exchange (ETDEWEB)
Baguena, A.; Shaw, M.; Williart, A. [Universidad Nacional de Educacion a Distancia, Dpto. Fisica de los Materiales, Madrid (Spain); Baguena, A. [Consejo de Seguridad Nuclear, Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)
2006-07-01
We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)
Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír
2012-05-21
In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.
Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii
Directory of Open Access Journals (Sweden)
Raka Biswas
2002-02-01
Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4ÃÂ€r2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother MeyerÃ¢Â€Â™s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.
International Nuclear Information System (INIS)
Kokoouline, V.; Richardson, W.
2014-01-01
Uncertainties in theoretical calculations may include: • Systematic uncertainty: Due to applicability limits of the chosen model. • Random: Within a model, uncertainties of model parameters result in uncertainties of final results (such as cross sections). • If uncertainties of experimental and theoretical data are known, for the purpose of data evaluation (to produce recommended data), one should combine two data sets to produce the best guess data with the smallest possible uncertainty. In many situations, it is possible to assess the accuracy of theoretical calculations because theoretical models usually rely on parameters that are uncertain, but not completely random, i.e. the uncertainties of the parameters of the models are approximately known. If there are one or several such parameters with corresponding uncertainties, even if some or all parameters are correlated, the above approach gives a conceptually simple way to calculate uncertainties of final cross sections (uncertainty propagation). Numerically, the statistical approach to the uncertainty propagation could be computationally expensive. However, in situations, where uncertainties are considered to be as important as the actual cross sections (for data validation or benchmark calculations, for example), such a numerical effort is justified. Having data from different sources (say, from theory and experiment), a systematic statistical approach allows one to compare the data and produce “unbiased” evaluated data with improved uncertainties, if uncertainties of initial data from different sources are available. Without uncertainties, the data evaluation/validation becomes impossible. This is the reason why theoreticians should assess the accuracy of their calculations in one way or another. A statistical and systematic approach, similar to the described above, is preferable.
Shembel, Adrianna C; Sandage, Mary J; Verdolini Abbott, Katherine
2017-01-01
The purposes of this literature review were (1) to identify and assess frameworks for clinical characterization of episodic laryngeal breathing disorders (ELBD) and their subtypes, (2) to integrate concepts from these frameworks into a novel theoretical paradigm, and (3) to provide a preliminary algorithm to classify clinical features of ELBD for future study of its clinical manifestations and underlying pathophysiological mechanisms. This is a literature review. Peer-reviewed literature from 1983 to 2015 pertaining to models for ELBD was searched using Pubmed, Ovid, Proquest, Cochrane Database of Systematic Reviews, and Google Scholar. Theoretical models for ELBD were identified, evaluated, and integrated into a novel comprehensive framework. Consensus across three salient models provided a working definition and inclusionary criteria for ELBD within the new framework. Inconsistencies and discrepancies within the models provided an analytic platform for future research. Comparison among three conceptual models-(1) Irritable larynx syndrome, (2) Dichotomous triggers, and (3) Periodic occurrence of laryngeal obstruction-showed that the models uniformly consider ELBD to involve episodic laryngeal obstruction causing dyspnea. The models differed in their description of source of dyspnea, in their inclusion of corollary behaviors, in their inclusion of other laryngeal-based behaviors (eg, cough), and types of triggers. The proposed integrated theoretical framework for ELBD provides a preliminary systematic platform for the identification of key clinical feature patterns indicative of ELBD and associated clinical subgroups. This algorithmic paradigm should evolve with better understanding of this spectrum of disorders and its underlying pathophysiological mechanisms. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
MR imaging of prostate. Preliminary experience with calculated imaging in 28 cases
International Nuclear Information System (INIS)
Gevenois, P.A.; Van Regemorter, G.; Ghysels, M.; Delepaut, A.; Van Gansbeke, D.; Struyven, J.
1988-01-01
The majority of studies with MR imaging in prostate disease are based on a semiology obtained using images weighted in T1 and T2. A study was carried out to evaluate effects of images calculated in T1 and T2 obtained at 0.5T. This preliminary study concerns 28 prostate examinations with spin-echo acquisition and inversion-recuperation parameters, and provided images calculated in T1, weighted and calculated in T2. Images allowed detection and characterization of prostate lesions. However, although calculated images accentuate discrimination of the method, the weighted images conserve their place because of their improved spatial resolution [fr
Preliminary Theoretical Interpretation of the Tajmar Frame Dragging Effect Through the GEM Theory
International Nuclear Information System (INIS)
Brandenburg, John
2009-01-01
A preliminary theoretical explanation for the large amplitude frame dragging effect seen by Tajmar et al.(2007) is proposed. A simple theory of quantum photon fields mediating electrodynamics is derived based on concepts from QED. These are then expressed as quantum wave functions for rotating EM systems. Based on the GEM theory, it is proposed that gravitational frame dragging relies on similar photon wave functions. The constructive interference of the frame dragging fields with co-rotating EM photon fields coupled to Bose-Einstein components in matter at low temperatures results in a large frame dragging term due to a mixed gravity-EM term that is larger by a factor of approximately 10 20 than ordinary frame dragging.
International Nuclear Information System (INIS)
Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.
1989-01-01
This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab
New theoretical development for the calculating of physical properties of D2O
International Nuclear Information System (INIS)
Moreira, Osvaldo
2011-01-01
In this work we have developed a new method for calculating the physical properties of heavy water, D 2 O, using the Helmholtz free energy state function, A = U − T S, exclusively for this molecule. The state function has been calculated as ā = ā 0 +ā 1 (specific dimensionless values), where ā 0 is related to the properties of heavy water in gaseous state and ā 1 describes the liquid state. The canonical variables of the state function are absolute temperature and volume. To calculate the physical properties defining absolute pressure and temperature, here a variable change method was developed, based on the solution of a differential equation (function ζ) using numerical algorithms (scaling and Newton-Raphson). Physical quantities calculated are: density ϱ(specific volume υ), specific enthalpy h and entropy s. The results obtained agree completely with the values calculated by the National Institute of Standards and Technology (NIST). In this report it has also proposed an adjustment function to calculate the saturation absolute temperature of heavy water as a function of the pressure: T s (p) = exp[a·b(p)], where a is a vector of constant coefficients and b a vector function of pressure, using theoretical values and extending the wording proposed by the Oak Ridge National Laboratory. The new setting has an error less than 0.03%. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang
2017-05-01
Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.
Directory of Open Access Journals (Sweden)
Suthagar Narasuman
2012-06-01
Full Text Available The following report is the result of a preliminary investigation in the development of a theoretical framework for investigating ICT integration, particularly in TESL (Teaching of English as a Second Language teacher training. The study is primarily an empirical effort to develop a theoretical framework for investigating ICT integration in TESL teacher training. In identifying the predictive variables for the framework, the researchers conducted an intensive review of the literature which included a review of various models used in studies on ICT integration. The contributing variables identified in the present study were age, gender, experience, ICT proficiency, attitude, access to ICT infrastructure, support services, and exposure to ICT professional development programmes. In developing the framework, the study sought to determine the extent to which the observed variability in ICT integration could be predicted by these factors. The sample comprised 266 respondents working at the faculty or English Language Unit in various teacher training institutions across the country. The study predominantly employed quantitative methods of data collection. Interview data was used to corroborate information derived from the survey data.
Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits
International Nuclear Information System (INIS)
Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.
2000-01-01
Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays
International Nuclear Information System (INIS)
Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki
2010-01-01
Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.
Graph theoretical calculation of systems reliability with semi-Markov processes
International Nuclear Information System (INIS)
Widmer, U.
1984-06-01
The determination of the state probabilities and related quantities of a system characterized by an SMP (or a homogeneous MP) can be performed by means of graph-theoretical methods. The calculation procedures for semi-Markov processes based on signal flow graphs are reviewed. Some methods from electrotechnics are adapted in order to obtain a representation of the state probabilities by means of trees. From this some formulas are derived for the asymptotic state probabilities and for the mean life-time in reliability considerations. (Auth.)
International Nuclear Information System (INIS)
Takayama, T.; Sekine, T.; Kudo, H.
2003-01-01
Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)
Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue
2018-01-01
Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.
Verification of EPA's " Preliminary remediation goals for radionuclides" (PRG) electronic calculator
Energy Technology Data Exchange (ETDEWEB)
Stagich, B. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-03-29
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides information on establishing PRGs for radionuclides at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites with radioactive contamination (Verification Study Charge, Background). These risk-based PRGs set concentration limits using carcinogenic toxicity values under specific exposure conditions (PRG User’s Guide, Section 1). The purpose of this verification study is to ascertain that the computer codes has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly.
Directory of Open Access Journals (Sweden)
Sysіuk Svitlana V.
2017-05-01
Full Text Available The article is aimed at highlighting features of the provision of the fee-based services by library institutions, identifying problems related to the legal and regulatory framework for their calculation, and the methods to implement this. The objective of the study is to develop recommendations to improve the calculation of the fee-based library services. The theoretical foundations have been systematized, the need to develop a Provision for the procedure of the fee-based services by library institutions has been substantiated. Such a Provision would protect library institution from errors in fixing the fee for a paid service and would be an informational source of its explicability. The appropriateness of applying the market pricing law based on demand and supply has been substantiated. The development and improvement of accounting and calculation, taking into consideration both industry-specific and market-based conditions, would optimize the costs and revenues generated by the provision of the fee-based services. In addition, the complex combination of calculation leverages with development of the system of internal accounting together with use of its methodology – provides another equally efficient way of improving the efficiency of library institutions’ activity.
Sob, M.; Sormann, H.; Kuriplach, J.
Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is
Energy Technology Data Exchange (ETDEWEB)
Fredriksson, Anders; Olofsson, Isabelle [Golder Associates AB, Uppsala (Sweden)
2005-12-15
The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined.
International Nuclear Information System (INIS)
Fredriksson, Anders; Olofsson, Isabelle
2005-12-01
The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined
The theoretical tensile strength of fcc crystals predicted from shear strength calculations
International Nuclear Information System (INIS)
Cerny, M; Pokluda, J
2009-01-01
This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.
Recent improvements in the calculation of prompt fission neutron spectra: Preliminary results
International Nuclear Information System (INIS)
Madland, D.G.; LaBauve, R.J.; Nix, J.R.
1989-01-01
We consider three topics in the refinement and improvement of our original calculations of prompt fission neutron spectra. These are an improved calculation of the prompt fission neutron spectrum N(E) from the spontaneous fission of 252 Cf, a complete calculation of the prompt fission neutron spectrum matrix N(E,E n ) from the neutron-induced fission of 235 U, at incident neutron energies ranging from 0 to 15 MeV, and an assessment of the scission neutron component of the prompt fission neutron spectrum. Preliminary results will be presented and compared with experimental measurements and an evaluation. A suggestion is made for new integral cross section measurements. (author). 45 refs, 12 figs, 1 tab
Energy Technology Data Exchange (ETDEWEB)
Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)
2016-10-01
4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.
Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours
Energy Technology Data Exchange (ETDEWEB)
Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1988-10-15
A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)
Directory of Open Access Journals (Sweden)
István Bors
2015-09-01
Full Text Available Maize (Zea mays L. is often contaminated with Fusarium verticillioides. This harmful fungus produces fumonisins as secondary metabolites. These fumonisins can appear both free and hidden form in planta. The hidden form is usually bound covalently to cereal starch. From the hidden fumonisins, during enzymatic degradation, glycosides are formed, and the fumonisin is further decomposed during a de-esterification step. In this short communication some preliminary DFT calculated structural results which could be useful in the future to help to understand the van der Waals force controlled molecular interactions between these kinds of mycotoxin molecules and enzymes are demonstrated.
Preliminary Calculations of Shutdown Dose Rate for the CTS Diagnostics System
DEFF Research Database (Denmark)
Klinkby, Esben Bryndt; Nonbøl, Erik; Lauritzen, Bent
2015-01-01
DTU and IST 2 are partners in the design of a collective Thomson Scattering (CTS) diagnostics for ITER through a contract with F4E. The CTS diagnostic utilizes probing radiation of ~60 GHz emitted into the plasma and, using a mirror, collects the scattered radiation by an array of receivers. Having...... on supplying input which affect the system design. Examples include: - Heatloads on plasma facing mirrors and preliminary stress and thermal analysis - Port plug cooling requirements and it's dependence on system design (in particular blanket cut-out) - Shutdown dose-rate calculations (relative analysis...
International Nuclear Information System (INIS)
Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi
2010-01-01
JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information
Energy Technology Data Exchange (ETDEWEB)
Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)
2010-10-15
JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information
Directory of Open Access Journals (Sweden)
Ying Liu
2018-01-01
Full Text Available Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss’s and Stokes’s theorems have been related to Green’s theorem in a novel way.
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.
Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N
2012-12-01
Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible
Energy Technology Data Exchange (ETDEWEB)
Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)
2011-03-18
Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.
Preliminary regulatory audit calculation for Shinkori Units 3 and 4 LBLOCA
Energy Technology Data Exchange (ETDEWEB)
Woo, S. W.; Kim, B. S.; Kim, J. K. (and others)
2006-12-15
The objective of this study is to perform a preliminary evaluation for Shinkori Units 3 and 4 LBLOCA by applying KINS Realistic Evaluation Methodology (REM). The following results were obtained: (1) From the evaluation for Shinkori Units 3 and 4 LBLOCA, the peak cladding temperature was evaluated to meet the regulatory requirement and the feasibility of the KINS-REM was identified. (2) The input decks that were developed in the previous studies, were reviewed and the evaluation model of the fluidic device was developed and applied for the audit calculation. (3) The treating method for the uncertainty of the gap conductance was developed and applied for the audit calculation. (4) The pre- and post-processing programs were developed for this study. (5) For the more detailed assessments, the information for the gap conductance, etc. should be improved and the effects of coolant bypass during blowdown, steam binding and so on were not sufficiently evaluated. KINS-REM should be advanced to evaluate these effects properly. The KINS methodology that was used in this study, can be further applied for independent regulatory audit calculations related to the licensing application on LOCA best estimate calculation.
Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations
Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay
2017-04-01
Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic
Theoretical calculation and evaluation of complete neutron data for natural niobium
International Nuclear Information System (INIS)
Ma Gonggui; Zou Yiming; Wang Shiming
1990-07-01
An evaluation of a complete neutron nuclear data for natural niobium has been finished on the data measured by experiments up to 1989 and theoretical calculations with program MUP2 and AUJP. The purpose of present work is to build CENDL-2 databank (Chinese Evaluation Nuclear Data Library, second version) which replaces the CENDL-1 (first version of CENDL). The neutron energy for niobium is in the range of 10 -5 eV to 20 MeV. Data of cross section include total, elastic, nonelastic, total elastic, inelastic cross section to 13 discrete levels, inelastic continuum, (n,2n), (n,3n), (n,n ' α) + (n,αn ' ), (n,n ' p) + (n,pn ' ), (n,n ' d) + (n,dn ' ), (n,p), (n,d), (n,t), (n,α) and capture cross sections. Data for MT 251,252 and 253 as well as angular distributions and energy spectra of secondary neutrons are also given
Cohen, S. C.
1979-01-01
A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.
International Nuclear Information System (INIS)
1998-01-01
The rationale for restructuring Ontario's electricity industry was restated. Financial elements of the Government's White Paper on the electrical industry included the following: (1) establishing a level playing field on taxes and regulation, (2) restructuring Ontario Hydro into new companies with clear business mandates, and (3) taking action to put the new companies on solid financial ground. To achieve these objectives requires valuation of the new companies as a key part in the restructuring process. This Ministry of Finance document contains preliminary estimates of the total debt and liabilities of Ontario Hydro ($ 39.1 billion), the value of the new generation and service companies ($ 15.8 billion), and the stranded debt ($ 23.3 billion, less the value of dedicated revenue streams of $ 15.4 billion, equal to the residual stranded debt of $ 7.9 billion). The method by which the stranded debt was calculated is also described. It is stressed that the overriding principles governing the financial restructuring plan are to achieve restructuring without increasing electricity rates, to retain maximum value in the electricity sector until stranded debt is retired, and to recover stranded debt from the electricity sector and not from taxpayers. Ministry advisors indicate that these preliminary valuations would allow the new companies to operate as commercial companies in a competitive market and receive investment grade credit ratings. 44 figs
International Nuclear Information System (INIS)
Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes
2014-01-01
A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it
International Nuclear Information System (INIS)
Yang Jun; Gao Fa-Ming; Liu Yong-Shan
2017-01-01
The hardness, electronic, and elastic properties of 5d transition metal diborides with ReB 2 structure are studied theoretically by using the first principles calculations. The calculated results are in good agreement with the previous experimental and theoretical results. Empirical formulas for estimating the hardness and partial number of effective free electrons for each bond in multibond compounds with metallicity are presented. Based on the formulas, IrB 2 has the largest hardness of 21.8 GPa, followed by OsB 2 (21.0 GPa) and ReB 2 (19.7 GPa), indicating that they are good candidates as hard materials. (paper)
Energy Technology Data Exchange (ETDEWEB)
Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)
2012-07-01
The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)
International Nuclear Information System (INIS)
Caldeira, A.D.
1987-05-01
The theoretical and adjusted Watt spectrum representations for 235 U are used as weighting functions to calculate K eff and θ f 28 /θ f 25 for the benchmark Godiva. The results obtained show that the values of K eff and θ f 28 /θ f 25 are not affected by spectrum form change. (author) [pt
Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys
International Nuclear Information System (INIS)
Aqra, Fathi; Ayyad, Ahmed
2011-01-01
Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.
Theoretical calculation of shakeup intensities using Xa--SW wave functions
International Nuclear Information System (INIS)
Tse, J.S.; Loubriel, G.
1981-01-01
The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment
Directory of Open Access Journals (Sweden)
Selkina A. V.
2016-05-01
Full Text Available the article analyzes the problems arising while organizing the workflow in printing companies. We suggest to address these problems by means of implementing computer-based accounting systems. Online and offline calculators used by printing enterprises for accounting are discussed. The author outlined the functional and specified requirements to such software. They were considered in the calculation module of accounting polygraphic wire used for block bonding. The software allows to increase the calculation process speed, to reduce the amount of errors in calculation and to decrease the labour intensity of the accounting process.
Burr, D. M.; Emery, J. P.; Lorenz, R. D.
2005-01-01
The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.
Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics
Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.
1991-12-01
A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.
Energy Technology Data Exchange (ETDEWEB)
Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-08-28
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used in the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.
THEORETICAL AND PRACTICAL CONSIDERATIONS REGARDING THE COST CALCULATION USING DIRECT COSTING
Directory of Open Access Journals (Sweden)
Cristina Aurora, Bunea-Bontaş
2012-01-01
Full Text Available The definition of the cost of production as applied to inventories refers to the acquisition and production cost, and its determination involves many considerations. This article emphasizes a comparative approach of the calculation of production cost under direct costing and absorption costing, and examines the impact of using these calculation systems on the financial performance of the companies presented in the income statement.
Theoretical calculation of rapid x-ray transients and radius expansion
International Nuclear Information System (INIS)
Starrfield, S.; Sparks, W.; Truran, J.; Kenyon, S.
1984-01-01
We present the results of a calculation of a thermonuclear runaway on a 10 km neutron star which produced a precursor, radius expansion, and after the envelope had begun to shrink, a seconds x-ray burst about 2500 second later. Although such an event has not yet been observed, decreasing the initial envelope mass should bring the calculations into better agreement with the observations
International Nuclear Information System (INIS)
Moccia, R.
1991-01-01
Some of the available theoretical methods to compute the two-photon ionisation cross-section of many-electron systems are reviewed. In particular the problems concerning the computation of (i) reliable approximations for the transition matrix elements and the excitation energies; and (ii) accurate results pertaining to the electronic continuum by the use of L 2 basis functions are considered. (author). 29 refs., 6 figs., 1 tab
Sanctions as a tactic used in partner conflicts: theoretical, operational, and preliminary findings.
Winstok, Zeev; Smadar-Dror, Ronit
2015-07-01
Partner sanction in this study is a form/tactic of violence, much like verbal and physical violence, which partners use toward each other during their conflicts. The partner sanction embodies a temporary deprivation of a mutually agreed-on right. The purpose of this study is to develop a theoretical and operational framework of sanctions partners use. The study sampled 74 heterosexual couples from the general population (148 male and female participants). The findings support the validity and reliability of the sanction measurement. Furthermore, findings indicate that the use of sanctions between partners is highly prevalent among men and women in the general population; that the more one partner uses sanctions, the more the other partner uses it; and that sanctions are strongly associated with other violent tactics partners use in their conflict (i.e., verbal and physical). Theoretical and empirical implications of the theoretical framework and the findings are discussed, including the role of sanctions in partner conflicts that escalate to severe forms of violence. © The Author(s) 2014.
International Nuclear Information System (INIS)
Shirakawa, Toshihiko; Hatanaka, Koichiro
2001-11-01
In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)
Dorofeeva, Olga V.; Suchkova, Taisiya A.
2018-04-01
The gas-phase enthalpies of formation of four molecules with high flexibility, which leads to the existence of a large number of low-energy conformers, were calculated with the G4 method to see whether the lowest energy conformer is sufficient to achieve high accuracy in the computed values. The calculated values were in good agreement with the experiment, whereas adding the correction for conformer distribution makes the agreement worse. The reason for this effect is a large anharmonicity of low-frequency torsional motions, which is ignored in the calculation of ZPVE and thermal enthalpy. It was shown that the approximate correction for anharmonicity estimated using a free rotor model is of very similar magnitude compared with the conformer correction but has the opposite sign, and thus almost fully compensates for it. Therefore, the common practice of adding only the conformer correction is not without problems.
Theoretical calculations of electron-impact and radiative processes in atoms
International Nuclear Information System (INIS)
Pindzola, M.S.
