WorldWideScience

Sample records for preliminary plume impingement

  1. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  2. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    Science.gov (United States)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  3. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    Science.gov (United States)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  4. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    Science.gov (United States)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-01-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  5. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  6. Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2016-12-01

    Full Text Available This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat plate center are obtained. The final results include accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen (Kn number impingement flow problems, including the flow field and surface properties for a high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications, especially in aerospace and space engineering.

  7. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    Science.gov (United States)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  8. Astrium Approach For Plume Flow And Impingement Of 10 N Bipropellant Thruster

    Science.gov (United States)

    Theroude, Christophe; Scremin, G.; Wartelski, Matias

    2011-05-01

    Plume impingement on spacecraft surfaces due to chemical propulsion is a major concern during satellite operations. Indeed, thrusters plume induces disturbing forces and torques, contamination as well as thermal fluxes on sensitive surfaces. These effects, that have to be accurately predicted, influence the satellite design: thrusters orientation, MLI design, instruments protections, etc. In order to implement an efficient process of analysis, Astrium uses a two steps approach: first the thruster undisturbed flow field is computed, then the impingement on spacecraft surfaces is evaluated. In this paper, Plumflow, the Astrium Satellites software for undisturbed thrusters’ plume computation, is presented. This software is made of several modules in order to accurately compute the flow field in the different parts of the plume. A first module computes the chemistry in the chamber, then Navier-Stokes equations are solved inside the nozzle where the flow is continuous. After that a DSMC code is used for the transitional regime near the thruster lip and finally an hybrid TPMC/source-flow method computes the free molecular far flow field. The studied case is the Astrium GmbH 10 N bipropellant thruster. Some comparisons are presented between Plumflow and Professor G.A. Bird DSMC software DS2V and with DLR experimental data. These comparisons have shown very satisfactory results. Finally, aiming at computing plume impingement, the plume flow field generated with Plumflow has been interfaced with Professor G.A. Bird 3D DSMC software DS3V. The plume impingement simulation is performed by introducing the undisturbed flow field at a boundary of DS3V computational domain. It allows us to evaluate thermal flux distribution due to Astrium 10 N thruster on a plate adjacent to the thruster and to compare with the Astrium plume impingement software.

  9. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  10. A Preliminary Model of Infrared Image Generation for Exhaust Plume

    Directory of Open Access Journals (Sweden)

    Fei Mei

    2011-06-01

    Full Text Available Based on the irradiance calculation of all pixels on the focal plane array, a preliminary infrared imaging prediction model of exhaust plume that have considered the geometrical and the thermal resolution of the camera was developed to understanding the infrared characteristics of exhaust plume. In order to compute the irradiance incident on each pixel, the gas radiation transfer path in the plume for the instantaneous field of view corresponds to the pixel was solved by the simultaneous equation of a enclosure cylinder which covers the exhaust plume and the line of sight. Radiance of the transfer path was calculated by radiation transfer equation for nonscattering gas. The radiative properties of combustion needed in the equation was provided by employing Malkmus model with EM2C narrow band database(25cm-1. The pressure, species concentration along the path was determination by CFD analysis. The relative irradiance intensity of each pixel was converted to color in the display according to gray map coding and hot map coding. Infrared image of the exhaust plumes from a subsonic axisymmetric nozzle with different relative position of camera and the plume was predicted with the model. By changing the parameters, such as FOV and space resolution, the image of different imaging system can be predicted.

  11. Image Analysis Based Estimates of Regolith Erosion Due to Plume Impingement Effects

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.

    2014-01-01

    Characterizing dust plumes on the moon's surface during a rocket landing is imperative to the success of future operations on the moon or any other celestial body with a dusty or soil surface (including cold surfaces covered by frozen gas ice crystals, such as the moons of the outer planets). The most practical method of characterizing the dust clouds is to analyze video or still camera images of the dust illuminated by the sun or on-board light sources (such as lasers). The method described below was used to characterize the dust plumes from the Apollo 12 landing.

  12. Plume and surface feature structure and compositional effects on Europa's global exosphere: Preliminary Europa mission predictions

    Science.gov (United States)

    Teolis, B. D.; Wyrick, D. Y.; Bouquet, A.; Magee, B. A.; Waite, J. H.

    2017-03-01

    A Europa plume source, if present, may produce a global exosphere with complex spatial structure and temporal variability in its density and composition. To investigate this interaction we have integrated a water plume source containing multiple organic and nitrile species into a Europan Monte Carlo exosphere model, considering the effect of Europa's gravity in returning plume ejecta to the surface, and the subsequent spreading of adsorbed and exospheric material by thermal desorption and re-sputtering across the entire body. We consider sputtered, radiolytic and potential plume sources, together with surface adsorption, regolith diffusion, polar cold trapping, and re-sputtering of adsorbed materials, and examine the spatial distribution and temporal evolution of the exospheric density and composition. These models provide a predictive basis for telescopic observations (e.g. HST, JWST) and planned missions to the Jovian system by NASA and ESA. We apply spacecraft trajectories to our model to explore possible exospheric compositions which may be encountered along proposed flybys of Europa to inform the spatial and temporal relationship of spacecraft measurements to surface and plume source compositions. For the present preliminary study, we have considered four cases: Case A: an equatorial flyby through a sputtered only exosphere (no plumes), Case B: a flyby over a localized sputtered 'macula' terrain enriched in non-ice species, Case C: a south polar plume with an Enceladus-like composition, equatorial flyby, and Case D: a south polar plume, flyby directly through the plume.

  13. Peroneal spastic flatfoot in adolescents with accessory talar facet impingement: a preliminary report.

    Science.gov (United States)

    Niki, Hisateru; Aoki, Haruhito; Hirano, Takaaki; Akiyama, Yui; Fujiya, Hiroto

    2015-07-01

    This study analyzed imaging, arthroscopic findings, and treatment responses for peroneal spastic flatfoot (PSFF) caused by talocalcaneal impingement at the accessory anterolateral talar facet (AALTF) (accessory talar facet impingement) in 13 adolescents without histories of trauma and tarsal coalition. The AALTF was determined with computed tomography and MRI. Focal abutting bone marrow edema (FABME) on MRI around the AALTF was confirmed. In seven patients who underwent AALTF resection, subtalar arthroscopy was performed. All experienced alleviation PSFF after treatment; reduction in FABME was observed. AALTF resection alone is beneficial for PSFF caused by accessory talar facet impingement when peroneal spasms are restored by an injection of local anesthesia.

  14. Geomorphology of MODIS-Visible Dust Plumes in the Chihuahuan Desert - Preliminary Results

    Science.gov (United States)

    Gill, T. E.; Mbuh, M. J.; Dominguez, M. A.; Lee, J. A.; Baddock, M. C.; Lee, C. E.; Whitehead, S. C.; Rivera Rivera, N. I.; Peinado, P.

    2009-12-01

    We identified 28 days since 2001 when blowing dust impacted El Paso, Texas and dust plumes were visible on NASA MODIS Terra/Aqua satellite images in the surrounding Chihuahuan Desert. Initiation points of >270 individual plumes were located on the MODIS images. Land use/land cover for each point was determined by field work, aerial photography, and/or soil/geological maps, and points were assigned to the geomorphic classes proposed by Bullard et al. (this session). Although dust plume identification is subjective (weak plumes, plumes obscured by clouds, and plumes occurring when the satellites are not overhead will be missed), these data provide preliminary information on the relationship between geomorphology and the initiation of major dust storms in the Chihuahuan Desert. Ephemeral lakes and alluvial low-relief non-incised lands are roughly equal producers of satellite-visible dust plumes in the Chihuahuan Desert. Anthropogenic modification of alluvial floodplains for cropping (primarily in the Casas Grandes and Del Carmen river basins) impacts dust generation, since about 2/3 of alluvial low-relief sites show evidence of agriculture. These agricultural fields are generally fallow during the November- April windy season. Not including agricultural lands, playas represent ~2x the number of sources as low-relief alluvial deposits. Aeolian sand deposits (predominantly coppice dunes and sand sheets overlaying alluvial or lacustrine sediments) account for about 1/7 of the points. These sands may act as erosional agents, providing saltating particles for sandblasting and bombardment of other sediments exposed nearby. Edges of ephemeral lakes are proportionally important sources (~10% of the points), likely due to the convergence of saltating sand, fine lacustrine sediments, and low roughness lengths of playa surfaces. Alluvial fans and alluvial uplands are minor dust sources compared to their overall prevalence in the region. Gobi/gibber/stony deposits are known dust

  15. Femoroacetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Kassarjian, Ara [Department of Radiology, Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)]. E-mail: akassarjian@partners.org; Brisson, Melanie [Department of Radiology, Centre Hospitalier Universitaire de Quebec, Que. (Canada); Palmer, William E. [Department of Radiology, Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2007-07-15

    Femoroacetabular impingement is a relatively recently appreciated 'idiopathic' cause of hip pain and degenerative change. Two types of impingement have been described. The first, cam impingement, is the result of an abnormal morphology of the proximal femur, typically at the femoral head-neck junction. Cam impingement is most common in young athletic males. The second, pincer impingement, is the result of an abnormal morphology or orientation of the acetabulum. Pincer impingement is most common in middle-aged women. This article reviews the imaging findings of cam and pincer type femoroacetabular impingement. Recognition of these entities will help in the selection of the appropriate treatment with the goal of decreasing the likelihood of early degenerative change of the hip.

  16. Simulation of Plume Impingement Effects in the Lunar Lander Environment%月面环境发动机羽流冲击力效应模拟计算

    Institute of Scientific and Technical Information of China (English)

    严立; 王平阳; 欧阳华

    2012-01-01

    用计算流体力学/直接模拟蒙特卡洛(CFD/DSMC)的混合方法建立了火箭发动机羽流与固面之间相互作用的流场计算模型,通过与实验和模拟数据的比较,验证了该模型的正确性.将CFD/DSMC混合方法运用到月球探测器着陆过程中,发动机羽流对缓冲机构、月面的冲击力效应作用进行计算.结果表明,在着陆过程中,缓冲机构支架表面受到的最大压强为110Pa;月面最大压力为2kPa左右.计算结果为探测器的设计提供参考,并为分析月尘运动及月尘污染打下基础.%A calculation model of the interaction between rocket plume and moon surface was built using hybrid CFD/DSMC method. The correction of the model is achieved through comparing the results with other experimental data and simulation results. The comparison shows that the results are in good agree- ment and the model is credible. The plume of rocket coupled with moon surface and buffer structure was simulated, and the plume impingement effects on buffer structure and moon were analyzed. The results show that the maximum pressure is 110 Pa on buffer structure, and the maximum pressure on moon sur- face is 2 kPa. The force effect on buffer structure provides guides for design. Surface stress effect analysis is the foundation of lunar dust motion and pollution.

  17. Femoroacetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Suzanne E., E-mail: andersonsembach@yahoo.com.au [The University of Notre Dame Australia, School of Medicine Sydney, 160 Oxford Street, Darlinghurst 2010, NSW, Sydney (Australia); Department of Diagnostic, Pediatric and Interventional Radiology, Inselspital, University of Bern, Bern 3010 (Switzerland); Siebenrock, Klaus Arno; Tannast, Moritz [Department of Orthopedic Surgery, Inselspital, University of Bern, Bern 3010 (Switzerland)

    2012-12-15

    Femoroacetabular impingement (FAI) is a pathomechanical concept describing the early and painful contact of morphological changes of the hip joint, both on the acetabular, and femoral head sides. These can lead clinically to symptoms of hip and groin pain, and a limited range of motion with labral, chondral and bony lesions. Pincer impingement generally involves the acetabular side of the joint where there is excessive coverage of the acetabulum, which may be focal or more diffuse. There is linear contact of the acetabulum with the head/neck junction. Cam impingement involves the femoral head side of the joint where the head is associated with bony excrescences and is aspheric. The aspheric femoral head jams into the acetabulum. Imaging appearances are reviewed below. This type is evident in young males in the second and third decades. The main features of FAI are described.

  18. Femoro-acetabular impingement: can indirect MR arthrography be considered a valid method to detect endoarticular damage? A preliminary study.

    Science.gov (United States)

    Pozzi, Grazia; Stradiotti, Paola; Parra, Cleber Garcia; Zagra, Luigi; Sironi, Sandro; Zerbi, Alberto

    2009-01-01

    To assess the effectiveness of indirect Magnetic Resonance arthrography (i-MRa) in the detection of chondral and labral lesions related to femoro-acetabular impingement (FAI) a series of 21 hip joints in 17 patients with a clinical diagnosis of FAI were examined either with standard MR imaging, i-MRa and direct-MR arthrography (d-MRa). Sensitivity and accuracy of i-MRa in detecting chondral, labral and tardive lesions were calculated and compared with standard MR. The agreement in detecting endoarticular damage between i-MRa and d-MRa and the interobserver agreement was assessed by K statistic (p<0.05). Finally the presence of trocanteric bursitis was evaluated. I-MRa showed higher values of both sensivity and accuracy than standard MR in detecting chondral damage, with an increase to 92% for the first item and 95% for the second. The same was noticed in labrum evaluation with an increase to 88% and 90% respectively. The level of agreement between i-MRa and d-MRa in detection of chondral lesions was excellent, substantial for the labral damage and absolute for early osteoarthritic changes. An excellent interobserver agreement resulted in detection of both chondral and labral damages with i-MRa. In 6 hips (28,5%) we also found the presence of peri-trochanteric soft tissue inflammation that indicated the possibility of extrarticular involvement in FAI. Indirect-MRa can be considered a valid method of assessing endoarticular damage related to FAI, in comparison to d-MRa. It should be performed instead of standard MR if d-MRa is not available.

  19. Femoroacetabular impingement

    Directory of Open Access Journals (Sweden)

    José Batista Volpon

    Full Text Available ABSTRACT The femoroacetabular impingement (FAI is as condition recently characterized that results from the abnormal anatomic and functional relation between the proximal femur and the acetabular border, associated with repetitive movements, which lead labrum and acetabular cartilage injuries. Such alterations result from anatomical variations such as acetabular retroversion or decrease of the femoroacetabular offset. In addition, FAI may result from acquired conditions as malunited femoral neck fractures, or retroverted acetabulum after pelvic osteotomies. These anomalies lead to pathological femoroacetabular contact, which in turn create impact and shear forces during hip movements. As a result, there is early labrum injury and acetabulum cartilage degeneration. The diagnosis is based on the typical clinical findings and images. Treatment is based on the correction of the anatomic anomalies, labrum debridement or repair, and degenerate articular cartilage removal. However, the natural evolution of the condition, as well as the outcome from long-term treatment, demand a better understanding, mainly in the asymptomatic individuals.

  20. Posterior ankle impingement.

    Science.gov (United States)

    Giannini, Sandro; Buda, Roberto; Mosca, Massimiliano; Parma, Alessandro; Di Caprio, Francesco

    2013-03-01

    Posterior ankle impingement is a common cause of chronic ankle pain and results from compression of bony or soft tissue structures during ankle plantar flexion. Bony impingement is most commonly related to an os trigonum or prominent trigonal process. Posteromedial soft tissue impingement generally arises from an inversion injury, with compression of the posterior tibiotalar ligament between the medial malleolus and talus. Posterolateral soft tissue impingement is caused by an accessory ligament, the posterior intermalleolar ligament, which spans the posterior ankle between the posterior tibiofibular and posterior talofibular ligaments. Finally, anomalous muscles have also been described as a cause of posterior impingement.

  1. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  2. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a

  3. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matte

  4. Ischiofemoral impingement syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Tamam

    2015-06-01

    Full Text Available Ischiofemoral impingement is newly recognized extracapsular cause of atypical hip and groin pain. Ischiofemoral impingement was first defined by Johnson in 1977. It is characterized by a narrowed space between the ischial tuberosity and the lesser trochanter, associated with changes in ischiofemoral space . The diagnosis of the ischiofemoral impingement is complex. Normal radiological and ultrasound appearances may be seen in ischiofemoral impingement patients with atypical hip pain. It is important to have a focus on the symptoms , through the history taking, physi and not;cal examination, and appropriate imaging studies of the hip.In this study, we aimed to review the etiology, clinical presentation, imaging modalities, differential diagnosis and treatment options of ischiofemoral impingement. [Archives Medical Review Journal 2015; 24(2.000: 271-281

  5. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    Science.gov (United States)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  6. Subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2012-05-01

    Full Text Available Subacromial impingement syndrome (SAIS represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However the etiology is multi-factorial, and has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patients, surgery. No high-quality RCTs are available so far to provide possible evidence for differences in outcome of different treatment strategies. There remains a need for high-quality clinical research on the diagnosis and treatment of SAIS.

  7. Femoroacetabular impingement surgery

    DEFF Research Database (Denmark)

    Reiman, Michael P; Thorborg, Kristian

    2015-01-01

    Femoroacetabuler impingement (FAI) is becoming increasingly recognised as a potential pathological entity for individuals with hip pain. Surgery described to correct FAI has risen exponentially in the past 10 years with the use of hip arthroscopy. Unfortunately, the strength of evidence supporting...

  8. Properties of industrial dense gas plumes

    Science.gov (United States)

    Shaver, E. M.; Forney, L. J.

    Hazardous gases and vapors are often discharged into the atmosphere from industrial plants during catastrophic events (e.g. Union Carbide incident in Bhopal, India). In many cases the discharged components are more dense than air and settle to the ground surface downstream from the stack exit. In the present paper, the buoyant plume model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass. 19, 585-590.) has been altered to predict the properties of hazardous discharges. In particular, the plume impingement point, radius and concentration are predicted for typical stack exit conditions, wind speeds and temperature profiles. Asymptotic expressions for plume properties at the impingement point are also derived for a constant crosswind and neutral temperature profile. These formulae are shown to be useful for all conditions.

  9. Femoroacetabular impingement syndrome

    Directory of Open Access Journals (Sweden)

    Tolga Ege

    2016-03-01

    Full Text Available Femoroacetabular impingement (FAI syndrome is a recently understood hip condition that describes the pathologic contact between the femoral neck and the acetabular rim. Previously, it was also called and ldquo;acetabular rim syndrome and rdquo; or and ldquo;cervicoacetabular impingement syndrome and rdquo;. It is characterized by a developmental disorder affecting the femoral neck, acetabular rim and labrum. The chronic irritation on the hip joint causes chondral damage and mechanical changes, and these degenerative changes eventually lead to osteoarthritis. Two types of FAI have been described: Cam type and pincer type. Treatment options for FAI are conservative, open, mini open and arthroscopic surgery. [Arch Clin Exp Surg 2016; 5(1.000: 42-47

  10. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    Science.gov (United States)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  11. Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Multiscale GasKinetic/Particle (MGP) computational method is proposed to simulate the plume-crater-interaction/dust-impingement(PCIDI) problem. The MGP method...

  12. Impinging Jet Dynamics

    CERN Document Server

    Chen, Xiaodong

    2012-01-01

    In this fluid dynamics video, Ray-tracing data visualization technique was used to obtain realistic and detailed flow motions during impinging of two liquid jets. Different patterns of sheet and rim configurations were presented to shed light into the underlying physics, including liquid chain, closed rim, open rim, unstable rim and flapping sheet. In addition, stationary asymmetrical waves were observed and compared with existing theories. The generation of stationary capillary wave in respect to the liquid rim were explained by the classic shallow water wave theory. The atomization process caused by development of the impact waves were observed in detail, including fragmentation of liquid sheet, formation of liquid ligaments, and breakup of ligament into droplet. The locking-on feature of the wavelength of impact wave were also found to be similar to that of perturbed free shear layers.

  13. Study of Several Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Impinging Jets are frequently adapted for cooling overheated parts.With the film cooling technique,this process improves thermal exchanges between walls and fluid.However if many works have concerned only the thermal aspect of this problem[1],its dynamic field has been rarely studied especially for multiple impingements.As the two phenomena caanot be totally dissociated.we have undertaken the aerodynamic and thermal study of jets impinging on a aplane wall,Various techniques,have been used as visualizations(spreading over method.LASER sheet visualizations),LDA measurements to propose a topology schema of the flow and infraed thermography.

  14. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  15. Hip labral cyst caused by psoas impingement.

    Science.gov (United States)

    Tey, Marc; Alvarez, Sonia; Ríos, Jose L

    2012-08-01

    Hip labral impingement can cause labral tears and secondary paralabral cyst formation. Femoroacetabular impingement is the main cause of labral impingement, but other conditions such as iliopsoas tendon impingement are described. There is no description of labral cyst resulting from psoas impingement treated arthroscopically in the literature. We present the case of a young sportsman with groin pain caused by psoas impingement with a labral tear and secondary paralabral cyst who was treated arthroscopically by cyst debridement, psoas tenotomy, and labral repair. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. ASSESSMENT OF PLUME DIVING

    Science.gov (United States)

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  17. [Athletic pubalgia and hip impingement].

    Science.gov (United States)

    Berthaudin, A; Schindler, M; Ziltener, J-L; Menetrey, J

    2014-07-16

    Athletic pubalgia is a painful and complex syndrom encountered by athletes involved in pivoting and cutting sports such as hockey and soccer. To date, there is no real consensus on the criteria for a reliable diagnostic, the different investigations, and the appropriate therapy. Current literature underlines intrinsic and extrinsic factors contributing to athletic pubalgia. This review article reports upon two novelties related to the issue: the importance and efficience of prevention program and the association of femoro-acetabular impingement with the pubalgia.

  18. Variability and Composition of Io's Pele Plume

    Science.gov (United States)

    Jessup, K. L.; Spencer, J.; Yelle, R.

    2004-11-01

    The Pele plume is one of the largest and most dynamic of the plumes on Io. While sulfur dioxide (SO2) gas was always assumed to be a constituent of this plume, spectral observations obtained in 1999 were the first to positively identify elemental sulfur (S2) (Spencer et al. 2000) within the Pele plume. The S2/SO2 ratio derived from this observation provided a critical component necessary for the constraint of the magma chemistry and vent conditions of the Pele plume (Zolotov and Fegley 1998). But, because the Pele plume has long been known to be variable in its eruptive behavior, it is not likely that the vent conditions are invariant. Consequently, additional observations were needed to constrain the extent of the variability of the plume's composition and gas abundances. To this end, in February 2003, March 2003 and January 2004 we obtained spectra of Pele with Hubble's Space Telescope Imaging Spectrograph (STIS) in transit of Jupiter, using the 0.1 arcsec slit, for the wavelength region extending from 2100-3100 Å. Contemporaneous with the spectral data we also obtained UV and visible-wavelength images of the plume in reflected sunlight with the Advanced Camera for Surveys (ACS) prior to Jupiter transit, in order to constrain plume dust abundance. The newly acquired STIS data show both the S2 and SO2 absorption signatures, and provide concrete evidence of temporal variability in the abundance of these gases. Likewise, the degree of dust scattering recorded in the ACS data varied as a function of the date of observation. We will present preliminary constraints on the composition and variability of the gas abundances of the Pele plume as recorded within the STIS data. We will also give a brief overview of the variability of the plume dust signatures relative to the gas signatures as a function of time.

  19. Nanofluid impingement jet heat transfer.

    Science.gov (United States)

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  20. Turbulent Impinging Jets into Porous Materials

    CERN Document Server

    de Lemos, Marcelo J S

    2012-01-01

    This short book deals with the mathematical modeling of jets impinging porous media. It starts with a short introduction to models describing turbulences in porous media as well as turbulent heat transfer. In its main part, the book presents the heat transfer of impinging jets using a local and a non-local thermal equilibrium approach.

  1. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  2. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  3. Turbulence and Mixing in the Columbia River Plume

    Science.gov (United States)

    Kilcher, L. F.; Nash, J.; Moum, J.

    2004-12-01

    Thin bouyant plumes represent a technical challenge for in-situ observations. In July 2004 a unique set of measurements were taken in which our vertical microstructure profiler, Chameleon, and acoustics (300 kHz ADCP and 120 kHz echosounder) were modified to measure the O(1-5 m) thick plume. The Chameleon profiles included measurements of density, fluorescence, optical backscatter and turbulent energy dissipation. Intense turbulence was observed in plume fronts (with 30 m vertical displacements), at the plume base (with O(1 s-1) shear) and in O(20 m) thick bottom boundary layers. Preliminary results from 10 days of observations will be presented and discussed.

  4. [Clinical or radiological diagnosis of impingement].

    Science.gov (United States)

    Kloth, J K; Zeifang, F; Weber, M-A

    2015-03-01

    Shoulder impingement syndrome is a clinically common entity involving trapping of tendons or bursa with typical clinical findings. Important radiological procedures are ultrasound, magnetic resonance imaging (MRI) and MR arthrography. Projection radiography and computed tomography (CT) are ideal to identify bony changes and CT arthrography also serves as an alternative method in cases of contraindications for MRI. These modalities support the clinically suspected diagnosis of impingement syndrome and may identify its cause in primary diagnosis. In addition, effects of impingement are determined by imaging. Therapy decisions are based on a synopsis of radiological and clinical findings. The sensitivity and specificity of these imaging modalities with regard to the diagnostics of a clinically evident impingement syndrome are given in this review article. Orthopedic and trauma surgeons express the suspicion of an impingement syndrome based on patient history and physical examination and radiologists confirm structural changes and damage of intra-articular structures using dedicated imaging techniques.

  5. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  6. Preliminary results of field mapping of methane plumes offshore of Coal Oil Point, California with a RESON 7125 multibeam sonar in water-column mode

    Science.gov (United States)

    Finlayson, D. P.; Hatcher, G.; Lorenson, T. D.; Greinert, J.; Maillard, E.; Weirathmueller, M.; Leifer, I.

    2010-12-01

    From June 17 - 23 2010, the U. S. Geological Survey (USGS) in collaboration with the Bureau of Ocean Energy Management Regulation and Enforcement(BOEMRE), the Royal Netherlands Institute for Sea Research (NIOZ) , RESON Inc. and the University of California, Santa Barbara(UCSB) conducted a comprehensive marine-seep gas-plume mapping study offshore of Coal Oil Point, California. The ultimate goal of the experiment is to quantify the amount of methane emitted from natural seeps using multibeam sonar, with results calibrated using field measurements of aqueous and atmospheric methane in the seep fields. Success will lead to better estimates of natural marine methane contributions to the global methane budget. We mapped selected seeps, some twice, with a pole-mounted RESON 7125 multibeam with a 10-degree forward rake. Other equipment included a Benthos Stingray ROV equipped with high-definition video cameras and in situ gas sampling apparatus, Niskin bottles for water column sampling of dissolved methane, and a Picarro G1301 cavity ringdown spectrometer for mapping atmospheric methane concentrations. This paper focuses primarily on the data reduction and data visualization strategies employed while processing the more than 1.2 TB of raw water column data collected by the multibeam system over several high-output oil and gas seep areas. Water depths ranged from about 30 to 80m. Turnkey software solutions for processing these data are currently unavailable so most of the processing code was developed in-house by the USGS. The main challenge in processing the sonar water-column data is ray-tracing the large volume of data, with each ping containing more than 4500 times as many samples as a conventional multibeam ping. We employed two strategies to make processing tractable on conventional workstations: (1) decimate the raw data based on desired output resolution before ray-tracing; and (2) design the ray-tracing program to run in parallel on multi-core workstations

  7. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  8. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  9. A computational scheme usable for calculating the plume backflow region

    Science.gov (United States)

    Cooper, B. P., Jr.

    1978-01-01

    The effects of the nozzle wall boundary layer on the plume flowfield are neglected in the majority of computational schemes which exist for the calculation of rocket engine exhaust plume flowfields. This neglect, which is unimportant in many applications, becomes unacceptable for applications where a surface which can be adversely affected by plume impingement forces, heating, or contamination is located behind the nozzle exit plane in what is called the 'plume backflow region'. The flow in this region originates in, and is highly affected by, the nozzle wall boundary layer. The inclusion of the effects of the boundary layer in the calculations is required for an appropriate determination of the flowfield properties within this region. A description is presented of the results of modifications of a method-of-characteristics computer program. The modifications were made to include the effects of the nozzle wall boundary layer on the plume flowfield. A comparison of computed and experimental data indicates that the employed computer program may be a useful tool for calculating the entire plume flowfield for liquid propellant rocket engines.

  10. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  11. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  12. Statistics of fully turbulent impinging jets

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the...

  13. Radiological diagnosis of femoroacetabular impingement; Radiologische Diagnose des femoroazetabulaeren Impingements

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, T.C. [Inselspital, Abt. Orthopaedische Chirurgie, Bern (Switzerland); Klinik Sonnenhof, Abt. Radiologie, Bern (Switzerland); Werlen, S.; Trattnig, S. [Klinik Sonnenhof, Abt. Radiologie, Bern (Switzerland); Zilkens, C. [Universitaetsklinikum Duesseldorf, Orthopaedische Klinik, Duesseldorf (Germany); Kim, Y.J. [Harvard Medical School, Childrens Hospital, Boston, MA (United States); Siebenrock, K.A.; Bittersohl, B. [Inselspital, Abt. Orthopaedische Chirurgie, Bern (Switzerland)

    2009-05-15

    Femoroacetabular impingements (FAI) are due to an anatomical disproportion between the proximal femur and the acetabulum which causes premature wear of the joint surfaces. An operation is often necessary in order to relieve symptoms such as limited movement and pain as well as to prevent or slow down the degenerative process. The result is dependent on the preoperative status of the joint with poor results for advanced arthritis of the hip joint. This explains the necessity for an accurate diagnosis in order to recognize early stages of damage to the joint. The diagnosis of FAI includes clinical examination, X-ray examination and magnetic resonance imaging (MRI). The standard X-radiological examination for FAI is carried out using two X-ray images, an anterior-posterior view of the pelvis and a lateral view of the proximal femur, such as the cross-table lateral or Lauenstein projections. It is necessary that positioning criteria are adhered to in order to avoid distortion artifacts. MRI permits an examination of the pelvis on three levels and should also include radial planned sequences for improved representation of peripheral structures, such as the labrum and peripheral cartilage. The use of contrast medium for a direct MR arthrogram has proved to be advantageous particularly for representation of labrum damage. The data with respect to cartilage imaging are still unclear. Further developments in technology, such as biochemical-sensitive MRI applications, will be able to improve the diagnosis of the pelvis in the near future. (orig.) [German] Beim femoroazetabulaeren Impingement (FAI) bewirkt ein anatomisches Missverhaeltnis zwischen proximalem Femur und Azetabulum eine fruehzeitige Abnuetzung der Gelenkflaechen. Um Symptome wie eingeschraenkte Beweglichkeit und Schmerzen zu beheben, aber auch um dem degenerativen Prozess vorzubeugen oder ihn zu verlangsamen, ist haeufig eine Operation notwendig. Dabei haengt das Resultat vom praeoperativen Gelenkstatus ab - mit

  14. Internal Impingement of the Shoulder: A Risk of False Positive Test Outcomes in External Impingement Tests?

    Directory of Open Access Journals (Sweden)

    Tim Leschinger

    2017-01-01

    Full Text Available Background. External impingement tests are considered as being particularly reliable for identifying subacromial and coracoid shoulder impingement mechanisms. The purpose of the present study was to evaluate if these tests are likely to provoke an internal shoulder impingement mechanism which, in cases of a pathologic condition, can lead to a positive test result. Method. In 37 subjects, the mechanical contact between the glenoid rim and the rotator cuff (RC was measured quantitatively and qualitatively in external impingement test positions using an open MRI system. Results. Mechanical contact of the supraspinatus with the posterosuperior glenoid was present in 30 subjects in the Neer test. In the Hawkins test, the subscapularis was in contact with the anterosuperior glenoid in 33 subjects and the supraspinatus in 18. In the horizontal impingement test, anterosuperior contact of the supraspinatus with the glenoid was identified in 35 subjects. Conclusion. The Neer, Hawkins, and horizontal impingement tests are likely to provoke the mechanism of an internal shoulder impingement. A posterosuperior internal impingement mechanism is being provoked predominately in the Neer test. The Hawkins test narrows the distance between the insertions of the subscapularis and supraspinatus and the anterosuperior labrum, which leads to an anterosuperior impingement mechanism.

  15. Achilles Impingement Tendinopathy on Magnetic Resonance Imaging.

    Science.gov (United States)

    Bullock, Mark J; Mourelatos, Jan; Mar, Alice

    2017-02-28

    Haglund's syndrome is impingement of the retrocalcaneal bursa and Achilles tendon caused by a prominence of the posterosuperior calcaneus. Radiographic measurements are not sensitive or specific for diagnosing Haglund's deformity. Localization of a bone deformity and tendinopathy in the same sagittal section of a magnetic resonance imaging scan can assist with the diagnosis in equivocal cases. The aim of the present cross-sectional study was to determine the prevalence of Haglund's syndrome in patients presenting with Achilles tendinopathy and note any associated findings to determine the criteria for a diagnosis of Haglund's syndrome. We reviewed 40 magnetic resonance imaging scans with Achilles tendinopathy and 19 magnetic resonance imaging scans with Achilles high-grade tears and/or ruptures. Achilles tendinopathy was often in close proximity to the superior aspect of the calcaneal tuberosity, consistent with impingement (67.5%). Patients with Achilles impingement tendinopathy were more often female (p < .04) and were significantly heavier than patients presenting with noninsertional Achilles tendinopathy (p = .014) or Achilles tendon rupture (p = .010). Impingement tendinopathy occurred medially (8 of 20) and centrally (10 of 20) more often than laterally (2 of 20) and was associated with a posterior prominence or hyperconvexity with a loss of calcaneal recess more often than a superior projection (22 of 27 versus 8 of 27; p < .001). Haglund's deformity should be reserved for defining a posterior prominence or hyperconvexity with loss of calcaneal recess because this corresponds with impingement. Achilles impingement tendinopathy might be more appropriate terminology for Haglund's syndrome, because the bone deformity is often subtle. Of the 27 images with Achilles impingement tendinopathy, 10 (37.0%) extended to a location prone to Achilles tendon rupture. Given these findings, insertional and noninsertional Achilles tendinopathy are not mutually

  16. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  17. Pelvic morphology in ischiofemoral impingement

    Energy Technology Data Exchange (ETDEWEB)

    Bredella, Miriam A.; Azevedo, Debora C.; Oliveira, Adriana L.; Simeone, Frank J.; Chang, Connie Y.; Torriani, Martin [Massachusetts General Hospital, Department of Radiology, Musculoskeletal Imaging and Intervention, Boston, MA (United States); Stubbs, Allston J. [Wake Forest University School of Medicine, Department of Orthopedic Surgery, Division of Sports Medicine, Winston-Salem, NC (United States)

    2014-11-06

    To assess MRI measures to quantify pelvic morphology that may predispose to ischiofemoral impingement (IFI). We hypothesized that patients with IFI have a wider interischial distance and an increased femoral neck angle compared with normal controls. The study was IRB-approved and complied with HIPAA guidelines. IFI was diagnosed based on clinical findings (hip or buttock pain) and ipsilateral edema of the quadratus femoris muscle on MRI. Control subjects did not report isolated hip/buttock pain and underwent MRI for surveillance of neoplasms or to exclude pelvic fractures. Two MSK radiologists measured the ischiofemoral (IF) and quadratus femoris (QF) distance, the ischial angle as a measure of inter-ischial distance, and the femoral neck angle. The quadratus femoris muscle was evaluated for edema. Groups were compared using ANOVA. Multivariate standard least-squares regression modeling was used to control for age and gender. The study group comprised 84 patients with IFI (53 ± 16 years, 73 female, 11 male) and 51 controls (52 ± 16 years, 33 female, 18 male). Thirteen out of 84 patients (15 %) had bilateral IFI. Patients with IFI had decreased IF and QF distance (p < 0.0001), increased ischial angle (p = 0.004), and increased femoral neck angle (p = 0.02) compared with controls, independent of age and gender. Patients with IFI have increased ischial and femoral neck angles compared with controls. These anatomical variations in pelvic morphology may predispose to IFI. MRI is a useful method of not only assessing the osseous and soft-tissue abnormalities associated with IFI, but also of quantifying anatomical variations in pelvic morphology that can predispose to IFI. (orig.)

  18. A six degree of freedom, plume-fuel optimal trajectory planner for spacecraft proximity operations using an A* node search. M.S. Thesis - MIT

    Science.gov (United States)

    Jackson, Mark Charles

    1994-01-01

    Spacecraft proximity operations are complicated by the fact that exhaust plume impingement from the reaction control jets of space vehicles can cause structural damage, contamination of sensitive arrays and instruments, or attitude misalignment during docking. The occurrence and effect of jet plume impingement can be reduced by planning approach trajectories with plume effects considered. An A* node search is used to find plume-fuel optimal trajectories through a discretized six dimensional attitude-translation space. A plume cost function which approximates jet plume isopressure envelopes is presented. The function is then applied to find relative costs for predictable 'trajectory altering' firings and unpredictable 'deadbanding' firings. Trajectory altering firings are calculated by running the spacecraft jet selection algorithm and summing the cost contribution from each jet fired. A 'deadbanding effects' function is defined and integrated to determine the potential for deadbanding impingement along candidate trajectories. Plume costs are weighed against fuel costs in finding the optimal solution. A* convergence speed is improved by solving approach trajectory problems in reverse time. Results are obtained on a high fidelity space shuttle/space station simulation. Trajectory following is accomplished by a six degree of freedom autopilot. Trajectories planned with, and without, plume costs are compared in terms of force applied to the target structure.

  19. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  20. Imaging findings of femoroacetabular impingement syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Beall, Douglas P.; Sweet, Clifford F.; Martin, Hal D.; Lastine, Craig L.; Grayson, David E.; Ly, Justin Q.; Fish, Jon R. [University of Oklahoma Health Sciences Center, Department of Radiologal Sciences, Oklahoma City (United States)

    2005-11-01

    Femoroacetabular impingement syndrome (FAI) is a pathologic entity which can lead to chronic symptoms of pain, reduced range of motion in flexion and internal rotation, and has been shown to correlate with degenerative arthritis of the hip. History, physical examination, and supportive radiographic findings such as evidence of articular cartilage damage, acetabular labral tearing, and early-onset degenerative changes can help physicians diagnose this entity. Several pathologic changes of the femur and acetabulum are known to predispose patients to develop FAI and recognition of these findings can ultimately lead to therapeutic interventions. The two basic mechanisms of impingement - cam impingement and pincer impingement - are based on the type of anatomic anomaly contributing to the impingement process. These changes can be found on conventional radiography, MR imaging, and CT examinations. However, the radiographic findings of this entity are not widely discussed and recognized by physicians. In this paper, we will introduce these risk factors, the proposed supportive imaging criteria, and the ultimate interventions that can help alleviate patients' symptoms. (orig.)

  1. Spray formation processes of impinging jet injectors

    Science.gov (United States)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-11-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  2. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  3. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  4. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  5. Industrial stator vane with sequential impingement cooling inserts

    Science.gov (United States)

    Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

    2013-08-06

    A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

  6. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  7. Plume Measurement System (PLUMES) Calibration Experiment

    Science.gov (United States)

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  8. An experimental method for measuring droplet impingement efficiency on two- and three-dimensional bodies

    Science.gov (United States)

    Papadakis, M.; Zumwalt, G. W.; Kim, J. J.; Elangovan, R.; Freund, G. A., Jr.

    1986-01-01

    An efficient and accurate method is described for extracting water droplet impingement efficiency data from dye impregnated blotter paper samples obtained by employing a dye-tracer technique in wind tunnel spray tests. The method is based on laser reflectance spectroscopy. A brief description of the test method, instrumentation, and data reduction system is also presented. Preliminary test results and analyses are included for a cylinder and a 65(2)015 airfoil.

  9. Effects of ambient turbulence on a particle plume

    Science.gov (United States)

    Lai, Adrian C. H.; Er, J. W.; Law, Adrian W. K.; Adams, E. Eric

    2015-11-01

    We investigated experimentally the effects of ambient turbulence on a particle plume. Homogeneous and isotropic turbulent ambient water was generated by a random jet array in a glass tank. Glass beads of different particle diameters were released continuously into this turbulent ambient using a submerged hourglass, forming particle plumes with a constant efflux velocity; different initial velocities were tested for each particle size. We focused on the region in which the integral length scale of the ambient eddies is larger than that of the particle plume size. Following the arguments of Hunt (1994) and the observation of Hubner (2004) on a single-phase plume, it is expected that in this region, the internal structure or Lagrangian spreading of the particle plume, will not be significantly affected, but the plume centerline would meander due to the ambient turbulence leading to an increase in the Eulerian width. In the presentation, first, we will present our preliminary experimental data which showed that this is also true for two-phase particle plumes. Second, based on this observation, we developed a theoretical framework using a stochastic approach to predict the spreading of the plume. Predictions of the model will be compared with our experimental data. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  10. Endoscopic treatment of calcaneo-fibular impingement.

    Science.gov (United States)

    Bauer, T; Deranlot, J; Hardy, Ph

    2011-01-01

    The calcaneo-fibular impingement syndrome is frequent after calcaneal fracture and is linked to the decreased space between the tip of the fibula and the lateral wall of the calcaneus. The reasons for the painful symptoms are mixed with both bony and soft tissue involvement. The abnormal bony contact between the lateral calcaneal cortex and the tip of the fibula depends mainly on the size and localization of the lateral exostosis of the calcaneal wall. The soft tissue impingement is due to the fibrosis and scar tissues in the lateral gutter and to the compression of the peroneal tendons in the retromalleolar groove and under the tip of the malleolus. A 2-portal endoscopic technique is described for the treatment of calcaneo-fibular impingement with bone resection, soft tissue debridement and peroneal tendons release. One of the advantages of this endoscopic technique is the possibility of an assessment and treatment of associated lesions in the same procedure. A subtalar joint fusion can be done before if needed under arthroscopic control. As this endoscopic technique is very efficient to relieve symptoms of calcaneo-fibular impingement and is focused on the most relevant symptoms, it can thus be indicated for most of cases of calcaneal malunions, whatever the type of malunion and depending of the painful symptoms.

  11. SHOULDER MUSCLE IMBALANCE AND SUBACROMIAL IMPINGEMENT SYNDROME IN OVERHEAD ATHLETES

    OpenAIRE

    Page, Phil

    2011-01-01

    Subacromial impingement is a frequent and painful condition among athletes, particularly those involved in overhead sports such as baseball and swimming. There are generally two types of subacromial impingement: structural and functional. While structural impingement is caused by a physical loss of area in the subacromial space due to bony growth or inflammation, functional impingement is a relative loss of subacromial space secondary to altered scapulohumeral mechanics resulting from glenohu...

  12. Impingement syndrome of the shoulder; Schulterimpingement

    Energy Technology Data Exchange (ETDEWEB)

    Mayerhoefer, M.E. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung Radiodiagnostik fuer chirurgische Faecher, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet, Waehringer Guertel 18-20, 1090, Wien (Austria); Breitenseher, M.J. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Waldviertelklinikum Horn (Austria)

    2004-06-01

    The impingement syndrome is a clinical entity characterized by shoulder pain due to primary or secondary mechanical irritation of the rotator cuff. The primary factors for the development of impingement are a curved or hook-shaped anterior acromion as well as subacromial osteophytes, which may lead to tearing of the supraspinatus tendon. Secondary impingement is mainly caused by calcific tendinopathy, glenohumeral instability, os acromiale and degenerative changes of the acromioclavicular joint. Conventional radiographs are initially obtained, mainly for evaluation of the bony structures of the shoulder. If available, sonography can be used for detection of lesions and tears of the rotator cuff. Finally, MR-imaging provides detailed information about the relationship of the acromion and the acromioclavicular joint to the rotator cuff itself. In many cases however, no morphologic cause for impingement syndrome can be found. While patients are initially treated conservatively, chronic disease usually requires surgical intervention. (orig.) [German] Das Impingementsyndrom ist ein klinisches Krankheitsbild multifaktorieller Genese, bei dem es primaer oder sekundaer zu einer schmerzhaften mechanischen Beeintraechtigung der Rotatorenmanschette kommt. Als primaere Faktoren gelten ein gebogener oder hakenfoermiger Vorderrand des Akromions oder von diesem entspringende Osteophyten, was zu Laesionen der Supraspinatussehne fuehren kann. Zu den sekundaeren Faktoren zaehlt man v. a. eine Tendinitis calcarea, eine glenohumerale Instabilitaet, ein Os acromiale sowie degenerative Veraenderungen im Bereich des Akromioklavikulargelenks. Bildgebend steht an erster Stelle ein Nativroentgen, mit dem sich die knoechernen Strukturen gut darstellen lassen. Falls vorhanden, kann in weiterer Folge die Sonographie Auskunft ueber den Zustand der Rotatorenmanschette geben. Mit der MRT schliesslich laesst sich die Beziehung von Akromion und gelenkassoziierten Strukturen zur Rotatorenmanschette

  13. DSMC simulation of Europa water vapor plumes

    Science.gov (United States)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  14. Martian Atmospheric Plumes: Behavior, Detectability and Plume Tracing

    Science.gov (United States)

    Banfield, Don; Mischna, M.; Sykes, R.; Dissly, R.

    2013-10-01

    We will present our recent work simulating neutrally buoyant plumes in the martian atmosphere. This work is primarily directed at understanding the behavior of discrete plumes of biogenic tracer gases, and thus increasing our understanding of their detectability (both from orbit and from in situ measurements), and finally how to use the plumes to identify their precise source locations. We have modeled the detailed behavior of martian atmospheric plumes using MarsWRF for the atmospheric dynamics and SCIPUFF (a terrestrial state of the art plume modeling code that we have modified to represent martian conditions) for the plume dynamics. This combination of tools allows us to accurately simulate plumes not only from a regional scale from which an orbital observing platform would witness the plume, but also from an in situ perspective, with the instantaneous concentration variations that a turbulent flow would present to a point sampler in situ instrument. Our initial work has focused on the detectability of discrete plumes from an orbital perspective and we will present those results for a variety of notional orbital trace gas detection instruments. We have also begun simulating the behavior of the plumes from the perspective of a sampler on a rover within the martian atmospheric boundary layer. The detectability of plumes within the boundary layer has a very strong dependence on the atmospheric stability, with plume concentrations increasing by a factor of 10-1000 during nighttime when compared to daytime. In the equatorial regions of the planet where we have simulated plumes, the diurnal tidal “clocking” of the winds is strongly evident in the plume trail, which similarly “clocks” around its source. This behavior, combined with the strong diurnal concentration variations suggests that a rover hunting a plume source would be well suited to approach it from a particular azimuth (downwind at night) to maximize detectability of the plume and the ability to

  15. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    Science.gov (United States)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical

  16. Unsteady turbulent buoyant plumes

    CERN Document Server

    Woodhouse, Mark J; Hogg, Andrew J

    2015-01-01

    We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady i...

  17. Plumes Do Not Exist

    Science.gov (United States)

    Hamilton, W. B.; Anderson, D. L.; Foulger, G. R.; Winterer, E. L.

    Hypothetical plumes from the deep mantle are widely assumed to provide an abso- lute hotspot reference frame, inaugurate rifting, drive plates, and profoundly influence magmatic and tectonic evolution of oceans and continents. Many papers on local to global tectonics, magmatism, and geochemistry invoke plumes, and assign to the man- tle whatever properties, dynamics, and composition are needed to enable them. The fixed-plume concept arose from the Emperor-Hawaii seamount-and-island province, the 45 Ma inflection in which was assumed to record a 60-degree change in direction by the Pacific plate. Paleomagnetic latitudes and smooth Pacific spreading patterns show that such a change did not occur. Other Pacific chains once assumed to be syn- chronous with, and Euler-parallel to, Hawaii have proved to be neither. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Rationales for fixed hotspots elsewhere also have become untenable as databases enlarged. Astheno- sphere is everywhere near solidus temperature, so buoyant melt does not require a local heat source but, rather, needs a thin roof or crack or tensional setting for egress. MORB and ocean-island basalt (OIB) broadly intergrade in composition, but MORB typically is richer in refractory elements and their radiogenic daughters, whereas OIB commonly is richer in fusible elements and their daughters. MORB and OIB contrasts are required by melt behavior and do not indicate unlike source reservoirs. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts re- act, and thereby lose substance, by crystallizing refractories and retaining and assim- ilating subordinate fusibles, with thick, cool lithosphere and crust. There is no need for hypotheses involving chaotic plume behavior or thousands of km of lateral flow of plume material, nor for postulates of SprimitiveT lower mantle contrary to cos- & cedil;mological and thermodynamic considerations. Plume

  18. Where Plumes Live

    Science.gov (United States)

    King, S. D.

    2004-12-01

    From the perspective of fluid dynamics, `Plumes or not?' might be the wrong question. Let me begin by defining a few terms. Plume with a `P' is the well-known thermal structure with thin (order 100 km) tail and large, bulbous head that originates at the core-mantle boundary. The thin tail/large, bulbous-head morphology has been generated in a number of laboratory and numerical experiments. It can be seen, for example, on the cover of the famous fluid dynamics text by Batchelor. There is a clearly-defined range of parameters for which this structure is the preferred solution for instabilities arising from a bottom boundary layer in a convecting fluid. For example, a strong temperature-dependent rheology is needed. By contrast, plume with a `p' is any cylindrical or quasi-cylindrical instability originating from a thermal (or thermo-chemical) boundary layer. In fluid dynamics plume is sometimes used interchangeable with jet. Unless there is a very small temperature drop across the core-mantle boundary or a rather remarkable balance between temperature and composition at the base of the mantle, there are almost certainly plumes. (Note the little p.) Are these plumes the thermal structures with thin (order 100 km) tails and large bulbous heads or could they be broad, hot regions such as the degree 2 pattern seen in global seismic tomography images of the lower mantle, or the disconnected droplets seen in chaotic convection? To study this question, I will present a sequence of numerical `experiments' that illustrate the morphology of instabilities from a basal thermal boundary layer, i.e., plumes. Some of the aspects I will present include: spherical geometry, temperature-and pressure-dependence of rheology, internal heating, pressure-dependent coefficient of thermal expansion, variable coefficient of thermal diffusivity, phase transformations, and compositional layering at the base of the mantle. The goal is to map out the parameters and conditions where Plumes live

  19. Shoulder muscle imbalance and subacromial impingement syndrome in overhead athletes.

    Science.gov (United States)

    Page, Phil

    2011-03-01

    Subacromial impingement is a frequent and painful condition among athletes, particularly those involved in overhead sports such as baseball and swimming. There are generally two types of subacromial impingement: structural and functional. While structural impingement is caused by a physical loss of area in the subacromial space due to bony growth or inflammation, functional impingement is a relative loss of subacromial space secondary to altered scapulohumeral mechanics resulting from glenohumeral instability and muscle imbalance. The purpose of this review is to describe the role of muscle imbalance in subacromial impingement in order to guide sports physical therapy evaluation and interventions.

  20. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  1. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  2. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  3. Vortex rings impinging on permeable boundaries

    Science.gov (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  4. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  5. Circular and Elliptic Submerged Impinging Water Jets

    Science.gov (United States)

    Claudey, Eric; Benedicto, Olivier; Ravier, Emmanuel; Gutmark, Ephraim

    1999-11-01

    Experiments and CFD have been performed to study circular and elliptic jets in a submerged water jet facility. The tests included discharge coefficient measurement to evaluate pressure losses encountered in noncircular nozzles compared to circular ones. Three-dimensional pressure mappings on the impingement surface and PIV measurement of the jet mean and turbulent velocity have been performed at different compound impingement angles relative to the impingement surface and at different stand-off distances. The objective was to investigate the effect of the non-circular geometry on the flow field and on the impact region. The tests were performed in a close loop system in which the water was pumped through the nozzles into a clear Plexiglas tank. The Reynolds numbers were typically in the range of 250000. Discharge coefficients of the elliptic nozzle was somewhat lower than that of the circular jet but spreading rate and turbulence level were higher. Pressure mapping showed that the nozzle exit geometry had an effect on the pressure distribution in the impact region and that high-pressure zones were generated at specific impact points. PIV measurements showed that for a same total exit area, the elliptic jets affected a surface area that is 8the equivalent circular. The turbulence level in the elliptic jet tripled due to the nozzle design. Results of the CFD model were in good agreement with the experimental data.

  6. Ischiofemoral impingement syndrome: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Subhawong, Ty K.; Jose, Jean; Tresley, Jonathan; Clifford, Paul D. [Jackson Memorial Hospital, Department of Diagnostic Radiology, Section of Musculoskeletal Imaging, Miami, FL (United States)

    2015-06-01

    The aims of this article are to review the imaging characteristics of ischiofemoral impingement (IFI), summarize measurement thresholds for radiologic diagnosis based on a meta-analysis of the literature and raise awareness among radiologists and clinicians of this entity. A PubMed search restricted to the English language containing the keywords ''ischiofemoral impingement'' and ''quadratus femoris MRI'' was performed, and citations in these articles were also used to identify a total of 27 studies discussing ischiofemoral impingement. After excluding case reports and non-representative studies, there were five remaining articles including 193 hip MRIs of IFI in 154 subjects (133 female, 21 male) and 135 asymptomatic control hip MRIs from 74 subjects (55 female, 19 male). Additionally, we performed a retrospective database search of pelvic and hip MRI reports from our institution including the terms ''quadratus femoris'' or ''ischiofemoral impingement'' from a 9-year period and 24 hip MRIs from 21 patients (18 female, 3 male) with IFI with 5 asymptomatic contralateral control hip MRIs identified. In all, 217 hip MRIs of IFI and 140 control cases were included. A meta-analysis of these hip MRIs was conducted to determine optimal thresholds of the ischiofemoral space (IFS) and quadratus femoris space (QFS) for identifying IFI. Cases of IFI showed significantly smaller IFS and QFS compared to controls (14.91 ± 4.8 versus 26.01 ± 7.98 and 9.57 ± 3.7 versus 15.97 ± 6.07, measured in mm, respectively, p < 0.0001 for both). Pooled analysis revealed that for IFS, using a cutoff of ≤15 mm yielded a sensitivity of 76.9 %, specificity of 81.0 % and overall accuracy of 78.3 %. For QFS, a cutoff of ≤ 10.0 mm resulted in 78.7 % sensitivity, 74.1 % specificity and 77.1 % overall accuracy. IFI is a potential cause of hip pain that can be accurately diagnosed with MRI in conjunction with

  7. The effect of recycled oceanic crust in the thermal evolution of the Galapagos Plume

    Science.gov (United States)

    Gazel, E.; Herzberg, C. T.; Vidito, C. A.

    2011-12-01

    Current models suggest that the massive basaltic production responsible for the emplacement of Large Igneous Provinces (LIPS) during the Permian-Paleocene may represent the initial phases (plume heads) of some of the mantle plumes that feed the current ocean island basalts (OIB). In many cases, magmatism associated with the initiation of mantle plumes was so voluminous that produced global environmental impacts. The origin of these intra-plate magmatism is still debated but recent petrological, geochemical and geophysical studies of some of these localities like Samoa, Hawaii, Galapagos, provide evidence that melting is related to a true mantle plume, representing a geochemically heterogeneous, hot-buoyant domain that originates from a boundary layer beneath the upper mantle. Thus, plume-related magmas produced in OIB and LIPS and their connecting plume tracks are windows into the Earth's mantle, providing evidence on mantle temperature, size and composition of heterogeneities, and the deep earth geochemical cycles. Our preliminary petrological modeling suggests that mantle plumes for LIPS with Permian-Paleocene ages were generally hotter and melted more extensively than plumes of more modern oceanic islands. Although a lot of work has been done on LIPS and OIB, no complete record of the evolution of a mantle plume is available to this point, mostly due to the inaccessibility of the submerged sections of almost all plume tracks. Galapagos-related lavas provide a complete record of the evolution of a mantle plume since the plume's initial stages in the Cretaceous. In the case of the Galapagos, our work suggests a decrease from TP(max) of1650 C in the Cretaceous to 1500 C in the present day. Our recent work on the Galapagos Islands and the preliminary work on older Galapagos-related terranes suggest that this secular cooling is directly related with increasing amounts of recycled crust in the plume.

  8. Editorial Commentary: Ligamentum Teres Tears and Femoroacetabular Impingement: Complex Coexistence of Impingement and Instability.

    Science.gov (United States)

    Larson, Christopher M

    2016-07-01

    In a large Level IV case series of 2,213 hip arthroscopies with the diagnosis of femoroacetabular impingement, the intraoperative status of the ligamentum teres (LT) was recorded as normal in 11%, frayed and/or partially torn in 88%, and completely torn in 1.5% of hips. Although specific physical examination maneuvers for detecting LT tears were not available early in the study period, thus limiting a detailed assessment of such tests, the authors identified that female gender, a lower lateral center edge angle, a higher Tonnis angle, and capsular laxity were all associated with complete LT tears. This study further supports the complex coexistence of impingement and instability.

  9. Plume Comparisons between Segmented Channel Hall Thrusters

    Science.gov (United States)

    Niemack, Michael; Staack, David; Raitses, Yevgeny; Fisch, Nathaniel

    2001-10-01

    Angular ion flux plume measurements were taken in several configurations of segmented channel Hall thrusters. The configurations differed by the placement of relatively short rings made from materials with different conductive and secondary electron emission properties along the boron nitride ceramic channel of the thrusters (these have been shown to affect the plume [1]). The ion fluxes are compared with ion trajectory simulations based on plasma potential data acquired with a high speed emissive probe [2]. Preliminary results indicate that in addition to the physical properties of the segments, the plume angle can be strongly affected by the placement of segmented rings relative to the external and internal walls of the channel. [1] Y. Raitses, L. Dorf, A. Litvak and N. J. Fisch, Journal of Applied Physics 88, 1263, 2000 [2] D. Staack, Y. Raitses, N. J. Fisch, Parametric Investigations of Langmuir Probe Induced Perturbations in a Hall Thruster, DPP01 Poster Presentation This work was supported by the U.S. DOE Contract No. DE-ACO2-76-CHO3073.

  10. Modelling of jet-impingement cooling for power electronics

    OpenAIRE

    Rizvi, M.J.; Skuriat, R.; Tilford, Tim; Bailey, Christopher; Johnson, C. Mark; Lu, Hua

    2009-01-01

    The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce ...

  11. Meralgia paresthetica and femoral acetabular impingement: a possible association.

    Science.gov (United States)

    Ahmed, Aiesha

    2010-12-11

    Meralgia paresthetica consists of pain and dysesthesia in the anterolateral thigh. Etiology is divided into spontaneous and iatrogenic causes. To my knowledge this has never been attributed to femoral acetabular impingement. This case highlights the presence of lateral femoral cutaneous neuropathy in the setting of femoral acetabular impingement syndrome thus raising the possibility of an association. Femoral acetabular impingement; Lateral femoral cutaneous nerve; Dysesthesia; Nerve conduction studies.

  12. Anterior iliopsoas impingement after total hip arthroplasty.

    Science.gov (United States)

    Trousdale, R T; Cabanela, M E; Berry, D J

    1995-08-01

    Pain after total hip arthroplasty (THA) can be caused by a multitude of conditions, including infection, aseptic loosening, heterotopic ossification, and referred pain. It is also recognized that soft tissue inflammation about the hip, such as trochanteric bursitis, can lead to hip pain after THA. Two cases of persistent iliopsoas tendinitis following THA are reported, which are believed to be caused by psoas tendon impingement against a malpositioned, uncemented, metal-backed acetabular component. The authors are unaware of previous reports of this problem, and suggest that the problem be considered in the differential diagnosis of groin pain following THA.

  13. SCALE EFFECT OF IMPINGING PRESSURE CAUSED BY SUBMERGED JET

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhong; XU Wei-lin; WANG Wei; LIU Shan-jun; DONG Jian-wei

    2005-01-01

    The characteristics of the impinging pressure at the jet equipment where the maximum jet velocity can reach 50m/s were studied. By comparing the impinging pressure with the one measured at the low velocity conditions, two conclusions of the scale effect are drawn: firstly, the velocity attenuation degree is smaller than that of low-velocity jet, and secondly, the relative impinging width is narrower than that of low-velocity jet. The reasons of the scale effect of the impinging pressure were elucidated through numerical simulation.

  14. Clinical or radiological diagnosis of impingement; Klinische oder radiologische Diagnose des Impingements

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, J.K.; Weber, M.A. [Universitaetsklinikum Heidelberg, Klinik fuer diagnostische und interventionelle Radiologie, Heidelberg (Germany); Zeifang, F. [Universitaetsklinikum Heidelberg, Zentrum fuer Orthopaedie, Unfallchirurgie und Paraplegiologie, Heidelberg (Germany)

    2015-03-01

    Shoulder impingement syndrome is a clinically common entity involving trapping of tendons or bursa with typical clinical findings. Important radiological procedures are ultrasound, magnetic resonance imaging (MRI) and MR arthrography. Projection radiography and computed tomography (CT) are ideal to identify bony changes and CT arthrography also serves as an alternative method in cases of contraindications for MRI. These modalities support the clinically suspected diagnosis of impingement syndrome and may identify its cause in primary diagnosis. In addition, effects of impingement are determined by imaging. Therapy decisions are based on a synopsis of radiological and clinical findings. The sensitivity and specificity of these imaging modalities with regard to the diagnostics of a clinically evident impingement syndrome are given in this review article. Orthopedic and trauma surgeons express the suspicion of an impingement syndrome based on patient history and physical examination and radiologists confirm structural changes and damage of intra-articular structures using dedicated imaging techniques. (orig.) [German] Das Impingementsyndrom der Schulter ist ein haeufiges Einklemmungsphaenomen von Sehnen oder Bursen mit typischem klinischem Befund. Wichtige radiologische Verfahren sind Sonographie, MRT und MR-Arthrographie. Projektionsradiographie und CT sind ideal, um knoecherne Veraenderungen aufzuzeigen. Die CT-Arthrographie dient zudem als Ersatzverfahren bei Kontraindikationen fuer die MRT. Diese genannten Modalitaeten koennen in der Primaerdiagnostik die Diagnose eines Impingementsyndroms stuetzen und dessen Ursache aufzeigen. Zudem werden bildgebend Folgen der Einklemmung festgestellt und in Zusammenschau von klinischer Symptomatik und radiologischem Befund Therapieentscheidungen getroffen. Die Sensitivitaet und Spezifitaet der zuvor genannten bildgebenden Verfahren in Bezug auf die diagnostische Aufarbeitung einer klinisch evidenten Impingementsymptomatik

  15. Modelling of soft impingement during solidification

    Indian Academy of Sciences (India)

    K T Kashyap; S Yamdagni

    2007-08-01

    It has been well established that spheroidal grain morphology in the microstructure forms during stir casting (rheocasting) and grain refinement of magnesium alloys by zirconium addition. This curious microstructure has been of interest both commercially from enhanced mechanical properties and also scientific interest in explaining the mechanism of spheroidal grain formation. Vogel and Doherty proposed a model describing the fracturing of dendrite arms during stir casting to produce a high density of nuclei which they presume to give rise to spheroidal grains. They proposed that there is soft impingement of diffusion fields of neighbouring nuclei, which reduces the concentration gradient ahead of the planar solid and liquid interface, which in turn negates shape instability. In this paper, the Vogel and Doherty model is pursued by quantitative modeling of soft impingement problem and related to shape instability by constitutional supercooling theory. This analysis correctly predicts the spheroidal grain formation during stir casting or rheocasting. This model can also be used to explain the grain refinement of magnesium alloys by zirconium addition wherein spheroidal grains are formed.

  16. Sessile drop deformations under an impinging jet

    Science.gov (United States)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  17. Flow Characteristics of Rectangular Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA

    2006-01-01

    In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.

  18. Long-distance impact of Iceland plume on Norway's rifted margin.

    Science.gov (United States)

    Koptev, Alexander; Cloetingh, Sierd; Burov, Evgueni; François, Thomas; Gerya, Taras

    2017-09-04

    Results of a 3D modeling study inspired by recent seismic tomography of the Northern Atlantic mantle suggest that a complex pattern of hot mantle distribution with long horizontal flows originating from the Iceland mantle plume has been the norm in the geological past. In the Northern Atlantic the Iceland plume has a strong long-distance impact on intraplate deformation affecting both onshore and offshore parts of Norway's rifted margin. As a result, this margin is characterized by large magnitude differential topography sustained over at least several tens of Myr. Here we use high-resolution 3D thermo-mechanical modeling to demonstrate that the long-distance plume impact can be explained by its fast lateral propagation controlled by pre-existing lithosphere structures. Numerical models show that these structures strongly affect the style of horizontal flow of plume head material. This results in long-distance propagation of hot material emplaced at the lithosphere-asthenosphere boundary causing long-wavelength anomalies in onshore topography of Norway's rifted margin. Short-wavelength offshore topographic domes are likely caused by joint occurrence of plume-related thermal perturbations and gravitational forces related to plate thickening (ridge push). Our 3D modeling brings together plume impingement, spreading ridge dynamics, and the formation of anomalous intraplate structures offshore Norway in one scenario.

  19. A case for mantle plumes

    Institute of Scientific and Technical Information of China (English)

    Geoffrey F. Davies

    2005-01-01

    The existence of at least several plumes in the Earth's mantle can be inferred with few assumptions from well-established observations. As well, thermal mantle plumes can be predicted from well-established and quantified fluid dynamics and a plausible assumption about the Earth's early thermal state. Some additional important observations, especially of flood basalts and rift-related magmatism, have been shown to be plausibly consistent with the physical theory. Recent claims to have detected plumes using seismic tomography may comprise the most direct evidence for plumes, but plume tails are likely to be difficult to resolve definitively and the claims need to be well tested. Although significant questions remain about its viability, the plume hypothesis thus seems to be well worth continued investigation. Nevertheless there are many non-plate-related magmatic phenomena whose association with plumes is unclear or unlikely. Compositional buoyancy has recently been shown potentially to substantially complicate the dynamics of plumes, and this may lead to explanations for a wider range of phenomena, including "headless" hotspot tracks, than purely thermal plumes.

  20. Mantle plumes and continental tectonics.

    Science.gov (United States)

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  1. Biological evaluation of devices used for reducing entrainment and impingement losses at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Szluha, A.T.

    1978-01-01

    A preliminary survey of fish protection devices either in use or proposed for water intake structures was conducted for the purpose of assessing their potential for reducing impingement and entrainment. All the designs examined can be divided into two basic categories: behavioral screening systems and physical screening systems. The behavioral screening devices rely upon the ability of fish to sense artificial stimuli and respond by swimming away from hazardous areas. These systems are of little or no value in protecting planktonic fish eggs, larvae, and disoriented, heat-shocked, or lethargic adult fishes. Many of the physical screening devices, on the other hand, require the impingement of organisms against a screen before they can be removed from the intake system, thus subjecting survival. Some of the designs incorporate both behavioral and physical sceening concepts. Six devices were selected for further consideration based on their potential or demonstrated effectiveness in reducing impingement and entrainment losses at a variety of intake situations. The structures evaluated were modified vertical traveling screens, louvers, angled vertical traveling screens, horizontal traveling screens, center-flow screens, and wedge-wire screens. Since some of these intake structures represent new concepts, few laboratory or in situ biological studies have been carried out. For others, actual reductions in fish losses have been demonstrated. The design features and status of biological testing is discussed for each device, and an evaluation of their fish protection potential is presented.

  2. Rehabilitation for Subacromial Impingement Starts at the Scapula

    Directory of Open Access Journals (Sweden)

    Peggy A. Houglum

    2013-12-01

    Full Text Available Subacromial impingement, especially secondary subacromial impingement, is a common malady of athletes and non-athletes alike. Although several pathologies may lead to impingement, they all relate back to poor posture. Over time, postural changes increase stress to soft tissue structures to change both alignment and performance. Injury results as low-level stresses impact weakening tissues to the point of overload. Crucial to effective treatment of secondary subacromial impingement is the identification and correction of all causes. Basic to successful treatment is correction of posture, including scapular posture and muscles which control, stabilize, and move the scapula. An evidence-based approach to not only identifying the causes but also creating a treatment regimen to effectively resolve secondary subacromial impingement is presented.

  3. Technique of Arthroscopic Treatment of Impingement After Total Ankle Arthroplasty.

    Science.gov (United States)

    Gross, Christopher E; Neumann, Julie A; Godin, Jonathan A; DeOrio, James K

    2016-04-01

    Rates of medial and/or lateral gutter impingement after total ankle replacement are not insignificant. If impingement should occur, it typically arises an average of 17 months after total ankle replacement. Our patient underwent treatment for right ankle medial gutter bony impingement with arthroscopic debridement 5 years after her initial total ankle replacement. Standard anteromedial and anterolateral portals and a 30° 2.7-mm-diameter arthroscope were used. An aggressive soft-tissue and bony resection was performed using a combination of curettes, a 3.5-mm shaver, a 5.5-mm unsheathed burr, a drill, and a radiofrequency ablator. This case shows that arthroscopic treatment is an effective and potentially advantageous alternative to open treatment of impingement after total ankle replacement. In addition, symptoms of impingement often improve in a short amount of time after arthroscopic debridement of the medial and/or lateral gutter.

  4. Magnetic Resonance Velocimetry analysis of an angled impinging jet

    Science.gov (United States)

    Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David

    2016-11-01

    Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  5. An analytical and experimental investigation of resistojet plumes

    Science.gov (United States)

    Zana, Lynnette M.; Hoffman, David J.; Breyley, Loranell R.; Serafini, John S.

    1987-01-01

    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

  6. Dilution of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben; Petersen, Ole

    The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls.......The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls....

  7. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  8. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  9. Electron impinging on metallic thin film targets

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France); Laboratoire Materiaux et Systemes Electroniques, Centre Universitaire de Bordj-Bou-Arreridj, El-Anasser, 34265 Bordj-Bou-Arreridj (Algeria); Bouarissa, N., E-mail: N_Bouarissa@yahoo.fr [Department of Physics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004 (Saudi Arabia); Champion, C. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France)

    2010-03-15

    Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.

  10. Investigation of the flow-field of two parallel round jets impinging normal to a flat surface

    Science.gov (United States)

    Myers, Leighton M.

    The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2

  11. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  12. A cold plasma plume with a highly conductive liquid electrode

    Institute of Scientific and Technical Information of China (English)

    Chen Guang-Liang; Chen Shi-gua; Chen Wen-Xing; Yang Si-Ze

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 1011/cm3, respectively. The length of plasma plume can reach 5cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation,which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O*03) in the downstream oxygen (02) gas of the plume have been applied to treat the landfill leachate. The results show that the activated 02 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD),conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively.

  13. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction

    Science.gov (United States)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

    1991-01-01

    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  14. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  15. Impinging Jet Resonant Modes at Mach 1.5

    CERN Document Server

    Davis, Timothy

    2013-01-01

    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.

  16. NUMERICAL SIMULATION OF LAMINAR SQUARE IMPINGING JET FLOWS

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-guang; XU Zhong; WU Yu-lin; ZHANG Yong-jian

    2005-01-01

    A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.

  17. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    is on dissolved organic matter, xenobiotic organic compounds, inorganic macrocomponents as anions and cations, and heavy metals. Laboratory as well as field investigations are included. This review is an up-date of an earlier comprehensive review. The review shows that most leachate contamination plumes...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...

  18. Unusual Bilateral Rim Fracture in Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    Claudio Rafols

    2015-01-01

    Full Text Available This is a report of one case of bilateral acetabular rim fracture in association with femoroacetabular impingement (FAI, which was treated with a hip arthroscopic procedure, performing a partial resection, a labral reinsertion, and a subsequential internal fixation with cannulated screws. Up to date, there are in the literature only two reports of rim fracture and “os acetabuli” in association with FAI. In the case we present, the pincer and cam resection were performed without complications; the technique used was published previously. With this technique the head of the screw lays hidden by the reattached labrum. We removed partially the fractured rim fragment and the internal fixation of the remaining portion was achieved with a screw. In the event of a complete resection of the fragment, it would have ended with a LCE angle of 18° and a high probability of hip instability. We believe that this bilateral case helps establish the efficacy and reproducibility of the technique described by Larson.

  19. Low EUV Luminosities Impinging on Protoplanetary Disks

    CERN Document Server

    Pascucci, I; Gorti, U; Hollenbach, D; Hendler, N P; Brooks, K J; Contreras, Y

    2014-01-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10$^{42}$ photons/s for all sources without jets and lower than $5 \\times 10^{40}$ photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources prima...

  20. Diagnostic imaging of shoulder impingement; Bildgebende Diagnostik des Schultergelenkes bei Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Merl, T. [Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik; Weinhardt, H. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie; Oettl, G. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie; Lenz, M. [Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik; Riel, K.A. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage. [Deutsch] Die Magnetresonanztomographie hat sich in den letzten Jahren zur Methode der Wahl in der Diagnostik der Gelenke entwickelt, sie erlaubt neben der Abbildung aller knoechernen auch die Abbildung aller Weichteilelemente eines Gelenkes. Auch in der Diagnostik der Schultergelenkserkrankungen besitzt die Magnetresonanztomographie einen festen Stellenwert mit hoher diagnostischer Treffsicherheit in der Beurteilung der Rotatorenmanschette, als MR-Arthrographie auch in der Beurteilung der Instabilitaet bzw von Laesionen des labrokapsulaeren Komplexes. In der Bewertung frueher Stadien des Impingement ist die klassische Magnetresonanztomographie als statische Methode auf indirekte Zeichen angewiesen, die in vielen Faellen nicht ausreichende Sicherheit bieten und dem funktionellen Charakter des Krankheitsbildes nicht ausreichend Rechnung tragen. Hier koennte die funktionelle Magnetresonanztomographie unter Abbildung des Arms in Abduktion und Rotation eine

  1. On the origin of impinging tones at low supersonic flow

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Impinging compressible jets may cause deafness and material fatigue due to immensely loud tonal noise. It is generally accepted that a feedback mechanism similar to the screech feedback loop is responsible for impinging tones. The close of the loop remained unclear. One hypothesis hold up in the literature explains the emanated sound with the direct interaction of vortices and the wall. Other explanations name the standoff shock oscillations as the origin of the tones. Using direct numerical simulations (DNS) we were able to identify the source mechanism for under-expanded impinging jets with a nozzle pressure ratio (NPR) of 2.15 and a plate distance of 5 diameters. We found two different types of interactions between vortices and shocks to be responsible for the generation of the impinging tones. They are not related to screech.

  2. Surgical hip dislocation for treatment of cam femoroacetabular impingement

    Directory of Open Access Journals (Sweden)

    Milind M Chaudhary

    2015-01-01

    Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term.

  3. Talar Osteochondroma Fracture Presenting as Posterior Ankle Impingement.

    Science.gov (United States)

    Ercin, Ersin; Bilgili, Mustafa Gokhan; Gamsizkan, Mehmet; Avsar, Serdar

    2016-05-01

    Osteochondromas are the most common benign bone tumors. They are usually asymptomatic and found incidentally. When symptomatic, the symptoms are usually due to its location and size. Fracture of an osteochondroma presenting as posterior ankle impingement is a rare condition. We describe a 22-year-old man with solitary exostosis who presented with a posterior ankle mass and posterior ankle impingement with 2 years of follow-up. Surgical intervention was the treatment of choice in this patient, and histologic examination revealed a benign osteochondroma. Osteochondromas found in the posterior aspect of the talus can be complicated by fracture due to persistent motion of the ankle. Talar osteochondroma should be included in the differential diagnosis of posterior ankle impingement causes. Posterior talar osteochondromas, especially when a stalk is present, should be treated surgically before it is more complicated by a fracture and posterior ankle impingement.

  4. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  5. Numerical simulation of circular jet impinging on hot steel plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Flow structure and heat transfer characteristics of an axisymmetric circular jet impinging on a hot 1Cr18Ni9Ti medium plate have been simulated numerically using computational fluid dynamic (CFD) code. The relation between flow field of jet impingement and its heat transfer capability is analyzed, and the phenomenon that heat transfer at stagnation point is smaller than that of points directly around is discussed. The simulation result provides boundary conditions for thermalanalysis of medium plate quenching.

  6. SUBMERGED IMPINGING JETS WITHIN A FINITE WATER DEPTH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By use of the sheet of laser light and the trac-ing particle technology, flow visualization tests of complexflow structures for submerged impinging jets within finite wa-ter depths are conducted. Typical flow patterns of submergeimpinging jets are analysed by the singular topology method.In order to reveal the mechanism of these flows, the diffusivecharacteristics and turbulent fluctuations of submerged impin-ging jets are measured by the hot-film anemometer.

  7. Equatorial spread F fossil plumes

    Directory of Open Access Journals (Sweden)

    S. L. Ossakow

    2010-11-01

    Full Text Available Behaviour of equatorial spread F (ESF fossil plumes, i.e., ESF plumes that have stopped rising, is examined using the NRL SAMI3/ESF three-dimensional simulation code. We find that fossil bubbles, plasma density depletions associated with fossil plumes, can persist as high-altitude equatorial depletions even while being "blown" by zonal winds. Corresponding airglow-proxy images of fossil plumes, plots of electron density versus longitude and latitude at a constant altitude of 288 km, are shown to partially "fill in" in most cases, beginning with the highest altitude field lines within the plume. Specifically, field lines upon which the E field has fallen entirely to zero are affected and only the low altitude (≤600 km portion if each field line fills in. This suggests that it should be possible to observe a bubble at high altitude on a field line for which the corresponding airglow image no longer shows a depletion. In all cases ESF plumes stop rising when the flux-tube-integrated ion mass density inside the upper edge of the bubble is equal to that of the nearby background, further supporting the result of Krall et al. (2010b.

  8. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  9. Simulating regolith ejecta due to gas impingement

    Science.gov (United States)

    Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel

    2016-10-01

    Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.

  10. Radiotherapy for shoulder impingement; Bestrahlung beim Impingementsyndrom des Schultergelenks

    Energy Technology Data Exchange (ETDEWEB)

    Adamietz, B. [Universitaetsklinikum Erlangen (Germany). Inst. fuer Radiologie; Sauer, R.; Keilholz, L. [Universitaetsklinikum Erlangen (Germany). Strahlentherapeutische Klinik

    2008-05-15

    Background and Purpose: Up to now, degenerative shoulder diseases were summarized by the term 'periarthritis humeroscapularis'. Actual shoulder diseases can be differentiated etiopathologically according to a primary and secondary impingement syndrome. Narrowing of the subacromial space, which is caused by an osseous shape variant, leads to primary impingement. Secondary impingement develops, when the subacromial space is reduced by swelling tissue below the osseous shoulder roof. This study aimed for the exact diagnosis to indicate therapy and to classify the results according to the Constant score. Patients and Methods: From August 1999 to September 2002, 102 patients with 115 shoulder joint conditions underwent radiation therapy (RT). All joints received two RT series (6 x 0.5 Gy/series) applied in two to three weekly fractions, totaling a dosage of 6.0 Gy (250 kV, 15 mAs, 1-mm Cu filter). The second RT course started 6 weeks after the end of the first. 115 shoulders were examined before RT, 6 weeks after the second RT course and, finally, during the follow-up from January to May 2003. Results: Pain relief was achieved in 94/115 shoulder joints (82%) after 18-month follow-up (median). A significant difference existed between secondary impingement and primary/non-impingement according to response. Tendinosis calcarea, bursitis subdeltoidea, tendovaginitis of the long biceps tendon, and capsulitis adhaesiva responded well to therapy. Conclusion: Shoulder diseases of secondary impingement demonstrate a good response to RT. Less or no benefit was found in primary impingement syndrome or complete rotator cuff disruption and acute shoulder injuries, respectively. (orig.)