1975-01-01
Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated
Ahmed, Arif; Lim, Dongwon; Choi, Cheol Ho; Kim, Sunghwan
2017-06-30
The theoretical enthalpy calculated from the overall protonation reaction (electron transfer plus hydrogen transfer) in positive-mode (+) atmospheric-pressure photoionization (APPI) was compared with experimental results for 49 aromatic compounds. A linear relationship was observed between the calculated ΔH and the relative abundance of the protonated peak. The parameter gives reasonable predictions for all the aromatic hydrocarbon compounds used in this study. A parameter is devised by combining experimental MS data and high-level theoretical calculations. A (+) APPI Q Exactive Orbitrap mass spectrometer was used to obtain MS data for each solution. B3LYP exchange-correlation functions with the standard 6-311+G(df,2p) basis set was used to perform density functional theory (DFT) calculations. All the molecules with ΔH toluene clusters produced protonated ions, regardless of the desolvation temperature. For molecules with ΔH >0, molecular ions were more abundant at typical APPI desolvation temperatures (300°C), while the protonated ions became comparable or dominant at higher temperatures (400°C). The toluene cluster size was an important factor when predicting the ionization behavior of aromatic hydrocarbon ions in (+) APPI. The data used in this study clearly show that the theoretically calculated reaction enthalpy (ΔH) of protonation with toluene dimers can be used to predict the protonation behavior of aromatic compounds. When compounds have a negative ΔH value, the types of ions generated for aromatic compounds could be very well predicted based on the ΔH value. The ΔH can explain overall protonation behavior of compounds with ΔH values >0. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Lopez Diaz, A.; Gonzalez, G.J.; Torres, A.L.; Fraxedas, M.R.
2007-01-01
Full text: Using national and international recommendations about human resource in Nuclear Medicine, a group of experts organized a National Course for the education and training of physicist who work in Cuban hospitals, adapted to national condition and practice of Nuclear Medicine. The program was approved for National Authorities in Nuclear Security and University Schools in Medicine. The program contains two intensive theoretic and practical courses, to be completed over a period of 15 days of full time engagement, complemented with 4 month full attachment to a Nuclear Medicine Service monitored by accredited expert. The theoretical/practical intensive courses have final evaluation: combining practical exercise and a final test. When all docent activities finish the students should clear a final theoretical/practical evaluation by an examination board comprising of at least three accredited experts. The theoretical/practical courses were attended by 19 physicists working in hospitals in Cuba. The contents of the first course included, Introduction to Nuclear Medicine, Principle of NM equipment, Quality assurance and quality control of NM equipment, Radiation Protection and Licence Topics of NM Services. The second course had the following topics: Acquisition and Processing methods in Nuclear Medicine, Nuclear Medicine Techniques and Clinical Dosimetry for radiopharmaceutical therapy. With 100 point of maximum score and 60 point minimum to pass, the final test of this first course comprised of 2 types of questions: 1 Multiple choice questions and 2. long essay type questions. The average scores obtained by the participants was 87.02 points/ students (range 65- 100 points). The students pass the test with very good degree of comprehension: 10-Excellent (90-100 points), 5- Very good (80-89 points), 2-Good (70-79 point) and 2- satisfactory standard (60-69 point). The students evaluated 'satisfactory' the quality of the course (in anonymous poll), reporting like
International Nuclear Information System (INIS)
Kim, Yong Seong; Jang, Yun Hee; Cho, Hyun; Hwang, Sun Gu
2010-01-01
The relative stabilities of the tautomers of SeG were calculated. In the aqueous phase, amino-seleno form was the major tautomer of neutral SeG with a minor contribution from the other amino-seleno form. The presence of the selenolic form was negligible from the calculations. The microscopic and macroscopic pKa values in the aqueous phase were calculated from this scheme. The calculated pKa value was in good agreement with the experimental data. These results demonstrated that this method could predict and explain the acid-base properties of SeG and could be used to understand the behavior of the species. A number of analogues of nucleic acid bases have been the target of extensive studies because of their importance in many biological studies. The oxygen of both purine and pyrimidine bases is substituted with sulfur or selenium to produce an important class of analogues. 6-Selenoguanine (SeG) has a significant activity against L5178Y lymphoma cells. However, the detailed mechanism of the antiplastic action is not known yet. Information on the acid dissociation constants and the tautomerism of the molecules is required to provide a molecular level understanding of biological processes. Proton-transfer in the nucleic acid pairs and the presence of the tautomeric equilibrium play an important role in the mispair formation during the DNA replication
DEFF Research Database (Denmark)
Ruud, K.; Helgaker, T.; Jørgensen, Poul
1994-01-01
We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...
Energy Technology Data Exchange (ETDEWEB)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)
1998-04-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.
1998-01-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Gao Junfang; Madison, D H; Peacher, J L
2006-01-01
We have recently proposed the orientation averaged molecular orbital (OAMO) approximation for calculating fully differential cross sections (FDCS) for electron-impact ionization of molecules averaged over all molecular orientations. Orientation averaged FDCS were calculated for electron-impact ionization of nitrogen molecules using the distorted wave impulse approximation (DWIA) and the molecular three-body distorted wave (M3DW) approximation. In this paper, we use the same methods to examine the FDCS for ionization of hydrogen molecules. It is found that the DWIA yields reasonable results for high-energy incident electrons. While the DWIA breaks down for low-energy electrons, the M3DW gives reasonable results down to incident-electron energies around 35 eV
A theoretical study of blue phosphorene nanoribbons based on first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-08-21
Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.
Monte Carlo simulation for theoretical calculations of damage and sputtering processes
International Nuclear Information System (INIS)
Yamamura, Yasunori
1984-01-01
The radiation damage accompanying ion irradiation and the various problems caused with it should be determined in principle by resolving Boltzmann's equations. However, in reality, those for a semi-infinite system cannot be generally resolved. Moreover, the effect of crystals, oblique incidence and so on make the situation more difficult. The analysis of the complicated phenomena of the collision in solids and the problems of radiation damage and sputtering accompanying them is possible in most cases only by computer simulation. At present, the methods of simulating the atomic collision phenomena in solids are roughly classified into molecular dynamics method and Monte Carlo method. In the molecular dynamics, Newton's equations are numerically calculated time-dependently as they are, and it has large merits that many body effect and nonlinear effect can be taken in consideration, but much computing time is required. The features and problems of the Monte Carlo simulation and nonlinear Monte Carlo simulation are described. The comparison of the Monte Carlo simulation codes calculating on the basis of two-body collision approximation, MARLOWE, TRIM and ACAT, was carried out through the calculation of the backscattering spectra of light ions. (Kako, I.)
International Nuclear Information System (INIS)
Schuerrer, F.
1980-01-01
For characterizing heterogene configurations of pebble-bed reactors the fine structure of the flux distribution as well as the determination of the macroscopic neutronphysical quantities are of interest. When calculating system parameters of Wigner-Seitz-cells the usual codes for neutron spectra calculation always neglect the modulation of the neutron flux by the influence of neighbouring spheres. To judge the error arising from that procedure it is necessary to determinate the flux distribution in the surrounding of a spherical fuel element. In the present paper an approximation method to calculate the flux distribution in the two-sphere model is developed. This method is based on the exactly solvable problem of the flux determination of a point source of neutrons in an infinite medium, which contains a spherical perturbation zone eccentric to the point source. An iteration method allows by superposing secondary fields and alternately satisfying the conditions of continuity on the surface of each of the two fuel elements to advance to continually improving approximations. (orig.) 891 RW/orig. 892 CKA [de
International Nuclear Information System (INIS)
Kolev, N.A.
1981-07-01
A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)
Fleeman, Jennifer A; Stavisky, Christopher; Carson, Simon; Dukelow, Nancy; Maier, Sheryl; Coles, Heather; Wager, John; Rice, Jordyn; Essaff, David; Scherer, Marcia
2015-01-01
Interdisciplinary cognitive rehabilitation is emerging as the expected standard of care for individuals with mild to moderate degrees of cognitive impairment for a variety of etiologies. There is a growing body of evidence in cognitive rehabilitation literature supporting the involvement of multiple disciplines, with the use of cognitive support technologies (CSTs), in delivering cognitive therapy to individuals who require cognitive rehabilitative therapies. This article provides an overview of the guiding theories related to traditional approaches of cognitive rehabilitation and the positive impact of current theoretical models of an interdisciplinary approach in clinical service delivery of this rehabilitation. A theoretical model of the Integrative Cognitive Rehabilitation Program (ICRP) will be described in detail along with the practical substrates of delivering specific interventions to individuals and caregivers who are living with mild to moderate cognitive impairment. The ultimate goal of this article is to provide a clinically useful resource for direct service providers. It will serve to further clinical knowledge and understanding of the evolution from traditional silo based treatment paradigms to the current implementation of multiple perspectives and disciplines in the pursuit of patient centered care. The article will discuss the theories that contributed to the development of the interdisciplinary team and the ICRP model, implemented with individuals with mild to moderate cognitive deficits, regardless of etiology. The development and implementation of specific assessment and intervention strategies in this cognitive rehabilitation program will also be discussed. The assessment and intervention strategies utilized as part of ICRP are applicable to multiple clinical settings in which individuals with cognitive impairment are served. This article has specific implications for rehabilitation which include: (a) An Interdisciplinary Approach is an
Graph theoretical models for calculating the reliablility of power plants. Pt. 4
International Nuclear Information System (INIS)
Vetterkind, D.W.
1978-01-01
With the aid of mathematical formalisms from the theory of stochastical networks, approximation equations are derived for the expectation value as well as for the scattering of period-related availability of series systems consisting of deteriorating and/or non-deteriorating components. In this context, successive operating times of deteriorating components are described by the time-dependent Poisson process while successive operating times of non-deteriorating components are described by the time-independent Poisson process. In addition provision is made in the model to include in the calculation an existing trend of the expectation value of components successive failure times. (orig./RW) [de
Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Chen, Tao; Zhang, Huo; Qin, Binyi; Wu, Yifang
2018-03-01
The characteristic absorption spectra of two structural isomers of dimethylurea(DMU) in 0.6-1.8 THz region have been measured using terahertz time-domain spectroscopy (THZ-TDS) at room temperature. Significant differences have been found between their terahertz spectra and implied that the THZ-TDS is an effective means of identifying structural isomers. To simulate their spectra, calculations on single molecule and cluster of 1,1-DMU and 1,3-DMU were performed, and we found that the cluster calculations using DFT-D3 method are better to predict the experimental spectra. Using the normal mode as displacements in redundant internal coordinates and the GaussView program, most observed THz vibrational modes are assigned to bending and rocking modes related to the intermolecular hydrogen bonding interactions, and twisting mode of ethyl groups. The different spectral features of two isomers mainly arise from different intermolecular hydrogen bonds resulting from different atom arrangements in molecules and different molecule arrangements in crystals. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular hydrogen bonding interactions in 1,1-DMU and 1,3-DMU crystals are visualized. Therefore, we can confirm that THz-TDS can be used as an effective means for the recognition of structural isomers and detection of intermolecular hydrogen bonding interactions in these crystals.
Boggio-Pasqua, Martial; Garavelli, Marco
2015-06-11
This study presents a computational investigation of the initial step of the dimethyldihydropyrene (DHP) to cyclophanediene (CPD) photoinduced ring-opening reaction using time-dependent density functional theory (TD-DFT). In particular, the photochemical path corresponding to the formation of the CPD precursor (CPD*) on the zwitterionic state is scrutinized. The TD-DFT approach was first validated on the parent compound against accurate ab initio calculations. It confirms that CPD* formation is efficiently quenched in this system by an easily accessible S2/S1 conical intersection located in the vicinity of the CPD* minimum and leading to a locally excited state minimum responsible for DHP luminescence. Increased ring-opening quantum yields were observed in benzo[e]-fused-DHP (DHP-1), isobutenyl-DHP (DHP-2), and naphthoyl-DHP (DHP-3). The calculations show that CPD* formation is much more favorable in these systems, either due to an inversion of electronic states in DHP-1, suppressing the formation of the locally excited state, or due to efficient stabilization of CPD* on the S1 potential energy surface in DHP-2 and DHP-3. Both effects can be combined in a rationally designed benzo[e]-fused-naphthoyl-DHP (DHP-4) for which we anticipate an unprecedented efficiency.
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
International Nuclear Information System (INIS)
Pan, Wenxiao; Zhang, Dongju; Zhan, Jinhua
2011-01-01
Highlights: → We study the inclusion mechanism of TCDD with β-CD by theoretical methods. → Clearly, the formation of inclusion complex is an energetically driven process. → The inclusion complex can be detected by IR and Raman techniques. → The results imply that β-CD may be used as a host molecule to enrich TCDD molecules. - Abstract: The rapid enrichment and detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are currently challenging issues in the field of environmental science. In this paper, by performing quantum chemistry (QM) calculations and molecular dynamics (MD) simulations, we studied the inclusion complexation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a representative PCDD molecule, with β-cyclodextrin (β-CD), one of the widely used compounds in supramolecular chemistry. The calculated results reveal that the stable inclusion complex can be formed in both the gas phase and solvent, which proposes that β-CD may serve as a potential substrate enriching TCDD. The calculated vibrational spectra indicate that the infrared (IR) and Raman spectroscopy may be suitable for the detection of β-CD-modified TCDD. The present theoretical results may be informative to environmental scientists who are devoting themselves to developing effective methods for detection and treatment of POPs.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N., E-mail: nahum@ufpa.b [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica
2010-07-01
The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)
Ab initio theoretical calculations of the electronic excitation energies of small water clusters.
Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro
2011-12-14
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.
Theoretical calculation on a compound formed by methyl alcohol and simmondsin
Directory of Open Access Journals (Sweden)
İzzet KARA
2016-12-01
Full Text Available Etheric oil results from the esterification reactions of oil acids with alcohols. In these reactions, one molecule water (H2O is composed of H× protons from oil acids and OH- groups which separated from alcohol. Etheric oil is commonly used in food industry, perfume industry and medicine. From this perspective, we need to know physical properties of etheric oil as well as chemical properties. In this study, the highest occupied molecular orbital (HOMO energies, the lowest unoccupied molecular orbital (LUMO energies, the electronic properties (total energy, electronegativity, chemical hardness and softness, NBO analysis and thermodynamic parameters of a compound formed by methyl alcohol and simmondsin have been performed by using Gaussian 09W program. The structural and spectroscopic data of the molecule in the ground state have been calculated by using density functional method (DFT/B3LYP with the 6-31++G(d,p basis set.
International Nuclear Information System (INIS)
Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N.; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G.
2010-01-01
The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)
Energy Technology Data Exchange (ETDEWEB)
Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)
2010-07-01
The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.
International Nuclear Information System (INIS)
Quintana, E.E.; Tossi, M.H.; Telleria, D.M.
1990-01-01
Collective doses produced during the normal working of the Atucha I Nuclear Power Plant are calculated using annual atmospheric factors. This work studies the behaviour of the dilution factors in different periods of the year in order to fit the calculated dose model applying factors from seasonal, monthly or weekly periods. The Radiation Protection Group of the C.N.E.A. have carried out continuous environmental monitoring in the surroundings of the Atucha I Nuclear Power Plant. These studies include the measurement of air tritium concentration, radionuclide that is found principally as tritiated water vapour. This isotope, normally released by the nuclear power plant was used as a tracer to assess the atmospheric dilution factors. Factors were calculated by two methods: an experimental one, based on environmental measurements of the tritium concentration in the surroundings of the nuclear power plant and another one by applying a theoretical model based on information from the micrometeorological tower located in the mentioned place. To carry out the environmental monitoring, four monitoring stations in the surroundings of the power plant were chosen. Three of them are approximately one kilometer from the plant and the fourth is 7.5 km away, near the city of Lima. To condense and collect the atmospheric water vapour, an overcooling system was used. The measurement was performed by liquid scintillation counting, previous alkaline electrolytical enrichment of the samples. The theoretical model uses hourly values of direction and wind intensity, as well as the atmospheric dispersive properties. Values obtained during the period 1976 to 1988 allowed, applying statistical tests, to validate the theoretical model and to observe seasonal variation of the dilution factors throughout the same year and between different years. Finally, results and graphics are presented showing that the behaviour of the dilution factors in different periods of the year. It is recommended to
Energy Technology Data Exchange (ETDEWEB)
Campolina, Daniel; Costa, Antonio Carlos L. da; Andrade, Edison P., E-mail: campolina@cdtn.br, E-mail: aclp@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores
2017-07-01
The structuring project of the Brazilian Multipurpose Reactor (RMB) is responsible for meeting the capacity to develop and test materials and nuclear fuel for the Brazilian Nuclear Program. An irradiation test device (Loop) capable of performing fuel test for power reactor rods is being conceived for RMB reflector. In this work preliminary neutronic calculations have been carried out in order to determine parameters to the cooling system of the Loop basic design. The heat released as a result of radioactive decay of fuel samples was calculated using ORIGEN-ARP and it resulted less than 200 W after 1 hour of irradiation interruption. (author)
International Nuclear Information System (INIS)
Weber, P.A.; Thomas, J.E.; Skinner, W.M.; Smart, R.St.C.
2004-01-01
The acid neutralisation capacity (ANC) of a rock sample containing significant amounts of Fe carbonates, as conducted to determine net acid production potential (NAPP), can be a difficult parameter to determine. Various ANC tests are available to determine the ANC of carbonates. This work does not attempt to create another ANC test protocol; rather, it provides a refinement for existing tests. Results showed that a significant lag period may be needed (up to 432 h) after standard Sobek-type ANC tests for the complete hydrolysis of Fe associated with the ANC testing of siderite. This lag occurred even with standard industry modifications that include the addition of 2 drops of H 2 O 2 at pH 4.5 during the back-titration. In this work the authors used a modification to the Sobek ANC test (the Modified Sobek ANC test) that included filtering and the addition of H 2 O 2 at pH 4.5. This test was further modified by the continuance of this H 2 O 2 addition (the H 2 O 2 ANC test) until there was no subsequent pH drop (which is due to Fe hydrolysis reactions), thereupon the back titration was continued to pH 7.0. Results indicated that the ANC for siderite (after 0 h) using the H 2 O 2 ANC test was similar to the ANC determined after 432 h lag by the Modified Sobek ANC test. This modification reduces the uncertainty related to static-test results for samples containing Fe carbonates. The test is simple to use, has industry application, and provides a better indication of the NAPP. The Modified Sobek ANC results for calcite and dolomite and the H 2 O 2 ANC test for siderite were in good agreement with the mineralogical carbonate ANC (ANC carb ). ANC carb was determined by calculation based on electron probe micro-analysis. Although lower than both the ANC carb and the ANC determined by titration, the chemical ANC calculated from the ions present in the ANC digestion liquor also provided a good indication of the overall acid neutralisation capacity of the sample
Energy Technology Data Exchange (ETDEWEB)
Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.
2017-08-01
Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.
International Nuclear Information System (INIS)
Shi, Lei
2016-01-01
Uranium dioxide (UO_2) is the most widely used nuclear fuel in existing nuclear reactors around the world. While in service for energy supply, UO_2 is submitted to the neutron flux and undergoes nuclear fission chain reactions, which create large number of fission products and point defects. The study of the behavior of the fission products and point defects is important to understand the fuel properties under irradiation. We conduct electronic structure calculations based on the density functional theory (DFT) to model this radiation damage at the atomic scale. The DFT+U method is used to describe the strong correlation of the 4f electrons of cerium and 5f electrons of uranium in the materials studied (UO_2, CeO_2 and (U, Ce)O_2). (U, Ce)O_2 is studied because it is considered as a low radioactive model material of mixed actinide oxides such as the MOX fuel (U, Pu)O_2 used in light water reactors and fast neutron reactors. Cerium dioxide (CeO_2) is studied to provide reference data of (U, Ce)O_2. We perform a DFT+U study of point defects and gaseous fission products (Xe and Kr) in CeO_2 and compare our results to the existing ones of UO_2. We study the bulk properties as well as the behavior of defects for (U, Ce)O_2, and compare our results to the ones of (U, Pu)O_2. Furthermore, for the study of defects in UO_2, methodological improvements are explored considering the spin-orbit coupling effect and the finite-size effect of the simulation supercell. (author) [fr
Chashmniam, Saeed; Tafazzoli, Mohsen
2017-11-01
Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.
Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations
Energy Technology Data Exchange (ETDEWEB)
Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)
2015-09-15
Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.
International Nuclear Information System (INIS)
Rodriguez, V.D.
2003-01-01
We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections
Energy Technology Data Exchange (ETDEWEB)
Garten, C.T. Jr.; Lomax, R.D.
1987-06-01
This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.
Preliminary Calculation for Plasma Chamber Design of Pulsed Electron Source Based on Plasma
International Nuclear Information System (INIS)
Widdi Usada
2009-01-01
This paper described the characteristics of pulsed electron sources with anode-cathode distance of 5 cm, electrode diameter of 10 cm, driven by capacitor energy of 25 J. The preliminary results showed that if the system is operated with diode resistance is 1.6 Ω, plasma resistance is 0.14 Ω, and β is 0.94, the achieved of plasma voltage is 640 V, its current is 4.395 kA with its pulse width of 0.8 μsecond. According to breakdown voltage based on Paschen empirical formula, with this achieved voltage, this system could be operated for operation pressure of 1 torr. (author)
Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.
2017-10-01
A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.
International Nuclear Information System (INIS)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A.; Garcia, F.; Goncalves, M.
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V MAS /WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, τ c is presented for all possible cases of spontaneous nuclear break-up such that -7.30 10 τ c [S] 10 (τ/τ c ) > -17.0, where τ is the total half-life of the parent nucleus. (author)
International Nuclear Information System (INIS)
Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.
2006-01-01
Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test
International Nuclear Information System (INIS)
Forughi, Sh.; Hamidi, S.; Khalafi, H.; Sheibani, Sh.; Shahidi, A.
2013-01-01
Highlights: ► Production of 153 Sm isotope by neutron activation in a nuclear reactor was studied. ► Optimal parameters for weight and irradiation time were found. ► This study led to an empirical correction factor (kf). ► Kf enhanced the production procedure of the 153 Sm radioisotope. ► The results led to nearly 60% decrease in the amount of material used in the production process. - Abstract: The feasibility of producing 2000–3000 mCi 153 Sm by irradiation of 152 Sm in 5 MW TRR was studied via TRR core simulation. In this study the cross-section of 152 Sm (n,γ) 153 Sm reaction from ENDF/B library was used. The effective activation cross section for production of 153 Sm is obtained using the neutron spectra in different irradiation channel of the core. The activity of the simulated samples is calculated using the obtained fluxes and cross sections. Then samples were prepared and irradiated under different conditions and fluxes. The final production’s specific activity was measured by the standard dose calibrator ISOMED 1010. By comparison of the theoretical calculations and actual measurements, an empirical correction factor (K f ) was obtained, which is helpful in production procedure of the 153 Sm radioisotope. The optimal weight of the samples and irradiation time was studied according to the flux calculations based on the location of the sample and saturated activity calculation. In order to test the proposed conditions, samples were prepared and were irradiated under the proposed conditions. According to the compared results with the initial irradiation condition, the new proposed sample which weighed 4 mg of Sm 2 O 3 is acceptable for the labeling, therefore this study led to nearly 60% decrease in the amount of material used in the production process
Puzach, S. V.; Suleykin, E. V.; Akperov, R. G.; Nguyen, T. D.
2017-11-01
A new experimental-theoretical approach to the toxic gases concentrations assessment in case of fire indoors is offered. The analytical formulas for calculation of CO average volume density are received. These formulas do not contain the geometrical sizes of the room and surfaces dimensions of combustible materials and, therefore, are valid under conditions of as a small-scale fire as a large-scale fire. A small-scale experimental installation for modeling fire thermal and gas dynamics in the closed or open thermodynamic system has been designed. The results of the experiments on determining dependencies of CO average volume density from average volume temperature and oxygen average volume density as well as dependencies of specific coefficients of CO emission and specific mass rates of the combustible material gasification from the time of tests during the burning of wood, transformer oil and PVC cables shield are presented. The results of numerical experiments on CO density calculation in small and large scale rooms using the proposed analytical solutions, integral, zone and field models for calculation of fire thermal and gas dynamics are presented. The comparison with the experimental data obtained by the authors and given in the literature has been performed. It is shown that CO density calculation in the full-scale room at the incipient stage of the fire can be carried out taking into account only the experimental dependences of CO from temperature or O2 density, that have been obtained from small-scale experiments. Therefore the solution of the equation of carbon monoxide mass conservation law is not necessary.
Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test
International Nuclear Information System (INIS)
Kim, Min Hwan; Tak, Nam Il
2011-01-01
The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses
Kajiya, Daisuke; Saitow, Ken-ichi
2013-08-07
Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of
A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations
Energy Technology Data Exchange (ETDEWEB)
Ilyas, Bahaa M., E-mail: bahaastring@gmail.com [Department of Physics, University Of Dohuk (Iraq); Elias, Badal H. [Laboratory of Theoretical Physics, Department of Physics, Faculty of Sciences, University of Dohuk (Iraq)
2017-04-01
The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl{sub 3} and CsCdCl{sub 3} unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl{sub 3} and CsPbCl{sub 3} is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl{sub 3} is Γ–R indirect band gap insulator, while CsPbCl{sub 3} is an insulator with a direct band gap Γ–Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl{sub 3}, and Cd-p states and Cs-p states for the CsCdCl{sub 3} in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0–20 GPa and 0–40 GPa for the CsCdCl{sub 3} and CsPbCl{sub 3} respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame’s constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl{sub 3} (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For
Preliminary calculations on the cooling rate of the Renca batholit, Sierra de San Luis, Argentina
International Nuclear Information System (INIS)
Lopez de Luchi, M.G.; Ostera, H.A.; Linares, E; Rosello, E.A
2001-01-01
Cooling rates can be used to constrain the unroofing history of plutonic-metamorphic system. Geocronological cooling rates (Spear and Parrish, 1996) can be unravelled using age calculations on minerals that were open systems and subsequently passed through their closure temperatures (Dodson, 1973) during cooling. Several age determinations on different minerals are needed in order to accurately constrain the cooling path of a pluton (Hodges 1991, Spear and Parrish, 1996 and references therein). Isotopic open-system behaviour in minerals can be modelled as volume diffusion process (Hodges, 1991 and references therein), which depends on the cooling rate of the whole system. We present the first results on the calculation of the cooling rate of the Renca batholith on the basis of the combination of both thermometric calculations and available crystallization and cooling ages (au)
A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core
International Nuclear Information System (INIS)
Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung
2009-01-01
The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code
Preliminary calculations of release rates from spent fuel in a tuff repository
International Nuclear Information System (INIS)
Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.
1991-01-01
Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs
International Nuclear Information System (INIS)
Cheong, Jae Hak; Park, Won Jae
2003-01-01
As a follow up to the Agenda 21's policy statement for safe management of radioactive waste adopted at Rio Conference held in 1992, the UN invited the IAEA to develop and implement indicators of sustainable development for the management of radioactive waste. The IAEA finalized the indicators in 2002, and is planning to calculate the member states' values of indicators in connection with operation of its Net-Enabled Waste Management Database system. In this paper, the basis for introducing the indicators into the radioactive waste management was analyzed, and calculation methodology and standard assessment procedure were simply depicted. In addition, a series of innate limitations in calculation and comparison of the indicators was analyzed. According to the proposed standard procedure, the indicators for a few major countries including Korea were calculated and compared, by use of each country's radioactive waste management framework and its practices. In addition, a series of measures increasing the values of the indicators was derived so as to enhance the sustainability of domestic radioactive waste management program.
Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.
2008-02-01
The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).
International Nuclear Information System (INIS)
Morrison, Hali; Menon, Geetha; Sloboda, Ron
2016-01-01
Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm 3 water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.
Energy Technology Data Exchange (ETDEWEB)
Morrison, Hali; Menon, Geetha; Sloboda, Ron [Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB (Canada)
2016-08-15
Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.
International Nuclear Information System (INIS)
Garten, C.T. Jr.; Lomax, R.D.
1987-06-01
This report describes data obtained during a preliminary characterization of 90 Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate 90 Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of 90 Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi 90 Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi 90 Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with 90 Sr bone concentrations of <30 pCi/g in a 45-kg buck
Directory of Open Access Journals (Sweden)
Yujie Huang
2015-01-01
Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.
Wei, Guangfei; Li, Xiongyao; Wang, Shijie
2015-02-01
Terrestrial radiation is another possible source of heat in lunar thermal environment at its nearside besides the solar illumination. On the basis of Clouds and the Earth's Radiant Energy System (CERES) data products, the effect of terrestrial radiation on the brightness temperature (TBe) of the lunar nearside has been theoretically calculated. It shows that the mafic lunar mare with high TBe is more sensitive to terrestrial radiation than the feldspathic highland with low TBe value. According to the synchronous rotation of the Moon, we extract TBe on lunar nearside using the microwave radiometer data from the first Chinese lunar probe Chang'E-1 (CE-1). Consistently, the average TBe at Mare Serenitatis is about 1.2 K while the highland around the Geber crater (19.4°S, 13.9°E) is relatively small at ∼0.4 K. Our results indicate that there is no significant effect of terrestrial radiation on TBe at the lunar nearside. However, to extract TBe accurately, effects of heat flow, rock abundance and subsurface rock fragments which are more significant should be considered in the future work.
International Nuclear Information System (INIS)
Sturm, Robert; Hofmann, Werner
2009-01-01
In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)
Preliminary results on food consumption rates for off-site dose calculation of nuclear power plants
International Nuclear Information System (INIS)
Lee, Gab Bock; Chung, Yang Geun; Bang, Sun Young; Kang, Duk Won
2005-01-01
The Internal dose by food consumption mostly account for radiological dose of public around nuclear power plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988. is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual, the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out
International Nuclear Information System (INIS)
Tanaka, Mitsugu
1978-01-01
LWR plants have a containment spray system to reduce the escape of radioactive material to the environment in a loss-of-coolant accident (LOCA) by washing out fission products, especially radioiodine, and condensing the steam to lower the pressure. For carrying out the containment spray tests, pressure and temperature behaviour of the JAERI Model Containment Vessel in spray cooling has been calculated with computer program CONTEMPT-LT. The following could be studied quantitatively: (1) pressure and temperature raise rates for steam addition rate and (2) pressure fall rate for spray flow rate and spray heat transfer efficiency. (auth.)
International Nuclear Information System (INIS)
Kim, In Young; Choi, Heui Joo; Cho, Dong Geun
2013-01-01
The primary function of any repository is to prevent spreading of dangerous materials into surrounding environment. In the case of high-level radioactive waste repository, radioactive material must be isolated and retarded during sufficient decay time to minimize radiation hazard to human and surrounding environment. Sub-criticality of disposal canister and whole disposal system is minimum requisite to prevent multiplication of radiation hazard. In this study, criticality of disposal canister and DBD system for trans-metal waste is calculated to check compliance of sub-criticality. Preliminary calculation on criticality of conceptual deep borehole disposal system and its canister for trans-metal waste during operational phase is conducted in this study. Calculated criticalities at every temperature are under sub-criticalities and criticalities of canister and DBD system considering temperature are expected to become 0.34932 and 0.37618 approximately. There are obvious limitations in this study. To obtain reliable data, exact elementary composition of each component, system component temperature must be specified and applied, and then proper cross section according to each component temperature must be adopted. However, many assumptions, for example simplified elementary concentration and isothermal component temperature, are adopted in this study. Improvement of these data must be conducted in the future work to progress reliability. And, post closure criticality analyses including geo, thermal, hydro, mechanical, chemical mechanism, especially fissile material re-deposition by precipitation and sorption, must be considered to ascertain criticality safety of DBD system as a future work
Preliminary shielding calculation for the system of CyberKnife robotic radiosurgery
International Nuclear Information System (INIS)
Toreti, Dalila; Xavier, Clarice; Moura, Fabio
2011-01-01
The CyberKnife robotic system uses a manipulator with six grade of freedom for positioning a 6 MV Linac accelerator for treatment of lesions. This paper presents calculations for a standard room, with 200 cm of thickness walls primary, build for a CyberKnife system, and calculations for a room originally designed for a Linac conventional (with gantry), with secondary barriers of 107 cm thickness. After the realization of shielding for both rooms, the results shown that walls of standard room with 200 cm thickness are adequate for the secondary shield, and for a room with a conventional Linac, from all six evaluated points, two would require additional shielding of nine cm and four cm of concrete with 2.4 g/cubic cm. This shows that the CyberKnife system can be installed in a originally designed room for a conventional Linac with neither restrict nor any shielding, since no incidence of beams on the secondary barriers is existent
Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility
International Nuclear Information System (INIS)
Olson, W.O.; Nigg, D.W.
1981-05-01
The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft
Preliminary Calculation of the EROI for the Production of Gas in Russia
Directory of Open Access Journals (Sweden)
Roman Nogovitsyn
2014-09-01
Full Text Available Russia is one of the world’s largest producers of energy resources. Production of energy resources in Russia is profitable, both economically and in terms of the energy produced (as measured by EROI. At the present time, Russian oil and gas companies have a policy of energy saving, and data on energy consumption is given in annual reports. Based on these data, we can make the EROI calculation. In 2013, the EROI for the production, transportation and processing of gas for Open joint stock company (OJSC “Gazprom” was 79:1; for OJSC “NOVATEK”, 76:1; for OJSC “Yakutsk Fuel and Energy Company (YATEC”, only for production, 116:1. Currently, the situation in the oil and gas industry has come to a point when there is a need for the introduction of an energy audit.
International Nuclear Information System (INIS)
Akmansu, M.; Dirican, Bahar; Oeztuerk, Berrin; Egehan, Ibrahim; Subasi, Mahmut; Or, Meral
1998-01-01
Purpose: This study was performed to determine the toxicity and efficacy of external-beam radiotherapy in patients with age-related subfoveal neovascularization. Methods and Materials: Between January 1996 and September 1996, 25 patients with a mean age of 70.5 (60-84) years were enrolled. All patients underwent fluorescein angiographic evaluation and documentation of their neovascular disease prior to irradiation. A total of 25 patients were treated with a total dose of 12 Gy in 6 fractions over 8 days. We used a lens-sparing technique and patients were treated with a single lateral 6-MV photon beam. To assess the risk of radiation carcinogenesis after treatment of age-related subfoveal neovascularization, we estimated the effective dose for a standard patient on the basis of tissue-weighting factors as defined by the International Commission on Radiological Protection (ICRP). The calculations were made with TLD on a male randophantom. The lens dose was found to be 0.217 Gy per fraction. Results: No significant acute morbidity was noted. Visual acuity was maintained or improved in 76% and 80% of treated patients at their 1- and 3-month follow-up examinations, respectively. On angiographic imaging, there was stabilization of subfoveal neovascular membranes in 23 patients (92%) at 3 months after irradiation. Conclusion: Our observations on these 25 patients in this study indicate that many patients will have improved or stable vision after radiotherapy treatment with low-dose irradiation
Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.
2018-05-01
This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.
Energy Technology Data Exchange (ETDEWEB)
Weissglas, P [The Swedish State Power Board, Stockholm (Sweden)
1960-11-15
The purpose of the present study was to evaluate theoretically the effect of coolant boiling and subsequent void formation in a pressurized D{sub 2}O moderated and cooled reactor. The fuel rods were arranged in a cluster geometry and clad in Zr-2. The coolant was separated from the moderator by a Zr-2 shroud. In this geometry the following problems have been given special attention: l) calculation of the effective resonance integral, 2) thermal disadvantage factors, 3) fast fission effects, 4) leakage effects, 5) changes in epithermal absorption. No account has up to now been taken of the variation of these effects with position in the reactor and burnup. Some comparisons of the theoretical methods and measurements have been attempted. It is concluded that at the present time it is not possible to calculate the void coefficient with any accuracy but it may be possible to give an upper limit from theoretical consideration.
International Nuclear Information System (INIS)
Luo Mingkun; Wang Fei; Huang Wei; Zhang Wenqi; Zhao Shan; Lu Lianghong
2001-01-01
A kind of approximate theoretical calculating formula of the vertical U-bend tube natural-circuit steam generator is deduced by using an approximate method, the results of this formula is compared with the heat exchanging areas of the real vertical U-bend tube natural-circuit steam generators, the absolute errors of them are below 8%
Bellotti, Elisa
2011-01-01
This paper explores the complementarities and differences between Bourdieu's Field Theory and Social Network Analysis from both a theoretical and methodological perspective. The argument is applied to a case study about the social production and validation of knowledge in particle physics in Italy. The methodological choices that have lead the research project are presented and justified, and provide a good example about the strengths and the weaknesses of the two theoretical perspectives com...
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2004-01-01
Although Russian roulette is applied very often in Monte Carlo calculations, not much literature exists on its quantitative influence on the variance and efficiency of a Monte Carlo calculation. Elaborating on the work of Lux and Koblinger using moment equations, new relevant equations are derived to calculate the variance of a Monte Carlo simulation using Russian roulette. To demonstrate its practical application the theory is applied to a simplified transport model resulting in explicit analytical expressions for the variance of a Monte Carlo calculation and for the expected number of collisions per history. From these expressions numerical results are shown and compared with actual Monte Carlo calculations, showing an excellent agreement. By considering the number of collisions in a Monte Carlo calculation as a measure of the CPU time, also the efficiency of the Russian roulette can be studied. It opens the way for further investigations, including optimization of Russian roulette parameters. (authors)
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
Czech Academy of Sciences Publication Activity Database
Lesslie, M.; Lawler, J. T.; Dang, A.; Korn, J. A.; Bím, Daniel; Steinmetz, V.; Maitre, P.; Tureček, F.; Ryzhov, V.
2017-01-01
Roč. 18, č. 10 (2017), s. 1293-1301 ISSN 1439-4235 Institutional support: RVO:61388963 Keywords : ion-molecule reactions * IRMPD spectroscopy * nucleobases * radical ions * UVPD spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016
Bishop, Malachy
2005-01-01
This article describes and presents an initial analysis of a quality-of-life?based model of psychosocial adaptation to chronic illness and disability. This model, termed disability centrality, represents a conceptual and theoretical synthesis of several existing theories and models, drawn from the quality-of life, rehabilitation counseling, and…
Directory of Open Access Journals (Sweden)
Ali Hussein Ni'ma
2017-03-01
Full Text Available In this study, two important ionospheric factors have been calculated, the collision frequency of electron and Deby length for a height range from 80 Km to a height approaching the maximum height of the F2 region of the ionosphere above the Earth's surface. Both above factors have been calculated for two different levels of solar activity and for two seasons (winter and summer. Also, six months were adopted for every level of solar activity and season. The estimation of collision frequency of electron is depends on the contribution of neutral constituents and ions. Three neutral atmospheric gases have been adopted to calculate the collision frequency, Molecular and atomic oxygen O2 and O respectively and molecular nitrogen N2, as well as the singly charged ions were taken into account in calculation.
Czech Academy of Sciences Publication Activity Database
Otero Areán, C.; Nachtigallová, Dana; Nachtigall, Petr; Garrone, E.; Rodríguez Delgado, M.
2007-01-01
Roč. 9, č. 12 (2007), s. 1421-1437 ISSN 1463-9076 R&D Projects: GA MŠk LC512; GA ČR GA203/06/0324 Grant - others:UIB(ES) MAT2006-05350 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.343, year: 2007
Czech Academy of Sciences Publication Activity Database
Garrone, E.; Bulánek, R.; Frolich, K.; Areán, C. O.; Delgado, M. R.; Palomino, G. T.; Nachtigallová, Dana; Nachtigall, Petr
2006-01-01
Roč. 110, č. 45 (2006), s. 22542-22550 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational dynamics * IR spectroscopy * periodic DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006
International Nuclear Information System (INIS)
Lopez, Adlin; Gonzalez, Joaquin; Torres, Leonel; Fraxedas, Roberto; Varela, Consuelo; Freixas, Vivian.
2008-01-01
Full text: Using national and international recommendation about human resource in nuclear medicine, a group of experts organized a national course for the education and training of physicist who works in Cuban hospital, adapted to national condition and practice of nuclear medicine. The program was approved for National Authorities in Nuclear Security and University School in Medicine and content three intensive theoretic and practical courses (15 days of full time duration each), complemented with 4 months full time in Nuclear Medicine Service monitored by accredited expert and 2 months at distance with practical task. The theoretical/practical intensive courses have final evaluation: combining practical exercise and write final test. When all docent activities finish the students should pass a final evaluation by a testing board composed for (at least) three accredited experts. The first theoretical/practical course included 19 physicists who work in hospital, the second 17 and the third 16 students. With 100 point of maximum score and 60 point minimum to pass, the partial final tests included: true or false choice (with 10 aspects to verify, 1 point/correct answer) and questions to write developed answer. The average result was 83.02 points/ students (range 65-100 points). The students evaluated satisfactory the quality of different courses (in anonymous poll), reporting like very good; the quality of conferences, excellent; the usefulness of different charters, very good; the support bibliography, and recommended the repetition of this kind of education and training in order to warranty the human resource, in the same way and content, and included others item in the future. Conclusion: the theoretical/practice intensive courses of this post-graduated course were successful and satisfied the objective of education and training of medical physicist in nuclear medicine. (author)
International Nuclear Information System (INIS)
Hellmann, Robert
2009-01-01
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun
2014-12-15
Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.
Choi, Garam; Lee, Won Bo
Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.
Energy Technology Data Exchange (ETDEWEB)
Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)
1982-06-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.
International Nuclear Information System (INIS)
Kashiwagi, H.
1982-01-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)
International Nuclear Information System (INIS)
Fazary, Ahmed E.; Alshihri, Ayed S.; Alfaifi, Mohammad Y.; Saleh, Kamel A.; Elbehairi, Serag Eldin I.; Fawy, Khaled F.; Abd-Rabboh, Hisham S.M.
2016-01-01
Highlights: • The experimental thermodynamic equilibrium and stability constants of vanadium and platinum complexes involving naringin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined. • The theoretical calculations of the free energy changes associated with the ligand protonation, and metal ion–ligand complex formation equilibria using density function theory calculations, providing a complete picture of the microscopic equilibria of the studied complex systems. - Abstract: The Experimental thermodynamic equilibrium (pK_a values) and stability (log β) constants of vanadium and platinum binary and mixed ligand complexes involving naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined at 310.15 K in 0.16 mol·dm"−"3 KCl aqueous solutions using pH-potentiometric technique and by means of two estimation models (HYPERQUAD 2008 and Bjerrum–Calvin). The theoretical calculations of overall protonation and stability constants of the metal complex species in solution were predicted as the free energy change associated with the ligand protonation, and metal ion–ligand complex formation equilibria (species solvation/de-solvation) using ab initio and density function theory (DFT) calculations. The usage of the experimental potentiometry technique and theoretical predictions provides a complete picture of the microscopic equilibria of the studied systems (vanadium/platinum–naringenin–phenolic acid). Specifically, this theoretically DFT predications would be useful to determine the most real protonation constants of the studied bioligands in which the binding sites changes due to the ligand protonation/deprotonation equilibria. Also, the complexing capacities of vanadium and platinum towards naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid in solutions were evaluated and discussed. From the
Directory of Open Access Journals (Sweden)
Gümüs Hacer Pir
2015-06-01
Full Text Available Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO and nonlinear optical (NLO properties of the 2-chloro-5-(2-hydroxyethyl-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO, the lowest unoccupied molecular energy level (ELUMO, the energy difference (DE between EHOMO and ELUMO, electronegativity (χ, hardness (η and softness (S have been calculated using B3LYP/6-311++G(d,p and HF/6-311++G(d,p levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.
Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV
Energy Technology Data Exchange (ETDEWEB)
Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)
1996-06-01
A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).