  11. Erosion onset of a cohesionless granular medium by an immersed impinging round jet

    Science.gov (United States)

    Brunier-Coulin, Florian; Cuéllar, Pablo; Philippe, Pierre

    2017-03-01

    Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

  12. Plumes in stellar convection zones

    CERN Document Server

    Zahn, J P

    1999-01-01

    All numerical simulations of compressible convection reveal the presence of strong downwards directed flows. Thanks to helioseismology, such plumes have now been detected also at the top of the solar convection zone, on super- granular scales. Their properties may be crudely described by adopting Taylor's turbulent entrainment hypothesis, whose validity is well established under various conditions. Using this model, one finds that the strong density stratification does not prevent the plumes from traversing the whole convection zone, and that they carry upwards a net energy flux (Rieutord & Zahn 1995). They penetrate to some extent in the adjacent stable region, where they establish a nearly adiabatic stratification. These plumes have a strong impact on the dynamics of stellar convection zones, and they play probably a key role in the dynamo mechanism.

  13. Micromixing in the Submerged Circulative Impinging Stream Reactor

    Institute of Scientific and Technical Information of China (English)

    伍沅; 肖杨; 周玉新

    2003-01-01

    Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s-1 < u0 < 0.326m·s-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.

  14. Thermal-hydraulic performance of convective boiling jet array impingement

    Science.gov (United States)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  15. The effect of liquid film on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Saito, Kengo; Hayashi, Kanto [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan)

    2013-12-15

    Highlights: • Liquid droplet impingement erosion is studied experimentally using high-speed conical spray. • Erosion rate is increased with decreasing the liquid film thickness. • Erosion model is proposed considering the influence of liquid film thickness. -- Abstract: In the present paper, the pipe-wall thinning due to liquid droplet impingement erosion is studied experimentally by using a high-speed conical spray under the influences of liquid film on the target specimen. The size of the droplets considered is an order of tens of micrometers in diameter, which is the same order as those expected in the pipeline of nuclear/fossil power plants. In order to evaluate the erosion rate by the liquid droplet impingement under the influence of liquid film, the experiments are conducted by various combinations of the specimen diameters and the standoff distances of the spray from the nozzle. The experimental results show that the erosion depth increases linearly with the local flow volume, indicating the presence of terminal stage of erosion. The present results indicate that the erosion rate increases with decreasing the specimen diameter and increases slightly with increasing the standoff distance. This result combined with the theoretical consideration of the liquid film on the specimen leads to the conclusion that the erosion rate increases with decreasing the liquid film thickness, which supports the numerical result of liquid droplet impingement erosion in literature. Then, the erosion model for predicting the erosion rate by the liquid droplet impingement is proposed considering the influence of the liquid film.

  16. Coastal river plumes: Collisions and coalescence

    Science.gov (United States)

    Warrick, Jonathan A.; Farnsworth, Katherine L.

    2017-02-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world's coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world's smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to better

  17. Coastal river plumes: Collisions and coalescence

    Science.gov (United States)

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas  100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to

  18. Upper- and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs

    Science.gov (United States)

    Chang, Sung-Joon; Ferreira, Ana M. G.; Faccenda, Manuele

    2016-01-01

    Mantle plumes are thought to play a key role in transferring heat from the core–mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji–Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH>VSV) with thermo-mechanical calculations. PMID:26924190

  19. Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Science.gov (United States)

    Chang, Sung-Joon; Ferreira, Ana M. G.; Faccenda, Manuele

    2016-02-01

    Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH>VSV) with thermo-mechanical calculations.

  20. Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs.

    Science.gov (United States)

    Chang, Sung-Joon; Ferreira, Ana M G; Faccenda, Manuele

    2016-02-29

    Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (V(SH)>V(SV)) with thermo-mechanical calculations.

  1. An expert system for spectroscopic analysis of rocket engine plumes

    Science.gov (United States)

    Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy

    The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.

  2. Virtual prototype simulation on underwater hydraulic impingement shovel

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; MENG Qing-xin

    2007-01-01

    The virtual prototype technology is applied to the design of the hydraulic impingement shovel,which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.

  3. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  4. Influence of Liquid Viscosity on Droplet Impingement on Superhydrophobic Surfaces

    CERN Document Server

    Pearson, John T; Webb, Brent W

    2010-01-01

    This fluid dynamics video describes droplet impingement experiments performed on superhydrophobic surfaces. When droplets of pure water are impinged upon superhydrophobic surfaces, a region of thin coherent jets are observed for Weber numbers between 5 and 15. Also, peripheral splashing is observed for Weber numbers above about 200. When the viscosity of the droplet is increased by mixing glycerol with the water, the thin jets are not observed and peripheral splashing is delayed somewhat. In the Weber number range where pure water droplets are observed to splash peripherally, the water/glycerol droplets are observed to have two-pronged jets.

  5. Bone scintigraphy in costo-iliac impingement syndrome

    DEFF Research Database (Denmark)

    Madsen, Jan L

    2008-01-01

    Abstract: A syndrome of back pain caused by impingement of the lowest ribs against the iliac crest has been described in patients with osteoporotic vertebral fractures and loss of height of the patient. A case is presented of an 81-year-old woman with a long history of osteoporosis with compressi...... fractures of several thoracic and lumbar vertebrae. She presented with progressive lower back pain and weight loss. Bone scintigraphy revealed increased uptake in the lower ribs on both sides compatible with the costo-iliac impingement syndrome. There were no signs of bone metastases....

  6. Cold plate with combined inclined impingement and ribbed channels

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Pritish R.

    2015-12-22

    Heat transfer devices and methods for making the same that include a first enclosure having at least one inlet port; a second enclosure having a bottom plate and one or more dividing walls to establish channels, at least one internal surface of each channel having rib structures to create turbulence in a fluid flow; and a jet plate connecting the first enclosure and the second enclosure having impinging jets that convey fluid from the first enclosure to the channels, said impinging jets being set at an angular deviation from normal to cause local acceleration of fluid and to increase a local heat transfer rate.

  7. Mapping of plume deposits and surface composition on Enceladus

    Science.gov (United States)

    Nordheim, T. A.; Scipioni, F.; Cruikshank, D. P.; Clark, R. N.,; Hand, K. P.

    2017-01-01

    A major result of the Cassini mission was the discovery that the small mid-sized moon Enceladus is presently geological active[Dougherty et al., 2006; Porco et al., 2006; Spencer et al., 2006; Hansen et al., 2008]. This activity results in plumes of water vapor and ice emanating from a series of fractures ("Tiger Stripes") at the moon's South Pole. Some fraction of plume material escapes the moon's gravity and populates the E-ring as well as ultimately providing a source of fresh plasma in the Saturnian magnetosphere [Pontius and Hill, 2006; Kempf et al., 2010]. However, a significant portion of plume material is redeposited on Enceladus and thus provides a source of surface contaminants. By studying the near-infrared spectral signatures of these contaminants we may put new constraints on the composition of the plumes and, ultimately, their source, which is currently believed to be Enceladus's global sub-surface ocean [Iess et al., 2014]. Here we present preliminary results from our analysis of observations from the Visual and Infrared Mapping Spectrometer (VIMS) [Brown et al., 2005] onboard Cassini and mapping of plume deposits across the surface of Enceladus. We have investigated the global variation of the water ice Fresnel peak at 3.1 μm, which may be used as an indicator of ice crystallinity [Hansen & McCord, 2004; Jaumann et al., 2008; Newman et al., 2008]. We have also investigated the slope of the 1.11-2.25 μm spectral region, which serves as an indicator of water ice grain size for small grains (< 100 μm) as well as the presence of contaminants [e.g. Filacchione et al., 2010]. Finally, we have identified and mapped an absorption feature centered at 3.25 μm that may be related to organic contaminants, represented by the band depth of the fundamental C-H stretch [e.g. Cruikshank et al., 2014; Scipioni et al., 2014].

  8. Development of a GNSS Volcano Ash Plume Detector

    Science.gov (United States)

    Rainville, N.; Palo, S. E.; Larson, K. M.; Naik, S. R.

    2015-12-01

    Global Navigation Satellite Systems (GNSS), broadcast signals continuously from mid Earth orbit at a frequency near 1.5GHz. Of the four GNSS constellations, GPS and GLONASS are complete with more than 55 satellites in total. While GNSS signals are intended for navigation and timing, they have also proved to be useful for remote sensing applications. Reflections of the GNSS signals have been used to sense soil moisture, snow depth, and wind speed while refraction of the signals through the atmosphere has provided data on the electron density in the ionosphere as well as water vapor and temperature in the troposphere. Now analysis at the University of Colorado has shown that the attenuation of GNSS signals by volcanic ash plumes can be used to measure the presence and structure of the ash plume. This discovery is driving development of a distributed GNSS sensor network to complement existing optical and radar based ash plume monitoring systems. A GNSS based sensing system operating in L-band is unaffected by weather conditions or time of day. Additionally, the use of an existing signal source greatly reduces the per sensor cost and complexity compared to a radar system. However since any one measurement using this method provides only the total attenuation between the GNSS satellite and the receiver, full tomographic imaging of a plume requires a large number of sensors observing over a diversity of geometries. This presentation will provide an overview of the ongoing development of the GNSS sensor system. Evaluation of low priced commercial GNSS receivers will be discussed, as well as details on the inter sensor network. Based on analysis of existing GPS receivers near volcanic vents, the baseline configuration for an ash plume monitoring network is a 1km spaced ring of receivers 5km from the vent updating every 5 seconds. Preliminary data from field tests will be presented to show the suitability of the sensor system for this configuration near an active volcano.

  9. Lidar measurements of plume statistics

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.

    1993-01-01

    the source, instantaneous crosswind plume profiles were detected repetitively at high spatial (1.5 m) and temporal (3 sec) intervals by use of a mini LIDAR system. The experiments were accompanied by measurement of the surface-layer mean wind and turbulence quantities by sonic anemometers. On the basis...

  10. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be achiev

  11. Downwelling wind, tides, and estuarine plume dynamics

    Science.gov (United States)

    Lai, Zhigang; Ma, Ronghua; Huang, Mingfen; Chen, Changsheng; Chen, Yong; Xie, Congbin; Beardsley, Robert C.

    2016-06-01

    The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.

  12. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  13. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  14. Anterior internal impingement of the shoulder in rugby players and other overhead athletes

    Directory of Open Access Journals (Sweden)

    Siddharth R. Shah, MBBS, MSc Sports Medicine (UK, MRCS-Ed

    2017-04-01

    Conclusion: This series of anterior internal impingement, which we believe is the largest in the literature to date, demonstrates the value of an to assess and successfully treat overhead athletes with anterior impingement syndrome.

  15. Flume length and post-exercise impingement affect anaerobic metabolism in brook charr Salvelinus fontinalis.

    Science.gov (United States)

    Tudorache, C; O'Keefe, R A; Benfey, T J

    2010-02-01

    The effect of flume length and impingement time on post-exercise lactate concentrations in brook charr Salvelinus fontinalis were examined. Swimming in longer flumes increased lactate concentrations, as does impingement after swimming in short flumes.

  16. Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Storgaard, Filip Holst; Pedersen, Christina Gravgaard; Jensen, Majbritt Lykke

    Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome.......Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome....

  17. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    NARCIS (Netherlands)

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Gac, Le Severine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and r

  18. Liquid jet impinging orthogonally on a wettability-patterned surface

    Science.gov (United States)

    Koukoravas, Theodore; Ghosh, Aritra; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2016-11-01

    Jet impingement has many technological applications because of its numerous merits, especially those related to the ability of liquids to carry away heat very efficiently. The present study introduces a new configuration employing a wettability-patterning approach to divert an orthogonally-impinging laminar water jet onto a predetermined portion of the target surface. Diverging wettable tracks on a superhydrophobic background provide the means to re-direct the impinging jet along paths determined by the shape of these tracks on the solid surface. In a heat transfer example of this method, an open-surface heat exchanger is constructed and its heat transfer performance is characterized. Since this approach facilitates prolonged liquid contact with the underlying heated surface through thin-film spreading, evaporative cooling is also promoted. We demonstrate flow cases extracting 100 W/cm2 at water flow rates of O(10 mL/min). By comparing with other jet-impingement cooling approaches, the present method provides roughly four times more efficient cooling by using less amount of coolant. The reduced coolant use, combined with the gravity-independent character of this technique, offer a new paradigm for compact heat transfer devices designed to operate in reduced- or zero-gravity environments.

  19. Hindfoot endoscopy for posterior ankle impingement. Surgical technique

    NARCIS (Netherlands)

    van Dijk, C.N.; de Leeuw, P.A.J.; Scholten, P.E.

    2009-01-01

    BACKGROUND: The surgical treatment of posterior ankle impingement is associated with a high rate of complications and a substantial time to recover. An endoscopic approach to the posterior ankle (hindfoot endoscopy) may lack these disadvantages. We hypothesized that hindfoot endoscopy causes less mo

  20. Experimental and Theoretical Analysis of the Impinging Stream Drying

    Institute of Scientific and Technical Information of China (English)

    淮秀兰; SHIGERU; Koyama; 等

    2003-01-01

    The experiments of one-stage semi-circular and two-stage semi-circular impinging stream drying as well as the vertical and semi-cricular combined impinging stream drying were carried out.The velocity distribution and the mean residence time of particles,and the influence of various factors on drying characteristics were studied.A mathematical model of granular material drying in a semi-circular impinging stream dryer was proposed,in which the flow characteristics as well as the heat and mass transfer mechanisms were considered.Reasonable numerical methods were used to solve the equations.Under various conditons,the calculated results of drying rate and moisture content versus time were obtained.The results indicate that constant drying rate period does not exist in a semi-circular impinging stream dryer.Appropriate semi-cricular stage number and curvature radius,flow-rate ratio,air velocity,and higher inlet air temperature should be used for enhancing the drying process.

  1. Anterior Inferior Iliac Spine (AIIS) and Subspine Hip Impingement

    Science.gov (United States)

    Carton, Patrick; Filan, David

    2016-01-01

    Summary Background Abnormal morphology of the anterior inferior iliac spine (AIIS) and the subspine region of the acetabular rim are increasingly being recognised as a source of symptomatic extra-articular hip impingement. This review article aims to highlight important differences in the pathogenesis, clinical presentation and management of extra-articular hip impingement from both the AIIS and subspine bony regions, and the outcome following surgical intervention. Methods A literature review was undertaken to examine the supporting evidence for AIIS and subspine hip impingement. A narrative account of the Author’s professional experience in this area, including operative technique for arthroscopic correction, is also presented. Results Abnormal morphology of the AIIS and subspine region has been classified using cadaveric, radiological and arthroscopic means; the clinical presentation and operative treatment has been documented in several case series studies. Dual pathology is often present - recognition and treatment of both intra- and extra-articular components are necessary for good postoperative outcome. Conclusions AIIS and sub-spine hip impingement should be considered as distinct pathological entities, which may also co-exist. Symptom relief can be expected following arthroscopic deformity correction with the treatment of concomitant intra-articular pathology. Failure to recognise and treat the extra-articular component may affect postoperative outcome. Level of evidence V. PMID:28066737

  2. Measurements of a single pulse impinging jet. A CFD reference

    Directory of Open Access Journals (Sweden)

    Bovo Mirko

    2014-03-01

    Full Text Available This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º. The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions. At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.

  3. Compositional differentiation of Enceladus' plume

    Science.gov (United States)

    Khawaja, N.; Postberg, F.; Schmidt, J.

    2014-04-01

    The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled Enceladus' plume ice particles emanated directly from Enceladus' fractured south polar terrain (SPT), the so-called "Tiger Stripes", during two consecutive flybys (E17 and E18) in 2012. The spacecraft passed through the dense plume with a moderate velocity of ~7.5km/s, horizontally to the SPT with a closest approach (CA) at an altitude of ~75km almost directly over the south pole. In both flybys, spectra were recorded during a time interval of ~ ±3 minutes with respect to the closest approach achieving an average sampling rate of about 0.6 sec-1. We assume that the spacecraft passed through the plume during an interval of about ±60(sec) from the CA. Particles encountered before and after this period are predominately from the E-ring background in which Enceladus is embedded. Most CDA TOF-mass spectra are identified as one of three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed from a count database for compositional mapping of the plume along the space-craft trajectory. In BCA, counts of each spectrum type are integrated for a certain interval of time (box size). The integral of counts represents frequencies of compositional types in absolute abundances, which are converted later into proportions. This technique has been proven to be a suitable for inferring the compositional profiles from an earlier flyby (E5) [1]. The inferred compositional profiles show similar trends on E17 and E18. The abundances of different compositional types in the plume clearly differ from the Ering background and imply a compositional differentiation inside the plume. Following up the work of Schmidt et al, 2008 and Postberg et al, 2011 we can link different compositional types to different origins. The E17/E18 results are compared with the E5 flyby in 2008, which yielded the currently best compositional profile [2] but was executed at much

  4. On the great plume debate

    Institute of Scientific and Technical Information of China (English)

    Yaoling Niu

    2005-01-01

    @@ 1 Introductory note Geological processes are ultimately consequences of Earth's thermal evolution. Plate tectonic theory, which explains geological phenomena along plate boundaries, elegantly illustrates this concept. For example, the origin of oceanic plates at ocean ridges, the movement and growth of these plates, and their ultimate consumption back into the Earth's deep interior through subduction zones provide an efficient mechanism to cool the earth's mantle, leading to large-scale mantle convection. Mantle plumes, which explain another set of global geological phenomena such as within-plate volcanism, cool the earth's deep interior (probably the Earth's core) and represent another mode of Earth's thermal convection. Plate tectonic theory and mantle plume hypothesis thus complement each other to explain much of the whole picture of Earth processes and phenomena.

  5. The EtnaPlumeLab (EPL research cluster: advance the understanding of Mt. Etna plume, from source characterisation to downwind impact

    Directory of Open Access Journals (Sweden)

    Pasquale Sellitto

    2017-01-01

    Full Text Available In 2013, a multidisciplinary research cluster named EtnaPlumeLab (EPL was established, gathering experts from volcanology and atmospheric science communities. Target of EPL is to advance the understanding of Mt. Etna's gas and aerosol emissions and the related processes, from source to its regional climatic impact in the Mediterranean area. Here, we present the cluster and its three interacting modules: EPL-RADIO (Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns, SMED (Sulfur MEditerranean Dispersion and Med-SuV (MEDiterranean SUpersite Volcanoes Work Package 5. Preliminary results have for the first time highlighted the relevance of Mt. Etna's plume impact at the Mediterranean regional scale. These results underline that further efforts need to be made to get insight into a synoptic volcanogenic-atmospheric chemistry/climatic understanding of volcanic plumes impact.

  6. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    Science.gov (United States)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  7. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    Science.gov (United States)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  8. Where the oil from surface and subsurface plumes deposited during/after Deepwater Horizon oil spill?

    Science.gov (United States)

    Yan, B.

    2016-02-01

    The Deepwater Horizon (DwH) oil spill released an estimated 4.9 million barrels (about 200 million gallons) of crude oil into the Gulf of Mexico between April 20, 2010 and July 15, 2010. Though Valentine et al. has linked the elevated oil components in some sediments with the subsurface plume, the sites with fallout from the ocean surface plume has not been identified. This piece of information is critical not only for a comprehensive scientific understanding of the ecosystem response and fate of spill-related pollutants, but also for litigation purposes and future spill response and restoration planning. In this study we focus on testing the hypothesis that marine snow from the surface plume were deposited on the sea floor over a broad area. To do so, we use publicly available data generated as part of the ongoing Natural Resource Damage Assessment (NRDA) process to assess the spatial distribution of petroleum hydrocarbons in the water column and deep-ocean sediments of the Gulf of Mexico. Sensitive hydrocarbon markers are used to differentiate hydrocarbons from surface plume, deep subsurface plume, and in-situ burning. Preliminary results suggest the overlapping but different falling sites of these plumes and the sedimentation process was controlled by various biological, chemical, and physical factors.

  9. Extra-articular hip impingement: a narrative review of the literature

    Science.gov (United States)

    Cheatham, Scott W.

    2016-01-01

    There is growing subgroup of patients with poor outcomes after hip arthroscopy for intra-articular pathology suggesting unrecognized cause(s) of impingement may exist. Extra-articular hip impingement (EHI) is an emerging group of conditions that have been associated with intra-articular causes of impingement and may be an unrecognized source of pain. EHI is caused by abnormal contact between the extra-articular regions of the proximal femur and pelvis. This review discusses the most common forms for EHI including: central iliopsoas impingement, subspine impingement, ischiofemoral impingement, and greater trochanteric-pelvic impingement. The clinical presentation of each pathology will be discussed since EHI conditions share similar clinical features as the intra-articular pathology but also contain some unique characteristics. PMID:27069266

  10. The distal radial decompression osteotomy for ulnar impingement syndrome.

    Science.gov (United States)

    Krimmer, Hermann; Unglaub, Frank; Langer, Martin F; Spies, Christian K

    2016-01-01

    The decompression of the distal radioulnar joint (DRUJ) is performed by ulnar translation of the radial shaft proximal to the sigmoid notch, i.e. detensioning of the distal part of the interosseous membrane (DIOM) while containment of the DRUJ is achieved by closed wedge osteotomy of the radius. The osteotomy shortens the radius which entails detensioning of the triangular fibrocartilage complex (TFCC). Facilitating the modified Henry approach to the distal palmar radius a radial based wedge osteotomy is applied. The proximal osteotomy is proximal to the ulnar head and distal osteotomy is proximal to the sigmoid notch to prevent iatrogenic impingement. Ulnar translation of the radial shaft is performed to loosen the DIOM. The closed wedge osteotomy reduces radial inclination which will foster containment of the DRUJ. Distal radial decompression osteotomy of the DRUJ preserves DRUJ function while relieving painful impingement. Further surgical interventions are not compromised in case of failure.

  11. Particle streak velocimetry and its application to impinging laminar jets

    Science.gov (United States)

    Bergthorson, Jeff; Dimotakis, Paul

    2002-11-01

    The technique of Particle Streak Velocimetry (PSV) was improved to include digital imaging and image processing, allowing it to compete with PIV or LDV in terms of accuracy and ease of implementation. PSV provides advantages over other techniques, such as low particle mass loading, short run time experiments, and high accuracy velocity data through the direct measurement of Lagrangian trajectories. PSV, coupled with measurements of the static (Bernoulli) pressure drop across a well designed nozzle contraction, provided redundancy in the measurement of the axisymmetric impinging laminar jet. The impinging laminar jet was studied in the intermediate regime where the existence of a stagnation plate will affect the flow out of the nozzle. This nozzle separation to diameter ratio, L/d_j, regime has not been well characterized. The results indicate that a one-dimensional streamfunction formulation is not sufficient to characterize this flow.

  12. Experimental comparative study of doublet and triplet impinging atomization of gelled fuel based on PIV

    Science.gov (United States)

    Yang, Jian-lu; Li, Ning; Weng, Chun-sheng

    2016-10-01

    Gelled propellant is promising for future aerospace application because of its combination of the advantages of solid propellants and liquid propellants. An effort was made to reveal the atomization properties of gelled fuel by particle image velocimetry (PIV) system. The gelled fuel which was formed by gasoline and Nano-silica was atomized using a like-doublet impingement injector and an axisymmetric like-triplet impingement injector. The orifice diameter and length of the nozzle used in this work were of 0.8mm, 4.8mm, respectively. In the impinging spray process, the impingement angles were set at 90° and 120°, and the injection pressures were of 0.50MPa and 1.00MPa. The distance from the exit of the orifice to the impingement point was fixed at 9.6mm. In this study, high-speed visualization and temporal resolution particle image velocimetry techniques were employed to investigate the impingement atomization characteristics. The experimental investigation demonstrated that a long narrow high speed droplets belt formed around the axis of symmetry in the like-doublet impinging atomization area. However, there was no obvious high-speed belt with impingement angle 2θ = 90° and two high-speed belts appeared with impingement angle 2θ = 120° in the like-doublet impingement spray field. The high droplet velocity zone of the like-doublet impingement atomization symmetrically distributed around the central axis, and that of the like-triplet impingement spray deflected to the left of the central axis - opposite of injector. Although the droplets velocity distribution was asymmetry of like-triplet impingement atomization, the injectors were arranged like axisymmetric conical shape, and the cross section of spray area was similar to a circle rather than a narrow rectangle like the like-doublet impingement atomization.

  13. Subacromial Tenoxicam Injection in the Treatment of Impingement Syndrome

    OpenAIRE

    Çift, Hakan; Özkan, Feyza Ünlü; Şeker, Ali; İşyar, Mehmet; Ceyhan, Erman; Mahiroğulları, Mahir

    2014-01-01

    Objectives: As subacromial bursa injection is widely used for pain relief and functional improvements in patients with periarticular shoulder disorder, we aimed to present our results of subacromial tenoxicam injection in the treatment of impingement syndrome. Methods: Patients presented to the Department of Orthopaedics and Traumatology, Istanbul Medipol University with the primary complaints of shoulder pain from January 2012 to June 2013 were selected. Those who met the following inclusion...

  14. Radial heat transfer behavior of impinging submerged circular jets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.W.; Ma, C.F. [Enhanced Heat Transfer and Energy Conservation, The Key Laboratory of Ministry of Education (China)

    2006-05-15

    Experiments were performed to investigate the radial heat transfer behaviors of impinging submerged circular jets. Local heat transfer rate at several fixed radial locations and different nozzle-to-plate spacings were correlated and compared. Results reveal that with the jet being far from the stagnation point, the coefficient in the correlation NuRe decreases while the exponent characterizing the flow pattern of the working liquid increases. (author)

  15. Modeling 2-D jets impinging on Stirling regenerators

    Science.gov (United States)

    Gedeon, David

    1989-01-01

    The extent to which flow leaving Stirling coolers or heaters in the form of high-velocity jets penetrate the regenerator matrix is visually modeled using a computer program. Two-dimensional laminar jets are shown impinging on regenerator samples of variable permeability ranging from no matrix at all to matrices dense enough to stop the jet dead on. The results lend credibility to a simple tension for flow uniformity as a function of penetration depth.

  16. Radiographic Evidence of Femoroacetabular Impingement in Athletes With Athletic Pubalgia

    OpenAIRE

    Economopoulos, Kostas J.; Milewski, Matthew D.; Hanks, John B.; Hart, Joseph M.; Diduch, David R.

    2014-01-01

    Background: Two of the most common causes of groin pain in athletes are femoroacetabular impingement (FAI) and athletic pubalgia. An association between the 2 is apparent, but the prevalence of radiographic signs of FAI in patients undergoing athletic pubalgia surgery remains unknown. The purpose of this study was to determine the prevalence of radiologic signs of FAI in patients with athletic pubalgia. Hypothesis: We hypothesized that patients with athletic pubalgia would have a high prevale...

  17. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  18. Reduction of glycine particle size by impinging jet crystallization.

    Science.gov (United States)

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization.

  19. Brachial plexus impingement: an unusual complication of bilateral breast augmentation.

    Science.gov (United States)

    Berry, M G; Stanek, J J

    2008-03-01

    Breast augmentation is one of the most commonly performed aesthetic procedures, with many studies documenting the early and long-term complications that might be expected. This report describes the case of an active young woman who experienced severe pain, particularly with movement. Surgical exploration showed the cause of this pain to be impingement of the patient's lower brachial plexus by the mammary prosthesis. Such a complication has not, to the authors' knowledge, been reported previously.

  20. Reliability, Readability and Quality of Online Information about Femoracetabular Impingement

    Directory of Open Access Journals (Sweden)

    Fatih Küçükdurmaz

    2015-07-01

    Conclusion: According to our results, the websites intended to attract patients searching for information regarding femoroacetabular impingement are providing a highly accessible, readable information source, but do not appear to apply a comparable amount of rigor to scientific literature or healthcare practitioner websites in regard to matters such as citing sources for information, supplying methodology and including a publication date. This indicates that while these resources are easily accessed by patients, there is potential for them to be a source of misinformation.

  1. MRI Evaluation of Femoroacetabular Impingement After Hip Preservation Surgery.

    Science.gov (United States)

    Li, Angela E; Jawetz, Shari T; Greditzer, Harry G; Burge, Alissa J; Nawabi, Danyal H; Potter, Hollis G

    2016-08-01

    This article reviews the surgical treatment options for femoroacetabular impingement (FAI), including labral repair and osteochondroplasty, and the expected postoperative appearance on MRI. Complications, including residual osseous deformities, chondral injury, adhesions, femoral neck stress fractures, osteonecrosis, instability, malpositioned suture anchors, and infection, will also be discussed. Knowledge of the surgical treatment of FAI can assist in improving our understanding of the expected postoperative MRI appearance and in evaluating surgical complications.

  2. Radiographic findings of femoroacetabular impingement in capoeira players.

    Science.gov (United States)

    Mariconda, Massimo; Cozzolino, Andrea; Di Pietto, Francesco; Ribas, Manuel; Bellotti, Vittorio; Soldati, Alessandra

    2014-04-01

    Capoeira is a Brazilian martial art that requires extreme movements of the hip to perform jumps and kicks. This study evaluated a group of capoeira players to assess the prevalence of femoroacetabular impingement (FAI) in athletes practicing this martial art. Twenty-four experienced capoeira players (14 men, 10 women) underwent a diagnostic assessment, including clinical examination and standard radiographs of the pelvis and hips. The α-angle, head-neck offset, crossover sign, acetabular index, lateral centre-edge angle, and the Tönnis grade were assessed using the radiographs. Clinical relationships for any radiographic abnormalities indicating FAI were also evaluated. Four subjects (17 %) reported pain in their hips. Forty-four hips (91.7 %) had at least one radiographic sign of CAM impingement, and 22 (45.8 %) had an α-angle of more than 60°. Eighteen hips (37.5 %) had at least one sign of pincer impingement and 16 (33.3 %) a positive crossover sign. Sixteen hips (33.3 %) had mixed impingement. There was a significant positive association between having an α-angle of more than 60° and the presence of groin pain (P = 0.002). A reduced femoral head-neck offset (P < 0.001) and an increased α-angle on the anteroposterior radiograph (P = 0.008) were independently associated with a higher Tönnis grade. High prevalence of radiographic CAM-type FAI among these skilled capoeira players was found. In these subjects, a negative clinical correlation for an increased α-angle was also detected. Additional caution should be exercised whenever subjects with past or present hip pain engage in capoeira.

  3. Relationship between plume and plate tectonics

    Science.gov (United States)

    Puchkov, V. N.

    2016-07-01

    The relationship between plate- and plume-tectonics is considered in view of the growth and breakdown of supercontinents, active rifting, the formation of passive volcanic-type continental margins, and the origin of time-progressive volcanic chains on oceanic and continental plates. The mantle wind phenomenon is described, as well as its effect on plume morphology and anisotropy of the ambient mantle. The interaction of plumes and mid-ocean ridges is discussed. The principles and problems of plume activity analysis in subduction- and collision-related foldbelts are considered and illustrated with examples.

  4. Redox conditions for mantle plumes

    Science.gov (United States)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  5. Pulsed Plasma Thruster plume analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K. [Washington Univ., Aerospace and Energetics Research Program, Seattle, WA (United States)

    2003-11-01

    Micro-Pulsed Plasma Thrusters ({mu}PPTs) are a promising method for precision attitude control for small spacecraft in formation flying. They create an ionized plasma plume, which may interfere with other spacecraft in the formation. To characterize the ions in the plume, a diagnostic has been built that couples a drift tube with an energy analyzer. The drift tube provides time of flight measurements to determine the exhaust velocity, and the energy analyzer discriminates the ion energies. The energy analyzer measures the current on a collector plate downstream of four grids that repel electrons and ions below a specified energy. The first grid lowers the density of the plasma, therefore increasing Debye length. The second and fourth grids have a negative potential applied to them so they repel the electrons, while the third grid's voltage can be varied to repel lower energy ions. The ion energies can be computed by differentiating the data. Combining the information of the ion energies and their velocities identifies the ion masses in the PPT plume. The PPT used for this diagnostic is the micro-PPT developed for the Dawgstar satellite. This PPT uses 5.2 Joules per pulse and has a 2.3 cm{sup 2} propellant area, a 1.3 cm electrode length, and an estimated thrust of 85 {mu}N [C. Rayburn et al., AIAA-2000-3256]. This paper will describe the development and design of the time of flight/gridded energy analyzer diagnostic and present recent experimental results. (Author)

  6. Directional transport of impinging capillary jet on wettability engineered surfaces

    Science.gov (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  7. CFD study of turbulent jet impingement on curved surface

    Institute of Scientific and Technical Information of China (English)

    Javad Taghinia; Md Mizanur Rahman; Timo Siikonen

    2016-01-01

    The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with com-putational fluid dynamics (CFD) approach. The first applied model is a one-equation SGS model for large eddy simulation (LES) and the second one is the SST-SAS hybrid RANS-LES. These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface (h/B) distances at two Reynolds numbers namely, 2960 and 4740 based on the jet exit velocity (Ue) and the hydraulic diameter (2B). The predic-tions are compared with the experimental data in the literature and also the results from RANS k-εmodel. Com-parisons show that both models can produce relatively good results. However, one-equation model (OEM) produced more accurate results especial y at impingement region at lower jet-to-surface distances. In terms of heat transfer, the OEM also predicted better at different jet-to-surface spacings. It is also observed that both models show similar performance at higher h/B ratios.

  8. MRI for the preoperative evaluation of femoroacetabular impingement.

    Science.gov (United States)

    Li, Angela E; Jawetz, Shari T; Greditzer, Harry G; Burge, Alissa J; Nawabi, Danyal H; Potter, Hollis G

    2016-04-01

    Femoroacetabular impingement (FAI) refers to a condition characterized by impingement of the femoral head-neck junction against the acetabular rim, often due to underlying osseous and/or soft tissue morphological abnormalities. It is a common cause of hip pain and limited range of motion in young and middle-aged adults. Hip preservation surgery aims to correct the morphological variants seen in FAI, thereby relieving pain and improving function, and potentially preventing early osteoarthritis. The purpose of this article is to review the mechanisms of chondral and labral injury in FAI to facilitate an understanding of patterns of chondrolabral injury seen on MRI. Preoperative MRI evaluation of FAI should include assessment of osseous morphologic abnormalities, labral tears, cartilage status, and other associated compensatory injuries of the pelvis. As advanced chondral wear is the major relative contraindication for hip preservation surgery, MRI is useful in the selection of patients likely to benefit from surgery. Teaching points • The most common anatomical osseous abnormalities predisposing to FAI include cam and pincer lesions. • Morphological abnormalities, labral lesions, and cartilage status should be assessed. • In cam impingement, chondral wear most commonly occurs anterosuperiorly.• Pre-existing advanced osteoarthritis is the strongest predictor of poor outcomes after FAI surgery. • Injury to muscles and tendons or other pelvic structures can coexist with FAI.

  9. Shoulder impingement syndrome : evaluation of the causes with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Song, In Sup; Chung, Hun Young; Yoon, Sang Jin; Kim, Yang Soo; Shim, Hyung Jin; Choi, Young Hee; Lee, Jong Beum; Lee, Yong Chul; Kim, Kun Sang [Chungang Univ. College of Medicine, Seoul (Korea, Republic of); Choi, Yun Sun [Eulji Hospital, College of Medicine, Seoul (Korea, Republic of)

    1999-12-01

    Various mechanical causes which induce shoulder impingement syndrome have been identified with the help of MRI. The aim of this study is to evaluate the incidence of such causes. A total of 54 patients with clinically confirmed shoulder impingement syndrome and a normal control group(n=20) without symptoms were included. We evaluated the incidence of hook shaped acromion, low lying acromion, downward slope of the acromion, subacromial spur, acromioclavicular joint hypertrophy, coracoacromial ligament hypertrophy, high cuff muscle bulk, and os acromiale. Among the 54 patients, the following conditions were present: acromioclavicular joint hypertrophy(n=36), coracoacromial ligament hypertrophy(n=20), subacromial spur(n=18), downward sloping of the acromion(n=16), hook shaped acromion(n=11), relatively high cuff muscle bulk(n=6), low lying acromion relative to the clavicle(n=3), and os acromiale(n=1). In the normal control group there were nine cases of acromioclavicular joint hypertrophy, nine of coracoacromial ligament hypertrophy, nine of downward sloping acromion, and three of low lying acromion, but hook shaped acromion, high cuff muscle bulk, and os acromiale were not found. Among 54 patients, the syndrome was due to five simultancous causes in one patient, four causes in two, three causes in 12, two causes in 22, and one cause in 17. Hook shaped acromion and subacromial spur are the statistically significant causes of shoulder impingement syndrome. In 69% of patients, the condition was due to more than one cause.

  10. Subacromial Impingement Syndrome Caused by a Voluminous Subdeltoid Lipoma

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Murray

    2014-01-01

    Full Text Available Subacromial impingement syndrome is a clinical diagnosis encompassing a spectrum of possible etiologies, including subacromial bursitis, rotator cuff tendinopathy, and partial- to full-thickness rotator cuff tears. This report presents an unusual case of subdeltoid lipoma causing extrinsic compression and subacromial impingement syndrome. The patient, a 60-year-old man, presented to our institution with a few years' history of nontraumatic, posteriorly localized throbbing pain in his right shoulder. Despite a well-followed 6-months physiotherapy program, the patient was still suffering from his right shoulder. The MRI scan revealed a well-circumscribed 6 cm × 2 cm × 5 cm homogenous lesion compatible with a subdeltoid intermuscular lipoma. The mass was excised en bloc, and subsequent histopathologic examination confirmed a benign lipoma. At 6-months follow-up, the patient was asymptomatic with a complete return to his activities. Based on this case and a review of the literature, a subacromial lipoma has to be included in the differential diagnosis of a subacromial impingement syndrome refractory to nonoperative treatment. Complementary imaging modalities are required only after a failed conservative management to assess the exact etiology and successfully direct the surgical treatment.

  11. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  12. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened w

  13. Diagnosis of shoulder impingement syndrome; Diagnostik des Schulterimpingementsyndroms

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. [Orthopaedische Universitaetsklinik Balgrist, Zuerich (Switzerland)

    1996-12-01

    This article reviews the pathogenesis and clinical and imaging findings in shoulder impingement syndrome. Different stages of impingement syndrome are described. Stage I relates to edema and hemorrhage of the supraspinatus tendon. Stage II is characterized by bursal inflammation and fibrosis, as well as tendinopathy. In stage III there is a tear of the rotator cuff. Clinical signs many overlap. Moreover, calcifying tendinitis, fractures and pain originating from the cervical spine may mimic shoulder impingement syndrome. Imaging is important for the exact diagnosis. Standard radiographs are the basis of imaging in shoulder impingement syndrome. They may demonstrate subchondral sclerosis of the major tuberosity, subacromial spurs, and form anomalies of the acromion. They are also important in the differential diagnosis of shoulder impingement syndrome and demonstrate calcifying tendinitis, fractures and neoplasm. Ultrasonography has found acceptance as a screening tool and even as a final diagnostic method by many authors. However, there is a high interobserver variability in the demonstration of rotator cuff tears. Its usefulness has therefore been questioned. MR imaging is probably the method of choice in the evaluation of the rotator cuff and surrounding structures. Several investigations have demonstrated that differentiation of early findings, such as tendinopathy versus partial tears, may be difficult with MR imaging. However, reproducibility for fullthickness tears appears to be higher than for sonography. Moreover, specificity appears to be superior to sonography. MR arthrography is not universally accepted. However, it allows for more exact differentiation of discrete findings and may be indicated in preoperative planning. Standard arthrography and CT have a limited role in the current assessment of the rotator cuff. (orig.) [Deutsch] Grundlage des Impingementsyndroms ist eine Kompression des Supraspinatus am akromioklavikularen Bogen vor allem bei Flexion

  14. Radiation Chemistry of Potential Europa Plumes

    Science.gov (United States)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  15. Skylon Aerodynamics and SABRE Plumes

    Science.gov (United States)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  16. Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume

    Science.gov (United States)

    Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.

    2011-01-01

    This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.

  17. Proceedings of plumes, plates and mineralisation symposium: an introduction

    CSIR Research Space (South Africa)

    Hatton, CJ

    1997-12-01

    Full Text Available of plume-theory. Mechanisms of magma formation are identified and plume positions and distances to their surface expression considered. Mantle plumes are considered as a heat and fluid source for the Witwatersrand gold deposits....

  18. Numerical modeling of mantle plume diffusion

    Science.gov (United States)

    Krupsky, D.; Ismail-Zadeh, A.

    2004-12-01

    To clarify the influence of the heat diffusion on the mantle plume evolution, we develop a two-dimensional numerical model of the plume diffusion and relevant efficient numerical algorithm and code to compute the model. The numerical approach is based on the finite-difference method and modified splitting algorithm. We consider both von Neumann and Direchlet conditions at the model boundaries. The thermal diffusivity depends on pressure in the model. Our results show that the plume is disappearing from the bottom up - the plume tail at first and its head later - because of the mantle plume geometry (a thin tail and wide head) and higher heat conductivity in the lower mantle. We study also an effect of a lateral mantle flow associated with the plate motion on the distortion of the diffusing mantle plume. A number of mantle plumes recently identified by seismic tomography seem to disappear in the mid-mantle. We explain this disappearance as the effect of heat diffusion on the evolution of mantle plume.

  19. Aggregate Particles in the Plumes of Enceladus

    CERN Document Server

    Gao, Peter; Zhang, Xi; Ingersoll, Andrew P

    2015-01-01

    Estimates of the total particulate mass of the plumes of Enceladus are important to constrain theories of particle formation and transport at the surface and interior of the satellite. We revisit the calculations of Ingersoll and Ewald (2011), who estimated the particulate mass of the Enceladus plumes from strongly forward scattered light in Cassini ISS images. We model the plume as a combination of spherical particles and irregular aggregates resulting from the coagulation of spherical monomers, the latter of which allows for plumes of lower particulate mass. Though a continuum of solutions are permitted by the model, the best fits to the ISS data consist either of low mass plumes composed entirely of small aggregates or high mass plumes composed of large aggregates and spheres. The high mass plumes can be divided into a population of large aggregates with total particulate mass of 116 +/- 12 X 10^3 kg, and a mixed population of spheres and aggregates consisting of a few large monomers that has a total plume...

  20. Infrared Sensing of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1988-01-01

    This paper is concerned with laboratory experiments on buoyant surface plumes where heat is the source of buoyancy. Temperature distributions were measured at the water surface using infra-red sensing, and inside the waterbody a computer based measurement system was applied. The plume is described...

  1. Modelling oil plumes from subsurface spills.

    Science.gov (United States)

    Lardner, Robin; Zodiatis, George

    2017-07-11

    An oil plume model to simulate the behavior of oil from spills located at any given depth below the sea surface is presented, following major modifications to a plume model developed earlier by Malačič (2001) and drawing on ideas in a paper by Yapa and Zheng (1997). The paper presents improvements in those models and numerical testing of the various parameters in the plume model. The plume model described in this paper is one of the numerous modules of the well-established MEDSLIK oil spill model. The deep blowout scenario of the MEDEXPOL 2013 oil spill modelling exercise, organized by REMPEC, has been applied using the improved oil plume module of the MEDSLIK model and inter-comparison with results having the oil spill source at the sea surface are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept

  3. Multifrequency radar imaging of ash plumes: an experiment at Stromboli

    Science.gov (United States)

    Donnadieu, Franck; Freret-Lorgeril, Valentin; Delanoë, Julien; Vinson, Jean-Paul; Peyrin, Frédéric; Hervier, Claude; Caudoux, Christophe; Van Baelen, Joël; Latchimy, Thierry

    2016-04-01

    Volcanic ash emissions in the atmosphere are hazardous to aviation while ash fallout affects people and human activities and may cause damage to infrastructures and economic losses. In the framework of the French Government Laboratory of Excellence ClerVolc initiative, an experiment was carried out on Stromboli volcano (Italy), between 28 September and 4 October 2015. The aim was to retrieve various physical properties of the ash plumes, especially the mass loading parameters which are critical for the modelling of ash dispersal. We used a complementary set of cutting edge techniques recording in different bands of the electromagnetic spectrum. The innovative instrument setup consisted in three radars, hyperspectral thermal infrared and dual-band UV cameras, a mini DOAS-Flyspec and a multigas sensor. A drone equipped with differential GPS was flown near the ash plumes with several sensors including SO2, CO2 and particle counter. We mainly focus on radar measurements of over 200 ash plumes and present some preliminary comparisons at three frequencies. The BASTA Doppler radar at 95 GHz, originally designed for atmospheric studies, was deployed at about 2.2 km in slant distance from the eruptive craters. It was configured to observe volumes above one of the active craters with a spatio-temporal resolution of 12.5 m and 1 s. From the same location, a 1.2 GHz volcano Doppler radar (VOLDORAD) was recording the signature of ballistics and small lapilli at 0.15 s in 60 m-deep volumes. In addition, a commercial 24 GHz micro rain Doppler radar (MRR) simultaneously recorded activity from the Rochette station, at 400 to 650 m from the active craters with a sampling rate of 10 s and a resolution of 25 m. The latter was pointing almost perpendicularly to the other radar beams. Reflectivity factors were measured inside the ash plume above the source vent by the BASTA radar (3 mm wavelength) spanning -9 to +21 dBZ. Fallout could sometimes be tracked during several minutes within

  4. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    Science.gov (United States)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  5. Numerical study of a confined slot impinging jet with nanofluids.

    Science.gov (United States)

    Manca, Oronzio; Mesolella, Paolo; Nardini, Sergio; Ricci, Daniele

    2011-03-01

    Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of

  6. Numerical study of a confined slot impinging jet with nanofluids

    Directory of Open Access Journals (Sweden)

    Manca Oronzio

    2011-01-01

    Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4

  7. Optimization of a GO2/GH2 Impinging Injector Element

    Science.gov (United States)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    2001-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of

  8. 3D Numeric modeling of slab-plume interaction in Kamchatka

    Science.gov (United States)

    Constantin Manea, Vlad; Portnyagin, Maxim; Manea, Marina

    2010-05-01

    Volcanic rocks located in the central segment of the Eastern Volcanic Belt of Kamchatka show a high variability, both in age as well as in the geochemical composition. Three principal groups have been identified, an older group (7-12 my) represented by rich alkaline and transitional basalts, a 7-8 my group exemplified by alkaline basalts of extreme plume type, and a younger group (3-8 my) characterized by calc-alkaline andesites and dacites rocks. Moreover, the younger group shows an adakitic signature. The magmas are assumed to originate from two principle sources: from a subduction modified Pacific MORB-type and from plume-type mantle. In this paper we study the interaction of a cold subducting slab and a hot plume by means of 3D numeric modeling integrated 30 my back in time. Our preliminary modeling results show a short episode of plume material inflowing into the mantle wedge at ~10 my consistent with the second rocks group (plume like). Also our models predict slab edge melting consistent with the youngest group.

  9. Unsteady conjugate heat transfer analysis for impinging jet cooling

    Science.gov (United States)

    Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.

    2016-10-01

    The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.

  10. MAGNETIC RESONANCE IMAGING EVALUATION OF ROTATOR CUFF IMPINGEMENT

    Directory of Open Access Journals (Sweden)

    Chandrakanth K. S

    2017-06-01

    Full Text Available BACKGROUND Shoulder pain is a common clinical problem. Impingement syndrome of the shoulder is believed to be the most common cause of shoulder pain. The term ‘impingement syndrome’ was first used by Neer to describe a condition of shoulder pain associated with chronic bursitis and partial thickness tear of Rotator Cuff (RC. The incidence of Rotator Cuff (RC tear is estimated to be about 20.7% in the general population. This study is intended to analyse various extrinsic and intrinsic causes of shoulder impingement. MATERIALS AND METHODS 110 consecutive patients referred for MRI with clinical suspicion of shoulder impingement were prospectively studied. All the patients were evaluated for Rotator Cuff (RC degeneration and various extrinsic factors that lead to degeneration like acromial shape, down-sloping acromion, Acromioclavicular (AC joint degeneration and acromial enthesophyte. Intrinsic factors like degeneration and its correlation with age of the patients were evaluated. RESULTS Of the total 110 patients, 19 (17.3% patients had FT RC tear and 31 (28.2% had PT (both bursal and articular surface tears. There was no statistically significant correlation (p=0.76 between acromion types and RC tear. Down-sloping acromion and enthesophytes had statistically significant association with RC tear (p=0.008 and 0.008, respectively. Statistically significant (0.008 correlation between the severity of AC joint degeneration and RC tears was noted. AC joint degeneration and RC pathologies also showed a correlation with the age of the patients with p values of <0.001 and 0.001, respectively. CONCLUSION No statistically significant correlation between RC pathologies with hooked acromion was found, that makes the role played by hooked acromion in FT RC tear questionable. AC joint degeneration association with RC tear is due to the association of both RC tear and AC joint degeneration with age of the patient. Down-sloping acromion, AC joint degeneration

  11. Wall jets created by single and twin high pressure jet impingement

    Science.gov (United States)

    Miller, P.; Wilson, M.

    1993-03-01

    An extensive experimental investigation into the nature of the wall jets produced by single and twin normal jet impingement has been undertaken. Wall jet velocity profiles have been recorded up to 70 jet diameters from the impingement point, at pressures representative of current VStol technology. The tests used fixed convergent nozzles, with nozzle height and spacing and jet pressure being varied. Single jet impingement displays a consistent effect of nozzle height on wall jet development. For twin jet cases a powerful reinforcement exists along the wall jet interaction plane. Remote from the interaction plane the wall jets are weaker than those produced by a single jet impingement.

  12. An application of geoelectrical methods for contamination plume recognition in Urbanowice waste disposal

    Science.gov (United States)

    Mycka, Mateusz; Mendecki, Maciej Jan

    2013-09-01

    The purpose of this work was to detect groundwater pollution and to identify the conditions of soil and groundwater near the Urbanowice landfill site using geoelectrical measurements. Presented measurements are preliminary results from tested site and are beginning of continuous monitoring. Contamination outflows detected by resistivity and IP technique show a good correlation with available hydrological data. Contamination plume were found in Eastern part of survey profil.

  13. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    Science.gov (United States)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    simulations of momentum-driven gas jets impulsively released from a vent in a pressurized container. These simulations solve flow conditions globally, thus allowing one to set empirical relations between flow conditions in different parts of the jet, most notably the shear layer, the flow centerline, and at the vent. Applying these relations to the volcanic cases gives access to the evolution of velocity and temperature at the vent. From these, the speed of sound and flow Mach number can be obtained, which in turn can be used to estimate the pressure ratio between atmosphere and vent and finally, assuming some conduit geometry and mixture density, the total amount of erupted gas. Preliminary results suggest subsonic exit velocities of the eruptive mixture at the vent, and a plume centerline velocity that can be twice as fast as the one measured at the plume boundary.

  14. Digital filtering of plume emission spectra

    Science.gov (United States)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  15. Merging Thermal Plumes in the Indoor Environment

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    This experimental work deals with the basic problem of merging thermal plumes from heat sources situated in the vicinity of each other. No studies have been made yet of how close two heat sources must be to each other, before they can be considered as a single source with a cumulative heat effect......, and how far apart they must be to be considered separate. Also, it is not known how the flow field behaves in the intermediate fase, where the plumes are neither completely joined nor completely separate. A possible, very simple, solution of the velocity distribution between two plumes is to assume...

  16. Current UK practices in the management of subacromial impingement

    Science.gov (United States)

    Drury, Colin; Tait, Gavin R

    2015-01-01

    Background Controversy presently exists surrounding the management of patients with subacromial impingement. This study aims to highlight current UK practices in the management of these patients. Methods BESS members were invited to complete a questionnaire and responses were received from 157 consultant shoulder surgeons. Results Physiotherapy is an integral part of management for 93% of surgeons with a minimum period of 12 weeks being most popular prior to consideration of arthroscopic subacromial decompression. Subacromial steroid injection is used by 95% and 86% repeat this if the patient has failed to respond to a previous injection by the general practioner. From initial presentation, 77% felt there should be at least 3 months of conservative management before proceeding to surgery. Good but transient response to subacromial injection was considered the best predictor of good surgical outcome by 77%. The coracoacromial ligament is fully released by 78%, although there was greater variation in how aggressive surgeons were with acromioplasty. Most (59%) do not include the nontender acromioclavicular joint to any extent in routine acromioplasty. Hospital physiotherapy protocols are used by 63% for postoperative rehabilitation. Conclusions Variation exists in the management regimes offered to patients with subacromial impingement, but most employ a minimum period of 12 weeks of conservative management incorporating physiotherapy and at least 2 subacromial steriod injections. PMID:27582972

  17. Laser impingement on bare and encased high explosives: safety limits

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, F

    1999-03-15

    During the course of experiments involving high explosives, (HE), alignment lasers are often employed where the laser beam impinges upon a metal encased HE sample or on the bare HE itself during manned operations. While most alignment lasers are of low enough power so as not to be of concern, safety questions arise when considering the maximum credible power output of the laser in a failure mode, or when multiple laser spots are focused onto the experiment simultaneously. Safety questions also arise when the focused laser spot size becomes very small, on the order of 100 {micro}m or less. This paper addresses these concerns by describing a methodology for determining safety margins for laser impingement on metal encased HE as well as one for bare HE. A variety of explosives encased in Al, Cu, Ta and stainless steel were tested using the first of these techniques. Additional experiments were performed using the second method where the laser beam was focused directly on eight different samples of pressed-powder HE.

  18. Modeling a Midlatitude Cyclone Impinging on Localized Orography

    Science.gov (United States)

    Menchaca, Maximo Q.

    Idealized studies of mountain waves have primarily focused on the steady state response to horizontally uniform flows encountering an obstacle. In this research, we extend previous studies of nonsteady mountain waves to examine their generation, propagation, and dissipation when forced by a midlatitude cyclone impinging on an isolated ridge. The cyclone is obtained by superimposing a localized finite amplitude potential vorticity anomaly on a baroclinically unstable jet. We minimize transient gravity waves with the use of a digital filter. Localized terrain is placed in an initially quiescent region of the flow, away from the initial PV anomaly. The maturing cyclone propagates towards the terrain, generating gravity waves exhibiting strong time dependent behavior that is affected by the changing flow. Significant wave genesis is tied to the passage of surface fronts and their accompanying jet streaks and stronger surface winds. Wave packets advect downstream after front passage, causing noticeable wave-mean flow interaction. Waves generated by cold fronts impinging on terrain are compared with mountain waves generated by warm fronts, allowing for exploration into the influence of directional shear on the waves. Mountain waves produced by warm fronts have shorter horizontal and vertical wavelength and do not propagate far from their source compared with mountain waves produced by cold fronts. These simulations also produce many other realistic features, including wave breaking and downslope windstorms.

  19. Impingement of hollow cone spray on hot porous medium

    Institute of Scientific and Technical Information of China (English)

    Zhiguo ZHAO; Maozhao XIE

    2008-01-01

    To have a good understanding of the formation of homogenous mixture in a porous medium engine, the interaction between hollow cone spray and hot porous med-ium was studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incor-porated with an impingement model, heat transfer model and linearized instability sheet atomization (LISA) model to simulate the hollow cone spray. The reasonability of the impingement model and heat transfer model was validated. With a simple model to describe the structure of the porous medium, the interaction between hollow cone spray and hot porous medium was simulated under different ambient pressures and spray cone angles. Computational results show that the fuel spray could be divided into smaller ones, which provides conditions for the quick evaporation of fuel droplets and the mixing of fuel vapor with air. Differences in ambient pressure and spray cone angle affect the distri-bution of droplets in the porous medium.

  20. Global mode decomposition of supersonic impinging jet noise

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  1. Nontraumatic glenohumeral instability and coracoacromial impingement in swimmers.

    Science.gov (United States)

    Bak, K

    1996-06-01

    Competitive swimming is one of the most demanding and time-consuming sports. Swimmers at elite level practice 20-30 h per week. During 1 year's practice, the average top level swimmer performs more than 500,000 stroke revolutions per arm. These innumerable repetitions over many years of hard training together with an increasing muscular imbalance around the shoulder girdle seem to be the main etiological factors in the development of the over-use syndrome swimmer's shoulder. Shoulder pain in swimmers has in general been regarded as synonymous with coracoacromial impingement, i.e. anterior shoulder pain due to rotator cuff tendinitis, but new knowledge suggests that a concomitant glenohumeral instability plays an additional role. The diagnostic complexity of the problem is as challenging as the search for the gold standard of treatment. The condition should ideally be diagnosed as early as possible, and intensive functional rehabilitation of the shoulder girdle including the scapular muscles should be started in order to restore muscle balance. The surgical possibilities include subacromial decompression in cases of purely mechanical impingement. If a painful glenohumeral instability persists after intensive functional rehabilitation, anterior capsulolabral reconstruction can be performed. Still, however, short- and long-term results show that surgery is less successful in elite athletes involved in overhead sports. Prevention protocols include education of coaches in primary injury prophylaxis and the institution of resistance strength training in prepubescent swimmers. Emphasis should be made to improve muscular balance around the glenohumeral and scapulothoracic joints.

  2. Sensitivity of air quality simulation to smoke plume rise

    Science.gov (United States)

    Yongqiang Liu; Gary Achtemeier; Scott Goodrick

    2008-01-01

    Plume rise is the height smoke plumes can reach. This information is needed by air quality models such as the Community Multiscale Air Quality (CMAQ) model to simulate physical and chemical processes of point-source fire emissions. This study seeks to understand the importance of plume rise to CMAQ air quality simulation of prescribed burning to plume rise. CMAQ...

  3. Characteristics of the Great Whale River plume

    Science.gov (United States)

    Ingram, R. Grant

    1981-03-01

    Observations of the motion field and dilution effects associated with the plume of Great Whale River in Hudson Bay are presented for both open water and ice-covered conditions. In the summer months a distinct plume of about 100 km2 in area is formed offshore which is characterized by a 1-2 m thickness and large velocities directed away from the river mouth in contrast to slower currents parallel to the shore in the ambient waters underneath. Surface drifter results suggest that the outer boundary of plume may be a zone of frontal convergence. Under ice-covered conditions the plume was significantly thicker and extended much farther offshore in spite of a marked reduction in river runoff at this time.

  4. Mantle plumes: Why the current skepticism?

    Institute of Scientific and Technical Information of China (English)

    Gillian R. Foulger

    2005-01-01

    The present reappraisal of the mantle plume hypothesis is perhaps the most exciting current debate in Earth science. Nevertheless, the fundamental reasons for why it has arisen are often not well understood. They are that 1) many observations do not agree with the predictions of the original model, 2) it is possible that convection of the sort required to generate thermal plumes in the Earth's mantle does not occur, 3) so many variants of the original model have been invoked to accommodate conflicting data that the plume hypthesis is in practice no longer testable, and 4) alternative models are viable, though these have been largely neglected by researchers. Regardless of the final outcome, the present vigorous debate is to be welcomed since it is likely to stimulate new discoveries in a way that unquestioning acceptance of the conventional plume model will not.

  5. Plume Diagnostics for Combustion Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. and Purdue University propose to develop a non-intrusive plume instrument capable of detecting and diagnosing combustion instability. This...

  6. Hydroxyl Tagging Velocimetry for Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the need for non-intrusive sensors for rocket plume properties, we propose a laser-based velocity diagnostic that does not require seeding, works in high...

  7. Novel plume deflection concept testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will explore the feasibility and effectiveness of utilizing an electrically driven thermal shield for use as part of rocket plume deflectors. To...

  8. Plume Ascent Tracker: Interactive Matlab software for analysis of ascending plumes in image data

    Science.gov (United States)

    Valade, S. A.; Harris, A. J. L.; Cerminara, M.

    2014-05-01

    This paper presents Matlab-based software designed to track and analyze an ascending plume as it rises above its source, in image data. It reads data recorded in various formats (video files, image files, or web-camera image streams), and at various wavelengths (infrared, visible, or ultra-violet). Using a set of filters which can be set interactively, the plume is first isolated from its background. A user-friendly interface then allows tracking of plume ascent and various parameters that characterize plume evolution during emission and ascent. These include records of plume height, velocity, acceleration, shape, volume, ash (fine-particle) loading, spreading rate, entrainment coefficient and inclination angle, as well as axial and radial profiles for radius and temperature (if data are radiometric). Image transformations (dilatation, rotation, resampling) can be performed to create new images with a vent-centered metric coordinate system. Applications may interest both plume observers (monitoring agencies) and modelers. For the first group, the software is capable of providing quantitative assessments of plume characteristics from image data, for post-event analysis or in near real-time analysis. For the second group, extracted data can serve as benchmarks for plume ascent models, and as inputs for cloud dispersal models. We here describe the software's tracking methodology and main graphical interfaces, using thermal infrared image data of an ascending volcanic ash plume at Santiaguito volcano.

  9. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  10. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Science.gov (United States)

    Jackson, R. H.; Shroyer, E. L.; Nash, J. D.; Sutherland, D. A.; Carroll, D.; Fried, M. J.; Catania, G. A.; Bartholomaus, T. C.; Stearns, L. A.

    2017-07-01

    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near-glacier measurements. Here we present a high-resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3-D structure and transport of a near-surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean-glacier models. Instead, the observations suggest a wider upwelling plume—a "truncated" line plume of ˜200 m width—with higher entrainment and plume-driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.

  11. STRATAFORM Plume Study: Analysis and Modeling

    Science.gov (United States)

    1999-09-30

    of settling is explained by the variation of plume speed, rather than by variations in settling velocity (Hill et al., submitted). Floculation is an...mouth. However, the fraction of floculated sediment does not vary as much as expected with changes in forcing conditions. There do appear to be large...differences in the floculation rate between the extreme flood conditions of 1997 and the more moderate floods of 1998. The detailed examination of plume

  12. Rocket plume tomography of combustion species

    OpenAIRE

    2001-01-01

    Interest in accurate detection and targeting of aggressor missiles has received considerable interest with the national priority of developing a missile defense system. Understanding the thermal signatures of the exhaust plumes of such missiles is key to accomplishing that mission. Before signature models can be precisely developed for specific rockets, the radiation of the molecular or combustion species within those plumes must be accurately predicted. A combination translation / rotation s...

  13. OPAD data analysis. [Optical Plumes Anomaly Detection

    Science.gov (United States)

    Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.

    1993-01-01

    Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.

  14. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    Science.gov (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  15. Multiple impinging jet arrays. An experimental study on flow and heat transfer

    NARCIS (Netherlands)

    Geers, L.F.G.

    2004-01-01

    Because of their high efficiency and their ability to provide high heat transfer rates, impinging jets are applied for rapid cooling and heating in a wide variety of industrial processes. However, the physical phenomena controlling the heat transfer from impinging jets are to a large degree unknown.

  16. Investigation of heat transfer processes involved liquid impingement jets: a review

    Directory of Open Access Journals (Sweden)

    M. Molana

    2013-09-01

    Full Text Available This review reports research on liquid impingement jets and the abilities, limitations and features of this method of heat transfer. Some available and important correlations for Nusselt number are collected here. Also we demonstrate the capability of nanofluids to be applied in heat transfer processes involved liquid impingement jets.

  17. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Science.gov (United States)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  18. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement

    Directory of Open Access Journals (Sweden)

    Su Zhong-Gen

    2015-01-01

    Full Text Available To improve the heat-transfer performance of a diesel-engine cylinder head, nanofluid coolant as a new fluid was investigated, and jet impingement technology was then used to study on how to better improve heat-transfer coefficient at the nose bridge area in the diesel-engine cylinder head. Computational fluid dynamic simulation and experiments results demonstrated that using the same jet impingement parameters, the different volume shares of nanofluids showed better cooling effect than traditional coolant, but the good effect of the new cooling method was unsuitable for high volume share of nanofluid. At the same volume share of nanofluid, different jet impingement parameters such as jet angles showed different heat-transfer performance. This result implies that a strong association exists between jet impingement parameters and heat-transfer coefficient. The increase in coolant viscosity of the nanofluid coolant using jet impingement requires the expense of more drive-power cost.

  19. Methods for obtaining and reducing experimental droplet impingement data on arbitrary bodies

    Science.gov (United States)

    Papadakis, Michael; Elangovan, R.; Freund, George A., Jr.; Breer, Marlin D.

    1991-01-01

    Experimental water droplet impingement data are used to validate particle trajectory computer codes used in the analysis and certification of aircraft de-icing/anti-icing systems. Water droplet impingement characteristics of aerodynamic surfaces are usually obtained from wind-tunnel dye tracer experiments. This paper presents a dye tracer method for measuring water droplet impingement characteristics on arbitrary geometries and a new data reduction method, based on laser reflectance measurements, for extracting impingement data. Extraction of impingement data has been a very time-consuming process in the past. The new data reduction method developed is at least an order of magnitude more efficient than the method previously used. The accuracy of the method is discussed and results obtained are presented.

  20. Immunohistological analysis of extracted anterior cruciate ligament graft impinged against posterior cruciate ligament

    Directory of Open Access Journals (Sweden)

    Kato So

    2011-11-01

    Full Text Available Abstract A young female athlete suffered from the residual instability of the knee after anterior cruciate ligament (ACL reconstruction with hamstring autograft. The 3-dimensional (3-D CT scan showed the "high noon" positioning of the primary femoral bone tunnel. The revision surgery with anatomic double-bundle technique was performed two years after the primary surgery and the femoral tunnels were created with the assistance of the 3-D fluoroscopy-based navigation. An arthroscopic examination confirmed the ACL graft impingement against posterior cruciate ligament (PCL when the knee was deeply flexed. The histological analysis of the resected primary ACL graft showed local inflammatory infiltration, enhanced synovial coverage and vascularization at the impinged site. The enhanced expression of vascular endothelial growth factor (VEGF at the impinged area when compared with non-impinged area was observed on immunohistochemical analysis. Abnormal mechanical stress by the impingement against PCL might have induced chronic inflammation and VEGF overexpression.

  1. Aerosol optical thickness of Mt. Etna volcanic plume retrieved by means of the Airborne Multispectral Imaging Spectrometer (MIVIS

    Directory of Open Access Journals (Sweden)

    L. Merucci

    2003-06-01

    Full Text Available Within the framework of the European MVRRS project (Mitigation of Volcanic Risk by Remote Sensing Techniques, in June 1997 an airborne campaign was organised on Mt. Etna to study different characteristics of the volcanic plume emitted by the summit craters in quiescent conditions. Digital images were collected with the Airborne Multispectral Imaging Spectrometer (MIVIS, together with ground-based measurements. MIVIS images were used to calculate the aerosol optical thickness of the volcanic plume. For this purpose, an inversion algorithm was developed based on radiative transfer equations and applied to the upwelling radiance data measured by the sensor. This article presents the preliminary results from this inversion method. One image was selected following the criteria of concomitant atmospheric ground-based measurements necessary to model the atmosphere, plume centrality in the scene to analyse the largest plume area and cloudless conditions. The selected image was calibrated in radiance and geometrically corrected. The 6S (Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model was used to invert the radiative transfer equation and derive the aerosol optical thickness. The inversion procedure takes into account both the spectral albedo of the surface under the plume and the topographic effects on the refl ected radiance, due to the surface orientation and elevation. The result of the inversion procedure is the spatial distribution of the plume optical depth. An average value of 0.1 in the wavelength range 454-474 nm was found for the selected measurement day.

  2. A global sensitivity analysis of the PlumeRise model of volcanic plumes

    Science.gov (United States)

    Woodhouse, Mark J.; Hogg, Andrew J.; Phillips, Jeremy C.

    2016-10-01

    Integral models of volcanic plumes allow predictions of plume dynamics to be made and the rapid estimation of volcanic source conditions from observations of the plume height by model inversion. Here we introduce PlumeRise, an integral model of volcanic plumes that incorporates a description of the state of the atmosphere, includes the effects of wind and the phase change of water, and has been developed as a freely available web-based tool. The model can be used to estimate the height of a volcanic plume when the source conditions are specified, or to infer the strength of the source from an observed plume height through a model inversion. The predictions of the volcanic plume dynamics produced by the model are analysed in four case studies in which the atmospheric conditions and the strength of the source are varied. A global sensitivity analysis of the model to a selection of model inputs is performed and the results are analysed using parallel coordinate plots for visualisation and variance-based sensitivity indices to quantify the sensitivity of model outputs. We find that if the atmospheric conditions do not vary widely then there is a small set of model inputs that strongly influence the model predictions. When estimating the height of the plume, the source mass flux has a controlling influence on the model prediction, while variations in the plume height strongly effect the inferred value of the source mass flux when performing inversion studies. The values taken for the entrainment coefficients have a particularly important effect on the quantitative predictions. The dependencies of the model outputs to variations in the inputs are discussed and compared to simple algebraic expressions that relate source conditions to the height of the plume.

  3. Heat transfer due to impinging double free circular jets

    Directory of Open Access Journals (Sweden)

    Mohamed A. Teamah

    2015-09-01

    Full Text Available The heat transfer and fluid flow between a horizontal heated plate and impinging circular double jets were studied experimentally. The parameters investigated are the Reynolds number of each jet and jet-to-jet spacing. Experiments are carried out covering a range for Reynolds number from 7100 to 30,800 for each jet, the dimensionless jet-to-jet spacing from 22.73 to 90.1. During experimental phases, the right jet Reynolds number was higher than the left jet Reynolds number. The isothermal contours were plotted for different cases as well as the distribution of water film thickness over the heated plate. The results indicated that increasing the Reynolds number of one jet than the other increases both local and average Nusselt numbers. In addition, increasing the jet-to-jet spacing at the same Reynolds number increases the average Nusselt number.

  4. Radiologic analysis of femoral acetabular impingement: from radiography to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [University of California at San Diego, Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); San Diego Imaging, San Diego, CA (United States); Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2013-03-15

    Femoral acetabular impingement is a set of morphologic abnormalities that are considered to be a major cause of degenerative disease in the hip joint. Early changes are already present in adolescence when it is the pediatric radiologist who must assess current damage with the aim of averting progression to more severe and debilitating osteoarthritis. A multimodality approach is used for diagnosis, that includes conventional radiography and CT to assess the osseous structures. MR arthrography is the primary advanced imaging modality for assessment of morphologic changes as well as injuries of the labrum and articular cartilage. Details of radiologic imaging are offered to guide the radiologist and provide an avenue for the accurate description of the osseous and articular alterations and injury. (orig.)

  5. The etiology of primary femoroacetabular impingement: genetics or acquired deformity?

    Science.gov (United States)

    Packer, Jonathan D; Safran, Marc R

    2015-10-01

    The etiology of primary femoroacetabular impingement (FAI) remains controversial. Both genetic and acquired causes have been postulated and studied. While recent studies suggest that genetic factors may have a role in the development of FAI, there is no conclusive evidence that FAI is transmitted genetically. Currently, the most popular theory for the development of cam-type deformities is that a repetitive injury to the proximal femoral physis occurs during a critical period of development. There is a correlation between a high volume of impact activities during adolescence and the development of cam-type deformities. Multiple studies have found a high prevalence of FAI in elite football, ice hockey, basketball and soccer players. In this article, we review the current literature relating to the etiology of primary FAI.

  6. The etiology of primary femoroacetabular impingement: genetics or acquired deformity?

    Science.gov (United States)

    Packer, Jonathan D.; Safran, Marc R.

    2015-01-01

    The etiology of primary femoroacetabular impingement (FAI) remains controversial. Both genetic and acquired causes have been postulated and studied. While recent studies suggest that genetic factors may have a role in the development of FAI, there is no conclusive evidence that FAI is transmitted genetically. Currently, the most popular theory for the development of cam-type deformities is that a repetitive injury to the proximal femoral physis occurs during a critical period of development. There is a correlation between a high volume of impact activities during adolescence and the development of cam-type deformities. Multiple studies have found a high prevalence of FAI in elite football, ice hockey, basketball and soccer players. In this article, we review the current literature relating to the etiology of primary FAI. PMID:27011846

  7. Turbulent heat transport and its anisotropy in an impinging jet

    Directory of Open Access Journals (Sweden)

    Petera Karel

    2015-01-01

    Full Text Available The turbulent heat transport is anisotropic in many cases as reported by several researchers. RANS-based turbulence models use the turbulent viscosity when expressing the turbulent heat flux in the energy balance (analogy of the Reynolds stresses in the momentum balance. The turbulent (eddy viscosity calculation comes from the Boussinesq analogy mainly and it represents just a scalar value, hence a possible anisotropy in the turbulent flow field cannot be simply transferred to the temperature field. The computational cost of a LES-based approach can be too prohibitive in complex cases, therefore simpler explicit algebraic heat flux models describing the turbulent heat flux in the time-averaged energy equation could be used to get more accurate CFD results. This paper compares several turbulence models for the case of a turbulent impinging jet and deals with a methodology of implementing a user-defined function describing the anisotropic turbulent heat flux in a CFD code.

  8. Thermal Characterization of porous graphitic foam ? convection in impinging flow

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, K [University of Western Ontario, The; DeGroot, CT [University of Western Ontario, The; Straatman, Anthony G [ORNL; Gallego, Nidia C [ORNL; Hangan, H [University of Western Ontario, The

    2009-01-01

    An experimental study has been undertaken to explore the convective heat transfer enhancement that can be achieved in an impinging airflow arrangement by bonding layers of graphitic foam to a heated metal substrate. The effects of foam protrusion, foam thickness and foam properties were explored in this study. The results show that surfaces with a layer of foam protruding upward with open edges had the highest convective enhancement over that of the bare substrate under the same conditions. For the protruding cases, convective enhancements of 30-70% were observed for airflows ranging from 7-11 m/s, for foam thicknesses in the range 2-10 mm. The highest enhancements were observed for foam specimens with the most open, interconnected void structure.

  9. Current concepts in the diagnosis and treatment of shoulder impingement

    Directory of Open Access Journals (Sweden)

    Bijayendra Singh

    2017-01-01

    Full Text Available Subacromial impingement syndrome (SIS is a very common cause of shoulder pain in the young adults. It can cause debilitating pain, dysfunction, and affects the activities of daily living. It represents a spectrum of pathology ranging from bursitis to rotator cuff tendinopathy which can ultimately lead to degenerative tear of the rotator cuff. Various theories and concepts have been described and it is still a matter of debate. However, most published studies suggest that both extrinsic and intrinsic factors have a role in the development of SIS. The management is controversial as both nonoperative and operative treatments have shown to provide good results. This article aims to provide a comprehensive current concepts review of the pathogenesis, etiologies, clinical diagnosis, appropriate use of investigations, and discussion on the management of SIS.

  10. Large Eddy Simulation of Coherent Structure of Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    Mingzhou YU; Lihua CHEN; Hanhui JIN; Jianren FAN

    2005-01-01

    @@ The flow field of a rectangular exit, semi-confined and submerged turbulent jet impinging orthogonally on a flat plate with Reynolds number 8500 was studied by large eddy simulation (LES). A dynamic sub-grid stress model has been used for the small scales of turbulence. The evolvements such as the forming, developing, moving,pairing and merging of the coherent structures of vortex in the whole regions were obtained. The results revealed that the primary vortex structures were generated periodically, which was the key factor to make the secondary vortices generate in the wall jet region. In addition, the eddy intensity of the primary vortices and the secondary vortices induced by the primary vortices along with the time were also analyzed.

  11. Study on the breakup length of circular impinging jet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carried out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.

  12. Heat transfer and phase change in an impinging droplet

    Science.gov (United States)

    Rangchian, Aysan; Shirazi, Nikki L.; Kavehpour, H. Pirouz

    2016-11-01

    Non isothermal droplet impact on solid surfaces has several industrial applications such as spray cooling and 3D printing. Impinging of a droplet on a surface involves an initial phase of spreading followed by a subsequent return to the equilibrium shape. Thermal energy exchanged within the droplet fluid as well as between liquid/solid during the impact has been studied using an ultra high speed infrared camera. Variable parameters in the experiment include droplet temperature and kinetic energy of the droplet during the impact. The evolution of droplet shape viewed by IR camera is similar to what previously observed by high speed photography. The thermal map of droplet over time in these experiments agrees with previously reported numerical simulation. In addition, spacial and temporal temperature variations of liquid droplets on a surface as they solidify are presented. IR camera provides an accurate temperature diagram as the phase change occurs, which is essential for understanding the physics of 3D printing.

  13. Muscle impingement: MR imaging of a painful complication of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Uri, D.S. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Dalinka, M.K. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Kneeland, J.B. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    1996-10-01

    The purpose of this study was to describe the magnetic resonance (MR) appearance of a newly recognized complication of osteochondromas. Two patients presented with pain and swelling over known osteochondromas. Plain radiographic studies were unrevealing. MR examinations were obtained to characterize the exostoses further and evaluate areas of palpable fullness. Increased signal was present in the muscles on T2-weighted images, which correlated with physical findings and was believed to represent muscle injury due to the osteochondroma. Pain and fullness may result from a number of osteochondroma-related complications, the most worrisome of which is malignant degeneration. Muscular impingement and injury should be considered in the differential diagnosis of pain and swelling in the region of an exostosis. MR imaging allows distinction of this entity, which may be radiographically occult and confused clinically with fracture, bursitis, or malignant degeneration. (orig.). With 2 figs.

  14. The Use of Physiotherapy among Patients with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Christiansen, David Høyrup; Frost, Poul; Frich, Lars Henrik

    2016-01-01

    BACKGROUND: Physiotherapy with exercises is generally recommended in the treatment of patients with subacromial impingement syndrome (SIS). OBJECTIVE: We aimed to investigate the use of physiotherapy in patients with SIS in Danish hospital settings as part of initial non-surgical treatment...... and after SIS-related surgery and to evaluate to which extent sex, socio-demographic and clinical factors predict the use of physiotherapy. METHODS: Using national health registers, we identified 57,311 patients who had a first hospital contact with a diagnosis of ICD-10, groups M75.1-75.9, 1 July 2007...... to 30 June 2011. Records of physiotherapy were extracted within 52 weeks after first contact (or until surgery), and for surgically treated patients within 26 weeks after surgery. Predictors of the use of physiotherapy after first contact and after surgery were analysed as time-to-event. RESULTS: Within...

  15. Trace Element Distributions and Size Fractionation in the Edmond Hydrothermal Plume, Central Indian Ridge

    Science.gov (United States)

    Sands, C. M.; Connelly, D. P.; Green, D.; German, C. R.; Statham, P. J.; Gallant, R.; von Damm, K.

    2004-12-01

    Because cycling of the entire ocean volume through hydrothermal plumes is rapid relative to thermohaline circulation (order 103 years), understanding the processes active within these plumes is crucial if we are to assess their impact on global geochemical cycles. Preliminary results from hydrothermal plume particle analyses at the Kairei and Edmond systems (Indian Ocean) have indicated that key processes, previously identified to be important in the Atlantic Ocean, also appear broadly applicable to the Indian Ocean. This was not immediately expected because parallel work has shown that the rate of dissolved iron (II) oxidation in hydrothermal plumes decreases systematically from the Atlantic to the Indian and Pacific Oceans. Here, we examine dissolved-particulate trace metal distributions in greater detail within one Indian Ocean plume (Edmond), together with the complementary vent-fluid data, to investigate these processes further. Upon oxidation, dissolved iron (II) initially forms colloidal iron (III) which then aggregates to form particulate iron (III) - the oxyhydroxide particles which apparently co-precipitate and adsorb dissolved metals from the surrounding seawater. What has remained unstudied, however, is the role that colloidal rather than aggregated particulate Fe may play in these systems. To investigate this we have combined studies of large-volume plume-particle samples (1.0μ m filters) with a series of dissolved, colloidal and finer-grained particles collected using a CTD-rosette. Here, we will discuss the distributions of Fe and the relative fractionations of Mn, Cu (representative of the chalcophile elements) and P (representative of the oxyanions) within and between different hydrothermal "pools": dissolved, colloidal, fine particles and coarse particles as determined from filtration through 0.1, 0.4 and 1.0μ m filters.

  16. Sulfur chemistry in a copper smelter plume

    Science.gov (United States)

    Eatough, D. J.; Christensen, J. J.; Eatough, N. I.; Hill, M. W.; Major, T. D.; Mangelson, N. F.; Post, M. E.; Ryder, J. F.; Hansen, L. D.; Meisenheimer, R. G.; Fischer, J. W.