Bakker schut, T.C.; Bakker Schut, Tom C.; Hesselink, Gerlo; Hesselink, Gerlo; de Grooth, B.G.; Greve, Jan
1991-01-01
We have developed a computer program based on the geometrical optics approach proposed by Roosen to calculate the forces on dielectric spheres in focused laser beams. We have explicitly taken into account the polarization of the laser light and thd divergence of the laser beam. The model can be used
Liang, Y H; Chen, F E
2007-08-01
Theoretical investigations of the interaction between dapivirine and the HIV-1 RT binding site have been performed by the ONIOM2 (B3LYP/6-31G (d,p): PM3) and B3LYP/6-31G (d,p) methods. The results derived from this study indicate that this inhibitor dapivirine forms two hydrogen bonds with Lys101 and exhibits strong π-π stacking or H…π interaction with Tyr181 and Tyr188. These interactions play a vital role in stabilizing the NNIBP/dapivirine complex. Additionally, the predicted binding energy of the BBF optimized structure for this complex system is -18.20 kcal/mol.
Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei
2015-01-01
Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...
Energy Technology Data Exchange (ETDEWEB)
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp
2017-07-15
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu
2017-07-01
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.
Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara
2017-06-01
Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.
International Nuclear Information System (INIS)
Shuen Wei Li.
1991-08-01
The crystal-field and spin-orbit matrix for d 1 or d 9 configuration with D 2 symmetry has been derived. By diagonalizing the matrix, the energy level of C 2+ u in Cs 2 CuCl 4 and its eigenfunctions have been obtained with the aid of the approximate SCF d-orbit. Furthermore, by suing the eigenfunctions, the EPR g-factors and the magnetic susceptibilities at different temperatures have been calculated. The calculated results are in good agreement with the experimental findings. The calculation only needs two adjustable parameters and can give more theoretical results than those of previous work which introduced 11 adjustable parameters. (author). 16 refs, 3 tabs
International Nuclear Information System (INIS)
Alharbi, A.A.; Azzam, A.
2012-01-01
A theoretical study of the nuclear-reaction cross sections for proton-induced reactions on 63 Cu and 65 Cu was performed in the proton energy range from threshold values up to 50 MeV. The produced nuclei were different isotopes of Zn, Cu, Ni, Co and Mn, some of which have important applications. The reaction cross-section calculations were performed using the ALICE-IPPE code, which depends on the pre-equilibrium compound nucleus model. This code is suitable for the studied energy and isotopic mass ranges. Approximately 14 excitation functions for the different reactions have been constructed from the calculated cross-section values. The excitation function curves for the proton reactions with natural copper targets have been constructed from those for enriched targets using the natural abundance of the copper isotopes. Comparisons between the calculated excitation functions with those previously experimentally measured are given whenever the experimental values were available. Some statistical parameters were introduced to control the quality of the fitting between both the experimental and the theoretical calculated cross-section values. - Highlights: ► We performed reaction cross section calculations using ALICE-IPPE code. ► We constructed 14 excitation functions for nat Cu(p,xn)Zn,Cu,Ni,Co,Mn reactions. ► The available experimental data were fitted to the performed ALICE-IPPE calculations. ► Statistical parameters were introduced to control the quality of the fitting. ► The code failed to fit the experimental data for reactions with large nucleon emissions.
Directory of Open Access Journals (Sweden)
Alicja Talaczyńska
2015-01-01
Full Text Available FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory. The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed.
Theoretical investigations on the α-LiAlO{sub 2} properties via first-principles calculation
Energy Technology Data Exchange (ETDEWEB)
Ma, Sheng-Gui [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Gao, Tao, E-mail: gaotao@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); Li, Shi-Chang; Ma, Xi-Jun; Shen, Yan-Hong [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Lu, Tie-Cheng, E-mail: lutiecheng@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China)
2016-12-15
Highlights: • Our calculation indicates that the α-LiAlO{sub 2} is an indirect band gap insulator of 6.319 eV. • The mechanical properties of α-LiAlO{sub 2} are predicted. • The complete phonon frequencies of α-LiAlO{sub 2} at gamma point for the infrared and Raman modes are assigned which to distinguish the α-LiAlO{sub 2} and γ-LiAlO{sub 2} in ITER and in MCFC. - Abstract: The physical properties including the structural, electronic, mechanical, lattice dynamical and thermodynamic properties of α-LiAlO{sub 2} are investigated using first-principles calculation. It is found that α-LiAlO{sub 2} is an insulator with an indirect gap of 6.319 eV according to band structure and density of states. The elastic constants are obtained and the results indicate that α-LiAlO{sub 2} is mechanically stable. The mechanical properties including bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (υ) are predicted with the value of 147.0 GPa, 105.2 GPa, 254.8 GPa and 0.211, respectively. The phonon dispersion curves and the phonon density of states are also calculated. The calculated phonon frequencies for the Raman-active and the infrared-active modes considering the LO-TO splitting are assigned. The two Raman active frequencies are 407.0 cm{sup −1} of E{sub g} mode and 628.8 cm{sup −1} of A{sub 1g} mode, and show satisfactory agreement with experiment. The thermodynamic functions such as ΔF, ΔE, C{sub V} and S is predicted by using the phonon density of states. These results provide valuable information for further insight into the properties of α-LiAlO{sub 2} in atomic scales, which is strategically important in ITER and in molten carbonate fuel cells (MCFC).
International Nuclear Information System (INIS)
Bitter, M.; Gu, M.F.; Vainshtein, L.A.; Beiersdorfer, P.; Bertschinger, G.; Marchuk, O.; Bell, R.; LeBlanc, B.; Hill, K.W.; Johnson, D.; Roquemore, L.
2003-01-01
Dielectronic satellite spectra of helium-like argon, recorded with a high-resolution X-ray crystal spectrometer at the National Spherical Torus Experiment, were found to be inconsistent with existing predictions resulting in unacceptable values for the power balance and suggesting the unlikely existence of non-Maxwellian electron energy distributions. These problems were resolved with calculations from a new atomic code. It is now possible to perform reliable electron temperature measurements and to eliminate the uncertainties associated with determinations of non-Maxwellian distributions
Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan
2013-08-22
Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.
International Nuclear Information System (INIS)
Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.
2016-01-01
The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni 7 Zr 2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni 7 Zr 2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni 7 Zr 2 alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni 7 Zr 2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s −1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s −1
International Nuclear Information System (INIS)
Anderson, L.D.
1976-01-01
The U L/sub α1/ x-ray emission intensity ratios (I/sub lambda/sub L//I sub lambda/sub L/, sub 100 percent/sub UO 2 /) in various matrices were calculated using the fundamental parameters formula of Criss and Birks and mass absorption coefficients calculated from a formula developed by Dewey. The use of the intensity ratio made it unnecessary to know the fluorescence yield for the U L/sub III/ level, the probability of emission of the U L/sub α1/ line, and the jump ratios for the three absorption edges of uranium. Also, since an intensity ratio was used, the results are independent of the x-ray tube current and the spectral distribution of the x-ray tube. A method is presented to calculate the intensity ratios for x-ray tube voltages other than the value (45 kV) used in the calculations. The theoretical results are calculated and compared with the experimental results obtained for 141 matrices. Difficulties due to oxidation of some of the metal powders used in the sample preparation, to small concentrations of uranium, and to an excessively large number of elements present in some of the samples resulted in the invalidation of the experimental results for 91 of the matrices. For the remaining 50 matrices, the theoretical and experimental values agreed to within +-5 percent relative error for 36 matrices; to within +-5 percent to +- 10 percent for 7 matrices; to within +-10 percent to +-20 percent for 6 matrices; and was greater than +-20 percent for 1 matrix
Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw
2017-04-30
The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Liang Cheng
2015-01-01
Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.
Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R
2000-08-18
Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.
Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C
2013-08-28
We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.
International Nuclear Information System (INIS)
Yang, W.-Q.; Liu, H.-G.; Liu, G.-K.; Lin, Y.; Gao, M.; Zhao, X.-Y.; Zheng, W.-C.; Chen, Y.; Xu, J.; Li, L.-Z.
2012-01-01
Eu 3+ -doped strontium molybdate red phosphors (Sr 1−x MoO 4 :Eu x (x = 0.01–0.2)) for white light-emitting diodes (LED) were synthesized by the solid-state reaction method. The fluorescent intensities of the as-prepared phosphors were remarkably improved. The excitation and emission spectra demonstrate that these phosphors can be effectively excited by the near-UV light (395 nm) and blue light (466 nm). Their emitted red light peaks are located at 613 nm, and the highest quantum yield value (η) of the as-grown red phosphor, which is 95.85%, is much higher than that of commercial red phosphor (77.53%). These red phosphors plus commercial yellow powers (1:10) were successfully packaged with the GaN-based blue chips on a piranha frame by epoxy resins. The encapsulated white LED lamps show high performance of the CIE chromaticity coordinates and color temperatures. Moreover, to explain the fluorescent spectra of these phosphors, a complete 3003 × 3003 energy matrix was successfully built by an effective operator Hamiltonian including free ion and crystal field interactions. For the first time, the fluorescent spectra for Eu 3+ ion at the tetragonal (S 4 ) Sr 2+ site of SrMoO 4 crystal were calculated from a complete diagonalization (of energy matrix) method. The fitting values are close to the experimental results.
Liang, Xu; Mack, John; Zheng, Li-Min; Shen, Zhen; Kobayashi, Nagao
2014-03-17
The synthesis and properties of phosphorus(V) 5,10,15-tris(4-methoxycarbonylphenyl)corrole (1) have been investigated, and its potential utility for bioimaging applications in living cells has been explored. As would normally be anticipated for corrole complexes, the intensity of the Q(0,0) bands of 1 is greater than those of comparable phosphorus(V) tetraphenylporphyrins, but the ΦF values (0.25 for 1) are found to be comparable. A detailed analysis of the electronic structure of the complex was carried out by comparing electronic absorption and MCD spectral data to the results of TD-DFT calculations. The meso-aryl substituents, which enhance the lipophilicity of 1 and hence result in its localization in intracellular membranes during HeLa cell experiments, are predicted to result in a narrowing of the HOMO-LUMO gap and hence a red shift of the Q(0,0) bands toward the optical window in biological tissues.
Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng
2016-05-01
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
Directory of Open Access Journals (Sweden)
De-Xin Kong
2018-03-01
Full Text Available Detection of triphenylmethane dyes (TDs, especially the widely used malachite green (MG and crystal violet (CV, plays an important role in safety control of aquatic products. There are two chromatic forms of TDs: oxidized or reduced. Usually, only one form can be detected by reported ELISA antibodies. In this article, molecular shape superimposing and quantum mechanics calculation were employed to elucidate the differences between MG, CV, and their reduced chromatic forms (leucomalachite green, LMG and leucocrystal violet, LCV. A potential hapten was rationally designed and synthesized. Polyclonal antibodies were raised through immunizing New Zealand white rabbits and BALB/C mice. We tested the cross-reactivity ratios between the hapten and TDs. The cross-reactivity ratios were correlated with the difference in surface electrostatic potential. The determination coefficients (r2 of the correlations are 0.901 and 0.813 for the rabbit and mouse antibody, respectively. According to this linear model, the significant difference in the atomic charge seemed to make it impossible to find a hapten that can produce antibodies with good cross-reactivities with both reduced and oxidized TDs.
Marchewka, M. K.; Drozd, M.; Janczak, J.
2011-08-01
The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.
International Nuclear Information System (INIS)
Corcuera, Roberto.
1975-12-01
The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr
International Nuclear Information System (INIS)
Kalyakin, S.G.; Kukharchuk, O.F.; Sorokin, A.P.
2012-01-01
The collection includes abstracts of reports of scientific and technical conference Thermophysics-2012 which has taken place on October 24-26, 2012 in Obninsk. In abstracts the following questions are considered: experimental and calculating and theoretical studies of thermal hydraulics of liquid-metal cooled fast reactors to justify their characteristics and safety; physico-chemical processes in the systems with liquid-metal coolants (LMC); physico-chemical characteristics and thermophysical properties of LMC; development of models, computational methods and calculational codes for simulating processes of of hydrodynamics, heat and mass transfer, including impurities mass transfer in the systems with LMC; methods and means for control of composition and condition of LMC in fast reactor circuits on impurities and purification from them; apparatuses, equipment and technological processes at the work with LMC taking into account the ecology, including fast reactors decommissioning; measuring techniques, sensors and devices for experimental studies of heat and mass transfer in the systems with LMC [ru
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoyan; Zhang, Zhongju [Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao (China); Zhang, Luo; Wang, Xin [Ocean University of China, Institute of Material Science and Engineering, Qingdao (China)
2016-05-15
The morphologies of the materials have strong effects on their performance in particular applications. In our experiment, we synthesized LaPO{sub 4} successfully by the typical hydrothermal method in acidic conditions. The morphologies, preferred orientation and crystal facets are characterized by scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Combining the experimental findings, the surface energies of two major surfaces, (110) and (031) planes, were calculated using density functional theory methods. The theoretical calculations on the slabs surface energies were performed to simulate the shape of nanoparticles by the Wulff construction. The experimental results indicate that LaPO{sub 4} prepared in this work shows rodlike structure. The equilibrium shape of clava with large length-diameter ratio is achieved. With increasing hydrogen ion concentration in solutions, the morphologies present as sticks and their length-diameter ratios tend bigger, which is consistent with experimental results to a great extent. (orig.)
Zhang, Xueli; Gong, Xuedong
2014-08-04
Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vries, de W.; Bakker, D.J.
1996-01-01
Methodologies are described for calculating critical loads of lead, cadmium, copper, zinc, nickel, chromium and mercury for soils and surface waters. The aspects which are discussed are: selection of a computation model, determination of environmental-quality criteria for the metals, collection of
Kommers, Petrus A.M.; Smyrnova-Trybulska, Eugenia; Morze, Natalia; Issa, Tomayess; Issa, Theodora
2015-01-01
This paper, prepared by an international team of authors focuses on the conceptual aspects: analyses law, ethical, human, technical, social factors of ICT development, e-learning and intercultural development in different countries, setting out the previous and new theoretical model and preliminary
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-01
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these
International Nuclear Information System (INIS)
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-01-01
The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-10-14
The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-09-15
The European Commission decided in 2001 an analysis program to reduce the atmospheric emissions. This report presents different limit scenari for France in 2020 (the reference scenari and the MTFR scenari, Maximum Technically Feasible Reduction), optimized scenari calculated by the RAINS model (Regional Air Pollution Information and Simulation), the costs of the scenari calculated with RAINS and the cost-benefit analysis of the strategy CAFE. From the study results, the benefits are higher than the costs, even with the most ambitious scenari. At an european level the emission reduction strategies have no effect on the employment but an impact on the Gross Domestic Product (decrease between 0,04 % and 0,12 % in function of the scenari). (A.L.B.)
International Nuclear Information System (INIS)
Chen, Xiangjie; Worall, Mark; Omer, Siddig; Su, Yuehong; Riffat, Saffa
2013-01-01
Highlights: ► Waste heat from vehicle exhausted gas was used as heat source for ejector. ► Ejector acts as the main interface between ejector and CO 2 VC sub-system. ► The effect of sub-cooling was analyzed. ► COP of ejector cooling system was measured between 0.2 and 0.5 during experiments. ► Enhanced ejector and vapour compression system. -- Abstract: This paper presents theoretical investigations into a hybrid ejector and CO 2 vapour compression (VC) system for road transport cooling. The purpose is to utilise the waste heat from exhaust gas and the VC sub-system to drive the ejector system, whose cooling effect will be employed to subcool the VC sub-system. Exploitation of the energy consumption ratio between ejector sub-system and CO 2 VC sub-system indicated that the more energy obtained from exhausted gas, the better system performance could be achieved for CO 2 VC sub-system, and hence higher cooling capacity of the VC sub-system at the same compression power. Thermodynamic simulations of two sub-systems and the hybrid system were presented. The results indicated that, at boiler temperature of 120 °C, evaporator temperature of 10 °C, a COP of 0.584 was achieved for hybrid system, with 22% improvement over a single ejector cycle. Preliminary experimental studies were carried out on a single ejector cycle, with boiler temperatures between 115 °C and 130 °C, and evaporator temperatures between 5 °C and 10 °C. The effects of various operation conditions on the overall ejector operation were coherently analysed. The COP of the ejector sub-system from experimental results was approximately 85% compared with simulation results, which showed a good agreement between theoretical analysis and experimental results.
Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P
2013-11-21
Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences
International Nuclear Information System (INIS)
Siefken, L.J.
1999-01-01
Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''
Directory of Open Access Journals (Sweden)
Panthip Tue-ngeun
2013-01-01
Full Text Available Computational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied. Molecular dynamics simulations were done with several complexes of original scFv anti-p17 and scFv anti-p17mutants with HIV-1 p17 epitope variants with a production run up to 10 ns. With the combination of pairwise decomposition residue interaction and alanine scanning calculations, the point mutation has been initially selected at the position MET100 to improve the residue binding affinity. The calculated docking interaction energy between a single mutation from methionine to either arginine or glycine has shown the improved binding affinity, contributed from the electrostatic interaction with the negative favorably interaction energy, compared to the wild type. Theoretical calculations agreed well with the results from the peptide ELISA results.
International Nuclear Information System (INIS)
Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.
1994-01-01
Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)
1994-01-01
Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).
International Nuclear Information System (INIS)
Dorofeeva, Olga V.; Ryzhova, Oxana N.
2009-01-01
The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed
Directory of Open Access Journals (Sweden)
Alcântara Antônio Flávio de Carvalho
2004-01-01
Full Text Available The NMR conformational study of 4',7-di-hydroxy-8-prenylflavan 1 was carried out in acetone-d6, DMSO-d6 and CDCl3 which enabled the proposition of three conformations, namely 1a, 1b and 1c, differing in the position of the prenyl group. Geometry optimizations performed using AM1 method showed that 1a (deltaHf = -86.2 kcal/mol is as stable as 1b (deltaHf = -85.1 kcal/mol and 1c (deltaHf = -85.4 kcal/mol. When the solvent was included, the calculations showed that the solute-solvent interactions could be explained either in the light of the electronic intermolecular delocalization or the electrostatic character between solute and solvent. Theoretical calculations (HF/6-31G*, deltaFT/BLYP/6-31G*, and deltaFT/B3LYP/6-31G* showed that the combination of these types of interactions present in each solute-solvent system, dependent on the chemical properties of the solvent, lead to different spatial arrangements of the prenyl group, which in turn determined the conformation of 1.
Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki
2009-03-01
Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2017-09-07
A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.
Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung
2005-01-30
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase
Energy Technology Data Exchange (ETDEWEB)
Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Németh, József, E-mail: nemeth.jozsef@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary)
2016-11-15
Monte Carlo N-Particle (MCNP) calculations were carried out to compare neutron shielding capabilities of three frequently used neutron shielding materials: polyethylene without neutron absorbers, polyethylene with boron absorbers and polyethylene with lithium absorbers, according to Non Ionizing Energy Loss (NIEL). The results of 1D shielding calculations showed that simple neutron moderating materials can provide sufficient and cheap shielding against 2.45 MeV and 14.1 MeV fusion neutrons, in terms of 1 MeV neutron equivalent flux, in silicon targets, which is the most commonly used material of electronic components. Based on these results a new shielding concept is proposed which can be taken into consideration where the reduction of displacement damage is the main goal and the free space available for shielding is limited. Based on this shielding concept detailed 3D calculations were carried out to describe the properties of the neutron shielding of the Beam Emission Spectroscopy (BES) system installed at the EAST tokamak.
International Nuclear Information System (INIS)
Zeng Yu; Zhou Luyi
2010-01-01
Objectives: To compare the difference of the ratio of thyroid radioiodine ( 131 I) uptake calculated by actually measuring counts of the standard radioactive source(method 1) and by computing counts of the standard radioactive source via physic half life of 131 I (method 2). Methods: Two hundred and nine consecutive patients with Graves' Disease were prospectively recruited. The ratio of thyroid 131 I uptake was calculated by two methods at 4 h and 24 h after administration of 1.48 MBq 131 I, respectively. Paired t-test was used to compare the difference between the two methods. Results: The ratio of thyroid 131 I uptake at 4h was (32±16)% and ( 35±10)% (t=1.98, P=0.20), at 24h (72±19)% and (69±24)% ( t=1.49, P=0.23), respectively, by the two methods. Conclusion: To calculate the ratio of thyroid 131 I uptake via the physic half life of the standard radioactive resource is feasible, and can both reduce the risk of ionizing radiation to technical staff and act as verifying method for quality control of thyroid function equipment. (authors)
International Nuclear Information System (INIS)
Jin, L; Eldib, A; Li, J; Price, R; Ma, C
2015-01-01
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin
Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin
2018-06-01
In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.
Chernin, Artur D.
1994-08-01
In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.
Cai, Wenting; Morales-Martínez, Roser; Zhang, Xingxing; Najera, Daniel; Romero, Elkin L; Metta-Magaña, Alejandro; Rodríguez-Fortea, Antonio; Fortier, Skye; Chen, Ning; Poblet, Josep M; Echegoyen, Luis
2017-08-01
Charge transfer is a general phenomenon observed for all endohedral mono-metallofullerenes. Since the detection of the first endohedral metallofullerene (EMF), La@C 82 , in 1991, it has always been observed that the oxidation state of a given encapsulated metal is always the same, regardless of the cage size. No crystallographic data exist for any early actinide endohedrals and little is known about the oxidation states for the few compounds that have been reported. Here we report the X-ray structures of three uranium metallofullerenes, U@ D 3h -C 74 , U@ C 2 (5)-C 82 and U@ C 2v (9)-C 82 , and provide theoretical evidence for cage isomer dependent charge transfer states for U. Results from DFT calculations show that U@ D 3h -C 74 and U@ C 2 (5)-C 82 have tetravalent electronic configurations corresponding to U 4+ @ D 3h -C 74 4- and U 4+ @ C 2 (5)-C 82 4- . Surprisingly, the isomeric U@ C 2v (9)-C 82 has a trivalent electronic configuration corresponding to U 3+ @ C 2v (9)-C 82 3- . These are the first X-ray crystallographic structures of uranium EMFs and this is first observation of metal oxidation state dependence on carbon cage isomerism for mono-EMFs.
Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen
2017-08-01
In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.
van Stee, Leo L P; Brinkman, Udo A Th
2011-10-28
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Yang, M; Zhu, X R; Mohan, R; Dong, L; Virshup, G; Clayton, J
2010-01-01
We discovered an empirical relationship between the logarithm of mean excitation energy (ln I m ) and the effective atomic number (EAN) of human tissues, which allows for computing patient-specific proton stopping power ratios (SPRs) using dual-energy CT (DECT) imaging. The accuracy of the DECT method was evaluated for 'standard' human tissues as well as their variance. The DECT method was compared to the existing standard clinical practice-a procedure introduced by Schneider et al at the Paul Scherrer Institute (the stoichiometric calibration method). In this simulation study, SPRs were derived from calculated CT numbers of known material compositions, rather than from measurement. For standard human tissues, both methods achieved good accuracy with the root-mean-square (RMS) error well below 1%. For human tissues with small perturbations from standard human tissue compositions, the DECT method was shown to be less sensitive than the stoichiometric calibration method. The RMS error remained below 1% for most cases using the DECT method, which implies that the DECT method might be more suitable for measuring patient-specific tissue compositions to improve the accuracy of treatment planning for charged particle therapy. In this study, the effects of CT imaging artifacts due to the beam hardening effect, scatter, noise, patient movement, etc were not analyzed. The true potential of the DECT method achieved in theoretical conditions may not be fully achievable in clinical settings. Further research and development may be needed to take advantage of the DECT method to characterize individual human tissues.
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen
2007-04-01
The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.
Engelbrecht, J. A. A.
2018-04-01
Theoretical models used for the determination of the refractive index of InXGa1-XAs are reviewed and compared. Attention is drawn to some problems experienced with some of the models. Models also extended to the mid-infrared region of the electromagnetic spectrum. Theoretical results in the mid-infrared region are then compared to previously published experimental results.
Energy Technology Data Exchange (ETDEWEB)
Mein, S [Duke University Medical Physics Graduate Program (United States); Gunasingha, R [Department of Radiation Safety, Duke University Medical Center (United States); Nolan, M [Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (United States); Oldham, M; Adamson, J [Department of Radiation Oncology, Duke University Medical Center (United States)
2016-06-15
Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold
DEFF Research Database (Denmark)
Jensen Hansen, Inger Marie; Asmussen Andreasen, Rikke; Antonsen, Steen
Background/Purpose: The threshold for reporting of C-reactive protein (CRP) differs from laboratory to laboratory. Moreover, CRP values are affected by the intra individual biological variability.[1] With respect to disease activity score in 28 joints (DAS28) and Rheumatoid Arthritis (RA), precise...... threshold for reporting CRP is important due to the direct effects of CRP on calculating DAS28, patient classification and subsequent treatment decisions[2] Methods: This study consists of two sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 with regard...... to the biological variation and reporting limit for CRP and a cross sectional study of all RA patients from our department (n=876) applying our theoretical results. In the second section, we calculate DAS28 twice with actual CRP and CRP=9, the latter to elucidate the positive consequences of changing the lower...
Czech Academy of Sciences Publication Activity Database
Šebera, Jakub; Burda, J.; Straka, Michal; Ono, A.; Kojima, C.; Tanaka, Y.; Sychrovský, Vladimír
2013-01-01
Roč. 19, č. 30 (2013), s. 9884-9894 ISSN 0947-6539 R&D Projects: GA ČR GAP205/10/0228; GA MŠk(CZ) LH11033 Institutional support: RVO:61388963 Keywords : DNA structures * mercury * metalation * metal-DNA binding * nucleobases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013
International Nuclear Information System (INIS)
Lukaszek, W.; Kucypera, S.
1982-01-01
The basis of a semianalytic method for calculating attenuation of rays (neutron, gamma) in material medium is described. The method was applied in determining the neutrons' flux density in one dimensional Cartesian geometry of the reflector and the shield. (author)
Energy Technology Data Exchange (ETDEWEB)
Malenda, R. F.; Price, T. J.; Stevens, J.; Uppalapati, S. L.; Fragale, A.; Weiser, P. M.; Kuczala, A.; Hickman, A. P., E-mail: aph2@lehigh.edu [Department of Physics, Lehigh University, 16 Memorial Dr. East, Bethlehem, Pennsylvania 18015 (United States); Talbi, D. [Laboratoire Univers et Particules de Montpellier, UMR 5299, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier (France)
2015-06-14
We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.
International Nuclear Information System (INIS)
Lee, S.G.; Bak, J.G.; Jung, Y.S.; Bitter, M.; Hill, K.W.; Hoelzer, G.; Wehrhan, O.; Foerster, E.
2003-01-01
This paper describes a new method for the simultaneous measurement of the integrated reflectivity of a crystal for multiple orders of reflection at a predefined Bragg angle. The technique is demonstrated with a mica crystal for Bragg angles of 43 o , 47 o , and 50 o . The measured integrated reflectivity for Bragg reflections up to the 24th order is compared with new theoretical predictions, which are also presented in this paper
İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail
2013-10-01
In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.
International Nuclear Information System (INIS)
Yang, Mei; Wen-Chen, Zheng; Hong-Gang, Liu
2013-01-01
The spin-Hamiltonian parameters (g factors g i and hyperfine structure constants A i , were i=x, y and z) for Mo 5+ ion occupying the Ti(1) site with approximately rhombic symmetry in KTiOPO 4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model, not only the contribution due to the conventional crystal-field (CF) mechanism, but also those due to the charge-transfer (CT) mechanism are included. The six calculated spin-Hamiltonian parameters with four adjustable parameters are in reasonable agreement with the experimental values. The calculations show that for more accurate calculations of spin-Hamiltonian parameters of the high valence d n ions (e.g., Mo 5+ considered here) in crystals, the contribution from CT mechanism, which is ignored in the conventional crystal field theory, should be taken into account. The reasonable crystal field energy levels of Mo 5+ in KTiOPO 4 are also predicted from calculations
International Nuclear Information System (INIS)
Ning Lixin; Jiang Ying; Xia Shangda; Tanner, Peter A
2003-01-01
The 5f 3 → 5f 2 6d absorption spectrum of U 3+ in LiY F 4 has been well calculated using the model proposed by Reid for calculations of 4f N ↔ 4f N-1 5d spectra. The relevant formulae for the matrix element calculations which were omitted in this model are now described in detail, and the values of the direct and exchange coefficients associated with the f-d Coulomb interactions within the f 2 d configuration are derived and listed. The amount of reduction for the f-d Coulomb interaction parameters from the free-ion values is found to be ∼ 67% , which is much larger than the value of 26% for the isoelectronic Nd 3+ lanthanide ion in the same host
International Nuclear Information System (INIS)
Koehler, W.E.; Schaefer, J.
1983-01-01
The temperature dependence of the effective Waldmann--Snider cross sections determining the Senftleben--Beenakker effects of viscosity and heat conductivity has been studied for pH 2 gas between 10 and 200 K. From ab initio nonspherical potentials of H 2 --H 2 , scattering matrices have been determined in close-coupling calculations. From these, the elements of the scattering amplitude matrix have been obtained and used as input quantities for the evaluation of the various Waldmann--Snider collision integrals. The results of these first ab initio numerical calculations of anisotropic transport coefficients show excellent agreement of calculated and measured effective cross sections, especially for the most recent improved version of the interaction potential. In addition, it has been shown that the polarization production cross sections are quite sensitive to the potential anisotropy
International Nuclear Information System (INIS)
Jaffey, A.H.; Gray, J.; Bentley, W.C.; Lerner, J.L.
1987-09-01
A precision built moveable endplate Geiger-Mueller counter was used to measure the absolute disintegration rate of a beta-emitting radioactive gas. A Geiger-Mueller counter used for measuring gaseous radioactivity has 85 Kr (beta energy, 0.67 MeV). The wall effect calculation is readily extendable to other beta energies
Brown et al. (2016) published a synthesis paper in which evidence was presented supporting a new value of the Earth’s geobiosphere baseline, 12.0E+24 seJ/y (solar equivalent joules per year) from which the emergy of all the Earth’s products and processes can be calcul...
Directory of Open Access Journals (Sweden)
Guangtao Zhang
2017-05-01
Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.
Energy Technology Data Exchange (ETDEWEB)
Manning, Karessa L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dolislager, Fredrick G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bellamy, Michael B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-11-01
The Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) calculators are screening level tools that set forth Environmental Protection Agency's (EPA) recommended approaches, based upon currently available information with respect to risk assessment, for response actions at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites, commonly known as Superfund. The screening levels derived by the PRG and DCC calculators are used to identify isotopes contributing the highest risk and dose as well as establish preliminary remediation goals. Each calculator has a residential gardening scenario and subsistence farmer exposure scenarios that require modeling of the transfer of contaminants from soil and water into various types of biota (crops and animal products). New publications of human intake rates of biota; farm animal intakes of water, soil, and fodder; and soil to plant interactions require updates be implemented into the PRG and DCC exposure scenarios. Recent improvements have been made in the biota modeling for these calculators, including newly derived biota intake rates, more comprehensive soil mass loading factors (MLFs), and more comprehensive soil to tissue transfer factors (TFs) for animals and soil to plant transfer factors (BV's). New biota have been added in both the produce and animal products categories that greatly improve the accuracy and utility of the PRG and DCC calculators and encompass greater geographic diversity on a national and international scale.
International Nuclear Information System (INIS)
Manning, Karessa L.; Dolislager, Fredrick G.; Bellamy, Michael B.
2016-01-01
The Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) calculators are screening level tools that set forth Environmental Protection Agency's (EPA) recommended approaches, based upon currently available information with respect to risk assessment, for response actions at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites, commonly known as Superfund. The screening levels derived by the PRG and DCC calculators are used to identify isotopes contributing the highest risk and dose as well as establish preliminary remediation goals. Each calculator has a residential gardening scenario and subsistence farmer exposure scenarios that require modeling of the transfer of contaminants from soil and water into various types of biota (crops and animal products). New publications of human intake rates of biota; farm animal intakes of water, soil, and fodder; and soil to plant interactions require updates be implemented into the PRG and DCC exposure scenarios. Recent improvements have been made in the biota modeling for these calculators, including newly derived biota intake rates, more comprehensive soil mass loading factors (MLFs), and more comprehensive soil to tissue transfer factors (TFs) for animals and soil to plant transfer factors (BV's). New biota have been added in both the produce and animal products categories that greatly improve the accuracy and utility of the PRG and DCC calculators and encompass greater geographic diversity on a national and international scale.
Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin
2011-06-07
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics
Czech Academy of Sciences Publication Activity Database
Dračínský, Martin; Jansa, Petr; Ahonen, K.; Buděšínský, Miloš
-, č. 8 (2011), s. 1544-1551 ISSN 1434-193X R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Grant - others:AV ČR(CZ) M200380901 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR spectroscopy * tautomerism * nitrogen heterocycles * density functional calculations Subject RIV: CC - Organic Chemistry Impact factor: 3.329, year: 2011
Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.
2015-05-01
In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.
Zehe, Michael J.; Jaffe, Richard L.
2010-01-01
High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.
Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S
2015-05-15
In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Helmrot, E.; Alm Carlsson, G.
1996-01-01
Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)
International Nuclear Information System (INIS)
Cao, Jun
2015-01-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π * transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π * excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S 1 ( 1 ππ * ) and S 2 ( 1 n N π * ) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles
Energy Technology Data Exchange (ETDEWEB)
Cao, Jun, E-mail: caojunbnu@mail.bnu.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Sciences, Guizhou Normal College, Guiyang, Guizhou 550018, China and Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Cao, Jun
2015-06-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Energy Technology Data Exchange (ETDEWEB)
Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)
1995-10-01
Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.
International Nuclear Information System (INIS)
Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid
2010-01-01
Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.
International Nuclear Information System (INIS)
Arwui, C. C.; Schandorf, C.; Nani, K.; Darko, E. O.; Deatanyah, P.
2010-01-01
A theoretical study was carried out to re-evaluate the integrity of the biological shielding of 137 Cs brachytherapy unit at the Korle Bu Teaching Hospital (Ghana), and the results were verified by measurement of the dose rates at selected locations. The primary objective was to determine the current state of protection and safety of staff and the general public. Shielding design of the brachytherapy unit at the hospital was based on postulated workload and occupancy factors of the facility. The facility has been in existence for 12 y and has accumulated operational workload data that differs from the postulated one. The results show that despite the variation in actual and postulated workloads, the dose rates were below the reference values 0.5 mSv h -1 for public areas and 7.5 μSv h -1 for controlled areas. These values were in the range of 0.10-0.12 μSv h -1 for public areas and of 0.50-2.10 μSv h -1 for controlled areas. (authors)
Energy Technology Data Exchange (ETDEWEB)
Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)
2016-01-21
The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.
International Nuclear Information System (INIS)
Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Xia; Zhang, Nan; Yan, Xingchen; Zuo, Jian
2014-01-01
A novel complex [Zn(phen)(o-AB) 2 ] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with a = 7.6397(6) A, b = 16.8761(18) A, c = 17.7713(19) A, α = 90 .deg., β = 98.9570(10) .deg., γ = 90 .deg., V = 2.2633(4) nm 3 , Z = 4, F(000) = 1064, S = 1.058, Dc = 1.520 g·cm -3 , R 1 = 0.0412, wR 2 = 0.0948, μ = 1.128 mm -1 . The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291
Ercan, İlke; Suyabatmaz, Enes
2018-06-01
The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Zhao, Sufang; Zhu, Jingyu; Xu, Lei; Jin, Jian
2017-06-01
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors. © 2016 John Wiley & Sons A/S.
Directory of Open Access Journals (Sweden)
Sanju Gupta
2016-07-01
thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS in the vicinity of the Fermi level (i.e., higher electroactive sites, in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes.
Sammour, T; Cohen, L; Karunatillake, A I; Lewis, M; Lawrence, M J; Hunter, A; Moore, J W; Thomas, M L
2017-11-01
Recently published data support the use of a web-based risk calculator ( www.anastomoticleak.com ) for the prediction of anastomotic leak after colectomy. The aim of this study was to externally validate this calculator on a larger dataset. Consecutive adult patients undergoing elective or emergency colectomy for colon cancer at a single institution over a 9-year period were identified using the Binational Colorectal Cancer Audit database. Patients with a rectosigmoid cancer, an R2 resection, or a diverting ostomy were excluded. The primary outcome was anastomotic leak within 90 days as defined by previously published criteria. Area under receiver operating characteristic curve (AUROC) was derived and compared with that of the American College of Surgeons National Surgical Quality Improvement Program ® (ACS NSQIP) calculator and the colon leakage score (CLS) calculator for left colectomy. Commercially available artificial intelligence-based analytics software was used to further interrogate the prediction algorithm. A total of 626 patients were identified. Four hundred and fifty-six patients met the inclusion criteria, and 402 had complete data available for all the calculator variables (126 had a left colectomy). Laparoscopic surgery was performed in 39.6% and emergency surgery in 14.7%. The anastomotic leak rate was 7.2%, with 31.0% requiring reoperation. The anastomoticleak.com calculator was significantly predictive of leak and performed better than the ACS NSQIP calculator (AUROC 0.73 vs 0.58) and the CLS calculator (AUROC 0.96 vs 0.80) for left colectomy. Artificial intelligence-predictive analysis supported these findings and identified an improved prediction model. The anastomotic leak risk calculator is significantly predictive of anastomotic leak after colon cancer resection. Wider investigation of artificial intelligence-based analytics for risk prediction is warranted.
Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V
2007-07-19
The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.
Theoretical calculations for electron proton scattering
International Nuclear Information System (INIS)
Horst, M. van der
1990-01-01
Within an extension of the Higgs structure of the standard model the production of charged Higgs bosons at the ep collider HERA is possible. However it is found that the total production rates are very small. For example, if a mass of 15 GeV is assumed , at most 10 events can be observed at HERA. Therefore it will be clear that the actual performance of HERA must be monitored accurately. This thesis is concerned with the computation of the cross section of e - p → γe - p reaction which has been proposed to be a luminosity monitor for HERA. In ch. 3 the pro-cess is computed at lowest order. Ch. 4 presents the computation of radiative corrections to the process which consist of the virtual corrections and the corrections due to Bremsstrahlung photons. This amounts to computing the cross section of the process e - p → γγ e - p, and must be included to cancel infrared divergent terms in the virtual corrections in the usual way. In ch. 5 a concise expression for the trace of gamma matrices in four dimensions is presented. This expression can be useful in writing a matrix element (at tree level) in terms of contractions of two different tensors. The expression found can be useful in an algebraic manipulation programme. An example is given how the results can be used in a physical process. (H.W.).55 refs.; 11 figs
International Nuclear Information System (INIS)
Bencik, M.; Hadek, J.
2011-01-01
The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)
Directory of Open Access Journals (Sweden)
Mikhail Yurievich Senatorov
2013-12-01
Full Text Available The calculation of the power transmitter onboard GLONASS satellites is submitted for the operation method of orbital monitoring of incidents caused by the system operator. Article is devoted to the description of actual ways of possible distribution of malwares such, as “Easter eggs”, client network applications (torrent-client and service of digital distribution. As the experiment description on distribution of malwares is provided in the simulated virtual network by means of service of digital distribution. Rules on safety of the user computers in a network are developed.
Energy Technology Data Exchange (ETDEWEB)
Toreti, Dalila; Xavier, Clarice; Moura, Fabio, E-mail: clarice.xavier@rem.ind.b, E-mail: fabio.moura@rem.ind.b [REM Industria e Comercio Ltda., Sao Paulo, SP (Brazil)
2011-10-26
The CyberKnife robotic system uses a manipulator with six grade of freedom for positioning a 6 MV Linac accelerator for treatment of lesions. This paper presents calculations for a standard room, with 200 cm of thickness walls primary, build for a CyberKnife system, and calculations for a room originally designed for a Linac conventional (with gantry), with secondary barriers of 107 cm thickness. After the realization of shielding for both rooms, the results shown that walls of standard room with 200 cm thickness are adequate for the secondary shield, and for a room with a conventional Linac, from all six evaluated points, two would require additional shielding of nine cm and four cm of concrete with 2.4 g/cubic cm. This shows that the CyberKnife system can be installed in a originally designed room for a conventional Linac with neither restrict nor any shielding, since no incidence of beams on the secondary barriers is existent
International Nuclear Information System (INIS)
Lee, J. K.; Naganuma, M.
2006-01-01
Gas cooled Fast Reactor (GFR) is being researched as a candidate concept of Generation IV international Forum. As a main feature of GFR, it should be maintained high temperature and pressure of coolant gas for heat transfer efficiency. Such a demanding environment requires high-temperature-resistant structural materials distinguished from traditional steel material. Consequently, ceramics are promising candidate material of core components. Especially, Silicon Carbide fiber reinforced Silicon Carbide composites (SiC/SiC) have encouraging characteristics such as refractoriness, low activation and toughness. Application of new material to core components must be explained by the viewpoint of engineering validity. Therefore, present study surveyed that current report for mechanical strength and thermal conductivity of SiC/SiC composites. According to the reports, neutron irradiation environment degraded mechanical properties of SiC/SiC composites. To confirm applicability to core components, model of fuel pin using SiC/SiC composites was assumed with feasible mechanical properties. Furthermore, it was calculated and estimated that the stress caused by temperature variation of inner and outer side of assumed model of cladding tube. Stress was calculated by changing of input date such as thickness of cladding tube, temperature variation, thermal conductivity and linear power. In the range of this study, the most important factor was identified as degradation of thermal conductivity by irradiation. It caused a significant stress and limited a geometrical design of fuel pin. It was discussed that the differences of heat transfer between isotropic and anisotropic materials like a metal and composites. These results should be helpful not only to determine a design factor of core component but also to indicate an improvement direction of SiC/SiC composites. Through these work, reliability and safety of GFR will be increased
Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen
2017-01-01
Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p 0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789
Bajnóczi, Éva G; Németh, Zoltán; Vankó, György
2017-11-20
Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.
Joos, Georg
1986-01-01
Among the finest, most comprehensive treatments of theoretical physics ever written, this classic volume comprises a superb introduction to the main branches of the discipline and offers solid grounding for further research in a variety of fields. Students will find no better one-volume coverage of so many essential topics; moreover, since its first publication, the book has been substantially revised and updated with additional material on Bessel functions, spherical harmonics, superconductivity, elastomers, and other subjects.The first four chapters review mathematical topics needed by theo
International Nuclear Information System (INIS)
Laval, G.
1988-01-01
The 1988 progress report of the theoretical Physics Center (Ecole Polytechnique, France), is presented. The research activities are carried out in the fields of the supersymmetry theory, the dynamic systems theory, the statistical mechanics, the plasma physics and the random media. Substantial improvements are obtained on dynamical system investigations. In the field theory, the definition of the Gross-Neveu model is achieved. However the construction of the non-abelian gauge theories and the conformal theories are the main research activities. Concerning Astrophysics, a three-dimensional gravitational code is obtained. The activities of each team, and the list of the published papers, congress communications and thesis are given [fr
International Nuclear Information System (INIS)
Anon.