    Sulfur transformation chemistry was studied in the plume of the Utah smelter of Kennecott Copper Corporation from April to October 1977. Samples were taken at up to four locations from 4 to 60 km from the stacks. Data collected at each station included: SO 2 concentration, low-volume collected total paniculate matter, high-volume collected size fractionated paniculate matter, wind velocity and direction, temperature, and relative humidity. Paniculate samples were analyzed for S(IV). sulfate, strong acid, anions, cations, and elemental concentrations using calorimetric, ion Chromatographie, FIXE, ESCA, ion microprobe, and SEM-ion microprobe techniques. The concentration of As in the paniculate matter was used as a conservative plume tracer. The ratios Mo/As, Pb/As, and Zn/As were constant in particulate matter collected at all sampling sites for any particle size. Strong mineral acid was neutralized by background metal oxide and/or carbonate particulates within 40km of the smelter. This neutralization process is limited only by the rate of incorporation of basic material into the plume. Two distinct metal-S(IV) species similar to those observed in laboratory aerosol experiments were found in the plume. The formation of paniculate S(IV) species occurs by interaction of SO 2 (g) with both ambient and plume derived aerosol and is equilibrium controlled. The extent of formation of S(IV) complexes in the aerosol is directly proportional to the SO 2(g) and paniculate (Cu + Fe) concentration and inversely proportional to the paniculate acidity. S(IV) species were stable in collected paniculate matter only in the neutralized material, but with proper sampling techniques could be demonstrated to also be present in very acidic particles at high ambient SO 2(g) concentrations. Reduction of arsenate to arsenite by the aerosol S(IV) complexes during plume transport is suggested. The SO 2(g)-sulfate conversion process in the plume is described by a mechanism which is first order

  17. A simple confined impingement jets mixer for flash nanoprecipitation.

    Science.gov (United States)

    Han, Jing; Zhu, Zhengxi; Qian, Haitao; Wohl, Adam R; Beaman, Charles J; Hoye, Thomas R; Macosko, Christopher W

    2012-10-01

    Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow hand operation, eliminating the need for a syringe pump, and we added a second antisolvent dilution stage. Impingement mixing requires equal flow momentum from two opposing jets, one containing the drug in organic solvent and the other containing an antisolvent, typically water. The subsequent dilution step in the new design allows rapid quenching with high antisolvent concentration that enhances nanoparticle stability. This new CIJ with dilution (CIJ-D) mixer is a simple, cheap, and efficient device to produce nanoparticles. We have made 55 nm diameter β-carotene nanoparticles using the CIJ-D mixer. They are stable and reproducible in terms of particle size and distribution. We have also compared the performance of our CIJ-D mixer with the vortex mixer, which can operate at unequal flow rates (Liu et al., 2008. Chem Eng Sci 63:2829-2842), to make β-carotene-containing particles over a series of turbulent conditions. On the basis of dynamic light scattering measurements, the new CIJ-D mixer produces stable particles of a size similar to the vortex mixer. Our CIJ-D design requires less volume and provides an easily operated and inexpensive tool to produce nanoparticles via FNP and to evaluate new nanoparticle formulation. Copyright © 2012 Wiley Periodicals, Inc.

  18. Microbial populations in contaminant plumes

    Science.gov (United States)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  19. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  20. Coronal Plumes in the Fast Solar Wind

    Science.gov (United States)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  1. Molecular Characterization of Articular Cartilage from Young Adults with Femoroacetabular Impingement

    Science.gov (United States)

    Hashimoto, Shingo; Rai, Muhammad Farooq; Gill, Corey S.; Zhang, Zhiqi; Sandell, Linda J.; Clohisy, John C.

    2013-01-01

    Background: Femoroacetabular impingement is a frequent cause of hip pain and may lead to secondary osteoarthritis, yet little is known about the molecular events linking mechanical hip impingement and articular cartilage degeneration. The first goal of this study was to quantify the expression of inflammatory cytokine and chemokine, matrix-degrading, and extracellular matrix genes in articular cartilage harvested from control hips and hips with femoroacetabular impingement and end-stage osteoarthritis. The second goal was to analyze the relative expression of these genes in articular cartilage harvested at various stages of osteoarthritis. Methods: Cartilage samples were obtained from thirty-two hips undergoing hip preservation surgery for femoroacetabular impingement or hip arthroplasty. Three control cartilage samples were also analyzed. Specimens were graded intraoperatively with regard to the severity of cartilage damage, the radiographic osteoarthritis grade was recorded, and quantitative RT-PCR (real-time polymerase chain reaction) was performed to determine relative gene expression. Results: Except for interleukin-1β (IL-1β) and CXCL2, the mRNA (messenger RNA) expression of all other chemokine (IL-8, CXCL1, CXCL3, CXCL6, CCL3, and CCL3L1), matrix-degrading (matrix metalloproteinase [MMP]-13 and ADAMTS-4), and structural matrix (COL2A1 [collagen, type II, alpha] and ACAN [aggregan]) genes was higher overall in cartilage from hips with femoroacetabular impingement compared with hips with osteoarthritis and normal controls. The differences reached significance (p ≤ 0.05) for seven of these ten quantified genes, with CXCL3, CXCL6, and COL2A1 being elevated in the femoroacetabular impingement group compared with only the control group and IL-8, CCL3L1, ADAMTS-4, and ACAN being elevated compared with both the osteoarthritis and control groups. When samples were grouped according to the stage of the degenerative cascade, mRNA expression was relatively higher in

  2. Wind-Forced Baroclinic Beta-Plumes

    Science.gov (United States)

    Belmadani, A.; Maximenko, N. A.; Melnichenko, O.; Schneider, N.; Di Lorenzo, E.

    2011-12-01

    A planetary beta-plume is a classical example of oceanic circulation induced by a localized vorticity source or sink that allows an analytical description in simplistic cases. Its barotropic structure is a zonally-elongated, gyre-like cell governed by the Sverdrup circulation on the beta-plane. The dominant zonal currents, found west of the source/sink, are often referred to as zonal jets. This simple picture describes the depth-integrated flow. Previous studies have investigated beta-plumes in a reduced-gravity framework or using other simple models with a small number of vertical layers, thereby lacking representation of the vertical structure. In addition, most previous studies use a purely linear regime without considering the role of eddies. However, these jets are often associated with strong lateral shear that makes them unstable under increased forcing. The circulation in such a nonlinear regime may involve eddy-mean flow interactions, which modify the time-averaged circulation. Here, the baroclinic structures of linear and nonlinear wind-forced beta-plumes are studied using a continuously-stratified, primitive equation, eddy-permitting ocean model (ROMS). The model is configured in an idealized rectangular domain for the subtropical ocean with a flat bottom. The surface wind forcing is a steady anticyclonic Gaussian wind vortex, which provides a localized vorticity source in the center of the domain. The associated wind stress curl and Ekman pumping comprise downwelling in the vortex center surrounded by a ring of weaker upwelling. Under weak forcing, the simulated steady-state circulation corresponds well with a theoretical linear beta-plume. While its depth-integrated transport exhibits a set of zonal jets, consistent with Sverdrup theory, the baroclinic structure of the plume is remarkably complex. Relatively fast westward decay of the surface currents occurs simultaneously with the deepening of the lower boundary of the plume. This deepening suggests

  3. Confirmation of Water Plumes on Europa

    Science.gov (United States)

    Sparks, William

    Evidence was found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014a) - FUV detection of off-limb line emission from the dissociation products of water. We find additional evidence for the presence of ice plumes on Europa from HST transit imaging observations (Sparks et al 2016). The evidence for plumes remains marginal, 4-sigma, and there is considerable debate as to their reality. SOFIA can potentially resolve this issue with an unambiguous direct detection of water vapor using EXES. Detection of the fundamental vibrational mode of water vapor at 6 micron, as opposed to the atomic constituents of water, would prove that the plumes exist and inform us of their physical chemistry through quantitative consideration of the balance between water vapor and its dissociation products, hydrogen and oxygen. We propose to obtain spectra of the leading and trailing hemispheres separately, with trailing as the higher priority. These provide two very different physical environments and plausibly different degrees of activity. If the plumes of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System, and clarify an issue of major strategic importance in NASAs planning for its multi-billion dollar mission to Europa.

  4. Modelling of aerosol processes in plumes

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G. [Norwegian Institute of Air Research, Kjeller (Norway)

    2001-07-01

    A modelling platform for studying photochemical gaseous and aerosol phase processes from localized (e.g., point) sources has been presented. The current approach employs a reactive plume model which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, nitrate, ammonium material of aerosols are treated and attributed to the PM size distribution. A modified version of the carbon bond IV chemical mechanism is included to model the formation of organic aerosol. Aerosol dynamics modeled include mechanisms of nucleation, condensation, dry deposition and gas/particle partitioning of organic matter. The model is first applied to a number of case studies involving emissions from point sources and sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions. In addition, the model is compared with field data from power plant plumes with satisfactory predictions against gaseous species and total sulphate mass measurements. Finally, the plume model is applied to study secondary organic matter formation due to various emission categories such as vehicles and the oil production sector.

  5. Intermittent heat instabilities in an air plume

    Science.gov (United States)

    Le Mouël, Jean-Louis; Kossobokov, Vladimir G.; Perrier, Frederic; Morat, Pierre

    2016-08-01

    We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.

  6. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    Kuchimanchi K Bharadwaj; Debopam Das; Pavan K Sharma

    2015-05-01

    Puffing and entrainment characteristics of helium plumes emanating out into ambient air from a circular orifice are investigated in the present study. Velocity and density fields are measured across a diametric plane using Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) respectively in phase resolved manner. Experiments are performed in Froude numbers range 0.2–0.4 and for Reynolds numbers 58–248. Puffing frequency measurements reveal that the plume puffing frequencies are insensitive to the plume exit conditions, since the instability is buoyancy driven. The frequencies obtained in the present case are in agreement with frequencies obtained by Cetegen & Kasper (1996) for plumes originating from circular nozzles of various L/D ratios. Velocity and density measurements reveal that toroidal vortex formed during a puffing cycle entrains ambient air as it traverses downstream and this periodic engulfment governs the entrainment mechanism in pulsating plumes. The obtained velocity and density fields are used to calculate mass entrainment rates. It is revealed that though the flow is unsteady, the contribution of unsteady term in mass conservation to entrainment is negligible, and it becomes zero over a puff cycle. Finally, an empirical relation for variation of mass entrainment with height has been proposed, in which the non-dimensional mass entrainment is found to follow a power law with the non-dimensional height.

  7. Mantle plumes in the vicinity of subduction zones

    Science.gov (United States)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  8. Biomass and number of fish impinged at a nuclear power plant by the Baltic Sea.

    Science.gov (United States)

    Bryhn, Andreas C; Bergenius, Mikaela A J; Dimberg, Peter H; Adill, Anders

    2013-12-01

    The main aim of this study was to investigate the number and biomass of impinged fish at Forsmark Nuclear Power Plant in Sweden, located on the coast of the Baltic Sea. Of particular interest was the number of impinged individuals of the critically endangered European eel (Anguilla anguilla) which is regularly caught in the cooling system. Another aim was to determine the comparability of the results from Forsmark and results from impingement studies in other types of waters. Cross-systems studies make it possible to (1) estimate fish loss at plants where fish is not counted, and (2) to predict changes in fish loss from changes in electricity production or cooling water use. In 2010, 31,300,000 fish with a total biomass of 62,600 kg were impinged at Forsmark. In 2011, 27,300,000 fish weighing 38,500 kg were impinged. The maximum peak in total fish number and biomass occurred in spring. The most critical period for herring was in late summer and early autumn. Regarding eel, the largest impingement losses were recorded in November. The number of fish agreed with earlier established quantities of impinged fish in both freshwater and marine ecosystems. The study also estimated that 1,300 critically endangered eels could survive at Forsmark each year if a fish return system would be constructed to allow the passage of fish from the plant back to the Baltic Sea.

  9. A Single Parameter to Characterize Wall Shear Stress Developed from an Underexpanded Axisymmetric Impinging Jet

    Science.gov (United States)

    Fillingham, Patrick; Murali, Harikrishnan

    2016-11-01

    Wall shear stress is characterized for underexpanded axisymmetric impinging jets for the application of aerodynamic particle resuspension from a surface. Analysis of the flow field and the wall shear stress resulted from normally impinging axisymmetric jets is conducted using Computational Fluid Dynamics. A normally impinging jet is modeled with a constant area nozzle, while varying height to diameter ratio (H/D) and inlet pressures. Schlieren photography is used to visualize the density gradient of the flow field for validation of the CFD. The Dimensionless Jet Parameter (DJP) is developed to describe flow regimes and characterize the shear stress. The DJP is defined as being proportional to the jet pressure ratio divided by the H/D ratio squared. Maximum wall shear stress is examined as a function of DJP with three distinct regimes: (i) subsonic impingement (DJP2). Due to the jet energy dissipation in shock structures, which become a dominant dissipation mechanism in the supersonic impingement regime, wall shear stress is limited to a finite value. Additionally, formation of shock structures in the wall flow were observed for DJP>2 resulting in difficulties with dimensionless analysis. In the subsonic impingement and transitional regimes equations as a function of the DJP are obtained for the maximum wall shear stress magnitude, maximum shear stress location, and shear stress decay. Using these relationships wall shear stress can be predicted at all locations along the impingement surface.

  10. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  11. How "healthy" is circuit resistance training following paraplegia? Kinematic analysis associated with shoulder mechanical impingement risk

    Directory of Open Access Journals (Sweden)

    Deborah A. Nawoczenski, PT, PhD

    2013-08-01

    Full Text Available The purpose of the study was to determine whether wheelchair-based circuit resistance training (CRT exercises place the shoulder at risk for mechanical impingement. Using a novel approach, we created a mechanical impingement risk score for each exercise by combining scapular and glenohumeral kinematic and exposure data. In a case series design, 18 individuals (25–76 yr old with paraplegia and without substantial shoulder pain participated. The mean mechanical impingement risk scores at 45–60 degrees humerothoracic elevation were rank-ordered from lowest to highest risk as per subacromial mechanical impingement risk: overhead press (0.6 +/– 0.5 points, lat pulldown (1.2 +/– 0.5 points, chest press (2.4 +/– 2.8 points, row (2.7 +/– 1.6 points, and rickshaw (3.4 +/– 2.3 points. The mean mechanical impingement risk scores at 105–120 degrees humerothoracic elevation were rank-ordered from lowest to highest risk as per internal mechanical impingement risk: lat pulldown (1.2 +/– 0.5 points and overhead press (1.3 +/– 0.5 points. In conclusion, mechanical impingement risk scores provided a mechanism to capture risk associated with CRT. The rickshaw had the highest subacromial mechanical risk, whereas the overhead press and lat pulldown had the highest internal mechanical impingement risk. The rickshaw was highlighted as the most concerning exercise because it had the greatest combination of magnitude and exposure corresponding with increased subacromial mechanical impingement risk.

  12. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian

  13. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    Science.gov (United States)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image

  14. Numerical Analysis of the Flow Field of an Inclined Turbulent Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-jing

    2013-01-01

    A three-dimensional numerical study has been applied to examine the effects of impinging angle of incline impinging jet on heat transfer and flow field characteristic. Other parameters such as nozzle to plate distance and jet velocity and temperature are also examined to investigate their influences on jet flow. The impinging angle in range of 900-650, the nozzle exit-to-plate spacing (H/D) in range of 2 to 10, the Reynolds number in range of 1.27x102 to 1.27x104 and the jet temperature in range of 323K to 773K have been considered in this project.

  15. Simple model of a cooling tower plume

    Science.gov (United States)

    Jan, Cizek; Jiri, Nozicka

    2016-06-01

    This article discusses the possibilities in the area of modeling of the so called cooling tower plume emergent at operating evaporating cooling systems. As opposed to recent publication, this text focuses on the possibilities of a simplified analytic description of the whole problem where this description shall - in the future - form the base of a calculation algorithms enabling to simulate the efficiency of systems reducing this cooling tower plume. The procedure is based on the application of basic formula for the calculation of the velocity and concentration fields in the area above the cooling tower. These calculation is then used to determine the form and the total volume of the plume. Although this approach does not offer more exact results, it can provide a basic understanding of the impact of individual quantities relating to this problem.

  16. A collisionless plasma thruster plume expansion model

    Science.gov (United States)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  17. Numerical and approximate solutions for plume rise

    Science.gov (United States)

    Krishnamurthy, Ramesh; Gordon Hall, J.

    Numerical and approximate analytical solutions are compared for turbulent plume rise in a crosswind. The numerical solutions were calculated using the plume rise model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass.19, 585-590), over a wide range of pertinent parameters. Some wind shear and elevated inversion effects are included. The numerical solutions are seen to agree with the approximate solutions over a fairly wide range of the parameters. For the conditions considered in the study, wind shear effects are seen to be quite small. A limited study was made of the penetration of elevated inversions by plumes. The results indicate the adequacy of a simple criterion proposed by Briggs (1969, AEC Critical Review Series, USAEC Division of Technical Information extension, Oak Ridge, Tennesse).

  18. Modeling the Enceladus plume--plasma interaction

    CERN Document Server

    Fleshman, B L; Bagenal, F

    2010-01-01

    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.

  19. Can Bracing Affect Altered Gait Patterns in Femoroacetabular Impingement

    Science.gov (United States)

    Safran, Marc R.; Rylander, Jonathan; Shu, Beatrice; Andriacchi, Thomas P.

    2013-01-01

    Objectives: Altered gait patterns have been identified in patients with Femoroacetabular impingement (FAI), a 2nd order reversal in mid stance, that has been shown to be corrected with arthroscopic FAI surgery. Currently, most feel there is no adequate conservative treatment for this malady. The goal of this study is to determine if the gait abnormalities seen with femoroacetabular impingement (FAI) can be modified with bracing. Methods: Eight individuals (4 Male, 34.5 ± 12.8 y.o., 24.0±2.3 BMI) who were diagnosed with FAI after reporting to clinic with groin pain were enrolled in this study. The study was approved by the University Internal Review Board before participants were enrolled. History, clinical exam, and imaging including an AP pelvis and cross table lateral radiograph of the affected hip and MR-arthrogram of the affected hip were utilized to make the diagnosis. Participants who enrolled had primarily unilateral hip symptoms, had positive impingement and labral stress tests on the affected side and were free of other lower extremity, back, and spine disorders. Three dimensional lower limb kinematics were collected using a camera and forceplate system with the subjects wearing reflective markers on anatomical landmarks. Participants were tested prior to surgery. Hip kinematics were collected for the symptomatic limb while the patients walked at a self selected normal walking speed, slowly jogged, and ascended a two stair setup. Three trials for each activity were completed with and without wearing a brace that was designed to externally rotate the femur in the treatment of patellofemoral disorders for a total of 6 trials per activity. Peak hip flexion, extension, abduction, adduction, internal rotation, and external rotation were calculated over the stance phase for each trial. Averages were calculated over the 3 trials for each activity both with and without the brace. Intra-subject differences were compared between the braced and unbraced trials

  20. Effects of meteorological conditions on spore plumes

    Science.gov (United States)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  1. Cassini Radio Occultation by Enceladus Plume

    Science.gov (United States)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  2. Subacromial Tenoxicam Injection in the Treatment of Impingement Syndrome

    Science.gov (United States)

    Çift, Hakan; Özkan, Feyza Ünlü; Şeker, Ali; İşyar, Mehmet; Ceyhan, Erman; Mahiroğulları, Mahir

    2014-01-01

    Objectives: As subacromial bursa injection is widely used for pain relief and functional improvements in patients with periarticular shoulder disorder, we aimed to present our results of subacromial tenoxicam injection in the treatment of impingement syndrome. Methods: Patients presented to the Department of Orthopaedics and Traumatology, Istanbul Medipol University with the primary complaints of shoulder pain from January 2012 to June 2013 were selected. Those who met the following inclusion criteria were finally considered: 1) who had a clinical sign of a painful arc and positive in Hawkins test and/or Neer impingement sign; 2) who had a precise rotator cuff injury including partial cuff tears, or subacromial bursitis detected during ultrasonography or MRI. The exclusion criteria were as follows: 1) who underwent shoulder surgery; 2) who had full thickness rotator cuff rupture; 3) who had hemiplegic shoulder pain; and 4) who displayed any suspected fracture on X-ray or had a recent shoulder trauma; 5) who showed limited active ROM and stiffness due to adhesive capsulitis. Thirty one shoulders out of thirty patients were treated with subacromial tenoxicam injection. Ten of them were left shoulders. Fifteen of the patients were women.. Patients had a mean age of 51.6 (30-73). Patients were evaluated 4 times. Before the first injection, 1 week after the first injection, 2 weeks after the second injection and 3 weeks after the third injection. In every injection 20 mg tenoxicam was performed. Results: In order to relieve the pain; two patients were given only one injection, thirteen patients were given two injections and “3 injections protocol” were done to fifteen patients. The mean pre- and posttreatment VAS scores were 7.9 (between, 7-9) and 2.7 (between, 2-4) points respectively. The average pre and posttreatment DASH scores were 59.41 (between, 45-80) and 14 (between, 8.3-25.8) points respectively. The mean pre and posttreatment range of motion were 106

  3. Plume head - trench interaction: impact on subduction dynamics

    Science.gov (United States)

    Betts, P. G.; Moresi, L. N.; Mason, W. G.; Willis, D.

    2013-12-01

    The geologic record provides numerous examples where plumes and their associated buoyancy swell have disrupted convergent plate margins. These interactions have produced a variety of responses in the overriding plate including transient episodes of arc amagmatism, transient episodes of crustal shortening followed by plume-related magmatism in the overriding plate. The latter observation implies the plume must have transitioned from the subducting plate to the overriding plate. We present several 3D Underworld numerical models of plume heads of variable dimension and buoyancy interacting with a subduction trench. The models indicate that plume heads impact enormously on trench geometry. Arcuate trenches are created as the trench retreats around the edges of the plume head, whereas trench advance occurs in front of the plume resulting in transient crustal shortening in the overriding plate. Stalling of subduction when the plume head impacts the trench causes slab windowing. The size of the slab window is dependent on the size and buoyancy of the plume. The creation of the slab window provides a potential conduit for plume migration to the overriding plate. Alternatively, the plume head may be transferred to the overriding plate as subduction is re-established behind the plume. Models with "strong" slabs, characterized by high yield strengths, display different behavior. Plume-heads are entrained in the slab and are subducted without the development of a slab window.

  4. EUV Sunspot Plumes Observed with SOHO

    CERN Document Server

    Maltby, P; Brekke, P; Haugan, S V H; Kjeldseth-Moe, O; Wikstøl, O; Rimmele, T R; Wikstøl, O

    1998-01-01

    Bright EUV sunspot plumes have been observed in five out of nine sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. In the other four regions the brightest line emissions may appear inside the sunspot but are mainly concentrated in small regions outside the sunspot areas. These results are in contrast to those obtained during the Solar Maximum Mission, but are compatible with the Skylab mission results. The present observations show that sunspot plumes are formed in the upper part of the transition region, occur both in magnetic unipolar-- and bipolar regions, and may extend from the umbra into the penumbra.

  5. Halogen Chemistry in Volcanic Plumes (Invited)

    Science.gov (United States)

    Roberts, Tjarda

    2017-04-01

    Volcanoes release vast amounts of gases and particles in the atmosphere. Volcanic halogens (HF, HCl, HBr, HI) are co-emitted alongside SO2, and observations show rapid formation of BrO and OClO in the plume as it disperses into the troposphere. The development of 1D and Box models (e.g. PlumeChem) that simulate volcanic plume halogen chemistry aims to characterise how volcanic reactive halogens form and quantify their atmospheric impacts. Following recent advances, these models can broadly reproduce the observed downwind BrO/SO2 ratios using "bromine-explosion" chemistry schemes, provided they use a "high-temperature initialisation" to inject radicals (OH, Cl, Br and possibly NOx) which "kick-start" the low-temperature chemistry cycles that convert HBr into reactive bromine (initially as Br2). The modelled rise in BrO/SO2 and subsequent plateau/decline as the plume disperses downwind reflects cycling between reactive bromine, particularly Br-BrO, and BrO-HOBr-BrONO2. BrCl is produced when aerosol becomes HBr-depleted. Recent model simulations suggest this mechanism for reactive chlorine formation can broadly account for OClO/SO2 reported at Mt Etna. Predicted impacts of volcanic reactive halogen chemistry include the formation of HNO3 from NOx and depletion of ozone. This concurs with HNO3 widely reported in volcanic plumes (although the source of NOx remains under question), as well as observations of ozone depletion reported in plumes from several volcanoes (Mt Redoubt, Mt Etna, Eyjafjallajokull). The plume chemistry can transform mercury into more easily deposited and potentially toxic forms, for which observations are limited. Recent incorporation of volcanic halogen chemistry in a 3D regional model of degassing from Ambrym (Vanuatu) also predicts how halogen chemistry causes depletion of OH to lengthen the SO2 lifetime, and highlights the potential for halogen transport from the troposphere to the stratosphere. However, the model parameter-space is vast and

  6. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...

  7. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...

  8. [Effectiveness of physiotherapy on painful shoulder impingement syndrome].

    Science.gov (United States)

    Gomora-García, Mónica; Rojano-Mejía, David; Solis-Hernández, José Luis; Escamilla-Chávez, Carolina

    2016-01-01

    Painful shoulder impingement syndrome is one of the first reasons for care in rehabilitation centres. As the evidence regarding the effectiveness of physical measures as adjuvant treatment is limited, the aim of this study was to determine the effectiveness of physiotherapy on shoulder pain. A retrospective and analytical study was conducted using the medical records of patients with shoulder pain who attended in a rehabilitation centre from October 2010 to September 2011. The demographic and clinical data were collected, and the clinical improvement was determined as: complete, incomplete, or no improvement. Chi squared was used to determine whether there were differences between the different modalities of physiotherapy, as well as the level of improvement. The study included a total of 181 patients, with a mean age of 54.3 years, and a mean of 4.6 months of onset of pain. The physiotherapy treatments included: warm compresses plus interferential current (60.2%), and warm compresses plus ultrasound (17.1%). Just over half (53.6%) obtained a moderate recovery, 36.4% slight improvement, and 9.9% no improvement. No significant differences were found between the different forms of therapy. The supervised rehabilitation program consists of 9 sessions of physiotherapy. A functional improvement of 90% was obtained, without finding any statistical differences between the therapies used. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  9. Low extreme-ultraviolet luminosities impinging on protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Hendler, N. P. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Ricci, L. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D. [SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043 (United States); Brooks, K. J.; Contreras, Y., E-mail: pascucci@lpl.arizona.edu [Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10{sup 42} photons s{sup –1} for all sources without jets and lower than 5 × 10{sup 40} photons s{sup –1} for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  10. CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet

    Directory of Open Access Journals (Sweden)

    Martin Schmidtke

    2009-01-01

    Full Text Available This contribution presents different approaches for the modeling of gas entrainment under water by a plunging jet. Since the generation of bubbles happens on a scale which is smaller than the bubbles, this process cannot be resolved in meso-scale simulations, which include the full length of the jet and its environment. This is why the gas entrainment has to be modeled in meso-scale simulations. In the frame of a Euler-Euler simulation, the local morphology of the phases has to be considered in the drag model. For example, the gas is a continuous phase above the water level but bubbly below the water level. Various drag models are tested and their influence on the gas void fraction below the water level is discussed. The algebraic interface area density (AIAD model applies a drag coefficient for bubbles and a different drag coefficient for the free surface. If the AIAD model is used for the simulation of impinging jets, the gas entrainment depends on the free parameters included in this model. The calculated gas entrainment can be adapted via these parameters. Therefore, an advanced AIAD approach could be used in future for the implementation of models (e.g., correlations for the gas entrainment.

  11. Absorption of impinging water droplet in porous stones.

    Science.gov (United States)

    Lee, J B; Radu, A I; Vontobel, P; Derome, D; Carmeliet, J

    2016-06-01

    This paper presents an experimental investigation and numerical analysis of the absorption of water droplets impacting porous stones. The absorption process of an impinging droplet is here fully characterized from spreading to evaporation in terms of absorbed mass during droplet depletion and moisture content distribution in a time-resolved manner for three different natural stones. High-speed imaging and neutron radiography are used to quantify moisture absorption in porous stones of varying moisture properties from deposition until depletion. During impact and spreading, the droplet exhibits a dynamic non-wetting behavior. At maximum spreading, the droplet undergoes pinning, resulting into the contact radius remaining constant until droplet depletion. Absorption undergoes two phases: initially, absorption is hindered due a contact resistance attributed to entrapped air; afterwards, a more perfect capillary contact occurs and absorption goes on until depletion, concurrently with evaporation and further redistribution. A finite-element numerical model for isothermal unsaturated moisture transport in porous media captures the phases of mass absorption in good agreement with the experimental data. Droplet spreading and absorption are highly determined by the impact velocity of the droplet, while moisture content redistribution after depletion is much less dependent on impact conditions.

  12. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  13. Subacromial impingement syndrome: the role of posture and muscle imbalance.

    Science.gov (United States)

    Lewis, Jeremy S; Green, Ann; Wright, Christine

    2005-01-01

    Changes in upper body posture, colloquially termed forward head posture (FHP), are considered to be an etiologic factor in the pathogenesis of subacromial impingement syndrome (SIS). The literature suggests that postural deviations associated with FHP follow distinct patterns involving an increase in the thoracic kyphosis angle and a downwardly rotated, anteriorly tilted, and protracted scapula, which in turn leads to increased compression in the subacromial space. These postural changes are thought to occur concurrently with an imbalance of the musculature, and conservative rehabilitation commonly involves addressing both posture and muscle imbalance. There is a paucity of evidence supporting the hypothesis that posture and muscle imbalance are involved in the etiology of SIS. The purpose of this study was to investigate whether FHP was associated with an increased thoracic kyphosis, an altered position of the scapula; and a reduction in glenohumeral elevation range. Selected sagittal and frontal plane postural measurements were made in 60 asymptomatic subjects and 60 subjects with SIS. The findings suggested that upper body posture does not follow the set patterns described in the literature, and further research is required to determine whether upper body and scapular posture and muscle imbalance are involved in the pathogenesis of SIS.

  14. Quantifying shoulder rotation weakness in patients with shoulder impingement.

    Science.gov (United States)

    Tyler, Timothy F; Nahow, Rachael C; Nicholas, Stephen J; McHugh, Malachy P

    2005-01-01

    The purpose of this study was to determine whether strength deficits could be detected in individuals with and without shoulder impingement, all of whom had normal shoulder strength bilaterally according to grading of manual muscle testing. Strength of the internal rotators and external rotators was tested isokinetically at 60 degrees /s and 180 degrees /s, as well as manually with a handheld dynamometer (HHD) in 17 patients and 22 control subjects. Testing was performed with the shoulder positioned in the scapular plane and in 90 degrees of shoulder abduction with 90 degrees of elbow flexion (90-90). The peak torque was determined for each movement. The strength deficit between the involved and uninvolved arms (patients) and the dominant and nondominant arms (control subjects) was calculated for each subject. Comparisons were made for the scapular-plane and 90-90 positions between isokinetic and HHD testing. Despite a normal muscle grade, patients had marked weakness (28% deficit, P weakness was not evident with isokinetic testing at the 90-90 position (60 degrees /s and 180 degrees /s, 0% deficit, P = .99). In control subjects, greater internal rotator strength in the dominant compared with the nondominant arm was evident with the HHD at the 90-90 position (11%, P muscle testing can quantify shoulder strength deficits that may not be apparent with isokinetic testing. By using an HHD during shoulder testing, clinicians can identify weakness that may have been presumed normal.

  15. Impingement heat sinks for air cooled high power electronic modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S.S.; Holahan, M.F. [IBM Corp., Rochester, MN (United States)

    1995-12-31

    The subject of the present work is a parallel plate heat sink that is designed so that the air flow impinges at the fin tips and exhausts over the two open side faces. This type of design attempts to achieve an air flow direction that is substantially opposite to the heat flow direction within the fins so as to exploit the greater heat transfer effectiveness of counterflow heat exchange. A one dimensional model of the heat sink was developed with the assumption of air flow from the fin tips to the fin base. This simplified model was used to identify an initial heat sink geometry to cool a specific multichip module. Computational Fluid Dynamics models that account for the actual flow pattern within the heat sink were used to study a range of variations to the initial geometry and to identify the best geometry over the range examined. Experimental heat transfer and pressure drop data is reported for two heat sink prototypes. The test data is in good agreement with CFD predictions. Suitable correlations for the heat sink thermal resistance and pressure drop versus the air flow rate are developed. The developed heat sink demonstrated an area specific thermal resistance better than 8.7 C (W/cm{sup 2}).

  16. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  17. Kinetic strategies of patients with shoulder impingement syndrome.

    Science.gov (United States)

    Doiron, Yan; Delacroix, Sébastien; Denninger, Marc; Simoneau, Martin

    2010-01-01

    Our aim was to determine whether subjects with shoulder impingement syndrome (SIS) have abnormal multijoint torque patterns compared to healthy subjects during normalized isometric force along specific directions. Subjects had to generate an isometric force corresponding to 40% of the maximal pain-free force. Eight targets were displayed on a monitor (0, 45, 90, 135, 180, 225, 270, and 315 degrees ). We calculated shoulder and elbow torques (kinetic strategies) using a biomechanical model. Regardless of the target location, the SIS group succeeded in reaching the target; however, when compared to the healthy subjects, they needed more time to do so, suggesting that SIS may slow down the execution of the kinetic strategies. Moreover, the SIS group produced lower shoulder external/internal torque to reach the targets located at 0 degrees and 225 degrees, and they generated greater abduction/adduction torque for targets located at 0, 135, and 180 degrees. In addition, they had lower elbow extension/flexion torque for the target located at 315 degrees. The investigation of atypical kinetic strategies is essential to provide an understanding of the pathomechanics of the SIS and to develop more effective treatment strategies.

  18. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  19. Editorial Commentary: Radiographic Inclusion and Exclusion Diagnostic Criteria for Femoroacetabular Impingement Require Confirmation.

    Science.gov (United States)

    Lubowitz, James H

    2015-07-01

    Femoroacetabular impingement radiographic diagnosis is a hot topic because sensitivity and specificity, and intraobserver and interobserver observational consistency, require confirmation. As a result, hip arthroscopic surgeons must rely on expert clinical examination.

  20. A SIMULATION STUDY OF DEPOSITION UNDER TWO TYPES OF IMPINGING TRAJECTORIES

    Institute of Scientific and Technical Information of China (English)

    X.Q. Wei; L. Zhou

    2004-01-01

    A model coupling particle aggregation and randomwalk surface diffusion has been developed for 2D simulation of depositionalgrowth, in which impinging particles follow either a straight-line trajectory of cosine distribution, representing typically sputter deposition, or a scattered trajectory, representing typically electrochemical deposition.Simulations of the growth under various impinging conditions and effective surface diffusivity have been carried out. Pattern and defect development in deposition on flat,trenched and ridged substrates have been investigated. We found that on flat and ridged substrates, both types of trajectories yield similar features, including formation of cone-like defects on surface ridges. While on trenched substrate, the straight-line impingement yielded more uniform step coverage than the scattered impingement.

  1. Clinical trials in orthopaedics and the future direction of clinical investigations for femoroacetabular impingement

    DEFF Research Database (Denmark)

    Clohisy, John C; Kim, Young-Jo; Lurie, Jon

    2013-01-01

    Femoroacetabular impingement (FAI) represents a heterogeneous group of disorders that affect a diverse patient population. The natural history of the disease, the role of nonsurgical management, the indications for surgery, optimal surgical techniques, and the predictors of treatment outcomes nee...

  2. Inter-examiner reproducibility of clinical tests and criteria to identify subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Vind, Mikkel; Bogh, Søren Bie; Larsen, Camilla Marie;

    2011-01-01

    Abstract Introduction A specific algorithm has been proposed for classifying impingement related shoulder pain in athletes with overhead activity. Data on the inter-examiner reproducibility of the suggested clinical tests and criteria and their mutual dependencies for identifying subacromial...

  3. Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate

    Science.gov (United States)

    Achari, A. Madhusudana; Das, Manab Kumar

    2017-03-01

    Numerical simulation of the flow field and conjugate heat transfer in an impinging jet with moving impingement plate is one of the important problems as it mimics closely with practical applications in industries. The Yang-Shih version of low Reynolds number k-ɛ model has been used to resolve the flow field and the temperature field in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a moving flat plate of finite thickness. The turbulence intensity and the Reynolds number considered at the inlet are 2 % and 15,000, respectively. The bottom face of the impingement plate has been maintained at a constant temperature higher than the nozzle exit temperature. The confinement plate has been considered to be adiabatic. The nozzle-to-surface spacing for the above study has been taken to be 6 and the surface-to-jet velocity ratios have been taken over a range of 0.25-1. The effects of impingement plate motion on the flow field and temperature field have been discussed elaborately with reference to stationary impingement plate. The dependence of flow field and fluid temperature field on impingement plate motion has been analyzed by plotting streamlines, isotherms for different plate speeds. A thorough study of flow characteristics for different surface-to-jet velocity ratios has been carried out by plotting profiles of mean vertical and horizontal components of velocity, pressure distribution, local shear stress distribution. The isotherms in the impingement plate of finite thickness, the distributions of solid-fluid interface temperature, the local Nusselt number, and the local heat flux for different surface-to-jet velocity ratios added to the understanding of conjugate heat transfer phenomenon.

  4. Impingement of lesser trochanter on ischium as a potential cause for hip pain

    Energy Technology Data Exchange (ETDEWEB)

    Patti, Jay W.; Ouellette, Hugue; Bredella, Miriam A.; Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Radiology, Boston, MA (United States)

    2008-10-15

    The bony anatomy of the hip leads to a limited array of impingement syndromes, more frequently resulting from abnormal contact between the femoral neck and acetabulum. We report an unusual case of osseous impingement between the lesser trochanter and ischium, with involvement of the intervening quadratus femoris muscle. While the prevalence and etiology of this finding is unclear, it may represent a cause for hip pain. (orig.)

  5. Shoulder Impingement, An Uncommon Complication of Distal Clavicle Fracture Treated Arthroscopically: A Case Report

    Directory of Open Access Journals (Sweden)

    CS Wang

    2013-11-01

    Full Text Available Clavicle fracture is commonly treated conservatively. However uncommon complication can arise causing impingement. We report a patient who sustained distal clavicle fracture and was treated conservatively. However he developed persistent shoulder pain that affected his daily life. Shoulder impingement was diagnosed and arthroscopic subacromioclavicular decompression was done. Following early physiotherapy the early recovery was good with full range of motion of the shoulder.

  6. Characterization of Reaerosolization From Impingers in an Effort to Improve Airborne Virus Sampling

    Science.gov (United States)

    2009-04-01

    the resultant deposition is therefore dictated by αi. A study on reaerosolization of Bacillus cereus bacterial spores from liquid impingers...impinger collection liquid can be expected to antagonize airborne virus collection efficiency, although the extent of this effect is not known. Therefore...concentration of Pseudomonas fluorescens vegetative cells and Bacillus subtilis spores from the BioSampler was about 20% of that from the AGI-30. The

  7. Visualising volcanic gas plumes with virtual globes

    Science.gov (United States)

    Wright, T. E.; Burton, M.; Pyle, D. M.; Caltabiano, T.

    2009-09-01

    The recent availability of small, cheap ultraviolet spectrometers has facilitated the rapid deployment of automated networks of scanning instruments at several volcanoes, measuring volcanic SO 2 gas flux at high frequency. These networks open up a range of other applications, including tomographic reconstruction of the gas distribution which is of potential use for both risk mitigation, particularly to air traffic, and environmental impact modelling. Here we present a methodology for visualising reconstructed plumes using virtual globes, such as Google Earth, which allows animations of the evolution of the gas plume to be displayed and easily shared on a common platform. We detail the process used to convert tomographically reconstructed cross-sections into animated gas plume models, describe how this process is automated and present results from the scanning network around Mt. Etna, Sicily. We achieved an average rate of one frame every 12 min, providing a good visual representation of the plume which can be examined from all angles. In creating these models, an approximation to turbulent diffusion in the atmosphere was required. To this end we derived the value of the turbulent diffusion coefficient for quiescent conditions near Etna to be around 200- 500m2s-1.

  8. Detection of contaminant plumes released from landfills

    Science.gov (United States)

    Yenigül, N. B.; Hendsbergen, A. T.; Elfeki, A. M. M.; Dekking, F. M.

    2006-06-01

    Contaminant leaks released from landfills are a significant threat to groundwater quality. The groundwater detection monitoring systems installed in the vicinity of such facilities are vital. In this study the detection probability of a contaminant plume released from a landfill has been investigated by means of both a simulation and an analytical model for both homogeneous and heterogeneous aquifer conditions. The results of the two models are compared for homogeneous aquifer conditions to illustrate the errors that might be encountered with the simulation model. For heterogeneous aquifer conditions contaminant transport is modelled by an analytical model using effective (macro) dispersivities. The results of the analysis show that the simulation model gives the concentration values correctly over most of the plume length for homogeneous aquifer conditions, and that the detection probability of a contaminant plume at given monitoring well locations match quite well. For heterogeneous aquifer conditions the approximating analytical model based on effective (macro) dispersivities yields the average concentration distribution satisfactorily. However, it is insufficient in monitoring system design since the discrepancy between the detection probabilities of contaminant plumes at given monitoring well locations computed by the two models is significant, particularly with high dispersivity and heterogeneity.

  9. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen;

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...

  10. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa...

  11. Propagation of light through ship exhaust plumes

    NARCIS (Netherlands)

    Iersel, M. van; Mack, A.; Eijk, A.M.J. van; Schleijpen, H.M.A.

    2014-01-01

    Looking through the atmosphere, it is sometimes difficult to see the details of an object. Effects like scintillation and blur are the cause of these difficulties. Exhaust plumes of e.g. a ship can cause extreme scintillation and blur, making it even harder to see the details of what lies behind the

  12. Plume dynamics in heterogeneous porous media

    Science.gov (United States)

    Neufeld, Jerome A.; Huppert, Herbert E.

    2008-11-01

    Buoyancy driven flows in layered porous media are present in many geological settings and play an important role in the mixing of fluids, from the dispersal of pollutants in underground aquifers to enhanced oil recovery techniques and, of more recent importance, the sequestration of carbon dioxide (CO2). Seismic images of the rise of a buoyant CO2 plume at Sleipner in the North Sea indicate that these plumes are greatly influenced by a vertical array of thin lenses of relatively low permeability material. We model propagation of CO2 at each layer as a gravity current in a porous medium which propagates along, and drains through, a thin, low permeability seal. Drainage, driven both by hydrostatic pressure and the body force on the draining fluid, leads to an initial rapid advance followed by a gradual retreat of the current to a steady-state. By incorporating a vertical array of these single layer models we are able to capture the rise of the buoyant plume in layered reservoirs. We find that the plume is characterized by a broad head with a tail given by the steady state extent.

  13. DSMC simulation of Io's unsteady Tvashtar plume

    Science.gov (United States)

    Hoey, W. A.; Ackley, P. C.; Trafton, L. M.; Goldstein, D. B.; Varghese, P. L.

    2016-11-01

    Jupiter's moon Io supports its rarefied atmosphere with prolific tidally-driven episodic volcanism. Its largest volcanic plumes erupt violently and exhibit intricate structure, their canopies rising to hundreds of km above the Ionian surface. In early 2007, the NASA New Horizons (NH) spacecraft captured the active Tvashtar plume in a time sequence of panchromatic images at high spatial resolution and observed both discrete "filamentary" patterns in the descending particulate structure, and a prominent traveling canopy wave. These are transient and asymmetric features, indicative of Tvashtar's unresolved and complex vent processes. In this work, we introduce a methodology for identifying vent spatial and temporal scales in the rarefied plume. Three-dimensional DSMC simulations of the collisional gas flowfield are combined with a flow-tracking dust particle model, enabling a broad exploration of parameter space in pursuit of the critical frequencies that qualitatively reproduce the dynamical phenomena observed in Tvashtar's collisional canopy and providing insight into the dynamics of transient extra-terrestrial volcanic plumes.

  14. Relative Abundance Measurements in Plumes and Interplumes

    CERN Document Server

    Guennou, Chloé; Savin, Daniel Wolf

    2015-01-01

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) 10 eV). We have used EIS spectroscopic observations made on 2007 March 13 and 14 over an ~24 hour period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we have used a differential emission measure (DEM) analysis, which accounts for the thermal structure of the observed plasma. We have used lines from ions of iron, silicon, and sulfur. From these we have estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These res...

  15. Plume or no Plume, the Case of the Siberian Trap Formation

    Science.gov (United States)

    Reichow, M. K.; Saunders, A. D.; White, R. V.; Al'Mukhamedov, A. I.; Medvedev, A. I.; Inger, S.

    2003-12-01

    The generation mechanism of continental large igneous provinces, such as the Siberian Traps, are matters of recent debate, particularly their relation to mantle plumes derived from the Earth's interior. Alternative models relate the formation of large igneous provinces to bolide impacts or small-scale convection at the boundary of asymmetric lithospheres. Neither of these models is without criticism and each model cannot explain all characteristics of continental flood basalt formation alone. However, strong support for the involvement of a mantle plume comes from the observation that large volumes of basaltic melts ( ˜3 x 106 km3) erupted within a short period of time (pulse of volcanism extruded over large areas of the Siberian craton. Although the major and trace element data are consistent with a plume origin for the Siberian Traps, they cannot prove it; however, magma volume and timing constraints do strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province.

  16. Subacromial impingement in patients with whiplash injury to the cervical spine

    Directory of Open Access Journals (Sweden)

    Giddins Grey E

    2008-06-01

    Full Text Available Abstract Background Impingement syndrome and shoulder pain have been reported to occur in a proportion of patients following whiplash injuries to the neck. In this study we aim to examine these findings to establish the association between subacromial impingement and whiplash injuries to the cervical spine. Methods and results We examined 220 patients who had presented to the senior author for a medico-legal report following a whiplash injury to the neck. All patients were assessed for clinical evidence of subacromial impingement. 56/220 patients (26% had developed shoulder pain following the injury; of these, 11/220 (5% had clinical evidence of impingement syndrome. Only 3/11 patients (27% had the diagnosis made prior to evaluation for their medico-legal report. In the majority, other clinicians had overlooked the diagnosis. The seatbelt shoulder was involved in 83% of cases (p Conclusion After a neck injury a significant proportion of patients present with shoulder pain, some of whom have treatable shoulder pathology such as impingement syndrome. The diagnosis is, however, frequently overlooked and shoulder pain is attributed to pain radiating from the neck resulting in long delays before treatment. It is important that this is appreciated and patients are specifically examined for signs of subacromial impingement after whiplash injuries to the neck. Direct seatbelt trauma to the shoulder is one possible explanation for its aetiology.

  17. Hydrodynamics and PIV study in the impingement zone formed by a droplet train

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza; Zhang, Taolue; Muthusamy, Jayaveera; Alvarado, Jorge; Texas A; M University at Qatar Collaboration; Texas A; M University College Station Collaboration

    2016-11-01

    Droplet impingement is encountered in numerous technical applications, such as ink jet printing, spray cooling, and fuel injection in internal combustion engines. Even though many studies in droplet impingement were conducted in past, not many have measured the near-wall velocities in the droplet impingement zone. With the goal of gaining a better understanding of the hydrodynamics in the impingement zone, well-controlled experiments are performed in combination with micro-PIV measurements and numerical simulations. Hydrodynamics of HFE-7100 droplets generated using a piezoelectric droplet generator, impinging on a pre-wetted surface is investigated. Micro-PIV studies in the high-velocity impingement zone are performed using one-micron meter fluorescent particles dispersed in HFE-7100 along with the double exposed images. Three-dimensional and 2D-axisymmetric numerical modeling for a transient droplet crown development is performed. The interface between the gas and the liquid is modeled using a Volume of Fluid (VOF) method. Numerical simulation results obtained are observed to be in good agreement with that of the experimental observations. Supported by National Priority Research Program (NPRP) of Qatar National Research Fund (QNRF), Grant No.: NPRP 6-1304-2-525.

  18. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  19. Herniation pits and their renaissance in association with femoroacetabular impingement; Herniation Pits und ihre Renaissance im Zusammenhang mit femoroazetabulaerem Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Stephonie [Unfallklinik Murnau (Germany). Radiologie; Augat, P. [Unfallklinik Murnau (Germany). Radiologie; Paracelsus Univ. Salzburg (Austria). Biomechanisches Labor; Scheidler, J. [Radiologischs Zentrum Muenchen-Pasing (Germany). Radiologie

    2010-07-15

    Hernitation pits (HPs) of the femoral neck were first described in 1982. The purpose of this paper is to summarize the information concerning HPs published since then and to show their association with the diagnosis of femoroacetabular impingement (FAI) which has occurred within the last years. HPs are predominantly located at the anterior-superior femoral neck with a typical radiological appearance, which makes it possible to differentiate them from the numerous differential diagnoses mentioned. In the early publications HPs were described as a separate entity, while recent studies increasingly assign them to intra-osseous ganglia. In contrast to the early publications depicting HPs as an incidental finding, they are currently mainly mentioned in association with FAI and at the same time are partly considered to be a radiological indicator of FAI. In summary, HPs should always be recognized and documented because they may contribute to the diagnosis of FAI which is essential for preventing or delaying osteoarthritis of the hip joint in the early stage. (orig.)

  20. Lidar measurements of launch vehicle exhaust plumes

    Science.gov (United States)

    Dao, Phan D.; Curtis, David; Farley, Robert; Soletsky, Philip; Davidson, Gilbert; Gelbwachs, Jerry A.

    1997-10-01

    The Mobile Lidar Trailer (MLT) was developed and operated to characterize launch vehicle exhaust plume and its effects on the environment. Two recent applications of this facility are discussed in this paper. In the first application, the MLT was used to characterize plumes in the stratosphere up to 45 km in support of the Air Force Space and Missile Center's Rocket Impact on Stratospheric Ozone program. Solid rocket motors used by Titan IV and other heavy launch vehicles release large quantities of gaseous hydrochloric acid in the exhaust and cause concerns about a possible depletion of the ozone layer. The MLT was deployed to Cape Canaveral Air Station since October 1995 to monitor ozone and to investigate plume dynamics and properties. Six campaigns have been conducted and more are planned to provide unique data with the objective of addressing the environmental issues. The plume was observed to disperse rapidly into horizontally extended yet surprisingly thin layer with thickness recorded in over 700 lidar profiles to be less than 250 meters. MLT operates with the laser wavelengths of 532, 355 and 308 nm and a scanning receiving telescope. Data on particle backscattering at the three wavelengths suggest a consistent growth of particle size in the 2-3 hour observation sessions following the launch. In the second type of application, the MLT was used as a remote sensor of nitrogen dioxide, a caustic gaseous by-product of common liquid propellant oxidizer. Two campaigns were conducted at the Sol Se Mete Canyon test site in New Mexico in December 1996 an January 1997 to study the dispersion of nitrogen dioxide and rocket plume.

  1. A comparison of the turbulent entrainment process in line plumes and wall plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2016-11-01

    Flows driven by sources of buoyancy appear in a large number of geophysical and industrial applications. The process of turbulent entrainment in these flows is key to understanding how they evolve and how one might model them. It has been observed that the entrainment is reduced when a line source of buoyancy is positioned immediately adjacent to a wall. To gain insight into the effect of the wall on the entrainment process we perform simultaneous PIV and LIF on both line plumes, in the absence of any boundary, and when the source is adjacent to a vertical boundary forming a wall plume. The experiments are designed to isolate the effect of the wall by using the same experimental setup and parameters for both flows with the addition of the wall and half the buoyancy flux used in the wall plume case. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume, a technique we have recently used to analyse similar effects in an axisymmetric plume, the significance of this large scale engulfment will be quantified.

  2. Hip Arthroscopy in athletes with Femoroacetabular Impingement: functional outcomes

    Science.gov (United States)

    Magi, Gonzalo; Carucci, Juan Pablo; Berro, Manuel; Bergues, Sebastián

    2017-01-01

    Introduction: Hip pathology is being recognized with more frequency as source of disability and functional limitation in athletes. It has been stated that the overload made with certain positions during some sports activities can develop condral damage. Moreover, the sum of bone deformity and repetitive movements of the hip requiered in sports may increase the risk of causing injuries. These can be treated with hip arthroscopy. Despite of this, there is a lack of evidence about the time taken to return to sports activity and the level reached afterwards by those patients treated with this procedure. Objective: Describe the clinical evolution, the time taken to return to sports activity and the level reached a year after the treatment of femoroacetabular impingement (FAI) with hip arthroscopy in 23 athletes. Method: 23 athletes were included in the study, defined as those patients with a minimum of 6 hours a week of sports practice, who were treated for FAI with hip arthroscopy between 2010 and 2015 by the same surgeon at our institution. The diagnosis was clinical (positive impingement test, hip pain and functional limitation of the hip), radiological (cam and pincer) and with magnetic nuclear resonance (labral tears). Preoperative modified Harris hip score was registered in all cases. Tonnis radiographic score was used. All patients had type 0 or 1 Tonnis hips. After 3 months of ineffective non operative treatment the arthroscopy was performed. Patients were treated in dorsal decubitus with orthopedic table. Labral reconstruction with anchors and femoral and acetabular osteoplasty was made. After surgery, patients were able to walk with support for 4 weeks and began physiotherapy. A year after surgery, all patients were questioned about the time taken to return to sports activity and the level of activity reached at that time compared to the one they had before symptoms appeared. The modified Harris hip score was also registered. Results: Ten patients played

  3. Oil-in-water emulsification using confined impinging jets.

    Science.gov (United States)

    Siddiqui, Shad W; Norton, Ian T

    2012-07-01

    A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number=13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  5. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  6. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  7. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    Science.gov (United States)

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size

  8. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    Science.gov (United States)

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the

  9. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  10. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  11. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  12. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  13. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.; Narumanchi, S.; Moreno, G.

    2014-09-01

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and were used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.

  14. Flows in Sunspot Plumes Detected with SOHO

    CERN Document Server

    Brynildsen, N; Brekke, P; Fredvik, T; Haugan, S V H; Kjeldseth-Moe, O; Wikstøl, O

    1998-01-01

    Bright EUV sunspot plumes have been observed in eight out of eleven different sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. From wavelength shifts we derive the line-of-sight velocity, relative to the average velocity in the rastered area, 120 arcsec x 120 arcsec. In sunspot plumes we find that the motion is directed away from the observer and increases with increasing line formation temperature, reaches a maximum between 15 and 41 km~s$^{-1}$ close to log T $\\approx$ 5.5, then decreases abruptly. The flow field in the corona is not well correlated with the flow in the transition region and we discuss briefly the implication of this finding.

  15. Plume RF interference calculations for space shuttle

    Science.gov (United States)

    Boynton, F. P.; Rajasekhar, P. S.

    1978-01-01

    During a static ground test of a full-scale SRM, measurements of attenuation of the UHF 416.5 MHz Range Safety Signal, the VHF voice link (230 MHz), and of S-band (c. 2.2. GHz) communications links were undertaken. Analyses of these results indicate that measurable attenuation did occur at all test frequencies. The measured attenuation levels are compared with a simple model in which the received signal is identified as that diffracted about the edge of the highly absorbing plume and the signal level in the shadow zone is evaluated using the formula for diffraction at a straight edge. The comparison is satisfactory at VHF and UHF frequencies, and slightly less so at S-band. Reasons for the discrepancies found at higher frequencies are discussed. A revised procedure which appears to relieve the accuracy problem was developed. This procedure is discussed along with applications to high altitude SRM plume attenuation.

  16. Numerical Modelling of Jets and Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    1993-01-01

    An overview on numerical models for prediction of the flow and mixing processes in turbulent jets and plumes is given. The overview is structured to follow an increasing complexity in the physical and numerical principles. The various types of models are briefly mentioned, from the one-dimensiona......An overview on numerical models for prediction of the flow and mixing processes in turbulent jets and plumes is given. The overview is structured to follow an increasing complexity in the physical and numerical principles. The various types of models are briefly mentioned, from the one......-dimensional integral method to the general 3-dimensional solution of the Navier-Stokes equations. Also the predictive capabilities of the models are discussed. The presentation takes the perspective of civil engineering and covers issues like sewage outfalls and cooling water discharges to the sea....

  17. Electric Propulsion Plume Simulations Using Parallel Computer

    Directory of Open Access Journals (Sweden)

    Joseph Wang

    2007-01-01

    Full Text Available A parallel, three-dimensional electrostatic PIC code is developed for large-scale electric propulsion simulations using parallel supercomputers. This code uses a newly developed immersed-finite-element particle-in-cell (IFE-PIC algorithm designed to handle complex boundary conditions accurately while maintaining the computational speed of the standard PIC code. Domain decomposition is used in both field solve and particle push to divide the computation among processors. Two simulations studies are presented to demonstrate the capability of the code. The first is a full particle simulation of near-thruster plume using real ion to electron mass ratio. The second is a high-resolution simulation of multiple ion thruster plume interactions for a realistic spacecraft using a domain enclosing the entire solar array panel. Performance benchmarks show that the IFE-PIC achieves a high parallel efficiency of ≥ 90%

  18. Cruise Ship Plume Tracking Survey Report

    Science.gov (United States)

    2002-09-01

    The U. S. Environmental Protection Agency (EPA) is developing a Cruise Ship Discharge Assessment Report in response to a petition the agency received in March 2000. The petition requested that EPA assess and where necessary control discharges from cruise ships. Comments received during public hearings, in 2000, resulted in the EPA agreeing to conduct a survey to assess the discharge plumes resulting from cruise ships, operating in ocean waters off the Florida coast and to compare the results to the Alaska dispersion models. This survey report describes the daily activities of August 2001 Cruise Ship Plume Tracking Survey, and provides a synopsis of the observations from the survey. It also provides data that can be used to assess dispersion of cruise ship wastewater discharges, while in transit. A description of the survey methods is provided in Section 2. Survey results are presented in Section 3. Findings and conclusions are discussed in Section 4.

  19. Sub-Grid Scale Plume Modeling

    Directory of Open Access Journals (Sweden)

    Greg Yarwood

    2011-08-01

    Full Text Available Multi-pollutant chemical transport models (CTMs are being routinely used to predict the impacts of emission controls on the concentrations and deposition of primary and secondary pollutants. While these models have a fairly comprehensive treatment of the governing atmospheric processes, they are unable to correctly represent processes that occur at very fine scales, such as the near-source transport and chemistry of emissions from elevated point sources, because of their relatively coarse horizontal resolution. Several different approaches have been used to address this limitation, such as using fine grids, adaptive grids, hybrid modeling, or an embedded sub-grid scale plume model, i.e., plume-in-grid (PinG modeling. In this paper, we first discuss the relative merits of these various approaches used to resolve sub-grid scale effects in grid models, and then focus on PinG modeling which has been very effective in addressing the problems listed above. We start with a history and review of PinG modeling from its initial applications for ozone modeling in the Urban Airshed Model (UAM in the early 1980s using a relatively simple plume model, to more sophisticated and state-of-the-science plume models, that include a full treatment of gas-phase, aerosol, and cloud chemistry, embedded in contemporary models such as CMAQ, CAMx, and WRF-Chem. We present examples of some typical results from PinG modeling for a variety of applications, discuss the implications of PinG on model predictions of source attribution, and discuss possible future developments and applications for PinG modeling.

  20. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  1. THREE-DIMENSIONAL MEAN AND TURBULENCE CHARACTERISTICS OF AN IMPINGING DENSITY JET IN A CONFINED CROSSFLOW IN NEAR FIELD

    Institute of Scientific and Technical Information of China (English)

    FAN Jing-yu; WANG Dao-zeng; ZHANG Yan

    2004-01-01

    The three-dimensional mean and turbulence characteristics of an impinging density jet in a confined crossflow were numerically investigated using the RNG turbulence model. The comparison of the subregion structures and gross features between the numerical results and the experimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) and concentration distributions of the impinging jet in near field were obtained and analyzed. The results indicate that the flow and concentration fields of the impinging jet in the crossflow exhibit distinguished three-dimensionality in the near field. There exist upstream wall vortices and downstream wall jet zones in the impinging region, and the TKE and concentration decays are asymmetrical in relation to the stagnation point. The lateral concentration distribution range in the impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jet in the confined crossflow are mostly associated with the impinging action and lateral expansion in the impinging region. The presence of the bottom wall restrains the formation of the spanwise rollers in the transverse jet region and vertical entrainment and mixing in the impinging region and the transition region.

  2. Experimental study of turbulence in isothermal jet impingement at intermediate plate spacings

    Science.gov (United States)

    Landfried, D. Tyler; Valentino, Alex; Mazumdar, Sagnik; Jana, Anirban; Kimber, Mark

    2013-11-01

    One fundamental problem in fluid dynamics is that of the axisymmetric round flow impinging on a plate placed some distance downstream of the jet. Impinging jets have a rich history of applications including small plate spacings, H/D ~ 1, such as encountered in electronics cooling, or large plate spacings, H/D ~ 102, such as vertical takeoff aircrafts and rocket engines. However, intermediate plate spacings, such as the lower plenum of the next generation nuclear reactors, are not typically studied. In this paper, an experimental study is conducted investigating the effect of the impingement plate on the flow behavior compared to the near free jet behavior when the plate is removed. Using air as the working fluid, a single jet is considered at jet Reynolds numbers of 10000, 20000, and 30000. A three-wire anemometer probe is used to quantify the mean components of velocities as well as the Reynolds stress and the third-order moments in the flow field at various distances between the jet outlet and the impingement plate. When present, the impingement plate is placed a distance of 8, 11, 14, and 17 diameters downstream of the jet. Additionally trends in the kinetic energy and dissipation are investigated for validation with numerical models.

  3. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  4. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  5. Impingement-free hip motion: the 'normal' angle alpha after osteochondroplasty.

    Science.gov (United States)

    Neumann, Mirjam; Cui, Quanjun; Siebenrock, Klaus A; Beck, Martin

    2009-03-01

    Femoroacetabular impingement is considered a cause of hip osteoarthrosis. In cam impingement, an aspherical head-neck junction is squeezed into the joint and causes acetabular cartilage damage. The anterior offset angle alpha, observed on a lateral crosstable radiograph, reflects the location where the femoral head becomes aspheric. Previous studies reported a mean angle alpha of 42 degrees in asymptomatic patients. Currently, it is believed an angle alpha of 50 degrees to 55 degrees is normal. The aim of this study was to identify that angle alpha which allows impingement-free motion. In 45 patients who underwent surgical treatment for femoroacetabular impingement, we measured the angle alpha preoperatively, immediately postoperatively, and 1 year postoperatively. All hips underwent femoral correction and, if necessary, acetabular correction. The correction was considered sufficient when, in 90 degrees hip flexion, an internal rotation of 20 degrees to 25 degrees was possible. The angle alpha was corrected from a preoperative mean of 66 degrees (range, 45 degrees - 79 degrees) to 43 degrees (range, 34 degrees - 60 degrees) postoperatively. Because the acetabulum is corrected to normal first, the femoral correction is tested against a normal acetabulum. We therefore concluded an angle alpha of 43 degrees achieved surgically and with impingement-free motion, represents the normal angle alpha, an angle lower than that currently considered sufficient.

  6. The plain beta-angle measured on radiographs in the assessment of femoroacetabular impingement.

    Science.gov (United States)

    Brunner, A; Hamers, A T; Fitze, M; Herzog, R F

    2010-09-01

    The beta-angle is a radiological tool for measuring the distance between the pathological head-neck junction and the acetabular rim with the hip in 90 degrees of flexion in patients with femoroacetabular impingement. Initially it was measured using an open-chamber MRI. We have developed a technique to measure this angle on plain radiographs. Correlation analysis was undertaken to determine the relationship between the range of movement and the beta-angle in 50 patients with femoroacetabular impingement and 50 asymptomatic control subjects. Inter- and intra-observer reliability of the beta-angle was also evaluated. Patients with femoroacetabular impingement had a significantly smaller (p angle (15.6 degrees, 95% confidence interval (CI) 13.3 to 17.7) compared with the asymptomatic group (38.7 degrees, 95% CI 36.5 to 41.0). Correlation between internal rotation and the beta-angle was high in the impingement group and moderate in the asymptomatic group. The beta-angle had excellent inter- and intra-observer reliability in both groups. Our findings suggest that the measurement of the beta-angle on plain radiography may represent a valid, reproducible and cost-effective alternative to open MRI in the assessment of the pathological bony anatomy in patients with cam, pincer and mixed femoroacetabular impingement.

  7. Is there a relationship between psoas impingement and increased trochanteric retroversion?

    Science.gov (United States)

    Gómez-Hoyos, Juan; Schröder, Ricardo; Reddy, Manoj; Palmer, Ian J; Khoury, Anthony; Martin, Hal David

    2015-07-01

    The concept of psoas impingement secondary to a tight or inflamed iliopsoas tendon causing impingement of the anterior labrum during hip extension has been suggested. The purpose of this study was to assess the relationship between the lesser trochanteric version (LTV) in symptomatic patients with psoas impingement as compared with asymptomatic hips. The femoral neck version (FNV) and LTV were evaluated on axial magnetic resonance imaging, as well as the angle between LTV and FNV. Data from 12 symptomatic patients and 250 asymptomatic patients were analysed. The mean, range and standard deviations were calculated. Independent t-tests were used to determine differences between groups. The lesser trochanteric retroversion was significantly increased in patients with psoas impingement as compared with asymptomatic hips (-31.1° SD ± 6.5 versus -24.2° ± 11.5, P  0.05) and the angle between FNV and LTV (40.2° ± 9.7 versus 38.3° ± 9.6, P > 0.05) were not significantly different between groups. In conclusion, the lesser trochanteric retroversion is significantly increased in patients with psoas impingement as compared with asymptomatic hips.

  8. Isometric contractions combined with eccentric contractions and stretching exercises on patient with subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Efstratiadis Anastasios

    2015-10-01

    Full Text Available Many people with shoulder pain and disability have signs of subacromial impingement syndrome. The subacromial impingement syndrome of the shoulder is a general term, which is often used to describe pain and dysfunction in the area around the shoulder. The aim of the present report is to find the effect of isometric contractions combined with eccentric contractions and stretching exercises on a patient with subacromial impingement syndrome. A patient with subacromial impingement syndrome for 1 year was included in the case report. The patient followed an exercise program consisted of stretching exercises of shoulder muscles extensors, isometric contractions of shoulder extensors and eccentric exercises of shoulder extensors, 4 times per week. The exercise program was individualized according to pain and symptoms of the patient. Outcome measures were pain, pain rest, pain activity, pain night measured on a visual analogue scale (VAS, disability index (DASH score and range of motion (Goniometer. The patient was evaluated at baseline and after 4 weeks. At the end of the program, there was a significant improvement pain, disability and range of motion. In this clinical case the patient was improved significantly in all outcome measures. Further studies based on better design, are needed to investigate the effect of those methods on a random population group with subacromial impingement syndrome.

  9. Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements

    Science.gov (United States)

    Davis, Timothy; Edstrand, Adam; Alvi, Farrukh; Cattafesta, Louis; Yorita, Daisuke; Asai, Keisuke

    2015-05-01

    At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of . The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.

  10. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Science.gov (United States)

    Kibar, Ali

    2017-02-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.

  11. Impact of impingement on the Hudson River white perch population. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Van Winkle, W.; Kirk, B.L.; Vaughan, D.S.

    1982-02-01

    This report summarizes a series of analyses of the magnitude and biological significance of the impingement of white perch at the Indian Point Nuclear Generating Station and other Hudson River power plants. Included in these analyses were evaluations of: (1) two independent lines of evidence relating to the magnitude of impingement impacts on the Hudson River white perch population; (2) the additional impact caused by entrainment of white perch; (3) data relating to density-dependent growth among young-of-the-year white perch; (4) the feasibility of performing population-level analyses of impingement impacts on the white perch populations of Chesapeake Bay and the Delaware River; and (5) the feasibility of using simple food chain and food web models to evaluate community-level effects of impingement and entrainment. Estimated reductions in the abundances of the 1974 and 1975 white perch year classes, caused by impingement and entrainment, were high enough that the possibility of adverse long-term effects cannot be excluded.

  12. Evidence for Little Shallow Entrainment in Starting Mantle Plumes

    Science.gov (United States)

    Lohmann, F. C.; Phipps Morgan, J.; Hort, M.

    2005-12-01

    Basalts from intraplate or hotspot ocean islands show distinct geochemical signatures. Their diversity in composition is generally believed to result from the upwelling plume entraining shallow mantle material during ascent, while potentially also entraining other deep regions of the mantle. Here we present results from analogue laboratory experiments and numerical modelling that there is evidence for little shallow entrainment into ascending mantle plumes, i.e. most of the plume signature is inherited from the source. We conducted laboratory experiments using glucose syrup contaminated with glass beads to visualize fluid flow and origin. The plume is initiated by heating from below or by injecting hot, uncontaminated syrup. Particle movement is captured by a CCD camera. In our numerical experiments we solve the Stokes equations for a viscous fluid at infinite Prandtl number with passive tracer particles being used to track fluid flow and entrainment rates, simulating laboratory as well as mantle conditions. In both analogue experiments and numerical models we observe the classical plume structure being embedded in a `sheath' of material from the plume source region that retains little of the original temperature anomaly of the plume source. Yet, this sheath ascends in the `slipstream' of the plume at speeds close to the ascent speed of the plume head, and effectively prevents the entrainment of surrounding material into the plume head or plume tail. We find that the source region is most effectively sampled by an ascending plume and that compositional variations in the source region are preserved during plume ascent. The plume center and plume sheath combined are composed of up to 85% source material. However, there is also evidence of significant entrainment of up to 30% of surrounding material into the outer layers of the plume sheath. Entrainment rates are found to be influenced by mantle composition and structure, with the radial viscosity profile of the

  13. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    Science.gov (United States)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  14. Statistics for the Relative Detectability of Chemicals in Weak Gaseous Plumes in LWIR Hyperspectral Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Metoyer, Candace N.; Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence

    2008-10-30

    The detection and identification of weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based model that describes the at-sensor observed radiance. The motivating question for the analyses performed in this paper is as follows. Given a set of backgrounds, is there a way to predict the background over which the probability of detecting a given chemical will be the highest? Two statistics were developed to address this question. These statistics incorporate data from the long-wave infrared band to predict the background over which chemical detectability will be the highest. These statistics can be computed prior to data collection. As a preliminary exploration into the predictive ability of these statistics, analyses were performed on synthetic hyperspectral images. Each image contained one chemical (either carbon tetrachloride or ammonia) spread across six distinct background types. The statistics were used to generate predictions for the background ranks. Then, the predicted ranks were compared to the empirical ranks obtained from the analyses of the synthetic images. For the simplified images under consideration, the predicted and empirical ranks showed a promising amount of agreement. One statistic accurately predicted the best and worst background for detection in all of the images. Future work may include explorations of more complicated plume ingredients, background types, and noise structures.

  15. Lunar maria - result of mantle plume activity?

    Science.gov (United States)

    Sharkov, E.

    It is generally accepted that lunar maria are the result of catastrophic impact events. However, comparative studying of the Earth's and the Moon's tectonomagmatic evolution could evidence about another way of these specific structures origin. Such studies showed that the both planetary bodies evolved on the close scenario: their geological development began after solidification of global magmatic oceans which led to appearance of their primordial crusts: granitic on the Earth and anorthositic - on the Moon. The further evolution of the both bodies occurred in two stages. For their first stages, lasted ˜2.5 mlrd. years on the Earth and ˜1.5 mlrd. years on the Moon, were typical melts, generated in depleted mantle (Bogatikov et al., 2000). However, at the boundary 2.2-2.0 Ga ago on the Earth and 3.9-3.8 Ga on the Moon another type of magmas appeared: geochemical enriched Fe-Ti picrites and basalts, characteristic for the terrestrial Phanerozoic plume-related situations, and basaltic mare magmatism with high-Ti varieties on the Moon. It suggests that evolution of the Earth's magmatism was linked with ascending of mantle plumes (superplumes) of two generation: (1) generated in the mantle, depleted during solidification of magmatic ocean and Archean magmatic activity, and (2) generated at the core-mantle boundary (CMB). The latter were enriched in the mantle fluid components (Fe, Ti, alkalies, etc); this lighter material could ascend to shallower depths, leading to change of tectonic processes, in particular, to appearance of plate tectonics as the major type of tectonomagmatic activity till now (Bogatikov et al., 2000). By analogy to the Earth, magmatism of the Moon was also linked with ascending of mantle plumes: (1) generated in the depleted mantle (magnesian suite) and (2) generated at the lunar CMB with liquid at that time metallic core (mare basalt and picrites with high-Ti varieties). Like on the Earth, these plumes were lighter than the older plumes, and

  16. Mathematical modeling of a gas jet impinging on a two phase bath

    Science.gov (United States)

    Delgado-Álvárez, J.; Ramírez-Argáez, Marco A.; González-Rivera, C.

    2012-09-01

    In this work a three phase 3D mathematical model was developed using the Volume Of Fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet impinges on a two phase liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The cavity formed in the liquids by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs these phenomena. The inertial force of the jet and its angle play important roles, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquids.

  17. Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan.

    Science.gov (United States)

    Chen, Hungyen; Liao, Yun-Chih; Chen, Ching-Yi; Tsai, Jeng-I; Chen, Lee-Sea; Shao, Kwang-Tsao

    2015-12-08

    The long-term species diversity patterns in marine fish communities are garnering increasing attention from ecologists and conservation biologists. However, current databases on quantitative abundance information lack consistent long-term time series, which are particularly important in exploring the possible underlying mechanism of community changes and evaluating the effectiveness of biodiversity conservation measures. Here we describe an impinged fish assemblage dataset containing 1, 283, 707 individuals from 439 taxa. Once a month over 19 years (1987-1990 and 2000-2014), we systematically collected the fish killed by impingement upon cooling water intake screens at two nuclear power plants on the northern coast of Taiwan. Because impingement surveys have low sampling errors and can be carried out over many years, they serve as an ideal sampling tool for monitoring how fish diversity and community structure vary over an extended period of time.

  18. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine"

    Science.gov (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas

    2017-04-01

    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  19. Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Film Coolant Extraction

    Directory of Open Access Journals (Sweden)

    James A. Parsons

    2001-01-01

    Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.

  20. Flow pulsation in the near-wall layer of impinging jets

    Science.gov (United States)

    Tesař, V.

    2013-04-01

    Pulsation of impinging jets promises to become a useful way towards achieving the highest possible rate of passive scalar convective transport between fluid and a wall. Author investigated experimentally steady and pulsated impingement by hot-wire anemometer traversing along a radial line at a small height above the impingement wall. The data have shown two conspicuous local maxima of fluctuation intensity. In an attempt to reach understanding of these phenomena, numerical flowfield computations were also made, fitted to the experimental conditions. Despite simplification (isotropic handling of unsteadiness, eddies computed as Reynolds-type phase averages) the synergetic approach (experiment & computation) revealed interesting correlation and resulted in useful interpretations of the old problem of the off-axis extremes - and also brings new views on their behaviour in the pulsating jet case.

  1. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  2. Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink

    Science.gov (United States)

    Naphon, Paisarn; Nakharintr, Lursukd

    2012-11-01

    The nanofluid jet impingement heat transfer characteristics in a rectangular mini-fin heat sink are studied. The heat sink is fabricated from aluminum by a wire electrical discharge machine. The nanofluid is a mixture of deionized water and nanoscale TiO2 particles with a volume nanoparticle concentration of 0.2%. The results obtained for nanofluid jet impingement cooling in the rectangular mini-fin heat sink are compared with those found in the water jet impingement cooling. The effects of the inlet temperature of the nanofluid, its Reynolds number, and the heat flux on the heat transfer characteristics of the rectangular mini-fin heat sink are considered. It is found that the average heat transfer rates for the nanofluid as coolant are higher than those for deionized water.

  3. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement.

    Science.gov (United States)

    Hammond, Connor A; Hatfield, Gillian L; Gilbart, Michael K; Garland, S Jayne; Hunt, Michael A

    2017-02-01

    Femoroacetabular impingement is a pathomechanical hip condition leading to pain and impaired physical function. It has been shown that those with femoroacetabular impingement exhibit altered gait characteristics during level walking and stair climbing, and decreased muscle force production during isometric muscle contractions. However, no studies to-date have looked at trunk kinematics or muscle activation during dynamic movements such as stair climbing in this patient population. The purpose of this study was to compare biomechanical outcomes (trunk and lower limb kinematics as well as lower limb kinetics and muscle activation) during stair climbing in those with and without symptomatic femoroacetabular impingement. Trunk, hip, knee and ankle kinematics, as well as hip, knee and ankle kinetics and muscle activity of nine lower limb muscles were collected during stair climbing for 20 people with clinical and radiographic femoroacetabular impingement and compared to 20 age- and sex-matched pain-free individuals. Those with femoroacetabular impingement ascended the stairs slower (effect size=0.82), had significantly increased peak trunk forward flexion angles (effect size=0.99) and external hip flexion moments (effect size=0.94) and had decreased peak external knee flexion moments (effect size=0.90) compared to the control group. Findings from this study indicate that while those with and without femoroacetabular impingement exhibit many biomechanical similarities when ascending stairs, differences in trunk forward flexion and joint kinetics indicate some important differences. Further longitudinal research is required to elucidate the cause of these differences as well as the clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Experimental study of oil plume stability: Parametric dependences and optimization.

    Science.gov (United States)

    Li, Haoshuai; Shen, Tiantian; Bao, Mutai

    2016-10-15

    Oil plume is known to interact with density layer in spilled oil. Previous studies mainly focused on tracking oil plumes and predicting their impact on marine environment. Here, simulated experiments are presented that investigated the conditions inducing the formation of oil plume, focusing especially on the effects of oil/water volume ratio, oil/dispersant volume rate, ambient stratification and optimal conditions of oil plume on determining whether a plume will trap or escape. Scenario simulations showed that OWR influences the residence time most, dispersants dosage comes second and salinity least. The optimum residence time starts from 2387s, occurred at approximately condition (OWR, 0.1, DOR, 25.53% and salinity, 32.38). No change in the relative distribution under the more scale tank was observed, indicating these provide the time evolution of the oil plumes.

  5. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    Science.gov (United States)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  6. An unusual cause of the quadrilateral space impingement syndrome by a bone spike

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mohammed F.; Berst, Matthew; El-Khoury, George Y. [University of Iowa Hospitals and Clinics, Radiology, Iowa City, IO (United States)

    2006-12-15

    The quadrilateral space impingement syndrome is a clinical syndrome resulting from compression of the axillary nerve and the posterior circumflex humeral artery, with subsequent focal atrophy of the teres minor, with or without involvement of portions of the deltoid muscle. This entity has many etiologies. We are reporting a case of this syndrome caused by a bone spike from a malunited old scapular fracture following a motor vehicle accident. The bone spike impinged on the axillary nerve as it passes through the quadrilateral space, causing focal atrophy of the teres minor muscle. The abnormality was well demonstrated by MD-CT. (orig.)

  7. The role of femoroacetabular impingement in core muscle injury/athletic pubalgia: diagnosis and management

    Directory of Open Access Journals (Sweden)

    Thomas eEllis

    2016-02-01

    Full Text Available Chronic groin pain in athletes represents a major diagnostic and therapeutic challenge in sports medicine. Two recognized causes of inguinal pain in the young adult athlete are core muscle injury/athletic pubalgia (CMI/AP and femoroacetabular impingement (FAI. CMI/AP and FAI were previously considered to be two distinct entities, however recent studies have suggested both entities to frequently coincide in the athlete with groin pain. This article briefly discusses the role of femoroacetabular impingement in core muscle injury/athletic pubalgia, and the diagnosis and management of this complex disease.

  8. Convective heat transfer under unsteady impinging jets: the effect of the shape of the unsteadiness

    Science.gov (United States)

    Middelberg, G.; Herwig, H.