1980-01-01
The nuclear theory program deals with the properties of nuclei and with the reactions and interactions between nuclei and a variety of projectiles. The main areas of concentration are: heavy-ion direct reactions at nonrelativistic energies; nuclear shell theory and nuclear structure; nuclear matter and nuclear forces;intermediate-energy physics and pion-nucleus interactions; and high-energy collisions of heavy ions. Recent progress and plans for future work in these five main areas of concentration and a summary of other theoretical studies currently in progress or recently completed are presented
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1990-05-01
This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Son (ed.) [Canadian Nuclear Safety Commission (Canada); Lanru Jing (ed.) [Royal Institute of Technology, Stockholm (Sweden); Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Chijimatzu, Masakazu [Hazama Corporation (Japan); Jussila, Petri [Helsinki Univ. of Technology, Helsinki (Finland); Rutqvist, Jonny [Lawrence Berkeley National Laboratory CA (United States)
2007-02-15
The DECOVALEX-THMC project is an ongoing international co-operative project that was stared in 2004 to support the development of mathematical models of coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes in geological media for siting potential nuclear fuel waste repositories. The general objective is to characterise and evaluate the coupled THMC processes in the near field and far field of a geological repository and to assess their impact on performance assessment: - during the three phases of repository development: excavation phase, operation phase and post-closure phase; - for three different rocks types: crystalline, argillaceous and tuff; - with specific focus on the issues of: Excavation Damaged Zone (EDZ), permanent property changes of rock masses, and glaciation and permafrost phenomena. The project involves a large number of research teams supported by radioactive waste management agencies or governmental regulatory bodies in Canada, China, Finland, France, Germany, Japan, Sweden and USA, who conducted advanced studies and numerical modelling of coupled THMC processes under five tasks. This report presents the definition of the first phase, Task A-1, of the Task A of the project. The task is a working example of how interaction between THMC modelling and SA analysis could be performed. Starting with the technical definition of the Task A, the report presents the results of preliminary THM calculations with a purpose of an initial appreciation of the phenomena and material properties that must be better understood in subsequent phases. Many simplifications and assumptions were introduced and the results should be considered under these assumptions. Based on the evaluation of the multiple teams' results, a few points of concern were identified that may guide the successive phases of Task A studies: 1. The predicted maximum total stress in the MX-80 bentonite could slightly exceed the 15 MPa design pressure for the
International Nuclear Information System (INIS)
Nguyen, Son; Lanru Jing; Boergesson, Lennart; Chijimatzu, Masakazu; Jussila, Petri; Rutqvist, Jonny
2007-02-01
The DECOVALEX-THMC project is an ongoing international co-operative project that was stared in 2004 to support the development of mathematical models of coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes in geological media for siting potential nuclear fuel waste repositories. The general objective is to characterise and evaluate the coupled THMC processes in the near field and far field of a geological repository and to assess their impact on performance assessment: - during the three phases of repository development: excavation phase, operation phase and post-closure phase; - for three different rocks types: crystalline, argillaceous and tuff; - with specific focus on the issues of: Excavation Damaged Zone (EDZ), permanent property changes of rock masses, and glaciation and permafrost phenomena. The project involves a large number of research teams supported by radioactive waste management agencies or governmental regulatory bodies in Canada, China, Finland, France, Germany, Japan, Sweden and USA, who conducted advanced studies and numerical modelling of coupled THMC processes under five tasks. This report presents the definition of the first phase, Task A-1, of the Task A of the project. The task is a working example of how interaction between THMC modelling and SA analysis could be performed. Starting with the technical definition of the Task A, the report presents the results of preliminary THM calculations with a purpose of an initial appreciation of the phenomena and material properties that must be better understood in subsequent phases. Many simplifications and assumptions were introduced and the results should be considered under these assumptions. Based on the evaluation of the multiple teams' results, a few points of concern were identified that may guide the successive phases of Task A studies: 1. The predicted maximum total stress in the MX-80 bentonite could slightly exceed the 15 MPa design pressure for the container
Vaisburd, D. I.; Kharitonova, S. V.
1997-11-01
present article gives the results of theoretical calculations of the spectra and other characteristics of intraband electron and interband hole luminescence which are compared with the experimental data.
Supercomputer requirements for theoretical chemistry
International Nuclear Information System (INIS)
Walker, R.B.; Hay, P.J.; Galbraith, H.W.
1980-01-01
Many problems important to the theoretical chemist would, if implemented in their full complexity, strain the capabilities of today's most powerful computers. Several such problems are now being implemented on the CRAY-1 computer at Los Alamos. Examples of these problems are taken from the fields of molecular electronic structure calculations, quantum reactive scattering calculations, and quantum optics. 12 figures
Theoretical Physics 1. Theoretical Mechanics
International Nuclear Information System (INIS)
Dreizler, Reiner M.; Luedde, Cora S.
2010-01-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)
Theoretical Physics 1. Theoretical Mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreizler, Reiner M.; Luedde, Cora S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2010-07-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)
Theoretical Mechanics Theoretical Physics 1
Dreizler, Reiner M
2011-01-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...
Czech Academy of Sciences Publication Activity Database
Rulíšek, Lubomír; Havlas, Zdeněk
2000-01-01
Roč. 122, č. 42 (2000), s. 10428-10439 ISSN 0002-7863 R&D Projects: GA ČR GA203/98/0650; GA AV ČR IAA4055801 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.025, year: 2000
Theoretical solid state physics
Haug, Albert
2013-01-01
Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i
Energy Technology Data Exchange (ETDEWEB)
Hellmann, Robert
2009-06-16
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Three recent TDHF calculations
International Nuclear Information System (INIS)
Weiss, M.S.
1981-05-01
Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision 40 Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for 16 O + 24 Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of 86 Kr + 139 La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed
Preliminary designs: passive solar manufactured housing. Technical status report
Energy Technology Data Exchange (ETDEWEB)
1980-05-12
The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
International Nuclear Information System (INIS)
Rossi, F.N.
1986-10-01
The adiabatic potential lines are first obtained through the use of a pseudo-potential, depending on the electronic orbital moment. A perturbative method is then used to generate the potential surfaces, according to the potential lines. A quantum calculation in the thermal energy domain is realized, for the cross-sections concerning the structure transitions of the Rubidium, induced by the collision with hydrogen or deuterium molecules. This allowed the interpretation of the experimentally observed isotopic effect [fr
Theoretical Approaches to Lignin Chemistry
Shevchenko, Sergey M.
1994-01-01
A critical review is presented of the applications of theoretical methods to the studies of the structure and chemical reactivity of lignin, including simulation of macromolecular properties, conformational calculations, quantum chemical analyses of electronic structure, spectra and chemical reactivity. Modern concepts of spatial organization and chemical reactivity of lignins are discussed.
International Nuclear Information System (INIS)
Wu Kong-Ping; Zhou Meng-Ran; Huang You-Rui; Gu Shu-Lin; Ye Jian-Dong; Zhu Shun-Ming; Zhang Rong; Zheng You-Dou; Tang Kun
2013-01-01
The structural, energetic, and electronic properties of lattice highly mismatched ZnY 1−x O x (Y = S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y = S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Energy Technology Data Exchange (ETDEWEB)
Kudo, K [Japan Marine Science and Technology Center, Kanagawa (Japan)
1993-09-30
This paper describes an algorithm for calculating the equilibrium state of carbonate system in seawater. The photo-synthesis, respiration, and basic production ability of organic and inorganic carbon compounds by calcification of coral reef ecosystem and the change in carbonate system in seawater were discussed. The carbonate system in seawater can be estimated by determining two variables among the four variables, i.e., pH value, total carbonate, total alkalinity, and partial pressure of carbon dioxide (PCO2). The analysis program proved to give good agreement with the previously calculated results. In the inorganic production of carbonate in seawater, one mole of carbonate precipitation liberates approximately 0.6 mole of CO2 into the air, and the pH value shifts toward acid side. The experimental value (0.55) for production speed ratio of inorganic carbon to organic carbon in the seawater where the coral family is abundant brings about the increase of the organic carbon production, resulting in the decrease in PCO2 in seawater and the increase in pH value. It is assumed that it becomes of a sink of CO2 in the atmosphere. 23 refs., 3 figs., 7 tabs.
Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue
2016-04-01
In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.
Energy Technology Data Exchange (ETDEWEB)
Hermanne, A.; Adam Rebeles, R. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussel 1090 (Belgium); Tárkányi, F.; Takács, S. [Institute of Nuclear Research, Hungarian Academy of Science, 4026 Debrecen (Hungary)
2015-08-01
Thin {sup nat}Cr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of {sup 52g}Fe, {sup 49,51cum}Cr, {sup 52cum,54,56cum}Mn and {sup 48cum}V in Cr and {sup 61}Cu,{sup 68}Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the {sup nat}Cu(α,x){sup 67,66}Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for {sup 52g}Fe with achievable yields and contamination rates was made.
A theoretical and spectroscopic study of conformational structures of piroxicam
Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério
2010-02-01
Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2015-03-21
The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.
Hansen, Inger M J; Emamifar, Amir; Andreasen, Rikke A; Antonsen, Steen
2017-01-01
Disease Activity Score in 28 joints (DAS28) is commonly used to evaluate disease activity of rheumatoid arthritis (RA) and is a guide to treatment decision.The aim of this study was to evaluate the impact of lower reporting limit for C-reactive protein (CRP), with respect to intraindividual biological variability, on the calculation of DAS28 and subsequent patient classification.This study consists of 2 sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 taking intraindividual biological variation and lower reporting limit for CRP into account and a cross-sectional study of RA patients applying our theoretical results. Therefore, we calculated DAS28 twice, with the actual CRP values and CRP = 9 mg/L, the latter to elucidate the positive effects of reducing the lower reporting limit of CRP from <10 to <3 mg/L.Lower-reporting limit of <10 mg/L leads to overestimate DAS28. However, reducing lower reporting limit for CRP to <3 mg/L results in optimizing DAS28 calculation. Further lowering of reporting limit for CRP to <3 mg/L does not increase the precision of DAS28 owing to the relatively large intraindividual biological variation.Five hundred twelve patients were included. There was a significant difference between recalculated and patients DAS28 (P < 0.001). One hundred nine patients had DAS28 deviation (compatible to remission to low: 66, low to moderate: 39. and moderate to high: 4).Owing to significant impact of intraindividual biologic variation on DAS28 and patient classification, special attention should be paid to calculate DAS28 when CRP values are within normal range. Furthermore, we conclude that results of different studies evaluating DAS28 and treatment response are not comparable if the reporting limits of CRP are unknown.
Theoretical studies of flash x-ray diagnostics for fuel motion experiments
International Nuclear Information System (INIS)
Halbleib, J.A. Sr.; Phillips, A.R.
1975-09-01
The results of preliminary theoretical studies concerning the possible employment of short-pulse, high-current field emission diodes as sources for the flash x-ray diagnostics of fuel-pin motion are reported. The predicted thick-target photon environments are obtained from state-of-the-art coupled electron/photon transport models. Through qualitative figures of merit these environments are used to study the importance of source current and voltage. For a selected experimental configuration a comparison is made between the absolute flash x-ray imaging signals predicted for these environments and Monte Carlo/analytic calculations of absolute fission-gamma backgrounds. These preliminary data suggest that field emission sources operating at voltages in the 1-to 5-MeV range and at currents of the order of 100-kA or greater may be adequate diagnostic sources for test-pin configurations as complex as a full LMFBR subassembly
Jiang, Li-Yan; He, Shan; Jiang, Ke-Zhi; Sun, Cui-Rong; Pan, Yuan-Jiang
2010-08-25
Resveratrol and its oligomers, abundantly present in wine grapes, are believed to be effective phytoalexins for the phenomenon "French paradox" partially by virtue of their powerful antiradical properties. EPR spin-trapping technique was utilized, demonstrating all polyphenols were selective (1)O2 quenchers but not effective (•)OH and O2(•¯) scavengers. On the basis of the HPLC-ESI-MS(2) analysis for the simulated reactions of polyphenols with (1)O2, the molecular weights of the resulting photochemical products were 14 or 28 Da higher than those of their substrates. No fragment C2H2O (42 Da), which was rather distinctive of the resorcinol rings in these cases, had been observed, whereas their MS/MS spectra displayed characteristic neutral fragments including carbon monoxide (CO, 28 Da) and 2-hydroxy[1,4]benzoquinone (C6H4O3, 124 Da). Finally, PM3 semiempirical calculations and HR-FTICR-MS experiments were performed, supporting the assertion that their quenching mechanism involved physical and chemical pathways. Chemical quenching underwent an endoperoxide intermediate form to generate quinones.
Transfer Area Mechanical Handling Calculation
International Nuclear Information System (INIS)
Dianda, B.
2004-01-01
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their
TAD- THEORETICAL AERODYNAMICS PROGRAM
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
International Nuclear Information System (INIS)
Scholtyssek, W.
1995-01-01
In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)
Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium
Energy Technology Data Exchange (ETDEWEB)
M Weimar
1998-12-10
This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.
Theoretical Study of Triatomic Systems Involving Helium Atoms
International Nuclear Information System (INIS)
Suno, H.; Hiyama, E.; Kamimura, M.
2013-01-01
The triatomic 4 He system and its isotopic species 4 He 2 3 He are theoretically investigated. By adopting the best empirical helium interaction potentials, we calculate the bound state energy levels as well as the rates for the three-body recombination processes: 4 He + 4 He + 4 He → 4 He 2 + 4 He and 4 He + 4 He + 3 He → 4 He 2 + 3 He. We consider not only zero total angular momentum J = 0 states, but also J > 0 states. We also extend our study to mixed helium-alkali triatomic systems, that is 4 He 2 X with X = 7 Li, 23 Na, 39 K, 85 Rb, and 133 Cs. The energy levels of all the J ≥ 0 bound states for these species are calculated as well as the rates for three-body recombination processes such as 4 He + 4 He + 7 Li → 4 He 2 + 7 Li and 4 He + 4 He + 7 Li → 4 He 7 Li + 4 He. In our calculations, the adiabatic hyperspherical representation is employed but we also obtain preliminary results using the Gaussian expansion method. (author)
Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)
Energy Technology Data Exchange (ETDEWEB)
Liu, Ping (BNL Chemistry Dept)
2010-12-15
Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the world’s energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.
Theoretical calculation of sawtooth wave buncher with high voltage
International Nuclear Information System (INIS)
Sun Liepeng; Xu Zhe; Shi Aimin; Feng Yong; Jin Peng; Lan Tao; Gao Yihai; Zhao Hongwei
2010-01-01
The method which builds a buncher with non-resonant cavity through the direct production of sawtooth wave has already been applied commonly to accelerator technologies all over the world. Recently, with the rapid development of electronic and mechanical manufacture technology during the last few decades, it leads to develop a sawtooth buncher easily, furthermore, it can improve match efficiency and operation stability in HIRFL at IMP. It has been concluded that the design can be applied to more sophisticated specification according to this method and the measurement of building higher voltage buncher is feasible. At last, we complement critical points involved implementation of this project and makes it work efficiently because of the highest demand and more rigorous installation limitation of this new buncher throughout the world. (authors)
Theoretical calculations of valence states in Fe-Mo compounds
International Nuclear Information System (INIS)
Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M
2014-01-01
The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism
International Nuclear Information System (INIS)
Li, D.
1980-01-01
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru
Theoretical provisions for the discharge at TJ-1 (Preliminary study)
International Nuclear Information System (INIS)
Guasp, J.
1981-01-01
Using the transport code PLASMATOR a numerical study about the TJ-1 discharge (a Tokamak close to be installed at JEN) has been made, observing the behaviour under huge variations on the transport coefficients as well as on density and current. Noteworthy a scaling law of the kind τ E ∼n θ has been contested at not too high density, The model insensibility upon the initial values has been confirmed and the effects of variations on the recycling coefficient and the rate rise of current studied too. Finally comparisons with alternative models have been accomplished. (Author) 29 refs
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
International Nuclear Information System (INIS)
Petersen, K.E.
1986-03-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
International Nuclear Information System (INIS)
Hubbard, W. B.; Militzer, B.
2016-01-01
In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity
Energy Technology Data Exchange (ETDEWEB)
Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)
2016-03-20
In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.
Theoretical Provision of Tax Transformation
Directory of Open Access Journals (Sweden)
Feofanova Iryna V.
2016-05-01
Full Text Available The article is aimed at defining the questions, giving answers to which is necessary for scientific substantiation of the tax transformation in Ukraine. The article analyzes the structural-logical relationships of the theories, providing substantiation of tax systems and transformation of them. Various views on the level of both the tax burden and the distribution of the tax burden between big and small business have been systematized. The issues that require theoretical substantiation when choosing a model of tax system have been identified. It is determined that shares of both indirect and direct taxes and their rates can be substantiated by calculations on the basis of statistical data. The results of the presented research can be used to develop the algorithm for theoretical substantiation of tax transformation
Theoretical solid state physics
International Nuclear Information System (INIS)
Anon.
1977-01-01
Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...
International Nuclear Information System (INIS)
This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr
Qualitative methods in theoretical physics
Maslov, Dmitrii
2018-01-01
This book comprises a set of tools which allow researchers and students to arrive at a qualitatively correct answer without undertaking lengthy calculations. In general, Qualitative Methods in Theoretical Physics is about combining approximate mathematical methods with fundamental principles of physics: conservation laws and symmetries. Readers will learn how to simplify problems, how to estimate results, and how to apply symmetry arguments and conduct dimensional analysis. A comprehensive problem set is included. The book will appeal to a wide range of students and researchers.
Theoretical studies of combustion dynamics
Energy Technology Data Exchange (ETDEWEB)
Bowman, J.M. [Emory Univ., Atlanta, GA (United States)
1993-12-01
The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.
Directory of Open Access Journals (Sweden)
Sabria Aued-Pimentel
2008-01-01
Full Text Available The difference between the actual ECN 42 triacylglyceride content in vegetable oils, obtained by HPLC analysis, and the theoretical value calculated from the fatty acid composition was applied to detect the addition of seed oils with high contents of linoleic acid to olive oils commercialized in Brazil. The results indicate that samples analyzed were probably adulterated with low commercial value seed oils, rich in linoleic acid, like soybean, sunflower or corn.
Theoretical studies of the C4 molecule
International Nuclear Information System (INIS)
Ritchie, J.P.; King, H.F.; Young, W.S.
1985-01-01
Optimized geometries and relative energies for three states of the C 4 molecule have been obtained from single-reference configuration interaction (SRCI) calculations. At the SRCI level, a rhombic form is calculated to lie 1.1 kcal below the triplet form; consideration of the Davidson correction reduces this difference to 0.4 kcal, while more complete basis sets are expected to increase the difference only by about 0.2 kcal. Consideration of these effects and difference in zero-point energy leads to a final estimated splitting of 1.2 kcal, favoring the rhombus. To aid the determination of the ground state, preliminary estimates of the lowest optical transitions were obtained from SRCI calculations and vibrational frequencies were obtained from SCF calculations. Comparison of the calculated results with experimentally obtained spectra suggest the possibility that both the linear triplet and the rhombus may have already been observed. 19 refs., 4 figs., 4 tabs
Shielding calculations for NET
International Nuclear Information System (INIS)
Verschuur, K.A.; Hogenbirk, A.
1991-05-01
In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab
Preliminary Monthly Climatological Summaries
National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary Local Climatological Data, recorded since 1970 on Weather Burean Form 1030 and then National Weather Service Form F-6. The preliminary climate data pages...
Blatt, John M
1979-01-01
A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to
Research in theoretical nuclear physics
International Nuclear Information System (INIS)
Udagawa, T.
1993-11-01
This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework
DEFF Research Database (Denmark)
2002-01-01
The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...
Summary on Theoretical Aspects
Soffer, Jacques
2010-01-01
During the five days of this conference a very dense scientific program has enlighted our research fields, with the presentation of large number of interesting lectures. I will try to summarize the theoretical aspects of some of these new results.
International Nuclear Information System (INIS)
Anon.
The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr
International Nuclear Information System (INIS)
Anon.
1980-01-01
Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr
African Journals Online (AJOL)
NICO
L-rhamnose and L-fucose: A Theoretical Approach ... L-ramnose and L-fucose, by means of the Monte Carlo conformational search method. The energy of the conformers ..... which indicates an increased probability for the occurrence of.
A field theoretic model for static friction
Mahyaeh, I.; Rouhani, S.
2013-01-01
We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...
Theoretical aspects of the optical model
International Nuclear Information System (INIS)
Mahaux, C.
1980-01-01
We first recall the definition of the optical-model potential for nucleons and the physical interpretation of the main related quantities. We then survey the recent theoretical progress towards a reliable calculation of this potential. The present limitations of the theory and some prospects for future developments are outlined. (author)
Theoretical simulation of soft x-rays for recombining pump
International Nuclear Information System (INIS)
Peng Huimin; Zhang Guoping; Sheng Jiatian
1990-05-01
The theoretical study and computational simulation of soft X-ray laser produced by the recombination of highly ionized plasma are given. An one-dimensional non LTE radiative hydrodynamic code JB-19 is used for simulating the process of soft X-ray laser produced by the recombination. The incident laser light is focused linearly onto the thin carbon fibre. In the duration of incident laser pulse a highly ionized plasma is generated. After the incident laser has been ended the plasma adiabatically expands and rapidly cools down. During the time of three-body recombination and cascading transition, the population inversion between n = 3 and n = 2 is produced and transition gain is obtained. The analysis and evolution is presented, and factors effected on the gain are also discussed. The calculated results have been compared with the experimental data of RAL. It is found that some were in good agreement with them but some are not. Under the limitation of laser energy, the gain is inversely proportional to the wave-length and pulse width of incident laser. For obtaining high gain it is necessary to have double frequency and to shorten the pulse width of Nd-glass laser. Finally the preliminary results about H-like F ion are also given
Experimental and theoretical study of the onset of the growth of an irregular metal electrodeposit
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Graciela [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Rosso, Michel; Chazalviel, Jean-Noel [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Chassaing, Elisabeth [IRDEP, EDF R and D, 6 Quai Watier, 78401 Chatou (France)
2007-11-20
Electrodeposition of a metal can produce aggregates with very irregular morphologies, in particular dendrites. In order to better understand these phenomena, we studied the preliminary stage of copper growth from copper sulfate by in situ optical experiments and impedance spectroscopy. Experiments were performed in a thin layer cell put in a vertical position, with cathode on top. Using a vertical cell instead of a horizontal one tends to stabilize the electrochemical system. The concentration measured by optical absorption is in agreement with theoretical prediction at the onset of polarization. Close to the limiting current density, oscillations were observed in the cell voltage. Impedance spectra could be fitted either using a simple equivalent circuit at low current density, or more complex calculations at high current density. (author)
International Nuclear Information System (INIS)
Gardner, D.G.
1975-01-01
A large amount of cross section and spectral information for neutron-induced reactions will be required for the CTR design program. To undertake to provide the required data through a purely experimental measurement program alone may not be the most efficient way of attacking the problem. It is suggested that a preliminary theoretical calculation be made of all relevant reactions on the dozen or so elements that now seem to comprise the inventory of possible construction materials to find out which are actually important, and over what energy ranges they are important. A number of computer codes for calculating cross sections for neutron induced reactions have been evaluated and extended. These will be described and examples will be given of various types of calculations of interest to the CTR program. (U.S.)