    2009-10-01

    Unsteady impinging jets are systematically controlled with respect to their time dependence in order to investigate the influence of unsteadiness on the heat transfer performance. This is achieved by a special mass flow control device, which allows almost arbitrary shapes of unsteadiness to be imposed onto the impinging jet. Three different standard signals (sinusoidal, triangular, rectangular) and two specially designed signals are applied and their influence on heat transfer is determined in terms of an enhancement factor. Heat transfer augmentation up to 30% was found and could be physically explained with the help of PIV and hot-wire measurements of the flow field.

  9. Glyceryl trinitrate patches—An alternative treatment for shoulder impingement syndrome

    Directory of Open Access Journals (Sweden)

    Yusuf Assem

    2015-01-01

    Full Text Available Transdermal glyceryl trinitrate patches have been investigated as an alternative therapeutic intervention for a range of tendinopathies, due to the ease of titration of dosage and the ease of their application. Glyceryl trinitrate has been inferred to reduce pain and inflammation secondary to their nitric oxide-producing action. Shoulder impingement syndrome is a soft tissue condition that manifests as anterior shoulder pain, weakness, and difficulty in daily activities. This review will evaluate the efficacy of glyceryl trinitrate patches in treating a variety of rotator cuff tendinopathies related to shoulder impingement, based on human and animal trials, and suggest its practical application in future trials and management.

  10. Plume tectonics and cratons formation in the early Earth

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Fischer, R.; Sizova, E.; Sobolev, S. V.; Whattam, S. A.

    2015-12-01

    Modern geodynamics and continental growth are critically driven by subduction and plate tectonics, however how this tectonic regime started and what geodynamic regime was before remains controversial. Most present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves the consequence of plate tectonics. Here, we focus on plume-lithosphere interactions and spontaneous plume-induced subduction initiation, which does not require pre-existing lithospheric fabric and is viable for both stagnant lid and mobile/deformable lid conditions. We present results of 2D and 3D numerical modeling of plume-induced deformation and associated crustal growth resulting from tectono-magmatic interaction of ascending mantle plumes with oceanic-type lithosphere. We demonstrate that weakening of the lithosphere by plume-induced magmatism is the key factor allowing for its internal deformation and differentiation resulting in continental crust growth. We also show that plume-lithosphere interaction can enable subduction and rudimentary plate tectonics initiation at the margins of a crustal plateau growing above the plume head. We argue that frequent plume-arc interactions recorded in Archean crust could reflect either short-term plume-induced subduction or plume-induced episodic lithospheric drips. We furthermore suggest a distinct plume-tectonics regime operated on Earth before plate tectonics, which was associated with widespread tectono-magmatic heat and mass exchange between the crust and the mantle. This regime was characterized by weak deformable plates with low topography, massive juvenile crust production from mantle derived melts, mantle-flows-driven crustal deformation, magma-assisted crustal convection and widespread development of lithospheric delamination and crustal drips. Plume tectonics also resulted in growth of hot depleted chemically buoyant subcrustal proto-cratonic mantle layer. Later

  11. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    Science.gov (United States)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  12. Vapor intrusion from entrapped NAPL sources and groundwater plumes

    Science.gov (United States)

    Illangasekare, Tissa H.; Sakaki, Toshihiro; Christ, John; Petri, Bejamin; Sauck, Carolyn; Cihan, Abdullah

    2010-05-01

    Volatile organic compounds (VOC) are commonly found entrapped as non-aqueous phase liquids (NAPLs) in the soil pores or dissolved in groundwater at industrial waste sites and refineries. Vapors emitted from these contaminant sources readily disperse into the atmosphere, into air-filled void spaces within the soil, and migrate below surface structures, leading to the intrusion of contaminant vapors into indoor air through basements and other underground structures. This process referred to as vapor intrusion (VI) represents a potential threat to human health, and is a possible exposure pathway of concern to regulatory agencies. To assess whether this exposure pathway is present, remediation project managers often rely in part on highly simplified screening level models that do not take into consideration the complex flow dynamics controlled by subsurface heterogeneities and soil moisture conditions affected by the mass and heat flux boundary conditions at the land/atmospheric interface. A research study is under way to obtain an improved understanding of the processes and mechanisms controlling vapor generation from entrapped NAPL sources and groundwater plumes, their subsequent migration through the subsurface, and their attenuation in naturally heterogeneous vadose zones under various natural physical, climatic, and geochemical conditions. Experiments conducted at multiple scales will be integrated with analytical and numerical modeling and field data to test and validate existing VI theories and models. A set of preliminary experiments where the fundamental process of vapor generation from entrapped NAPL sources and dissolved plumes under fluctuating water were investigated in small cells and two-dimensional test tanks. In another task, intermediate scale experiments were conducted to generate quantitative data on how the heat and mass flux boundary conditions control the development of dynamic VI pathways. The data from the small cell and tank experiments were

  13. Algorithms and analysis for underwater vehicle plume tracing.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Savage, Elizabeth L. (Texas A& M University, College Station, TX); Hurtado, John Edward (Texas A& M University, College Station, TX); Eskridge, Steven E.

    2003-07-01

    The goal of this research was to develop and demonstrate cooperative 3-D plume tracing algorithms for miniature autonomous underwater vehicles. Applications for this technology include Lost Asset and Survivor Location Systems (L-SALS) and Ship-in-Port Patrol and Protection (SP3). This research was a joint effort that included Nekton Research, LLC, Sandia National Laboratories, and Texas A&M University. Nekton Research developed the miniature autonomous underwater vehicles while Sandia and Texas A&M developed the 3-D plume tracing algorithms. This report describes the plume tracing algorithm and presents test results from successful underwater testing with pseudo-plume sources.

  14. An infrared method for plume rise visualization and measurement

    Science.gov (United States)

    Rickel, Cindy; Lamb, Brian; Guenther, Alex; Allwine, Eugene

    An infrared video camera and recording system were used to record near source plume rise from a low turbine stack at an oil gathering center at Prudhoe Bay, AK. The system provided real-time, continuous visualization of the plume using a color monitor while the images were recorded with a standard video tape recorder. Following the field study, single frame images were digitized using a micro-computer video system. As part of the digitization, the plume centerline was determined as well as an isotherm of the plume outline. In this application, one frame from each 2-min period in the record was digitized. The results were used to calculate the variability in plume centerline during each hour. During strong winds with blowing snow, the mean plume rise for the hour at 15 m downwind was 6±2 m. The observed plume rise from the turbine stack was greater than that calculated using momentum-only or buoyancy-only plume rise models and only slightly larger than that estimated from combined momentum-buoyancy plume rise models.

  15. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos;

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravita......A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes...

  16. Flows in Sunspot Plumes Detected with SOHO

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Wikstol, O.

    1998-09-01

    In the Letter, ``Flows in Sunspot Plumes Detected with the Solar and Heliospheric Observatory'' by N. Brynildsen, P. Maltby, P. Brekke, T. Fredvik, S. V. H. Haugan, O. Kjeldseth-Moe, and Ø. Wikstøl (ApJ, 502, L85 [1998]), the following correction should be made: In the last line on page L86, which reads ``peak line intensity I>=5 are located (1) above the umbra or, '' an ``Ī'' should be inserted so that the revised line reads ``peak line intensity I>=5Ī are located (1) above the umbra or.''

  17. Laboratory models of three-dimensional mantle flow: Implications on Northwest U.S. volcanism for plume and non-plume sources (Invited)

    Science.gov (United States)

    Druken, K. A.; Kincaid, C. R.; Griffiths, R. W.

    2009-12-01

    We present results from laboratory modeling addressing the question of whether a plume is required for reconciling the existing data sets of the Cascade subduction system in the Northwest U.S. Three-dimensional analog models are used to map the spatial and temporal patterns of subduction-induced upwelling associated with decompression melting. A series of experiments with varied combinations of down-dip, rollback and steepening plate motions, as well as extension in the overriding plate, were run with particle tracking techniques to focus on vertical velocities (e.g. favorable to decompression melting) in the mantle wedge. An overriding plate with varied depth is also incorporated to the model in order to more accurately approximate the lithosphere structure of the Northwest U.S. Glucose syrup, with a temperature dependent viscosity, and a phenolic plate were used to model the upper mantle and subducting plate, respectively. Hydraulic pistons control longitudinal, translational and steepening motions of the slab as a simplified kinematic approach to mimic dynamic experiments. Results show that the strongest vertical velocities occur in response to the onset of trench retreat and extension of the overriding plate, independent of the lithospheric “bottom topography”, with the largest occurring when there is an asymmetric style of extension. Spatial and temporal melt patterns mapped from these upwelling events, in addition to experiments with a buoyant plume source, are compared with the Northwest U.S. volcanism over the last 20 Ma. Preliminary results show non-plume melt patterns initially follow a trench parallel (north/south) orientation, which is progressively distorted trench-normal (east/west) with continued rollback subduction.

  18. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.

    Science.gov (United States)

    Shen, C H; Gau, C

    2004-07-30

    The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process.

  19. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  20. Intercontinental transport of nitrogen oxide pollution plumes

    Directory of Open Access Journals (Sweden)

    M. Wenig

    2003-01-01

    Full Text Available We describe the first satellite observation of intercontinental transport of nitrogen oxides emitted by power plants, verified by simulations with a particle tracer model. The analysis of such episodes shows that anthropogenic NOx plumes may influence the atmospheric chemistry thousands of kilometers away from its origin, as well as the ocean they traverse due to nitrogen fertilization. This kind of monitoring became possible by applying an improved algorithm to extract the tropospheric fraction of NO2 from the spectral data coming from the GOME instrument. As an example we show the observation of NO2 in the time period 4--14 May, 1998, from the South African Plateau to Australia which was possible due to favourable weather conditions during that time period which availed the satellite measurement. This episode was also simulated with the Lagrangian particle dispersion model FLEXPART which uses NOx emissions taken from an inventory for industrial emissions in South Africa and is driven with analyses from the European Centre for Medium-Range Weather Forecasts. Additionally lightning emissions were taken into account by utilizing Lightning Imaging Sensor data. Lightning was found to contribute probably not more than 25% of the resulting concentrations. Both, the measured and simulated emission plume show matching patterns while traversing the Indian Ocean to Australia and show great resemblance to the aerosol and CO2 transport observed by Piketh et al. (2000.

  1. Global Circulation and Impact of Plasmaspheric Plumes

    Science.gov (United States)

    Moore, Thomas E.; Fok, Mei-Ching; Chen, Sheng-Hsiem; Delcourt, Dominique C.; Fedder, Joel A.; Slinker, Steven P.

    2008-01-01

    We report results from the global circulation model of Lyon, Fedder, and Mobarry with an embedded model of the inner magnetosphere including the plasmasphere. The combination is used to initiate large numbers of representative protons on the geosynchronous orbit L shell, to assign particle weightings, to track their: subsequent trajectories in the 3D fields. This permits us to study the global circulation of plasmaspheric plumes and to compare these with Polar observations from the dayside magnetopause region . A range of events is studied from an isolated period of SBz in the solar wind,to a large storm sequence. We consider effects on circulating plasma reaching the dayside reconnection X-line, the population of the plasma sheet with ionospheric protons and the generation of ring current pressure from this source, compared with solar wind, polar wind, and auroral wind sources. We find that the transient plasmaspheric plume source is large in terms of total fluence, but of modest proportions in terms of contribution to the ring current. Implications of this and other results for improved space weather modeling and prediction will be discussed.

  2. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  3. A new radiological index for assessing asphericity of the femoral head in cam impingement

    DEFF Research Database (Denmark)

    Gosvig, K K; Jacobsen, S; Palm, H;

    2007-01-01

    Femoroacetabular cam impingement is thought to be a cause of premature osteoarthritis of the hip. The presence of cam malformation was determined in 2803 standardised anteroposterior (AP) pelvic radiographs from the Copenhagen Osteoarthritis Study by measuring the alpha (alpha) angle and the tria...

  4. Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    Science.gov (United States)

    Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.; Hutcheson, Florence V.

    2015-01-01

    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  5. An Experimental Method for Measuring Water Droplet Impingement Efficiency on Two- and Three-dimensional Bodies

    Science.gov (United States)

    Papadakis, M.; Zumwalt, G. W.; Elangonan, R.; Freund, G. A., Jr.; Breer, M.; Whitmer, L.

    1989-01-01

    An experimental method was developed to determine the droplet impingement characteristics on 2-D and 3-D bodies. The experimental results provide the essential droplet impingement data required to validate water droplet trajectory codes, which are used in the analysis of aircraft icing. A body, whose water droplet impingement characteristics are required, is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and is exposed to an air stream containing a water dye solution spray cloud. Water droplet impingement data are extracted from the dyed blotter strips by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Models tested include a 4-inch diameter cylinder, a NACA 652015 airfoil section, a MS(1)-0317 supercritical airfoil section, three simulated ice shapes, an axisymmetric inlet and a Boeing 737-300 inlet model. Detailed descriptions of the dye tracer technique, instrumentation, data reduction method and the results obtained are presented. Analytical predictions of collection efficiency characteristics for most test configurations are included for comparison.

  6. Ice growth and interface oscillation of water droplets impinged on a cooling surface

    Science.gov (United States)

    Hagiwara, Yoshimichi; Ishikawa, Shoji; Kimura, Ryota; Toyohara, Kazumasa

    2017-06-01

    We focused on the attenuation of air-water interface oscillation for impinged water droplets freezing on a cooling surface. We carried out not only experiments but also two-dimensional numerical simulation on the droplets using a Phase-field method and an immersed boundary method. The Reynolds number and Weber number were in the range of 35-129 and 1.6-22, respectively. The experimental and computational results showed that the height of the impinged droplets on the symmetrical axis started to oscillate as a result of the impact of the collision of droplets with the surfaces in all the cases that we investigated. The measured frequency of the oscillations in the case of the adiabatic droplets was equal to the frequency estimated from the equation for the capillary-gravity waves on sessile droplets (Temperton, 2013) [30]. The oscillations converged rapidly in all impinged water droplets that froze on the cooling surface. This is due partly to the growth of ice shells along the air-water interface and partly to decreases in water volume as a result of the ice growth mainly on the cooling surface. In addition, the thermal field was disturbed not only by the latent heat transfer but also by the upward component of recirculating flow induced by the droplet impingement.

  7. Electron emission yields from boron-like Ar ions impinging on Au(100)

    NARCIS (Netherlands)

    Bodewits, E.; Bekker, H.; de Nijs, A. J.; Hoekstra, R.; Winklehner, D.; Daniel, B.; Kowarik, G.; Dobes, K.; Aumayr, F.

    2011-01-01

    Using a new experimental station to be installed at the HITRAP facility at GSI we studied electron emission yields of Ar13+ ions impinging on a clean Au(1 00) surface. By taking data under different incidence angles and at different initial kinetic energies, contributions from kinetic and potential

  8. Analysis of disagreement between numerically predicted and experimental heat transfer data of impinging jet

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ping; YE Liang-chun; ZHOU Jie-min; YANG Ying

    2006-01-01

    The method of numerical simulation was applied to investigate the effects of jet impinging plate thickness and its thermal conductivity on the local heat flux distribution along the impinging plate. The results show that the two factors have great effects on the heat flux distribution. The non-uniformity of the local heat-flux on the impinging plate surface gets more profound as the plate becomes thicker and thermal conductivity gets larger. When Reynand even for the plate with only 25 μm in thickness, the non-uniformity of the heat flux cannot be neglected. When approximately treated as an iso-heat-flux boundary. In the experimental research, a real non-iso-heat-flux boundary is treated as an iso-heat-flux boundary, which would result in under-estimated Nusselt number value in the stagnation zone and an over-estimated value outside. Such an experimental Nusselt number distribution is taken to evaluate turbulent model, and the conclusion would be drawn that the turbulent model over-predicts the stagnation heat transfer. This is one of the important reasons why many literatures reported that k-ε turbulent model dramatically over-predicts the impinging jet heat transfer in the stagnation region.

  9. Role of kinetic energy of impinging molecules in the α-sexithiophene growth

    NARCIS (Netherlands)

    Tonezzer, M.; Rigo, E.; Gottardi, S.; Bettotti, P.; Pavesi, L.; Iannotta, S.; Toccoli, T.

    2011-01-01

    We report on the α-sexithiophene sub-monolayer growth with supersonic molecular beam deposition by investigating how the kinetic energy of the impinging molecules influences the growth on substrates with different surface wettabilities and temperatures. The results show that the energy of the

  10. Analytical Study on Impingement Heat Transfer with Single—Phase Free—Surface Circular Liquid Jets

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; T.Masuoka; 等

    1996-01-01

    An analytical research was conducted to study heat transfer from horizontal surfaces to normally impinging circular jets under arbitrary-heat-flux conditions.The laminar thermal and hydraulic bound ary layers were divided into five regions of flow.General expressions of heat transfer coefficients were obtained in all the four regions of stagnation and wall jet zones before the hydraulic jump.

  11. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-05-23

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A new radiological index for assessing asphericity of the femoral head in cam impingement

    DEFF Research Database (Denmark)

    Gosvig, K K; Jacobsen, S; Palm, H

    2007-01-01

    Femoroacetabular cam impingement is thought to be a cause of premature osteoarthritis of the hip. The presence of cam malformation was determined in 2803 standardised anteroposterior (AP) pelvic radiographs from the Copenhagen Osteoarthritis Study by measuring the alpha (alpha) angle and the tria...

  13. Role of the confinement of a root canal on jet impingement during endodontic irrigation

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; Heijnen, G. L.; van der Sluis, L. W. M.; Versluis, M.

    2012-01-01

    During a root canal treatment the root canal is irrigated with an antimicrobial fluid, commonly performed with a needle and a syringe. Irrigation of a root canal with two different types of needles can be modeled as an impinging axisymmetric or non-axisymmetric jet. These jets are investigated exper

  14. Subacute posteromedial impingement of the ankle in athletes: MR imaging evaluation and ultrasound guided therapy

    Energy Technology Data Exchange (ETDEWEB)

    Messiou, Christina; Robinson, Philip; O' Connor, Philip J.; Grainger, Andrew [Leeds Teaching Hospitals, St. James University Hospital, Department of Radiology, Leeds (United Kingdom)

    2006-02-15

    To describe the use of MR imaging and efficacy of ultrasound-guided steroid injection in the diagnosis and management of athletes with clinical posteromedial impingement of the ankle. A retrospective analysis of imaging findings on MR was undertaken in nine elite athletes with clinical posteromedial ankle impingement. MR studies from six professional athletes with posterolateral pain were also reviewed as an imaging control group. The two reviewing radiologists were blinded to the clinical details and the proportion of control and study subjects. The nine study athletes also underwent diagnostic ultrasound and ultrasound-guided injection of steroid and anaesthetic into the posteromedial capsular abnormality. Follow-up was by telephone interview. Posteromedial capsular thickening was seen only in athletes with posteromedial impingement (7/9). Posteromedial synovitis was present in all athletes with posteromedial impingement; however, posterior and posterolateral synovitis was also seen in these athletes. Mild posteromedial synovitis was present in two control athletes. Ultrasound identified abnormal posteromedial soft tissue thickening deep to tibialis posterior between the medial malleolus and talus in all nine athletes. After injection all athletes returned to their previous level of sport, with eight of the nine not experiencing any residual or recurrent symptoms. If MR imaging excludes significant coexistent abnormality, ultrasound can localise posteromedial soft tissue abnormality and guide injection therapy, allowing return to athletic activity without surgical intervention. (orig.)

  15. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Deloge-Abarkan, Magali; Ha, Thi-Lan; Robine, Enric; Zmirou-Navier, Denis; Mathieu, Laurence

    2007-01-01

    Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.

  16. Iliopsoas impingement after revision total hip arthroplasty treated with iliopsoas muscle transection.

    Science.gov (United States)

    Morohashi, Itaru; Homma, Yasuhiro; Kanda, Akio; Yamamoto, Yasuhiro; Obata, Hiroyuki; Mogami, Atsuhiko; Obayashi, Osamu; Kaneko, Kazuo

    2016-05-01

    Iliopsoas tendinitis after revision total hip arthroplasty (THA) is rare and its etiology and optimal treatment are still unclear. We report a case of iliopsoas impingement after revision THA with a Kerboull acetabular reinforcement device requiring two-level iliopsoas muscle transection. A 70-year-old woman presented to our hospital complaining of debilitating right groin pain after revision THA with a Kerboull reinforcement device. She had undergone multiple hip operations after experiencing a pelvic fracture in a motor vehicle accident. A lidocaine nerve block at the level of the Kerboull device resulted in temporary but marked reduction in pain and a diagnosis of psoas impingent. We performed surgery via an anterior approach to release the iliopsoas muscle from the lesser trochanter. After iliopsoas tenotomy was performed, the muscle was still under high tension because of dense adhesions. Repeat transection of the iliopsoas muscle at the level of the anterior branch of the Kerboull device resulted in loosening of the iliopsoas muscle and resolution of impingement. Postoperatively, the patient's groin pain completely disappeared, and she can now walk with a single cane and is satisfied with her result. Adhesions around the iliopsoas muscle likely contributed to the patient's groin pain. Open surgery to perform complete release of iliopsoas muscle impingement should be considered in patients with pain after revision THA. We reported a patient with Iliopsoas tendinitis after revision THA requiring two-level iliopsoas muscle transection.

  17. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regime...

  18. LES, RANS and combined simulation of impinging flows and heat transfer

    NARCIS (Netherlands)

    Hadziabdic, M.

    2006-01-01

    This thesis reports on a numerical study of a round, isothermal turbulent jet of incompressible fluid, impinging normally on a flat wall at a different temperature. The aim was to generate detailed information about the ime-dependent three-dimensional velocity and temperature field, and, based on

  19. Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys

    NARCIS (Netherlands)

    Chen, H.; Van der Zwaag, S.

    2010-01-01

    The soft impingement effect at the later stage of partitioning phase transformations has been modeled both for the diffusion-controlled growth model and for the mixed-mode model. Instead of the linear and exponential approximations for the concentration gradient in front of the interface used in the

  20. Clinical outcomes assessment in clinical trials to assess treatment of femoroacetabular impingement

    DEFF Research Database (Denmark)

    Harris-Hayes, Marcie; McDonough, Christine M; Leunig, Michael

    2013-01-01

    Patient-reported outcome measures are an important component of outcomes assessment in clinical trials to assess the treatment of femoroacetabular impingement (FAI). This review of disease-specific measures and instruments used to assess the generic quality of life and physical activity levels...

  1. Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation

    Science.gov (United States)

    Zhang, Jun; Liu, Youzhi; Qi, Guisheng; Jiao, Weizhou; Yuan, Zhiguo

    2016-08-01

    The flow characteristics in free impinging jet reactors (FIJRs) were investigated using particle image velocimetry (PIV). The effects of the Reynolds number (Re) and the ratio of jet distance to jet diameter (w/d) on flow behavior were discussed for equal volumetric flow rates of the two jets. The impingement plane, instantaneous velocity, mean velocity, and turbulent kinetic energy (TKE) distribution of FIJRs are measured from captured images using the PIV technique. As Re increases, the average diameter of the impingement plane linearly increases. The instability of the liquid is closely related to the jet velocity or the Re. However, the stagnation point is insensitive to the variation of the Re. The droplets break up from the turbulent liquid in the ‘wall-free’ environment of FIJRs, so that the liquid back-flow found in confined impinging jet reactors (CIJRs) is not observed. Increasing the Re from 1800-4100 or decreasing the w/d from 20-6 plays a similar role in increasing the TKE values and intensifying turbulence, which promotes the momentum transfer and mixing efficiency in FIJRs.

  2. Neuromuscular control of scapula muscles during a voluntary task in subjects with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Larsen, C M; Søgaard, Karen; Chreiteh, S S

    2013-01-01

    Imbalance of neuromuscular activity in the scapula stabilizers in subjects with Subacromial Impingement Syndrome (SIS) is described in restricted tasks and specific populations. Our aim was to compare the scapular muscle activity during a voluntary movement task in a general population with and w...

  3. Ablation characteristics of special concrete due to an impinging zirconium-dioxide melt jet

    Energy Technology Data Exchange (ETDEWEB)

    An, S.M., E-mail: sangmoan@kaeri.re.kr; Ha, K.S.; Min, B.T.; Kim, H.Y.; Song, J.H.

    2015-04-01

    Highlights: • The jet impingement tests were performed for a special concrete of core-catcher. • The ablation rate and depth were measured 1.59 mm/s and 4.33 mm, respectively. • The experimental results were estimated well between the model prediction bounds. • The material ablation was described reasonably by a convective heat transfer model. - Abstract: Jet impingement experiments were performed to investigate the ablation characteristics of special concrete, which has been developed as one of the candidate protecting materials for the EU-APR1400 ex-vessel core catcher. In order to simulate the jet impingement phenomenon owing to the reactor vessel failure during a severe core meltdown accident, the experimental facility was established and the experimental conditions were determined based on parametric studies. The special concrete specimen was manufactured in accordance with the standard procedures, and its microstructures and physicochemical properties were analyzed to verify the requirements for the qualification. An induction melting technique in a cold crucible was employed to generate the zirconium-dioxide melt as a simulant of the corium melt. The special concrete was ablated uniformly over the impact area by jet impingement, and the average ablation depth was measured to be 4.33 mm. The average ablation rate in depth was evaluated as 1.59 mm/s using the temperature measurements of the specimen. As compared with the predictions by the models based on the convective and radiative heat transfer analysis, both the measured ablation rate and depth were estimated appropriately within the bounds of their limits. However, the convective heat transfer model turned out to predict the ablation characteristics of the special concrete more reasonably during the jet impingement even though some water content within the special concrete could lead to a sudden generation of the steam layer through which the material ablation is attenuated substantially by the

  4. Converging Supergranular Flows and the Formation of Coronal Plumes

    Science.gov (United States)

    Wang, Y.-M.; Warren, H. P.; Muglach, K.

    2016-01-01

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the approximately 1-day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.

  5. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  6. Identification of mantle plumes in the Emeishan Large Igneous Province

    Institute of Scientific and Technical Information of China (English)

    Yi-Gang Xu; Jifeng Xu; Yue-Jun Wang; Bin He; Xiaolong Huang; Zhenyu Luo; Sun-Lin Chung; Long Xiao; Dan Zhu; Hui Shao; Wei-Ming Fan

    2007-01-01

    @@ The plume hypothesis has been recently challengedlargely because some fundamental aspects predicted bythe modeling of plumes are found to be lacking in someclassic hotspot regions. This review paper summarizesrecent achievements made in the late Permian Emeishan continental flood basalt province in southwest China.

  7. CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil, E-mail: karin.muglach@nasa.gov [Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the ∼1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.

  8. The Structure of Enceladus' Plume from Cassini Occultation Observations

    Science.gov (United States)

    Hansen, C. J.; Esposito, L. W.; Buffington, B. B.; Colwell, J.; Hendrix, A. R.; Meinke, B. K.; Shemansky, D. E.; Stewart, I.; West, R. A.

    2011-12-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed 2 stellar and one solar occultation by Enceladus' water vapor plume. These observations have established that water is the primary constituent of the plume, allowed us to calculate the flux of water coming from the plume, and detected super-sonic jets of gas imbedded within the plume [1]. On 19 October 2011 two stars (epsilon and zeta Orionis) will simultaneously be occulted by the plume, and the signal of the two will be in separate pixels on the detector. This is a tangential occultation that will provide a horizontal cut through the plume at two altitudes. The two stars are separated by 24 mrad, or ~20 km, with the lower altitude star 18 km above the limb at its closest point. The groundtrack is similar to the 2010 solar occultation, but viewed from the other side of the plume. Results from this new data set with implications for the vertical structure of the plume and jets will be presented.

  9. Laboratory-Scale Simulation of Spiral Plumes in the Mantle

    CERN Document Server

    Sharifulin, A N

    2012-01-01

    On the basis of laboratory simulation a mechanism is established for the formation of the upper mantle convection spiral plumes from a hot point in the presence of a roll-type large-scale convective flow. The observed plume has horizontal sections near the upper limit, which may lead to the formation of chains of volcanic islands.

  10. Determining resolvability of mantle plumes with synthetic seismic modeling

    Science.gov (United States)

    Maguire, R.; Van Keken, P. E.; Ritsema, J.; Fichtner, A.; Goes, S. D. B.

    2014-12-01

    Hotspot volcanism in locations such as Hawaii and Iceland is commonly thought to be associated with plumes rising from the deep mantle. In theory these dynamic upwellings should be visible in seismic data due to their reduced seismic velocity and their effect on mantle transition zone thickness. Numerous studies have attempted to image plumes [1,2,3], but their deep mantle origin remains unclear. In addition, a debate continues as to whether lower mantle plumes are visible in the form of body wave travel time delays, or whether such delays will be erased due to wavefront healing. Here we combine geodynamic modeling of mantle plumes with synthetic seismic waveform modeling in order to quantitatively determine under what conditions mantle plumes should be seismically visible. We model compressible plumes with phase changes at 410 km and 670 km, and a viscosity reduction in the upper mantle. These plumes thin from greater than 600 km in diameter in the lower mantle, to 200 - 400 km in the upper mantle. Plume excess potential temperature is 375 K, which maps to seismic velocity reductions of 4 - 12 % in the upper mantle, and 2 - 4 % in the lower mantle. Previous work that was limited to an axisymmetric spherical geometry suggested that these plumes would not be visible in the lower mantle [4]. Here we extend this approach to full 3D spherical wave propagation modeling. Initial results using a simplified cylindrical plume conduit suggest that mantle plumes with a diameter of 1000 km or greater will retain a deep mantle seismic signature. References[1] Wolfe, Cecily J., et al. "Seismic structure of the Iceland mantle plume." Nature 385.6613 (1997): 245-247. [2] Montelli, Raffaella, et al. "Finite-frequency tomography reveals a variety of plumes in the mantle." Science 303.5656 (2004): 338-343. [3] Schmandt, Brandon, et al. "Hot mantle upwelling across the 660 beneath Yellowstone." Earth and Planetary Science Letters 331 (2012): 224-236. [4] Hwang, Yong Keun, et al

  11. Turbulence statistics in a negatively buoyant particle plume - laboratory measurement

    Science.gov (United States)

    Bordoloi, Ankur; Clark, Laura; Veliz, Gerardo; Heath, Michael; Variano, Evan

    2016-11-01

    Negatively buoyant plumes of nylon particles are investigated in quiescent salt-water solution using flow visualization and stereoscopic PIV. Particles of the size 2 mm are continuously released through a nozzle from the top inside a water tank using a screw-conveyor based release mechanism. The plume propagates downward due to gravity, and by virtue of interacting particle wakes, becomes turbulent. The two phases are refractive index matched, so that the velocity field in the interstitial fluid can be quantified using PIV. We examine the velocity fields in the fluid phase to characterize turbulence statistics, such as turbulent kinetic energy, Reynolds stresses in the fully developed region of the plume. Further, we develop an image processing method to obtain particle distribution and particle slip inside the plume. In the presentation, we will discuss these results in the light of existing literature for rising plumes of bubbles under similar experimental conditions.

  12. Characterization of redox conditions in groundwater contaminant plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwarth, Steven A.

    2000-01-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...... dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial...... cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials...

  13. Numerical Studies on Fire-induced Thermal Plumes

    Institute of Scientific and Technical Information of China (English)

    Junmei LI; Yanfeng LI; Wan Ki CHOW; Huairong HUANG

    2005-01-01

    Most of the expressions describing fire plumes reported in the literature are known to be based on experiments.Due to different experimental methods, the geometry of the fire sources, fuel types and surrounding conditions, it is difficult to derive a comprehensive picture of a plume with its temperature and velocity fields on the basis of existing theoretical work. Computational Fluid Dynamics (CFD), which is regarded as a practical engineering tool in fire engineering by the experts, is sure to be able to give more details of the plume behavior under various situations. Aerodynamics for thermally-induced plumes will be studied numerically with CFD. Four typical axisymmetric plume equations will be assessed in this paper, and investigations will be useful for fire engineers in designing smoke management systems in an affordable fashion. This is a critical point in implementing engineering performance-based fire code.

  14. Earth's Magnetosphere Impinged by Interplanetary Shocks of Different Orientations

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Cheng; HU You-Qiu; WANG Chi

    2005-01-01

    @@ Using a recently developed PPMLR-MHD code, we carry out a global numerical simulation of the interaction between interplanetary shocks and Earth's magnetosphere. The initial magnetosphere is in a quasi-steady state,embedded in a uniform solar wind and a spiral interplanetary magnetic field (IMF). An interplanetary (IP)shock interacts in turn with the bow shock, the magnetosheath, the magnetopause, and the magnetosphere, and changes the magnetosphere in shape and structure, and the distribution of the electric current and potential in the ionosphere as well. A preliminary comparison is made between two IP shocks of the same solar wind dynamic pressure and a vanishing IMF Bz on the downstream side, but with different propagation directions, one parallel and the other oblique to the Sun-Earth line. The numerical results show that both shocks cause a compression of the magnetosphere, an enhancement of magnetic field strength and field-aligned current in the magnetosphere, and an increase of the dawn-dusk electric potential drops across the polar ionosphere. Moreover, the magnetosphereionosphere system approaches a similar quasi-steady state after the interaction, for the downstream states are very close for the two shocks. However, the evolution processes of the system are remarkably different during the interaction with the two shocks of different orientations. The shock with the normal oblique to the Sun-Earth line results in a much longer evolution time for the system. This demonstrates that the shock orientation plays an important role in determining the associated geophysical effects and interpreting multisatellite observations of IP shock-magnetosphere interaction events.

  15. West Antarctic Mantle Plume Hypothesis and Basal Water Generation

    Science.gov (United States)

    Ivins, Erik; Seroussi, Helene; Wiens, Doug; Bondzio, Johannes

    2017-04-01

    The hypothesis of a deep mantle plume that manifests Pliocene and Quaternary volcanism and present-day seismicity in West Antarctica has been speculated for more than 30 years. Recent seismic images support the plume hypothesis as the cause of Marie Byrd Land (MBL) volcanism and geophysical structure [ Lloyd et al., 2015; Ramirez et al., 2016]. Mantle plumes can more that double the geothermal heat flux, qGHF, above nominal continental values at their axial peak position and raise qGHF in the surrounding plume head to 60 mW/m2 or higher. Unfortunately, there is a dearth of in-situ basal ice sheet data that sample the heat flux. Consequently, we examine a realistic distribution of heat flux associated with a late-Cenozoic mantle plume in West Antarctica and explore its impact on thermal and melt conditions near the ice sheet base. The solid Earth model assumes a parameterized deep mantle plume and head. The 3-D ice flow model includes an enthalpy framework and full-Stokes stress balance. Both the putative plume location and extent are uncertain. Therefore, we perform broadly scoped experiments to characterize plume related basal conditions. The experiments show that mantle plumes have an important local impact on the ice sheet, with basal melting rates reaching several centimeters per year directly above the hotspot. The downstream active lake system of Whillans Ice Stream suggests a rift-related source of anomalous mantle heat. However, the lack of lake and stream activity in MBL suggests a relatively weak plume: one that delivers less flux by 35% below the heat flux to the crustal surface at the site of the Yellowstone hotspot [e.g., DeNosaquo et al., 2009], with peak value no higher than about 145 mW/m2.

  16. Numerical Investigation on Jet Impingement Behaviors Affected by a Vertically Rotating Disk Suspended Close to the Surface

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2014-01-01

    Full Text Available A simplified physical model is built up to study the swirl flow effect induced by a rotating disk on the jet impingement behaviors, which is adopted to simulate the grinding process. To solve the definition problem of the interface between a rotating disk and a stationary plate in the computational simulation, a tiny gap is set between the rotating disk and the stationary plate. The results show that the rotating disk suspended above the surface adds more complexity to the flow field of jet impingement on a stationary plate. The swirling flow around the rotating disk obstructs the impinging jet flow to penetrate into the interfacial contact zone and forces the wall jet across the rotating disk to flow along transverse directions. For the given jet impinging velocity and nozzle orientation, as the disk rotational speed increases, the effect of the rotating disk on the impinging jet flow behaves more significantly. The impinging jet with small inject velocity is difficult to penetrate through the interfacial contact zone to follow by the disk swirl flows. For smaller jet impinging distance or larger oblique angle, the flow recirculation away from the interfacial contact zone becomes stronger.

  17. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  18. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  19. Physical Modelling of Axisymmetric Turbulent Impinging Jets as used within the Nuclear Industry for Mobilisation of Sludges

    Energy Technology Data Exchange (ETDEWEB)

    McKendrick, D.; Biggs, S.R.; Fairweather, M. [Institute of Particle Science and Engineering, University of Leeds, Leeds (United Kingdom); Rhodes, D. [Nexia Solutions, Sellafield, Seascale, Cumbria (United Kingdom)

    2008-07-01

    The impingement of a fluid jet onto a surface has broad applications across many industries. Within the UK nuclear industry, during the final stages of fuel reprocessing, impinging fluid jets are utilised to mobilise settled sludge material within storage tanks and ponds in preparation for transfer and ultimate immobilisation through vitrification. Despite the extensive applications of impinging jets within the nuclear and other industries, the study of two-phase, solid loaded, impinging jets is limited, and generally restricted to computational modelling. Surprisingly, very little fundamental understanding of the turbulence structure within such fluid flows through experimental investigation is found within the literature. The physical modelling of impinging jet systems could successfully serve to aid computer model validation, determine operating requirements, evaluate plant throughput requirements, optimise process operations and support design. Within this project a method is illustrated, capable of exploring the effects of process and material variables on flow phenomena of impinging jets. This is achieved via the use of non-intrusive measurement techniques Particle Image Velocimetry (PIV), Ultrasonic Doppler Velocity Profiler (UDVP) and high speed imaging. The turbulence structure for impinging jets, and their resultant radial wall jets, is presented at different jet-to-plate ratios, jet Reynolds numbers and jet outlet diameters. (authors)

  20. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  1. A plume spectroscopy system for flight applications

    Science.gov (United States)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-06-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  2. Identification of discontinuities in plasma plume evolution

    CERN Document Server

    Gojani, Ardian B; Obayashi, Shigeru

    2013-01-01

    The ejection of material during laser ablation gives rise to the development of discontinuities in the ambient gas. Several of these discontinuities are observed and characterized, including externally and internally propagating shock waves, contact surface, and the ionization front. Qualitative experimental observations and analysis of these discontinuities is presented. Results from shadowgraphy enabled determination of an irradiance threshold between two different ablation mechanisms, and determination of several stages of plasma plume evolution. Consideration of the refractive index as a dynamic sum of the contributions from gas and electrons led to separate identification of ionization front from the contact surface. Furthermore, ionization front was observed to lead the shock wave at the earlier stage of the ablation.

  3. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...... in the planning of field tests and to update the conceptual model in an iterative process. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology and hydrogeology. To describe the geology and fracture system, data from borehole logs, packer tests, optical...... distribution in the aquifer. Different models were used for the planning and interpretation of the pump and tracer test. The models were evaluated by examining their ability to describe collected field data. The comparison with data showed that the models have substantially different representations...

  4. Os acromiale causing shoulder impingement syndrome: a case report; Os acromiale como causa de impingement del hombro: a proposito de un caso

    Energy Technology Data Exchange (ETDEWEB)

    Romero, I.; Rodriguez, A.; Roca, M.; Garcia, Y. [Hospital Universitario Miguel Servet. Zaragoza (Spain)

    2001-07-01

    Shoulder impingement syndrome is caused by repeated mechanical trauma to the rotator cuff due to encroachment of the coracoacromial ligement; in most cases, it is a primary lesion. Os acromiale, an anatomic variant of the shoulder structures, is one of the predisposing factors for the development of this entity. We present a case of os acromiale complicated by complete rupture of the tendon of the supraspinatus muscle and luxation of the long head of the biceps tendon. We stress the importance of magnetic resonance in the study of this anatomic variant and in the detection of complications or associated lesions. (Author) 10 refs.

  5. Learning to Rapidly Re-Contact the Lost Plume in Chemical Plume Tracing

    Directory of Open Access Journals (Sweden)

    Meng-Li Cao

    2015-03-01

    Full Text Available Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT. In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF. In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF.

  6. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  7. Natural versus forced convection in laminar starting plumes

    CERN Document Server

    Rogers, Michael C

    2009-01-01

    A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...

  8. Biogeochemistry and isotope geochemistry of a landfill leachate plume.

    Science.gov (United States)

    van Breukelen, Boris M; Röling, Wilfred F M; Groen, Jacobus; Griffioen, Jasper; van Verseveld, Henk W

    2003-09-01

    The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.

  9. U. S. Air Force approach to plume contamination

    Science.gov (United States)

    Furstenau, Ronald P.; McCay, T. Dwayne; Mann, David M.

    1980-08-01

    Exhaust products from rocket engine firings can produce undesirable effects on sensitive satellite surfaces, such as optical systems, solar cells, and thermal control surfaces. The Air Force has an objective of minimizing the effect of rocket plume contamination on space-craft mission effectiveness. Plume contamination can result from solid rocket motors, liquid propellant engines, and electric thrusters. To solve the plume contamination problem, the Air Force Rocket Propulsion Laboratory (AFRPL) has developed a plume contamination computer model which predicts the production, transport, and deposition of rocket exhaust products. In addition, an experimental data base is being obtained through ground-based vacuum chamber experiments and in-flight measurements with which to compare the analytical results. Finally, the experimental data is being used to verify and improve the analytical model. The plume contamination model, known as CONTAM, has been used to make contamination predictions for various engines. The experimental programs have yielded quantitative data, such as species concentrations and temperatures, in all regions of the plume. The result of the modelling and experimental programs will ultimately be computer models which can be used by the satellite designer to analyze and to minimize the effect plume contamination will have on a particular spacecraft system.

  10. Monitoring radioactive plumes by airborne gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L. [Exploranium, Mississauga, Ontario (Canada); Hovgaard, J. [Danish Emergency Management Agency, Birkerod (Germany); Multala, J. [Geological Survey of Finland, Espoo (Finland)

    1996-06-01

    Airborne gamma-ray spectrometer surveys using large volume sodium-iodide detectors are routinely flown throughout the world for mineral exploration and geological mapping. Techniques have now been developed to detect and map man-made sources of radiation. In Canada, airborne gamma-rays surveys have been flown around nuclear reactors to map {sup 41}Ar plumes from nuclear reactors and to calculate the dose rate at ground level. In May 1986, the Finnish Geological survey aircraft flew through a radioactive plume from the Chernobyl nuclear accident. As the aircraft flew through the plume, the aircraft became increasingly contaminated. By measuring the final aircraft contamination, the activity of the plume could be separated from the contamination due to the aircraft. Within 1 h of encountering the plume, the aircraft activity was comparable to the maximum levels found in the plume. From an analysis of the gamma-ray spectra, the concentration of {sup 131}I and {sup 140}La within the plume were calculated as a function of time.

  11. Cooling tower and plume modeling for satellite remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  12. Sand laser-ablation as source of elements laser isotope separation: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, N.A.S.; Destro, M.G.; Vasconcelos, G; Neri, J.W.; Silveira, C.A.B.; Riva, R. [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: nicolau@ieav.cta.br

    2008-07-01

    This paper presents preliminary results of emission spectroscopy experiments, performed with the aim to verify the presence of monoatomic neutral material in the jet produced by laser ablation of simple and complex targets. All studied materials (copper, graphite, alumina and beach sand) showed emission of single atoms, indicating the presence of monoatomic material in the ablated plume. (author)

  13. 3-D numerical modeling of plume-induced subduction initiation

    Science.gov (United States)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  14. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters....... The two-phase mixture solution based on the drift-flux method is evaluated for 3D simulation of material disposal and overflow discharge from the hoppers. The model takes into account the hindrance and resistance mechanisms in the mixture and is capable of describing the flow details within the plumes...... and gives excellent results when compared to experimental data....

  15. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...... on the aircraft. By using simple assumptions on the build-up of contamination it has been possible to separate the signals from contamination and from plume. The analysis further showed that even a detector/spectrometer with low energy resolution is able to identify a contamination with iodine....

  16. Standoff midwave infrared hyperspectral imaging of ship plumes

    Science.gov (United States)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick

    2016-05-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  17. Laboratory Study of Dispersion of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1990-01-01

    A laboratory a study on surface dispersion of buoyant plumes in open channel turbulence in made, where the buoyancy is due to both salinity and heat. The measured parameters are the downstream derivative of a plume width and height, which are integral-characteristics of the distributions of density......-differences. Other methods as infra-red sensing are used for visualizing purpose. The results are used to calibrate an integral model of the dispersion. Conclusions are that the dispersion of a buoyant surface plume can be treated the superposition of a buoyancy induced stretching and turbulent diffusion, reduced...

  18. Lightning in Colorado forest fire smoke plumes during summer 2012

    Science.gov (United States)

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.

    2012-12-01

    May and June 2012 were unusually hot and dry in Colorado, which was suffering from a strong drought. A major consequence of this climatic regime was one of the most destructive forest fire seasons in state history, with hundreds of thousands of acres of forest and grassland consumed by flames, hundreds of homes burned, and several lives lost. Many of these fires occurred within range of the newly installed Colorado Lightning Mapping Array (COLMA), which provides high-resolution observations of discharges over a large portion of the state. The COLMA was installed in advance of the Deep Convective Clouds and Chemistry (DC3) project. High-altitude lightning was observed to occur sporadically in the smoke plumes over three major fires that occurred during early summer: Hewlett Gulch, High Park, and Waldo Canyon. Additionally, the Colorado State University CHILL (CSU-CHILL) and Pawnee radars observed the Hewlett Gulch plume electrify with detailed polarimetric and dual-Doppler measurements, and also provided these same measurements for the High Park plume when it was not producing lightning. Meanwhile, local Next Generation Radars (NEXRADs) provided observations of the electrified High Park and Waldo Canyon plumes. All of these plumes also were observed by geostationary meteorological satellites. These observations provide an unprecedented dataset with which to study smoke plume and pyrocumulus electrification. The polarimetric data - low reflectivity, high differential reflectivity, low correlation coefficient, and noisy differential phase - were consistent with the smoke plumes and associated pyrocumulus being filled primarily with irregularly shaped ash particles. Lightning was not observed in the plumes until they reached over 10 km above mean sea level, which was an uncommon occurrence requiring explosive fire growth combined with increased meteorological instability and reduced wind shear. Plume updraft intensification and echo-top growth led the occurrence of

  19. Rocket Plume Scaling for Orion Wind Tunnel Testing

    Science.gov (United States)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  20. Relationship between calcifying tendinitis and subacromial impingement: a prospective radiography and magnetic resonance imaging study.

    Science.gov (United States)

    Loew, M; Sabo, D; Wehrle, M; Mau, H

    1996-01-01

    In a prospective study radiographs and magnetic resonance images of 75 patients with calcifying tendinitis of the rotator cuff were analyzed. The aim was to evaluate any relation between calcifying tendinitis and subacromial impingement. A total of 83% of the calcifications were located in the supraspinatus or the adjoining part of the subscapularis tendon. On T1-weighted images they could be demonstrated with high accuracy as areas of decreased signal intensity. A magnetic resonance imaging categorization of the calcium deposits was carried out by means of a differentiation of form, outline, and density. A partial rotator cuff tear was found in one shoulder; in 11% variable aspects of degenerative alteration of the affected tendon were seen. By analysis of the radiographic outlet view 16% of the cases had a type III acromion. In conclusion, little correlation exists between calcifying tendinitis and additional findings associated with subacromial impingement.

  1. Computational flow and heat transfer of a row of circular jets impinging on a concave surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B.V.N.R.; Prasad, B.V.S.S.S. [Indian Institute of Technology Madras, Thermal Turbomachines Lab, Chennai (India)

    2008-04-15

    A computational investigation is carried out to study the flow and heat transfer from a row of circular jets impinging on a concave surface. The computational domain simulates the impingement cooling zone of a gas turbine nozzle guide vane. The parameters, which are varied in the study include jet Reynolds number (Re{sub d} = 5000-67800), inter-jet distance to jet diameter ratio (c/d = 3.33 and 4.67) and target plate distance to jet diameter ratio (H/d = 1, 3 and 4). The flow field, predicted with K-{omega} turbulence model and using Fluent 6.2.16, is characterized with the presence of a pair of counter rotating vortices, an upwash fountain flow and entrainment. The local pressure coefficient and Nusselt number variations along the concave plate are presented and these values are found to under predict the available experimental data by about 12%. (orig.)

  2. Experimental investigation of impingement heat transfer from a round rib-roughened surface

    Science.gov (United States)

    Isman, Mustafa Kemal; Can, Muhiddin

    2017-04-01

    An experimental investigation on impingement heat transfer from a rib-roughened surface is performed. Single, double, and triple rib configurations are tested. The rib is also located at three different positions for a single rib case. The Reynolds number is varied from 10,000 to 50,000 whereas the dimensionless jet-to-surface distance (z/D) is kept constant as 8. Results show that, the Nusselt number decreases just before a rib. After the rib, however, the Nusselt number decreases by a larger amount. Since ribs cause a reincreasing in the Nusselt number after the stagnation point and since the stagnation point Nusselt number is not affected by ribs, they can be used to enhance heat transfer especially for spot cooling applications. It is also obtained that using ribs is more useful for low speed impinging jets, when heat transfer from the whole surface is considered.

  3. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  4. LARGE-SCALE VORTICAL STRUCTURES PRODUCED BY AN IMPINGING DENSITY JET IN SHALLOW CROSSFLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model.The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.

  5. Impingement capability of high-pressure submerged water jet:Numerical prediction and experimental verification

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 邵启明; 康灿; 龚辰

    2015-01-01

    At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.

  6. Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions

    Science.gov (United States)

    Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.

  7. Standard test method for conducting erosion tests by solid particle impingement using gas jets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the determination of material loss by gas-entrained solid particle impingement erosion with jetnozzle type erosion equipment. This test method may be used in the laboratory to measure the solid particle erosion of different materials and has been used as a screening test for ranking solid particle erosion rates of materials in simulated service environments (1,2 ). Actual erosion service involves particle sizes, velocities, attack angles, environments, and so forth, that will vary over a wide range (3-5). Hence, any single laboratory test may not be sufficient to evaluate expected service performance. This test method describes one well characterized procedure for solid particle impingement erosion measurement for which interlaboratory test results are available. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determi...

  8. Influence of Wall Position on Flow Characteristics of an Impinging Jet

    Directory of Open Access Journals (Sweden)

    Pratik Tiwari,

    2014-03-01

    Full Text Available The study intends physical insight into heterogeneous phenomena of efflux from a small opening impinging on a surface. The work aims at understanding the role of wall location and orientation on flow characteristics of an impinging jet. Experiments were performed on an existing cascade tunnel with flow ejected at a velocity of 37 m/s from a small opening of (30 cm × 9 cm and corresponding flow features were analyzed. Results show that outside the core region, the flow experiences a monotonic reduction with increase in distance along streamline and radial direction. The orientation of wall is more efficient in bringing substantial change when placed closer to the exit (low velocity losses. The wall orientation primarily governs the chances of strong flow deflection or back flow losses. Wall placed far away from exit results in diminishing returns with a critical value beyond which the flow characteristics become insensitive of wall orientation.

  9. Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet

    CERN Document Server

    Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

    2013-01-01

    Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

  10. Dynamics of fine particles during impingement of jets on a body with a needle

    Science.gov (United States)

    Alkhimov*, A. P.; Bedarev, I. A.; Fedorov, A. V.

    2013-07-01

    Numerical simulation of the impingement of a jet of a two-phase mixture of a gas with submicron metal particles on an obstacle with a needle located in front of it is carried out. The structure of a separated flow formed on impingement of a supersonic jet on a body with a needle has been studied. A comparison of various approximations for the law of resistance of spherical particles is made. It is shown that particles whose size exceeds 5 μm practically have a rectilinear trajectory and velocity sufficient for cold gas-dynamical deposition, whereas particles of diameter less than 0.2 μm envelope the separation zone being formed near the needle, and their velocity is much smaller than the critical one.

  11. Numerical simulation on submerged gas jet scouring pit morphology in impingement water bath dust removers

    Institute of Scientific and Technical Information of China (English)

    GAO Huijie; WU Xuan; ZHAO Yuxiang; WU Wenfei; LI Baowei

    2014-01-01

    The VOF interface tracking method was adopted to simulate the two-dimensional submerged gas jet scouring pit morphology in an impingement water bath dust remover.The interaction of gas/liquid two-phase was obtained by force balance and momentum exchange.On the self-designed impingement water bath dust remover test bench,the submerged gas jet flushing with different gas velocities was simulated. The results show that,the gas inlet velocity is one of the main factors affecting the submerged gas jet scou-ring pit characteristics.The unique nature of gas/liquid two-phase determines their unique way of move-ment,thus affects the morphological character of the scouring pit in the expansion lag phase.Within the study range,the characteristic radius and impact depth of the scouring pit increases with the gas velocity, and so are their growth rates.

  12. Survey of fish impingement at power plants in the United States. Volume I. The Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rajendra K.; Freeman, III, Richard F.

    1977-03-01

    Impingement of fish at cooling-water intakes of 20 power plants located on the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.

  13. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, III, Richard F.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.

  14. On the slip number choice in computations of liquid droplet impinging on a hydrophilic surface

    CERN Document Server

    Ganesan, Sashikumaar

    2015-01-01

    A mesh-dependent relation for the slip number in the Navier-slip with friction boundary condition for computations of impinging droplets is proposed. The relation is obtained as a function of the Reynolds number, the Weber number and the mesh size. The proposed relation is validated for several test cases by comparing the numerically obtained wetting diameter with the experimental results. Further, the computationally obtained maximum wetting diameter using the proposed slip relation is verified with the theoretical predictions. The relative error between the computationally obtained maximum wetting diameter and the theoretical predictions is less than 10\\% for impinging droplet on a hydrophilic surface, and the error increases in the case of hydrophobic surface.

  15. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  16. AN EXPERIMENTAL OBSERVATION OF A SOLITARY WAVE IMPINGEMENT, RUN-UP AND OVERTOPPING ON A SEAWALL

    Institute of Scientific and Technical Information of China (English)

    LIN Ting-Chieh; HWANG Kao-Shu; HSIAO Shih-Chun; YANG Ray-Yeng

    2012-01-01

    A sequence of laboratory experiments using solitary waves was performed to model the effect of leading form of three types of tsunamis (a bore,an impinging wave and an overtopping wave) on a seawall on a sloping beach.The wave evolution process,impinging pressure along the seawall surface,total overtopping discharge behind the seawall and the maximum run-up height on the rear slope were measured and compared.Laboratory data were employed to re-examine relevant empirical formulae in the literature.The effect of the presence of the seawall in reducing maximum run-up height using the present setup was briefly discussed.The present data can be used for calibrating numerical and mathematical models.

  17. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    Forcing in a High Pressure Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mario Roa, S. Alex Schumaker...disclose the work. PA Clearance Number: 16308 Clearance Date: 6/17/2016 13. SUPPLEMENTARY NOTES For presentation at AIAA Propulsion and Energy; Salt...the coupling between the impact waves created by impinging jets and high frequency acoustic pressure perturbations. High speed, backlit imaging was

  18. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.; Moreno, G.; Bennion, K.; Jeffers, J.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should hold for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.

  19. Zero Secular Torque on Asteroids from Impinging Solar Photons in the YORP Effect: A Simple Proof

    Science.gov (United States)

    Rubincam, David Perry; Paddack, Stephen J.

    2010-01-01

    YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack." arise mainly from sun light reflected off a Solar System object and the infrared radiation emi tted by it. We show here, through the most elementary demonstration that we Can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.

  20. The Role of Femoroacetabular Impingement in Core Muscle Injury/Athletic Pubalgia: Diagnosis and Management

    OpenAIRE

    Thomas eEllis; David eRenton; David eStrosberg

    2016-01-01

    Chronic groin pain in athletes represents a major diagnostic and therapeutic challenge in sports medicine. Two recognized causes of inguinal pain in the young adult athlete are core muscle injury/athletic pubalgia (CMI/AP) and femoroacetabular impingement (FAI). CMI/AP and FAI were previously considered to be two distinct entities, however recent studies have suggested both entities to frequently coincide in the athlete with groin pain. This article briefly discusses the role of femoroaceta...

  1. Study of the mixing and ageing of polluted plumes from major West Africa cities

    Science.gov (United States)

    Tocquer, Flore; Mari, Céline; Leriche, Maud; Dacciwa Team

    2017-04-01

    Massive economic and population growth, fast urbanization in megacities along the Guinea Coast, would triple anthropogenic emissions by 2030 (Knippertz et al., 2015). Impacts of the rapid increase of atmospheric pollutants on weather and climate in this region are largely unstudied due to a lack of observations. The DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa) project carried out an important airborne measurements campaign in June-July 2016 together with ground-based observations in urban and remote sites. Urban and industrial, biogenic dominated environment, dust and biomass burning air masses, ship plumes and flaring emissions were sampled successfully. The goal of this work is to investigate the transport and ageing of anthropogenic emissions from major West African megacities during boreal summer. For this purpose, the coupled atmosphere-chemistry mesoscale model Méso-NH was run at kilometric scale and results were compared with in-situ meteorological and chemical data. The study focuses on 06-07-08 July 2016. Three research aircrafts operated over the coastal region sampling downwind pollution from Lomé and Accra and biogenic emissions further inland. Preliminary simulation results will be presented to understand the mixing between and ageing of cities plumes during the post-onset period of the campaign.

  2. Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes

    Science.gov (United States)

    Katz, Joseph; Murphy, David; Morra, David

    2013-11-01

    The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

  3. [Hip arthroscopy in males younger than 40 with femoroacetabular impingement: short-term outcomes].

    Science.gov (United States)

    Más Martínez, J; Morales-Santías, M; Bustamante Suarez Suarez de Puga, D; Sanz-Reig, J

    2014-01-01

    Femoroacetabular impingement is probably the most common mechanism that leads to the development of early cartilage and labral damage in the non-dysplastic hip. The objective was to evaluate the outcomes of hip arthroscopy as a treatment for femoroacetabular impingement in patients with high level of function. A prospective study was performed on 41 patients younger than 40 years old undergoing hip arthroscopy for femoroacetabular impingement. Modified Harris Hip Score and HOS and IHOT questionnaires were used for clinical assessment. Radiological evaluation was made for joint space and alpha angle. The mean age of patients was 32.7 years. Labrum injury was detected in 78%, and acetabular cartilage injury in 56% of cases. The average follow-up was 31.3 months. There was a significantly improvement in the mean score in the clinical questionnaires. Radiologically there was no change in the mean joint space, with significantly reduction to normal values of the alpha angle. All patients returned to sports at their pre-injury level of function. Hip arthroscopy resulted in improvement in hip functional outcomes with correction of the underlying osseous deformity and treatment of the associated labral and cartilage pathology, with the return of patients to their pre-injury sports. Further follow-up is essential to confirm the stability of the clinical and radiological outcomes. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  4. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  5. Reactive Impinging-Flow Technique for Polymer-Electrolyte-Fuel-Cell Electrode-Defect Detection

    Energy Technology Data Exchange (ETDEWEB)

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-11-15

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this paper, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  6. Effect of controlling parameters on heat transfer during spray impingement cooling of steel plate

    Directory of Open Access Journals (Sweden)

    Purna C. Mishra

    2013-09-01

    Full Text Available The heat transfer characteristics of air-water spray impingement cooling of stationary steel plate was experimentally investigated. Experiments were conducted on an electrically heated flat stationary steel plate of dimension 120 mm x 120 mm x 4 mm. The controlling parameters taken during the experiments were airwater pressures, water flow rate, nozzle tip to target distance and mass impingement density. The effects of the controlling parameters on the cooling rates were critically examined during spray impingement cooling. Air assisted DM water was used as the quenchant media in the work. The cooling rates were calculated from the time dependent temperature profiles were recorded by NI-cRIO DAS at the desired locations of the bottom surface of the plate embedded with K-type thermocouples. By using MS-EXCEL the effects of these cooling rate parameters were analysed The results obtained in the study confirmed the higher efficiency of the spray cooling system and the cooling strategy was found advantageous over the conventional cooling methods in the present steel industries

  7. PIV measurements of isothermal plane turbulent impinging jets at moderate Reynolds numbers

    Science.gov (United States)

    Khayrullina, A.; van Hooff, T.; Blocken, B.; van Heijst, G. J. F.

    2017-04-01

    This paper contains a detailed experimental analysis of an isothermal plane turbulent impinging jet (PTIJ) for two jet widths at moderate Reynolds numbers (7200-13,500) issued on a horizontal plane at fixed relative distances equal to 22.5 and 45 jet widths. The available literature on such flows is scarce. Previous studies on plane turbulent jets mainly focused on free jets, while most studies on impinging jets focused on the heat transfer between the jet and an impingement plane, disregarding jet development. The present study focuses on isothermal PTIJs at moderate Reynolds numbers characteristic of air curtains. Flow visualisations with fluorescent dye and 2D particle image velocimetry (PIV) measurements have been performed. A comparison is made with previous studies of isothermal free turbulent jets at moderate Reynolds numbers. Mean and instantaneous velocity and vorticity, turbulence intensity, and Reynolds shear stress are analysed. The jet issued from the nozzle with higher aspect ratio shows more intensive entrainment and a faster decay of the centreline velocity compared to the jet of lower aspect ratio for the same value of jet Reynolds number. The profiles of centreline and cross-jet velocity and turbulence intensity show that the PTIJs behave as a free plane turbulent jet until 70-75% of the total jet height. Alongside the information obtained on the jet dynamics, the data will be useful for the validation of numerical simulations.

  8. Heat transfer of impinging jet-array over convex-dimpled surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143, Taiwan (China); Jan, Yih Jena; Chang, Shuen Fei [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143, Taiwan (China)

    2006-08-15

    A detailed heat transfer measurement over a convex-dimpled surface of impinging jet-array with three eccentricities (E/H) between jet-centre and dimple-centre is performed. These surface dimples considerably modify heat transfers from smooth-walled scenarios due to different impinging topologies for jet array with modified inter-jet reactions. Heat transfer variations caused by adjusting jet Reynolds number (Re) and separation distance (S/D{sub j}) over the ranges of 5000=impinging surface. (author)

  9. Numerical study of metal foam heat sinks under uniform impinging flow

    Science.gov (United States)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  10. [The relationship between quality of life and functional status measurements in shoulder impingement syndrome].

    Science.gov (United States)

    Ozcan, Ayşe; Tulum, Zeliha; Bacakoğlu, A Kadir

    2003-01-01

    We compared three questionnaires that are used in the assessment of function and quality of life of patients with shoulder impingement syndrome. The study included 54 patients (42 females, 12 males; mean age 54 years) with a diagnosis of stage I or II shoulder impingement syndrome. All the patients were administered a standard questionnaire regarding their general health status (Short-Form 36 / SF-36). Functional evaluations were made using the UCLA (University of California at Los Angeles) and Constant scoring systems. The results of the UCLA and Constant scores were compared with those of SF-36 with the use of Pearson correlation analysis. A strong correlation was found between the UCLA and Constant scores (p=0.006). SF-36 parameters of physical function, vitality, and social function showed a strong correlation with the UCLA scores (p<0.005), whereas parameters of general health and role emotional exhibited a moderate correlation (p<0.05). When compared with the Constant scores, SF-36 showed a strong correlation only in parameters of pain and general health (p<0.005). The parameter of role emotional was negatively correlated with the Constant scores. Demonstration of correlations between some parameters of SF-36 and the UCLA and Constant scoring systems suggests that SF-36 can be used to assess quality of life of patients with shoulder impingement syndrome.

  11. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  12. NUMERICAL SIMULATION OF THE FORMATION OF NANOPARTICLES IN AN IMPINGING TWIN-JET

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Large Eddy Simulation (LES) method has been used to solve the fluid momentum equations coupled with a convection-diffusion equation to study the formation of pollutant nanoparticles in a vehicular exhaust with impinging twin-jet. The functions of the space (S) between the two jets and the distance (H) from the exit of nozzle to the impingement plane are evaluated according to the distributions of pollutant nanoparticles. The results show that the nucleation produces a large number of nanoparticles, and gas-to-nanoparticle conversion mostly takes place in the interface region of the two jets, the circumambience of the jets, and region near the plane. The maximal particle size and maximal number concentration produced by both nucleation and coagulation appear around the region of free jet and the region near the plane, respectively. The significant differences for various spaces between the two jets are the number concentration and size distributions in the interface region of the two jets. For the case with larger space, more nanoparticles are produced by nucleation and coagulation. The more the distance from the exit of nozzle to the impingement plane, the lower is the number concentration and the fewer the particles distribute near the plane. Increasing the distance from nozzle to plane is beneficial to the reduction of nanoparticle formation.

  13. Experimental study of slot jet impingement heat transfer on a wedge-shaped surface

    Science.gov (United States)

    Rahimi, Mostafa; Irani, Mohammad

    2012-12-01

    An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w = 4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.

  14. Surgical dislocation of the hip in patients with femoroacetabular impingement: Surgical techniques and our experience

    Directory of Open Access Journals (Sweden)

    Mladenović Marko

    2015-01-01

    Full Text Available Background/Aim. Arthrosis of the hip is the most common cause of a hip joint disorders. The aim of this study was to present our experience in the application of a safe surgical dislocation of the hip in patients with minor morphological changes in the hip joint, which, through the mechanism of femoroacetabular impingement, cause damage to the acetabular labrum and adjacent cartilage as an early sign of the hip arthrosis. Methods. We have operated 51 patients with different morphological bone changes in the hip area and resultant soft tissue damage of the acetabular labrum and its adjacent cartilage. Surgical technique that we applied in this group of patients, was adapted to our needs and capabilities and it was minimaly modified compared to the original procedure. Results. The surgical technique presented in this paper, proved to be a good method of treatment of bone and soft tissue pathomorphological changes of the hip in patients with femoroacetabular impingement. We had no cases with avascular necrosis of the femoral head, and two patients had nonunion of the greater trochanter, 9 patients developed paraarticular ossification, without subjective symptoms, while 3 patients suffered from postoperative pain in the groin during more energetic physical activities. Conclusion. Utilization of our partly modified surgical technique of controlled and safe dislocation of the hip can solve all the bone and soft tissue problems in patients with femoroacetibular impingement to stop already developed osteoarthritis of the hip or to prevent mild form of it.

  15. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    Science.gov (United States)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  16. Obturator nerve impingement as a severe late complication of bilateral triple pelvic osteotomy.

    Science.gov (United States)

    Tong, K; Hayashi, K

    2012-01-01

    A four-year-old female spayed Labrador Retriever, which had undergone bilateral triple pelvic osteotomy (TPO) at the age of eight months, was presented with severe progressive shifting pelvic limb lameness for a duration of three months prior to presentation. The dog had multiple episodes of showing signs of excruciating pain, as well as an inability to rise or ambulate, inappetance, and lethargy. Orthopaedic examination revealed severe bilateral pelvic limb muscular atrophy, and signs of severe pain on abduction of the pelvic limbs, on rectal palpation ventrally, and on palpation of the region of the iliopsoas and pectineus muscles bilaterally. Surgery was indicated to explore the region and to release the pectineus and iliopsoas muscles. During surgery, callus tissue and the free section of pubic bone were found to be impinging on the obturator nerve at the previous TPO pubic osteotomy site bilaterally. On both sides, a 1 to 2 cm segment of pubis and fibrous callus tissue were excised and the obturator nerves were freed from the impingement. Immediately after the surgery, the patient's stance and gait were dramatically improved. The dog could maintain a much broader based stance and make longer strides with the pelvic limbs. At the two month follow-up examination, there were not any signs of lameness noted. Obturator nerve impingement can be a serious potential complication of TPO and may manifest clinically as marked pelvic limb lameness years after surgery.

  17. Turbulent heat transfer for impinging jet flowing inside a cylindrical hot cavity

    Directory of Open Access Journals (Sweden)

    Halouane Yacine

    2015-01-01

    Full Text Available Convective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2x104 to 105and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu=f(Lf,Re.

  18. Fyzioterapeutická péče u pacienta s diagnózou impingement syndrom

    OpenAIRE

    2014-01-01

    This thesis deals with the issue of physiotherapeutical care of patients diagnosed with impingement syndrome of arteculatio humeri. Impingement syndrome means an oppression or distress in the area of arteculatio humeri. That signifies an oppression of tendon m. supraspinatus in the subacromial area.It is clinically demonstrated by pain and functional limitation of movement and is caused by an overload of rotator cuff and its oppression with traumatic changes in the area of subacromial area.Th...

  19. Kazuistika fyzioterapeutické péče o pacienta s diagnózou impingement syndrom

    OpenAIRE

    Vontorová, Simona

    2012-01-01

    Title: The case report of physiotherapy care of a patient with the diagnosis of impingement syndrom. The objective of this bachelor thesis is introduction of physiotherapy of upper limb girdle with impingement syndrom. The thesis is dividend in two main parts. In the first part is described the girdle of the upper limb in the view of anatomy, kinesiology and biomechanics. There are listed procedures for testing and treatment and point of view of physiotherapy and surgical treatment by arthros...

  20. Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes

    Directory of Open Access Journals (Sweden)

    C. Manikyamba

    2012-05-01

    Archean lithospheric mantle, distinctive in being thick, refractory, and buoyant, formed complementary to the accreted plume and convergent margin terranes, as migrating arcs captured thick plume-plateaus, and the refractory, low density, residue of plume melting coupled with accreted imbricated plume-arc crust.

  1. Linking Europa's plume activity to tides, tectonics, and liquid water

    CERN Document Server

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  2. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  3. Effects of rotation on turbulent buoyant plumes in stratified environments

    National Research Council Canada - National Science Library

    Fabregat Tomàs, Alexandre; Poje, Andrew C; Özgökmen, Tamay M; Dewar, William K

    2016-01-01

    We numerically investigate the effects of rotation on the turbulent dynamics of thermally driven buoyant plumes in stratified environments at the large Rossby numbers characteristic of deep oceanic releases...

  4. False alarm recognition in hyperspectral gas plume identification

    Science.gov (United States)

    Conger, James L [San Ramon, CA; Lawson, Janice K [Tracy, CA; Aimonetti, William D [Livermore, CA

    2011-03-29

    According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.

  5. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  6. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon.

    Science.gov (United States)

    Camilli, Richard; Reddy, Christopher M; Yoerger, Dana R; Van Mooy, Benjamin A S; Jakuba, Michael V; Kinsey, James C; McIntyre, Cameron P; Sylva, Sean P; Maloney, James V

    2010-10-08

    The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation. Samples collected from within the plume reveal monoaromatic petroleum hydrocarbon concentrations in excess of 50 micrograms per liter. These data indicate that monoaromatic input to this plume was at least 5500 kilograms per day, which is more than double the total source rate of all natural seeps of the monoaromatic petroleum hydrocarbons in the northern Gulf of Mexico. Dissolved oxygen concentrations suggest that microbial respiration rates within the plume were not appreciably more than 1 micromolar oxygen per day.

  7. False alarm recognition in hyperspectral gas plume identification

    Energy Technology Data Exchange (ETDEWEB)

    Conger, James L. (San Ramon, CA); Lawson, Janice K. (Tracy, CA); Aimonetti, William D. (Livermore, CA)

    2011-03-29

    According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.

  8. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    Science.gov (United States)

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  9. Destratification induced by bubble plumes as a means to reduce ...

    African Journals Online (AJOL)

    to reduce evaporation from open impoundments. M van Dijk* and SJ van .... The air injection bubble plume system used for water quality applications has been ...... ervoir Evaporation Utilizing Mass Transfer Theory. US Geological. Survey.

  10. Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/ Marshall Space Flight Center (MSFC) needs sensors that can be operated on rocket engine plume environments to improve NASA/SSC rocket engine performance. In...

  11. Investigation of extraction fraction in confined impinging jet reactors for tri-butyl-phosphate extracting butyric acid process☆

    Institute of Scientific and Technical Information of China (English)

    Zhengming Gao; Manting Zhao; Yun Yu; Zhipeng Li; Jing Han

    2016-01-01

    The extraction fraction E and overall volumetric mass transfer coefficient kLa of TBP extracting butyric acid pro-cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocity ratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging ve-locity V, the concentration of TBP Corg, and the impinging velocity ratio Vorg/Vaq. However, E and kLa decrease with an increase of the inner diameter di from 1 to 2 mm, the concentration of butyric acid Caq from 0.5%(v/v) to 2%(v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer performance of CIJR in the extraction operation.

  12. Analysis of Impingement between Patella Bone and Bearing Post in Cruciate-Substituting High-Flexion Total Knee Arthroplasty.

    Science.gov (United States)

    Chon, Jegyun; Lee, Bongju; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon

    2016-06-01

    We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p patella bone. In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion.

  13. Vertically Discontinuous Seismic Signatures From Continuous Thermochemical Plumes

    Science.gov (United States)

    Harris, A. C.; Kincaid, C.; Savage, B.

    2008-12-01

    To interpret seismic signatures associated with mantle upwellings, we must understand the distribution of thermochemical heterogeneities within mantle plumes. Thermochemical heterogeneities are expected to arise within plumes by the incorporation of subducted lithosphere (Eclogite and Harzburgite) that has reached the plume source region (thermal boundary layers in the mantle). We analyze laboratory experiments in conjunction with seismic velocity models to predict the seismic signature of thermochemical plumes. Laboratory experiments are fully three-dimensional and use glucose syrup (Rayleigh number: 106) to model the mantle and a two-layer subducted lithosphere, where composition (viscosity and density) is controlled by water content. Experiments show heterogeneous upwellings with variations in both temperature and composition that are more complex than predicted in previous plume models. Spatial distributions for temperature and composition in representative, repeatable types of thermochemical upwellings are tracked through time, scaled to mantle values and used to calculate predicted seismic velocities. Apparent seismic velocity signals are estimated for patterns in thermochemical heterogeneity with length scales ranging from 1 to 300 km and excess temperatures from 50 to 300°C. Results show that if plumes are purely thermal they can be identified in the usual way, by slow velocities. However, if plumes are a mixture of compositions, as predicted by laboratory models, their velocity structure is more complex. An Ecolgite lens within a plume at ~300km depth with an excess temperature of 250°C can have the same velocity as regular mantle with no excess temperature. A Harzburgite lobe of a plume head (up to half of the plume volume) at 300km depth with an excess temperature of 225°C can have the same Vs as regular mantle with no excess temperature, but can only mask up to 55°C in Vp. Spatial variations in temperature control velocity structure above 300km

  14. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  15. Evolution of particle size in turbid discharge plumes

    Science.gov (United States)

    2016-06-07

    Evolution of particle size in turbid discharge plumes Paul S. Hill Department of Oceanography Dalhousie University Halifax, Nova Scotia, CANADA B3H...COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Evolution of particle size in turbid discharge plumes 5a. CONTRACT NUMBER 5b. GRANT...experiment was designed to explore the evolution of disaggregated grain size distribution in a flowing suspension. RESULTS Bulk effective settling

  16. The Communicating Pipe Model for Icy Plumes on Enceladus

    Institute of Scientific and Technical Information of China (English)

    MA Qian-Li; CHEN Chu-Xin

    2009-01-01

    We analyze the communicating pipe model on Enceladus, and predict that Saturn's strong tidal force in Enceladus plays a significant role in the plumes. In this model, the scale of the volcanoes can be evaluated based on the history of the craters and plumes. The correspondence of the data and observation make the model valid for the eruption. So it is imaginable that the tidal force is pulling the liquid out through the communicating pipe while reshaping the surface on Enceladus.

  17. Chemical Plume Detection with an Iterative Background Estimation Technique

    Science.gov (United States)

    2016-05-17

    this paper, we focus on cases where the plume is large (relative to the image ), and provide a method for handling this scenario. The method we develop...the locations of the events, the operation in (11) is a convolution of a binary image with a filter function h. To get an estimate of the probability...background statistics, including the mean and covariance. Diffuse plumes with a large spatial extent are particularly difficult to detect in single- image

  18. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.

    Science.gov (United States)

    Briones, Alejandro M; Ervin, Jamie S; Putnam, Shawn A; Byrd, Larry W; Gschwender, Lois

    2010-08-17

    A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line

  19. Imaging flow during impingement of differentially heated jets over a flat surface

    Energy Technology Data Exchange (ETDEWEB)

    Rathee, Yogender; Vinoth, B.R.; Panigrahi, P.K., E-mail: panig@iitk.ac.in; Muralidhar, K.

    2015-12-01

    Highlights: • We carried out experiments to model thermal striping phenomenon in LMFBR. • We examined temperature fluctuation in flow field using shadowgraphy. • We correlated the wall temperature fluctuations to flow fluctuations. • The PIV measurements showed a distinct recirculation zone for equal velocity jets. • Equal velocity jets show highest temperature fluctuations. - Abstract: The present study investigates thermal fluctuations occurring in the mixing region of two adjacent differentially heated water jets impinging on a horizontal stainless steel surface. The nozzle diameters of the individual jets are equal. The jets are immersed in a pool of water at the ambient temperature. The Reynolds number range considered in the experiments is 2.09 × 10{sup 3}–2.51 × 10{sup 4} for each jet, while the Richardson number is in the range of 9.58 × 10{sup −3}–1.38 × 10{sup −2}. Light intensity fluctuations in the interfacial region of the jets are imaged using the shadowgraph technique. Particle image velocimetry (PIV) has been carried out in a plane passing across the two jets. The effect of various flow rates near the nozzles and the impingement plate are visualized. Time-averaged and RMS temperature fluctuations on the exposed face of the impingement plate are measured using thermocouples. Spectra of light intensity fluctuations determined from the shadowgraph data are correlated with those in wall temperature. Light intensity spectra grow in amplitude in the flow direction, as additional jet instabilities set in. The spectra are broadband with distinct peaks, typical of high Reynolds number jets. Time-averaged and RMS wall temperature distribution are quite distinct from those of light intensity within the impinging jets. Consistent with a wall-jet behavior, the largest RMS wall temperature occurs near the stagnation point and decays away from it. The gradient in the time-averaged wall temperature is the highest for equal velocity jets and

  20. Psoas impingement causing labrum tear: a series from three tertiary hip arthroscopy centers.

    Science.gov (United States)

    Cascio, Brett M; King, David; Yen, Yi-Meng

    2013-01-01

    The term hip impingement is usually associated with psoas impingement after arthroplasty or femoroacetabular impingement (FAI). A recently, less commonly described mechanism of impingement and labrum pathology is the psoas tendon applying pressure to the acetabular labrum more medial to the typical FAI labrum lesion. Much is still unkown about the anatomy, pathology, and treatment of this entity. This paper describes the successful arthroscopic treatment of a series of patients with a recently recognized cause of hip pain in the young athletic population without significant bony pathology or coxa saltans. Awareness of this entity is important to allow appropriate treatment of the labrum and psoas tendon. Seven hundred hip arthroscopies by three surgeons at different centers were retrospectively reviewed. Athletes with labrum tears from the two to three o'clock position were evaluated for inclusion in the study. Patients with osteoarthritis, crossover sign, coxa profunda, CAM lesion, acute trauma, or coxa saltans were excluded. All authors were the primary surgeons and are fellowship-trained hip arthroscopists working in tertiary hip arthroscopy centers. Pre- and postoperative Harris Hip scores were obtained. Patients underwent diagnostic and therapeutic hip arthroscopy. The psoas tendon was released in all patients at the level of the capsule via a transcapsular approach. Labrum repairs were performed when deemed beneficial by the operative surgeon. Twenty-two patients (26 hips, 4 bilateral) were identified with a labrum tear apparently caused by psoas impingement and had no other significant hip abnormalities. All but one were female. Average age was 19 (12-25 years). Labral repair was performed in all but two patients. Average anchors used were 1.2 per hip. Pre- and postoperative Harris hip scores were obtained with a minimum follow-up of six months for 16 patients. Average Harris hip score improved from 70 preop to 94 postop. There were no significant