Towards A Theoretical Biology: Reminiscences
Indian Academy of Sciences (India)
engaged in since the start of my career at the University of Chicago. Theoretical biology was ... research on theoretical problems in biology. Waddington, an ... aimed at stimulating the development of such a theoretical biology. The role the ...
Staggering towards a calculation of weak amplitudes
Energy Technology Data Exchange (ETDEWEB)
Sharpe, S.R.
1988-09-01
An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.
Preliminary considerations concerning actinide solubilities
International Nuclear Information System (INIS)
Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.
1980-01-01
Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented
Energy Technology Data Exchange (ETDEWEB)
Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)
2016-09-30
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of
International Nuclear Information System (INIS)
Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel; Rebbi, Claudio; Glashow, Sheldon; Brower, Richard; Pi, So-Young
2016-01-01
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of
Directory of Open Access Journals (Sweden)
Dagiuklas Tasos
2011-01-01
Full Text Available This paper presents a Wireless Information-Theoretic Security (WITS scheme, which has been recently introduced as a robust physical layer-based security solution, especially for infrastructureless networks. An autonomic network of moving users was implemented via 802.11n nodes of an ad hoc network for an outdoor topology with obstacles. Obstructed-Line-of-Sight (OLOS and Non-Line-of-Sight (NLOS propagation scenarios were examined. Low-speed user movement was considered, so that Doppler spread could be discarded. A transmitter and a legitimate receiver exchanged information in the presence of a moving eavesdropper. Average Signal-to-Noise Ratio (SNR values were acquired for both the main and the wiretap channel, and the Probability of Nonzero Secrecy Capacity was calculated based on theoretical formula. Experimental results validate theoretical findings stressing the importance of user location and mobility schemes on the robustness of Wireless Information-Theoretic Security and call for further theoretical analysis.
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
Sibutramine characterization and solubility, a theoretical study
Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René
2013-04-01
Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.
Research in theoretical physics
International Nuclear Information System (INIS)
Robson, D.; Williams, A.G.
1991-01-01
This report discusses: hamiltonian lattice gauge theory; relativistic potential model; chiral potential models; covariant dynamical chiral symmetry breaking models of hadronic structure; light-cone calculations and models; and strangeness in the nucleon. LSP
Compendium of theoretical physics
Wachter, Armin
2006-01-01
Mechanics, Electrodynamics, Quantum Mechanics, and Statistical Mechanics and Thermodynamics comprise the canonical undergraduate curriculum of theoretical physics. In Compendium of Theoretical Physics, Armin Wachter and Henning Hoeber offer a concise, rigorous and structured overview that will be invaluable for students preparing for their qualifying examinations, readers needing a supplement to standard textbooks, and research or industrial physicists seeking a bridge between extensive textbooks and formula books. The authors take an axiomatic-deductive approach to each topic, starting the discussion of each theory with its fundamental equations. By subsequently deriving the various physical relationships and laws in logical rather than chronological order, and by using a consistent presentation and notation throughout, they emphasize the connections between the individual theories. The reader’s understanding is then reinforced with exercises, solutions and topic summaries. Unique Features: Every topic is ...
Concluding theoretical remarks
International Nuclear Information System (INIS)
Ellis, J.
1986-01-01
My task in this talk is to review the happenings of this workshop from a theoretical perspective, and to emphasize lines for possible future research. My remarks are organized into a theoretical overview of the what, why, (mainly the hierarchy problem) how, (supersymmetry must be broken: softly or spontaneously, and if the latter, by means of a new U tilde(1) gauge group or through the chiral superfields) when (how heavy are supersymmetric partner particles in different types of theories) and where (can one find evidence for) supersymmetry. In the last part are discussed various ongoing and future searches for photinos γ tilde, gravitinos G tilde, the U vector boson, shiggses H tilde, squarks q tilde and sleptons l tilde, gluinos g tilde, winos W tilde and other gauginos, as well as hunts for indirect effects of supersymmetry, such as for example in baryon decay. Finally there is a little message of encouragement to our experimental colleagues, based on historical precedent. (orig.)
Friedrich, Harald
2017-01-01
This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...
Theoretical topics in particle physics
International Nuclear Information System (INIS)
Roberts, L.A.
1986-01-01
This dissertation contains three parts, each with a distinct topic. The three topics are (1) Higgs-boson decays at the superconducting supercollider, (2) radiative corrections to the decay π 0 → γe + e - and (3) generalized random paths in three and four dimensions. In part I, distributions in cos(theta)/sub lab/, rapidity, energy, and p/sub T/ for the intermediate vector bosons resulting from p + p → (H 0 → W + W - , Z 0 Z 0 ) + X and p + p → (W + W - , W + Z 0 + W - Z 0 ,Z 0 Z 0 ) + X at √s = 40 TeV are compared for Higgs-boson masses of 5m/sub w/ and 7m/sub w/. The Higgs-boson-decay signal should be visible in the energy and p/sub T/ distributions of the vector bosons. In Part II, the radiative corrections to both the decay rate for π 0 → γe + e - and the differential spectrum in the invariant mass of the Dalitz pain for experiments with limited geometrical acceptance are calculated. In Part III, the author introduces a generalized model for random paths (in arbitrary dimension) which smoothly interpolates between the standard paths (fermionic or bosonic) and the self-avoiding paths. An efficient Monte Carlo algorithm to simulate the model is presented along with some preliminary results for the average length, intersection, overlap and mean square size of paths in three and four dimensions
Electron affinities: theoretical
International Nuclear Information System (INIS)
Kaufman, J.J.
1976-01-01
A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.; Zhu, Jiajie; Schwingenschlö gl, Udo
2016-01-01
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.
2016-04-14
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
MARKETING MIX THEORETICAL ASPECTS
Margarita Išoraitė
2016-01-01
Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...
Robustness - theoretical framework
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.
2010-01-01
More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....
3. Theoretical Physics Division
International Nuclear Information System (INIS)
For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr
Theoretical developments in SUSY
International Nuclear Information System (INIS)
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical developments in SUSY
Energy Technology Data Exchange (ETDEWEB)
Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2009-01-15
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical Developments in SUSY
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
Theoretical models of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1992-01-01
A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts
Numerical calculation of the Fresnel transform.
Kelly, Damien P
2014-04-01
In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.
International Nuclear Information System (INIS)
Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.
2014-01-01
We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained
3-D calculations for comparison with the experiments
Energy Technology Data Exchange (ETDEWEB)
Alrsen, A M; Bosser, R
1973-09-27
In order to analyse the axial power profile measurements an attempt has been made to do full 3-D calculations for the Dragon reactor. The calculations are still at a very early stage, but the methods used will be outlined here together with the plans for investigations to be carried out in the near future. Some preliminary-results are reported as no final results have yet been obtained. 3-D calculations are rather expensive because of the computer time consumption. It is therefore essential, before too many big computer jobs are spent, to find approximations which can save calculation time. On the other hand some savings, for instance in the number of mesh points, may cause totally wrong results. The ''proper'' calculations have therefore to be proceeded by a number of preliminary investigations, to ensure optimum accuracy and computer expenses. This report contains some of these preliminary studies.
Calculation of magnetic hyperfine constants
International Nuclear Information System (INIS)
Bufaical, R.F.; Maffeo, B.; Brandi, H.S.
1975-01-01
The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used
Theoretical astrophysics an introduction
Bartelmann, Matthias
2013-01-01
A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it
International Nuclear Information System (INIS)
Barrett, R.C.
1979-01-01
Nowadays the 'experimental' charge densities are produced with convincing error estimates due to new methods and techniques. In addition the accuracy of those experiments means that r.m.s. radii are known within a few hundredths of a fermi. Because of that accuracy the theorists are left far behind. In order to show which theoretical possiblities exist at the moment we will discuss the single particle shell model and the Hartree-Fock or mean field approximation. Corrections to the mean field approximation are described. Finally, some examples and conclusions are presented. (KBE)
Information theoretic preattentive saliency
DEFF Research Database (Denmark)
Loog, Marco
2011-01-01
Employing an information theoretic operational definition of bottom-up attention from the field of computational visual perception a very general expression for saliency is provided. As opposed to many of the current approaches to determining a saliency map there is no need for an explicit data...... of which features, image information is described. We illustrate our result by determining a few specific saliency maps based on particular choices of features. One of them makes the link with the mapping underlying well-known Harris interest points, which is a result recently obtained in isolation...
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1991-01-01
This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Theoretical Optics An Introduction
Römer, Hartmann
2004-01-01
Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche
Configuration space Faddeev calculations
International Nuclear Information System (INIS)
Payne, G.L.; Klink, W.H.; Ployzou, W.N.
1991-01-01
The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research
Theoretical and Experimental Physics
Energy Technology Data Exchange (ETDEWEB)
Nelson, Ann E. [Univ. of Washington, Seattle, WA (United States); Ellis, Stephen D. [Univ. of Washington, Seattle, WA (United States); Karch, Andreas [Univ. of Washington, Seattle, WA (United States); Rosenberg, Leslie [Univ. of Washington, Seattle, WA (United States); Sharpe, Stephene R. [Univ. of Washington, Seattle, WA (United States); Wilkes, R. Jeffrey [Univ. of Washington, Seattle, WA (United States); Yaffe, Laurence G. [Univ. of Washington, Seattle, WA (United States)
2015-04-07
We report on progress towards finding axion dark matter, neutrino oscillation parameters, Use of the gravity/gauge correspondence to to calculations in strongly coupled systems, use of jet substructure to search for new physics, use of lattice QCD to compute weak matrix elements, constraints on dark matter interactions from neutron stars, exotic Higgs searches, and new dark matter models.
Dark matter: Theoretical perspectives
International Nuclear Information System (INIS)
Turner, M.S.
1993-01-01
The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs
Dark matter: Theoretical perspectives
International Nuclear Information System (INIS)
Turner, M.S.
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos
Theoretical physics. Quantum mechanics
International Nuclear Information System (INIS)
Rebhan, Eckhard
2008-01-01
From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much
Dark matter: Theoretical perspectives
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Dark matter: Theoretical perspectives
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Tesla coil theoretical model and experimental verification
Voitkans, Janis; Voitkans, Arnis
2014-01-01
Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...
International Nuclear Information System (INIS)
Gottlieb, S.A.
1990-05-01
My research in lattice gauge theory during the past year is described. Several projects were completed dealing with QCD simulations including dynamical fermions. Under the DOE Grand Challenge program, a large scale calculation of the QCD spectrum with two light flavors of dynamical staggered quarks was carried out. This calculation is one of the most significant efforts to data to take into account the effects of dynamical fermions. Smaller lattice spacing and lighter quark masses were used than in previous attempts. QCD thermodynamics was studied on the ST-100 array processor and on an ETA supercomputer at the John von Neumann Supercomputer Center. On the ST-100, a study with two flavors of dynamical staggered quarks with am q = 0.025 and 0.0125 was carried out on a 12 3 x 8 lattice. These results give a rough estimate of the crossover couplings where we see the restoration of chiral symmetry. A study of QCD with dynamical Wilson fermions was carried out with N t = 4 to try to bring the study of QCD with dynamical Wilson fermions to the level that has been attained with staggered fermions over the past two years. We have calculated screening lengths to elucidate the properties of the high temperature phase. In the pure gluon theory, claims that the finite temperature deconfinement transition is second order, rather than first order, were investigated using a finite size scaling analysis. Our results support a first order transition. Finally, work was done to port computer code to new environments involving parallelism in order to pursue more ambitious calculations on more powerful hardware than the ST-100 and ETA10 used for the calculations reported here
Chapter 2. Theoretical aspects of aluminium production
International Nuclear Information System (INIS)
Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.
2011-01-01
This article is devoted to theoretical aspects of aluminium production. Thus, the electrochemistry of electrolysis process, calculation of base industrial indicators of aluminium electrolytic cell, and processes occurring on anode and cathode were considered. Factors, which increase the current output and electrolytic cell productivity were studied. The side effects, including anode effect, sodium extraction on cathode, aluminium dissolution in the electrolyte, aluminium carbide formation, and influence of admixtures in the electrolyte were studied as well.
A queer-theoretical approach to community health psychology.
Easpaig, Bróna R Nic Giolla; Fryer, David M; Linn, Seònaid E; Humphrey, Rhianna H
2014-01-01
Queer-theoretical resources offer ways of productively rethinking how central concepts such as 'person-context', 'identity' and 'difference' may be understood for community health psychologists. This would require going beyond consideration of the problems with which queer theory is popularly associated to cautiously engage with the aspects of this work relevant to the promotion of collective practice and engaging with processes of marginalisation. In this article, we will draw upon and illustrate the queer-theoretical concepts of 'performativity' and 'cultural intelligibility' before moving towards a preliminary mapping of what a queer-informed approach to community health psychology might involve.
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
Theoretical Molecular Biophysics
Scherer, Philipp
2010-01-01
"Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.
International Nuclear Information System (INIS)
Anon.
1985-01-01
The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division
Theoretical study of the aluminum melting curve to very high pressure
International Nuclear Information System (INIS)
Moriarty, J.A.; Young, D.A.; Ross, M.
1984-01-01
A detailed theoretical study of the Al melting curve from normal melting conditions to pressures in the vicinity of 2 Mbar is presented. The analysis is based on two parallel, but distinct, treatments of the metal: the first from rigorous generalized pseudopotential theory involving first-principles nonlocal pseudopotentials and the second from a parametrized local pseudopotential model which has been accurately fit to first-principles band-theory and experimental equation-of-state data. Both treatments utilize full lattice-dynamical calculations of the phonon free energy in the solid, within the harmonic approximation, and fluid variational theory to obtain the free energy of the liquid. Particular attention is focused on the choice of the reference system in implementing the fluid variational theory. It is shown that in Al the soft-sphere model of Ross produces a lower (and hence more accurate) liquid free energy than either the hard-sphere or one-component-plasma reference systems, and is, moreover, necessary to obtain a reasonable quantitative description of the melting properties. With the soft-sphere system, the two theoretical treatments give results in good overall agreement with each other and with experiment. In particular, melting on the shock Hugoniot is predicted to begin at about 1.2 Mbar and to end at about 1.55 Mbar, in excellent agreement with the recent preliminary measurements of McQueen
Cyclotron tubes - a theoretical study
Energy Technology Data Exchange (ETDEWEB)
Mourier, G
1980-12-01
The introduction presents a general discussion of electron cyclotron masers (ECM): resonance, relativistic effects, elementary quantum aspects, the classical relativistic bunching and the optimum value of the electric field. The practical structure - in particular that of the gyrotron - is specified only insofar as it is useful for understanding the following chapters. The main parameters are discussed. Section 2 develops a nonlinear adiabatic or orbital theory of electron motion which alleviates calculations considerably while keeping numerical errors low enough for many practical cases. Its results are compared to a rigorous integration in one case. Other cases show the importance of the electric field profile inside the resonant cavity. Section 3 is devoted to space charge phenomena, and, for the most part, to a linear theory with space charge. In its limited range of validity (low-energy electrons), the theory indicates a strong impact of space charge for low a.c. fields and exhibits a pure beam instability. Section 4 is devoted to circuit equations with emphasis on the special features of cavities consisting of a long waveguide near cutoff. The conclusion indicates some trends of gyrotron development and corresponding theoretical problems.
Cadangan Full Preliminary Term Asuransi Dwiguna Dengan Hukum De Moivre
Faradilla, Sherly Mutya; ', Hasriati; Nababan, Tumpal Parulian
2015-01-01
This paper discusses premium reserve endowment life insurance for years. The reserve is calculated by the method of full preliminary term based on net annual premium, with the first net annual premium and the second net annual premium . Net annual premium is affected by amount of single premium and annuity due. De Moivre law is applied to calculate the reserve.
Preliminary thermal and stress analysis of the SINQ window
International Nuclear Information System (INIS)
Heidenreich, G.
1991-01-01
Preliminary results of a finite element analysis for the SINQ proton beam window are presented. Temperatures and stresses are calculated in an axisymmetric model. As a result of these calculations, the H 2 O-cooled window (safety window) could be redesigned in such a way that plastic deformation resulting from excessive stress in some areas is avoided. (author)
Preliminary proceedings of the 2001 ACM SIGPLAN Haskell workshop
Hinze, R.
2001-01-01
This volume contains the preliminary proceedings of the 2001 ACM SIGPLAN Haskell Workshop, which was held on 2nd September 2001 in Firenze, Italy. The final proceedings will published by Elsevier Science as an issue of Electronic Notes in Theoretical Computer Science (Volume 59). The
Ab-initio theoretical predictions of structural properties of semiconductors
International Nuclear Information System (INIS)
Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.
1983-01-01
Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt
Theoretical study of n-alkane adsorption on metal surfaces
DEFF Research Database (Denmark)
Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko
2004-01-01
The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...
Absorption coefficients of silicon: A theoretical treatment
Tsai, Chin-Yi
2018-05-01
A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.
International Nuclear Information System (INIS)
Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan
2006-01-01
This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Theoretical Approaches to Coping
Directory of Open Access Journals (Sweden)
Sofia Zyga
2013-01-01
Full Text Available Introduction: Dealing with stress requires conscious effort, it cannot be perceived as equal to individual's spontaneous reactions. The intentional management of stress must not be confused withdefense mechanisms. Coping differs from adjustment in that the latter is more general, has a broader meaning and includes diverse ways of facing a difficulty.Aim: An exploration of the definition of the term "coping", the function of the coping process as well as its differentiation from other similar meanings through a literature review.Methodology: Three theoretical approaches of coping are introduced; the psychoanalytic approach; approaching by characteristics; and the Lazarus and Folkman interactive model.Results: The strategic methods of the coping approaches are described and the article ends with a review of the approaches including the functioning of the stress-coping process , the classificationtypes of coping strategies in stress-inducing situations and with a criticism of coping approaches.Conclusions: The comparison of coping in different situations is difficult, if not impossible. The coping process is a slow process, so an individual may select one method of coping under one set ofcircumstances and a different strategy at some other time. Such selection of strategies takes place as the situation changes.
Theoretical disagreement about law
Directory of Open Access Journals (Sweden)
Zdravković Miloš
2014-01-01
Full Text Available As the dominant direction of the study of legal phenomena, legal positivism has suffered criticisms above all from representatives of natural law. Nevertheless, the most complex criticism of legal positivism came from Ronald Dworkin. With the methodological criticism he formed in 'Law's Empire', Dworkin attacked the sole foundations of legal positivism and his main methodological assumptions. Quoting the first postulate of positivism, which understands the law as a fact, Dworkin claims that, if this comprehension is correct, there could be no dispute among jurists concerning the law, except if some of them make an empirical mistake while establishing facts. Since this is not the case, Dworkin proves that this is actually a theoretical disagreement which does not represent a disagreement about the law itself, but about its morality. On these grounds, he rejects the idea of law as a fact and claims that the law is an interpretive notion, which means that disagreements within jurisprudence are most frequently interpretative disagreements over criteria of legality, and not empirical disagreements over historic and social facts.
From Game to Gamification: Preliminary Research of Gamification Marketing Theory
Directory of Open Access Journals (Sweden)
Dai-Yun Wu
2015-07-01
Full Text Available This article aims to provide a new understanding of the theoretical foundations of gamification and the related phenomena in the field of marketing communication. We started from redefining the concept of marketing gamification, and tried to point out the mechanisms of the phenomena by proposing theoretical basis from brand and consumer perspective separately. Finally, we tried to clarify some similar concepts, and put forward a marketing gamification model and a gamification concept map as the preliminary theoretical framework for further research in the future.
International Nuclear Information System (INIS)
Rost, E.; Shephard, J.R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the triangle-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to bar pp → bar Λ Λ reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1993-01-01
Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes
Energy Technology Data Exchange (ETDEWEB)
Rost, E.; Shephard, J.R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.
Theoretical Division progress report
International Nuclear Information System (INIS)
Cooper, N.G.
1979-04-01
This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables
International Nuclear Information System (INIS)
Carossi, Jean-Claude
1969-02-01
A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented
Comparison of calculational methods for EBT reactor nucleonics
International Nuclear Information System (INIS)
Henninger, R.J.; Seed, T.J.; Soran, P.D.; Dudziak, D.J.
1980-01-01
Nucleonic calculations for a preliminary conceptual design of the first wall/blanket/shield/coil assembly for an EBT reactor are described. Two-dimensional Monte Carlo, and one- and two-dimensional discrete-ordinates calculations are compared. Good agreement for the calculated values of tritium breeding and nuclear heating is seen. We find that the three methods are all useful and complementary as a design of this type evolves
Accounting calculations problems with suppliers and contractors
Directory of Open Access Journals (Sweden)
Tikholaz I.A.
2016-12-01
Full Text Available in the article an order of accounting reflection of payments with suppliers and contractors are researched and ways of enhancement of accounting calculations process development with the purpose of management decisions optimization for their implementation are offered. Theoretical bases of intraeconomic control of settlings with suppliers and contractors are developed.
Cubic scaling GW: Towards fast quasiparticle calculations
Czech Academy of Sciences Publication Activity Database
Liu, P.; Kaltak, M.; Klimeš, Jiří; Kresse, G.
2016-01-01
Roč. 94, č. 16 (2016), s. 165109 ISSN 2469-9950 Institutional support: RVO:61388955 Keywords : MEAN-FIELD THEORY * ELECTRONIC-STRUCTURE CALCULATIONS * AUGMENTED- WAVE METHOD Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.836, year: 2016
Total energy calculations and bonding at interfaces
International Nuclear Information System (INIS)
Louie, S.G.
1984-08-01
Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs
Surface physics theoretical models and experimental methods
Mamonova, Marina V; Prudnikova, I A
2016-01-01
The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...
Theoretical aspects of fracture mechanics
Atkinson, C.; Craster, R. V.
1995-03-01
In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber
FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION
International Nuclear Information System (INIS)
SZALEWSKI, B.
2005-01-01
The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering
Adjoint electron Monte Carlo calculations
International Nuclear Information System (INIS)
Jordan, T.M.
1986-01-01
Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment
Calculating lattice thermal conductivity: a synopsis
Fugallo, Giorgia; Colombo, Luciano
2018-04-01
We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.
Calculating zeros: Non-equilibrium free energy calculations
International Nuclear Information System (INIS)
Oostenbrink, Chris; Gunsteren, Wilfred F. van
2006-01-01
Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations
The power of theoretical knowledge.
Alligood, Martha Raile
2011-10-01
Nursing theoretical knowledge has demonstrated powerful contributions to education, research, administration and professional practice for guiding nursing thought and action. That knowledge has shifted the primary focus of the nurse from nursing functions to the person. Theoretical views of the person raise new questions, create new approaches and instruments for nursing research, and expand nursing scholarship throughout the world.
Theoretical Study of the Compound Parabolic Trough Solar Collector
Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen
2012-01-01
Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Theoretical study of nuclear physics with strangeness at Nankai University
International Nuclear Information System (INIS)
Ning Pingzhi
2007-01-01
Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)
Theoretical considerations on multiparton interactions in QCD
International Nuclear Information System (INIS)
Diehl, Markus; Schaefer, Andreas
2011-02-01
We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)
Modeling of alkynes: synthesis and theoretical properties
Directory of Open Access Journals (Sweden)
Renato Rosseto
2003-06-01
Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.
Theoretical considerations on multiparton interactions in QCD
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schaefer, Andreas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik
2011-02-15
We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)
Theoretical considerations on multiparton interactions in QCD
International Nuclear Information System (INIS)
Diehl, Markus; Schaefer, Andreas
2011-01-01
We investigate several ingredients for a theory of multiple hard scattering in hadron-hadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework.
Feasibility study on embedded transport core calculations
International Nuclear Information System (INIS)
Ivanov, B.; Zikatanov, L.; Ivanov, K.
2007-01-01
The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)
Heterogeneous Calculation of {epsilon}
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Alf
1961-02-15
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.
Heterogeneous Calculation of ε
International Nuclear Information System (INIS)
Jonsson, Alf
1961-02-01
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer
Comparison of Calculation Models for Bucket Foundation in Sand
DEFF Research Database (Denmark)
Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo
The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focused...... on resultant bearing capacity of variously embedded foundation in sand. The 2D models, [Ibsen 2001] and LimitState:GEO can be used for the preliminary design because they are fast and result in a rather similar bearing capacity calculation compared with the finite element models of Plaxis 3D. The 2D models...
Energy Technology Data Exchange (ETDEWEB)
Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)
2013-12-31
with the electric field only being about three times higher than in the ideal case. Moreover, the quasi-optical grill was significantly fewer structural elements that the multijunction grill. Nevertheless there has not been much interest from experimental fusion groups to implementing these structures. Hence we have returned to optimizing the multijunction grill so that the large number of coupling matrix elements can be efficiently evaluated using symmetry arguments. In overdense plasmas, the standard electromagnetic waves cannot propagate into the plasma center, but are reflected at the plasma edge. By optimizing mode conversion processes (in particular, the O-X-B wave propagation of Ordinary Mode converting to an Extraordinary mode which then converts into an electrostatic Bernstein wave) one can excite within the plasma an electrostatic Bernstein wave that does not suffer density cutoffs and is absorbed on the electron cyclotron harmonics. Finally we have started looking at other mesoscopic lattice algorithms that involve unitary collision and streaming steps. Because these algorithms are unitary they can be run on quantum computers when they become available – unlike their computational cousin of lattice Boltzmann which is a purely classical code. These quantum lattice gas algorithms have been tested successfully on exact analytic soliton collision solution. These calculations are hoped to be able to study Bose Einstein condensed atomic gases and their ground states in an optical lattice.
The friction of polymers around Tg,Tm : Preliminary results
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, V N; Persson, B N J
We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary and they......We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary...
Preliminary hazards analysis -- vitrification process
International Nuclear Information System (INIS)
Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.
1994-06-01
This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment
Preliminary hazards analysis -- vitrification process
Energy Technology Data Exchange (ETDEWEB)
Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)
1994-06-01
This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.
Calculation of groundwater travel time
International Nuclear Information System (INIS)
Arnett, R.C.; Sagar, B.; Baca, R.G.
1984-12-01
Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs
A theoretical interpretation of EPR and ENDOR
International Nuclear Information System (INIS)
Matos, M.O.M. de.
1975-08-01
To interpret the EPR and ENDOR results of the U 2 center in SrF 2 , two wavefunctions are proposed to describe the unpaired electron of the defect. Use is made of two different models in order to obtain the wavefunctions: the Heitler-London and that of molecular orbitals models. The Pauli repulsion (overlap of wavefunctions) is discussed as well as covalency mechanisms and their influence in the calculation of the hyperfine constants due to magnetic interaction of the unpaired electron and the magnetic nucleus of the cristal. A small amount of covalency between the ground state of the interstitial Hydrogen atom and the 2p shell of the F - ions of the first cristaline shell is introduced fenomenologically in the molecular orbitals model. Both methods are discussed by comparing the theoretical calculations of the hyperfine constants with the measured experimental values obtained with the EPR and ENDOR techniques. (Author) [pt
Non-perturbative background field calculations
International Nuclear Information System (INIS)
Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc
Theoretical chemistry advances and perspectives
Eyring, Henry
1980-01-01
Theoretical Chemistry: Advances and Perspectives, Volume 5 covers articles concerning all aspects of theoretical chemistry. The book discusses the mean spherical approximation for simple electrolyte solutions; the representation of lattice sums as Mellin-transformed products of theta functions; and the evaluation of two-dimensional lattice sums by number theoretic means. The text also describes an application of contour integration; a lattice model of quantum fluid; as well as the computational aspects of chemical equilibrium in complex systems. Chemists and physicists will find the book usef
UVISS preliminary visibility analysis
DEFF Research Database (Denmark)
Betto, Maurizio
1998-01-01
The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part of the w......The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...... of the work is also to setup the kernel of a software tool for the visibility analysis thatshould be easily expandable to consider more complex strucures for future activities.This analysis is part of the UVISS assessment study and it is meant to provide elementsfor the definition and the selection...
Practical versus theoretical domestic energy consumption for space heating
International Nuclear Information System (INIS)
Audenaert, A.; Briffaerts, K.; Engels, L.
2011-01-01
Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.
Practical versus theoretical domestic energy consumption for space heating
Energy Technology Data Exchange (ETDEWEB)
Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)
2011-09-15
Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.
Antares: preliminary demonstrator results
International Nuclear Information System (INIS)
Kouchner, A.
2000-05-01
The ANTARES collaboration is building an undersea neutrino telescope off Toulon (Mediterranean sea) with effective area ∼ 0.1 km 2 . An extensive study of the site properties has been achieved together with software analysis in order to optimize the performance of the detector. Results are summarized here. An instrumented line, linked to shore for first time via an electro-optical cable, has been immersed late 1999. The preliminary results of this demonstrator line are reported. (author)
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Nanoscale thermal transport: Theoretical method and application
Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2018-03-01
With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).
Theoretical and computational analyses of LNG evaporator
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Methodologies of Uncertainty Propagation Calculation
International Nuclear Information System (INIS)
Chojnacki, Eric
2002-01-01
After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory
Theoretical tools for B physics
International Nuclear Information System (INIS)
Mannel, T.
2006-01-01
In this talk I try to give an overview over the theoretical tools used to compute observables in B physics. The main focus is the developments in the 1/m Expansion in semileptonic and nonleptonic decays. (author)
Theoretical approaches to elections defining
Natalya V. Lebedeva
2011-01-01
Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.
Theoretical approaches to elections defining
Directory of Open Access Journals (Sweden)
Natalya V. Lebedeva
2011-01-01
Full Text Available Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.
Theoretical Linguistics And Multilingualism Research
African Journals Online (AJOL)
KATEVG
This paper tries to construct a bridge between the concerns of theoretical ... released the legendary song with the singular bridge over forty years ago): .... Another set of cases concerns the frozen forms pass and fail, which occur without any.
Theoretical Principles of Distance Education.
Keegan, Desmond, Ed.
This book contains the following papers examining the didactic, academic, analytic, philosophical, and technological underpinnings of distance education: "Introduction"; "Quality and Access in Distance Education: Theoretical Considerations" (D. Randy Garrison); "Theory of Transactional Distance" (Michael G. Moore);…
Franchise Business Model: Theoretical Insights
Levickaitė, Rasa; Reimeris, Ramojus
2010-01-01
The article is based on literature review, theoretical insights, and deals with the topic of franchise business model. The objective of the paper is to analyse peculiarities of franchise business model and its developing conditions in Lithuania. The aim of the paper is to make an overview on franchise business model and its environment in Lithuanian business context. The overview is based on international and local theoretical insights. In terms of practical meaning, this article should be re...
Nonlinear problems in theoretical physics
International Nuclear Information System (INIS)
Ranada, A.F.
1979-01-01
This volume contains the lecture notes and review talks delivered at the 9th GIFT international seminar on theoretical physics on the general subject 'Nonlinear Problems in Theoretical Physics'. Mist contributions deal with recent developments in the theory of the spectral transformation and solitons, but there are also articles from the field of transport theory and plasma physics and an unconventional view of classical and quantum electrodynamics. All contributions to this volume will appear under their corresponding subject categories. (HJ)
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Radar Signature Calculation Facility
Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...
Waste Package Lifting Calculation
International Nuclear Information System (INIS)
H. Marr
2000-01-01
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation
Media’s role in pro-environmental practice changes – a theoretical and methodological framework
DEFF Research Database (Denmark)
Petersen, Lars Kjerulf
The aim of this paper is to present the theoretical framework and some preliminary findings from a research project investigating the metabolism of meanings between public communication and socio-material practice. The project seeks to integrate media analyses with practice theory and actor-netwo...
Goerens, Christian; Fokwa, Boniface P. T.
2012-08-01
Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.
Directory of Open Access Journals (Sweden)
Carlos Mario Ruiz
2011-06-01
Full Text Available Las propiedades elásticas de la familia de los minerales isoestructurales Cu3VSe4, Cu3NbSe4 y Cu3TaSe4 han sido calculadas por primera vez usandoel estado del arte en cálculos atomísticos de primeros-principios, utilizandola Teoría de los Funcionales de la Densidad y la Aproximación del Gradiente Generalizado para el funcional de la energía de intercambio-correlación. Laspropiedades elásticas calculadas son el módulo volumétrico (B, las constantes elásticas (c11, c12 y c44, el factor de anisotropía de Zener (A, el módulo de cizalladura isotrópico (G, el módulo de Young (Y, y la razón de Poisson(ν. A través de estas cantidades también hemos calculado otras propiedades termodinámicas tales como la velocidad promedio del sonido transversal (st y longitudinal (sl y la temperatura de Debye (ΘD. Los valores calculados de B, c11, c12 y c44, G, Y , y ν nos llevan a la conclusión que estos compuestosson compresibles, frágiles y quebradizos.The elastic properties of the family of isostructural minerals Cu3VSe4, Cu3NbSe4 and Cu3TaSe4 have been calculated for the first time using the state of the art in first-principles atomistic calculations, using Density Functional Theory and the Generalized Gradient Approximation for the exchangecorrelation energy functional. The elastic properties calculated are bulk modulus (B, the elastic constants (c11, c12 and c44, the Zener anisotropy factor (A, the isotropic shear modulus (G, the Young modulus (Y , and the Poisson ratio (. By means of these quantities we also computed other thermodynamic properties such as the average transversal (st and longitudinal (sl sound velocities and the Debye temperature (D. The calculated values of B, c11, c12 and c44, G, Y and lead us to the conclusion that these compounds are compressible, fragile and brittle.
International Nuclear Information System (INIS)
Trkov, A.; Ravnik, M.; Zeleznik, N.
1992-01-01
Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl
Uneconomical top calculation method
International Nuclear Information System (INIS)
De Noord, M.; Vanm Sambeek, E.J.W.
2003-08-01
The methodology used to calculate the financial gap of renewable electricity sources and technologies is described. This methodology is used for calculating the production subsidy levels (MEP subsidies) for new renewable electricity projects in 2004 and 2005 in the Netherlands [nl
Nuclear structure calculations for astrophysical applications
International Nuclear Information System (INIS)
Moeller, P.; Kratz, K.L.
1992-01-01
Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account
Non-perturbative background field calculations
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2002-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department successfully collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network which allows for the mobility of researchers. Several members of our Department have also participated in the research projects funded by the State Committee for Scientific Research. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute and at other academic institutions in Cracow. At present, eight students are working towards their Ph.D. degrees under the supervision of senior members of the Department. (author)
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2000-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research, yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five students are working for their Ph.D. or MSc degrees under supervision of the senior members from the Department. We continue our participation at the EC SOCRATES-ERASMUS educational programme which allows exchange of graduate students between our Department and the Department of Physics of the University of Durham in the UK. (author)
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2001-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet more formal problems are also considered. A detailed summary of the research projects and of the results obtained in various field is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network, which stimulates the mobility of researchers. Several members of our Department also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). Besides pure research, members of our Department are also involved in graduate and up graduate teaching activity at our Institute as well as at other academic institution in Cracow. At present nine students are working on their Ph.D. degrees under the supervision of senior members of the Department. (author)
Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...
Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes
Czech Academy of Sciences Publication Activity Database
Navrátil, Václav; Klusák, Vojtěch; Rulíšek, Lubomír
2013-01-01
Roč. 19, č. 49 (2013), s. 16634-16645 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * hydrolysis * metalloenzymes * peptides * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013
Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine
International Nuclear Information System (INIS)
Tunnell, T.W.; Can, C.; Bhalla, C.P.
1978-01-01
Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references
Environmental Survey preliminary report
Energy Technology Data Exchange (ETDEWEB)
1988-04-01
This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Sandia National Laboratories conducted August 17 through September 4, 1987. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Sandia National Laboratories-Albuquerque (SNLA). The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SNLA, and interviews with site personnel. 85 refs., 49 figs., 48 tabs.
Ruiz Volcano: Preliminary report
Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.
Energy Technology Data Exchange (ETDEWEB)
Goerens, Christian [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany)
2012-08-15
Polycrystalline samples and single crystals of the new complex boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B{sub 4} fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) A, b=14.995(2) A and c=3.234(1) A. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B{sub 4} fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior. - graphical abstract: The structure of Ti{sub 1.68(2)}Rh{sub 2.38(6)}Ir{sub 1.94(4)} B{sub 3}, a new structure type containing planar trans zigzag B{sub 4} units, is another example which illustrates the tendency of metal-rich borides to form B-B bonds with increasing boron content. Beside the B{sub 4} fragment it exhibits one-dimensional chains of titanium atoms and hold one-dimensional strings of face-sharing empty tetrahedral and square pyramidal clusters (see figure). Highlights
Ammonia synthesis from first principles calculations
DEFF Research Database (Denmark)
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis
2005-01-01
. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
Distorted wave calculations for double electron transfer
International Nuclear Information System (INIS)
Martinez, A.E.; Rivarola, R.D.; Gayet, R.; Hanssen, J.
1992-01-01
The resonant double electron capture by alpha particles in helium targets is studied, at intermediate and high collision energies, using the Continuum Distorted Wave - Eikonal Initial State (CDW-EIS) model. Differential and total cross sections for capture into the He (1 s 2 ) final state are calculated in the framework of an Independent Electron Approximation (IEA). Theoretical results are compared with the experimental data available at present for capture into any final state of helium. (author)
TINTE. Nuclear calculation theory description report
Energy Technology Data Exchange (ETDEWEB)
Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)
2010-01-15
The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)
Dose calculation for electrons
International Nuclear Information System (INIS)
Hirayama, Hideo
1995-01-01
The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)
Theoretical behaviorism meets embodied cognition : Two theoretical analyses of behavior
Keijzer, F.A.
2005-01-01
This paper aims to do three things: First, to provide a review of John Staddon's book Adaptive dynamics: The theoretical analysis of behavior. Second, to compare Staddon's behaviorist view with current ideas on embodied cognition. Third, to use this comparison to explicate some outlines for a
Theoretical model of the SOS effect
Energy Technology Data Exchange (ETDEWEB)
Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics
1997-12-31
Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.
Theoretical descriptions of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1991-01-01
Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs
International Nuclear Information System (INIS)
Govoni, Marco; Argonne National Lab., Argonne, IL; Galli, Giulia; Argonne National Lab., Argonne, IL
2015-01-01
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Radioactive cloud dose calculations
International Nuclear Information System (INIS)
Healy, J.W.
1984-01-01
Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available
Theoretical mechanics for sixth forms
Plumpton, C
1971-01-01
Theoretical Mechanics for Sixth Forms, Second Edition is a 14-chapter book that begins by elucidating the nature of theoretical mechanics. The book then describes the statics of a particle in illustration of the techniques of handling vector quantities. Subsequent chapters focus on the principle of moments, parallel forces and centers of gravity; and the application of Newton's second law to the dynamics of a particle and the ideas of work and energy, impulse and momentum, and power. The concept of friction is also explained. This volume concludes with chapters concerning motion in a circle an
Mechanics lectures on theoretical physics
Sommerfeld, Arnold Johannes Wilhelm
1952-01-01
Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book
Theoretical Framework for Robustness Evaluation
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2011-01-01
This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...
Theoretical Consolidation of Acoustic Dissipation
Casiano, M. J.; Zoladz, T. F.
2012-01-01
In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.
OMEGA Upgrade preliminary design
International Nuclear Information System (INIS)
Craxton, R.S.
1989-10-01
The OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester is the only major facility in the United States capable of conducting fully diagnosed, direct-drive, spherical implosion experiments. As such, it serves as the national Laser Users Facility, benefiting scientists throughout the country. The University's participation in the National Inertial Confinement Fusion (ICF) program underwent review by a group of experts under the auspices of the National Academy of Sciences (the Happer Committee) in 1985. The Happer Committee recommended that the OMEGA laser be upgraded in energy to 30 kJ. To this end, Congress appropriated $4,000,000 for the preliminary design of the OMEGA Upgrade, spread across FY88 and FY89. This document describes the preliminary design of the OMEGA Upgrade. The proposed enhancements to the existing OMEGA facility will result in a 30-kHJ, 351-nm, 60-beam direct-drive system, with a versatile pulse-shaping facility and a 1%--2% uniformity of target drive. The Upgrade will allow scientists to explore the ignition-scaling regime, and to study target behavior that is hydrodynamically equivalent to that of targets appropriate for a laboratory microfusion facility (LMF). In addition, it will be possible to perform critical interaction experiments with large-scale-length uniformly irradiated plasmas
Theoretical study of a melting curve for tin
International Nuclear Information System (INIS)
Feng, Xi; Ling-Cang, Cai
2009-01-01
The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)
Improved theoretical model of InN optical properties
International Nuclear Information System (INIS)
Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.
2014-01-01
The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Handout on shielding calculation
International Nuclear Information System (INIS)
Heilbron Filho, P.F.L.
1991-01-01
In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
PHYSICOCHEMICAL PROPERTY CALCULATIONS
Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Intercavitary implants dosage calculation
International Nuclear Information System (INIS)
Rehder, B.P.
The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt
Casio Graphical Calculator Project.
Stott, Nick
2001-01-01
Shares experiences of a project aimed at developing and refining programs written on a Casio FX9750G graphing calculator. Describes in detail some programs used to develop mental strategies and problem solving skills. (MM)
Small portable speed calculator
Burch, J. L.; Billions, J. C.
1973-01-01
Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.
DEFF Research Database (Denmark)
Frederiksen, Morten
2014-01-01
Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
Hiatt, Arthur A.
1987-01-01
Ten activities that give learners in grades 5-8 a chance to explore mathematics with calculators are provided. The activity cards involve such topics as odd addends, magic squares, strange projects, and conjecturing rules. (MNS)
IRIS core criticality calculations
International Nuclear Information System (INIS)
Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.
2003-01-01
Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Source and replica calculations
International Nuclear Information System (INIS)
Whalen, P.P.
1994-01-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem
Shielding calculations using FLUKA
International Nuclear Information System (INIS)
Yamaguchi, Chiri; Tesch, K.; Dinter, H.
1988-06-01
The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)
Krumrine, Jennifer Rebecca
This dissertation is concerned in part with the construction of accurate pairwise potentials, based on reliable ab initio potential energy surfaces (PES's), which are fully anisotropic in the sense that multiple PES's are accessible to systems with orientational electronic properties. We have carried out several investigations of B (2s 22p 2Po) with spherical ligands: (1)an investigation of the electronic spectrum of the BAr2 complex and (2)two related studies of the equilibrium properties and spectral simulation of B embedded in solid pH 2. Our investigations suggest that it cannot be assumed that nuclear motion in an open-shell system occurs on a single PES. The 2s2p2 2 D modeled theoretically; the excited potential energy surfaces of the five-fold degenerate B(2s2p2 2D) state within the ternary complex are computed using a pairwise-additive model. A collaborative path integral molecular dynamics investigation of the equilibrium properties of boron trapped in solid para-hydrogen (pH2) and a path integral Monte Carlo spectral simulation. Using fully anisotropic pair potentials, coupling of the electronic and nuclear degrees of freedom is observed, and is found to be an essential feature in understanding the behavior and determining the energy of the impure solid, especially in highly anisotropic matrices. We employ the variational Monte Carlo method to further study the behavior of ground state B embedded in solid pH2. When a boron atom exists in a substitutional site in a lattice, the anisotropic distortion of the local lattice plays a minimal role in the energetics. However, when a nearest neighbor vacancy is present along with the boron impurity, two phenomena are found to influence the behavior of the impure quantum solid: (1)orientation of the 2p orbital to minimize the energy of the impurity and (2)distortion of the local lattice structure to promote an energetically favorable nuclear configuration. This research was supported by the Joint Program for Atomic
Energy Technology Data Exchange (ETDEWEB)
Valette-Silver, J.N. (Univ. de Perpignan, France); Thompson, J.M.; Ball, J.W.
1981-01-01
The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.